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Abstract
The use of increasingly larger and more complex neural net-

works (NNs) makes it critical to scale the capabilities and

efficiency of NN accelerators. Tiled architectures provide an

intuitive scaling solution that supports both coarse-grained

parallelism in NNs: intra-layer parallelism, where all tiles pro-

cess a single layer, and inter-layer pipelining, where multiple

layers execute across tiles in a pipelined manner.

This work proposes dataflow optimizations to address the

shortcomings of existing parallel dataflow techniques for

tiled NN accelerators. For intra-layer parallelism, we develop

buffer sharing dataflow that turns the distributed buffers

into an idealized shared buffer, eliminating excessive data

duplication and the memory access overheads. For inter-

layer pipelining, we develop alternate layer loop ordering
that forwards the intermediate data in a more fine-grained

and timely manner, reducing the buffer requirements and

pipeline delays. We also make inter-layer pipelining applica-

ble to NNs with complex DAG structures. These optimiza-

tions improve the performance of tiled NN accelerators by

2× and reduce their energy consumption by 45% across a

wide range of NNs. The effectiveness of our optimizations

also increases with the NN size and complexity.

CCS Concepts • Computer systems organization →

Neural networks; Data flow architectures.
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1 Introduction
Neural networks (NNs) are currently the most effective so-

lution for many challenging classification, recognition, and

prediction problems [24]. Hence, there is significant interest

in finding scalable and energy efficient ways to run NNs on

devices ranging from datacenter servers to mobile clients.

Recent research has shown that domain-specific NN ac-

celerators can achieve more than two orders of magnitude

improvements over CPUs and GPUs in terms of performance

and energy efficiency [1, 4, 5, 7, 9, 11, 12, 15, 28, 33, 36]. NN

accelerators typically use spatial architectures with 1D or

2D arrays of processing elements (PEs) and on-chip SRAM

buffers to facilitate data reuse. The software that orchestrates

the dataflow between the on-chip and off-chip memories and

the PEs is also critical in achieving high performance and

energy efficiency [6, 11, 14, 28].

The need for higher accuracy on increasingly complex

problems leads to larger NNs with higher compute and

memory requirements. For example, recent NNs use up to

a few hundreds of layers, with each layer sized at several

megabytes [17, 39, 42]. Hence, it is important to scale up NN

accelerators to efficiently support larger NNs. An intuitive

approach for scalable acceleration is to use tiled architec-
tures, where each tile includes a small 2D PE array and a

local SRAM buffer [5, 14, 22, 44]. A network-on-chip in-

terconnects the tiles. To get scalable performance on tiled

accelerators, we must optimize the coarse-grained parallelism
across multiple tiles, in addition to the fine-grained paral-
lelism within each engine. Existing dataflow schemes for

coarse-grained parallelism suffer from significant inefficien-

cies. Parallelizing a single NN layer (intra-layer parallelism)

leads to significant data duplication [14, 22], and pipelining
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the processing of multiple layers (inter-layer pipelining) re-
sults in substantial challenges in resource utilization and

on-chip buffer requirements [25, 40].

To overcome these challenges, we presentTangram, a scal-

able tiled accelerator with novel dataflow optimizations for

coarse-grained parallelization of NN workloads. Tangram

uses the same hardware resources as prior tiled NN architec-

tures. Its primary contribution is the optimized dataflow. For

intra-layer parallelism, we develop buffer sharing dataflow
(BSD) that eliminates the inefficiencies resulted from data

duplication in on-chip buffers. It effectively turns the dis-

tributed SRAM buffers into an idealized shared buffer that

always has the necessary data close to the processing tile. For

inter-layer pipelining, Tangram introduces alternate layer
loop ordering (ALLO) dataflow to forward intermediate fmap

data in a more fine-grained and timely manner, which re-

duces the on-chip buffering requirements and the pipeline

filling/draining delays. Tangram also includes pipelining

optimizations for the complex DAG structures in advanced

CNNs and LSTMs, which can minimize the number of com-

plex data dependencies served through the off-chip memory.

This extends the applicability of inter-layer pipelining be-

yond the simple linear NNs targeted in previous work.

We evaluate Tangram using large-scale, state-of-the-art,

CNN, MLP, and LSTM models. We show that by using op-

timized parallel dataflow, Tangram improves upon an al-

ready optimized baseline with the same tiled hardware, with

2.0× higher performance and 45% less energy. These bene-

fits allow Tangram to sustain 6107.4GOPS performance and

439.8GOPS/W energy efficiency. These numbers represent

an efficiency improvement equivalent to two technology

node generations. We also perform a detailed analysis of

the intra-layer and inter-layer dataflow optimizations to un-

derstand their individual contributions. The effectiveness

of these optimizations increases for larger NNs (intra-layer)

and NNs with complex DAGs (inter-layer). Hence, we be-

lieve that Tangram represents an effective way to accelerate

advanced NNs in the future.

2 Background
2.1 Neural Network Algorithms
Deep (DNNs), Convolutional (CNNs), and Recurrent Neu-

ral Networks (RNNs) are the most widely used NNs today.

The typical NN structure is a directed acyclic graph (DAG)

composed of multiple layers. While DNNs and many CNNs

use a single linear chain, RNNs, such as Long Short-Term

Memories (LSTMs), and advanced CNNs exhibit the complex

DAG structures shown in Figure 1. During inference, data
propagate in the forward direction, from the first layer that

accepts the input (e.g., image, text), to the last layer that

produces the result (e.g., image label, translated text). During

training, data first propagate forward to generate an infer-

ence result to compare against the ground truth, and then
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(a) GoogLeNet inception module.
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Figure 1. Complex NN DAG structures.
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Figure 2.CONV layer computation.Ni ifmaps are convolved

with different filter weights and accumulated to No ofmaps.

Computations are performed in batch size of Nb.

the errors propagate backward to update the model weights

in each layer.

The most common NN layer types are fully-connected

(FC) and convolutional (CONV). The gates in LSTM cells

are essentially FC layers. An FC layer generates a 1D vector

output by performing matrix-vector multiplication between

its weight matrix and the input vector. The output of a CONV

layer is organized as multiple 2D feature maps (fmaps), as
shown in Figure 2. Each output fmap (ofmap) is the sum of

2D convolutions between all input fmaps (ifmaps) and a set

of filter weights. To amortize the cost of weight accesses,

NN computations are often performed on a batch of data

samples. Since an FC layer can be viewed as a CONV layer

with 1 × 1 fmaps, the computation of both FC and CONV

layers can be summarized as:

O[b][o] =
Ni−1∑
i=0

I[b][i] ∗W[o][i] + B[o], 0≤o<No, 0≤b <Nb
(1)

where I and O are the 4D ifmaps and ofmaps (2D image,

number of fmaps, and batch),W is the filter weights, and B
is a 1D bias. “∗” denotes 2D convolution. Ni, No, Nb are the

number of ifmaps, ofmaps, and the size of batch, respectively.

NNs also include other types of layers. CONV and FC lay-

ers are typically followed by activation (ACT) layers, which

apply non-linear functions such as ReLU or sigmoid. Maxi-

mum or average pooling (POOL) layers are optionally added
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Figure 3. NN engine with a 2D PE array and a shared buffer.

between CONV layers to reduce fmap dimensions. ACT and

POOL layers do not have weights, thus data can be easily

processed in a streaming fashion.

For training, the forward computation is the same as infer-

ence. Themost common algorithm for backward propagation

is gradient descent. In CONV layers, the errors are convolved

with the previously generated ofmaps; in FC layers, the er-

rors are multiplied with the output vectors. They can be

formulated as CONV and FC layers with different dimen-

sions [40, 44]. Because the output of each layer is needed

for backward propagation, they must be written to off-chip

memory during forward computation and fetched back later.

2.2 NN Accelerators and Dataflow Scheduling
Several accelerator designs have been developed to address

the high compute and memory requirements of NNs (see

Section 7). We use the state-of-the-art Eyeriss accelerator as

our baseline NN engine [7]. As shown in Figure 3, the Eyeriss

NN engine includes a number of processing elements (PEs)

organized in a 2D array. Each PE contains a simple ALU for

multiply-accumulate (MAC) operations and a small register

file of 64 to 512 bytes. A larger SRAM buffer is shared by all

PEs. Other NN accelerators use a similar architecture [1, 4,

5, 11, 12, 28].

The efficiency of NN engines depends on how the nested

loops in NN computations shown in Figure 2 are sched-

uled [6, 14, 46]. Since the total data size for NNs is too large

to fit entirely on-chip, the on-chip and off-chip dataflows

are crucial for performance. Loop transformations, such as

blocking and reordering, can maximize data reuse across

loop iterations in the on-chip buffer and minimize accesses

to the off-chip memory [46]. Array mapping techniques op-

timize the spatial mapping of the 2D convolution for each

pair of ifmap I[b][i] and ofmap O[b][o] on the PE array, in

order to maximize parallelism and capture the locality in the

PE registers [6].

2.3 Parallelizing NN Acceleration
Since large NNs with more layers and more complex DAG

structures provide higher accuracy on more challenging

tasks [17, 18, 42], there is strong interest in scaling NN accel-

erators. Simply increasing the number of PEs in the mono-

lithic engine in Figure 3 is not efficient. First, small layers
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Figure 4. 2D tiled architecture with multiple NN engines

connecting to off-chip memory channels on the sides.

Table 1. Data sharing characteristics of different NN coarse-

grained parallelization schemes.

Scheme Ifmaps Ofmaps Weights

Intra-layer

Batch Partitioned
¶

Partitioned
¶ Replicated

Fmap With overlaps
*

Partitioned
* Replicated

Output Shared Partitioned
†

Partitioned
†

Input Partitioned
† Shared Partitioned

†

Inter-layer

Pipeline Forwarded Separate

¶
Partitioned across batch samples.

*
Partitioned inside one fmap.

†
Partitioned across different fmaps.

cannot fully utilize a large PE array, as computations sharing

the same data are typically placed on one PE to exploit reg-

ister locality. While one can map multiple 2D convolutions

to a single PE array [6], these convolutions are independent

and can only result in interference. Second, larger PE ar-

rays incur higher latency and energy overheads for the data

multicast needed when each time we start processing a new

set of fmaps [8] (see Figure 11). Third, the increasing dis-

tance between the shared buffer and the PEs also becomes

a bottleneck. While banking can help, most PEs would still

be quite far from the banks they need to access. Finally, a

monolithic array with rigid PE interconnects cannot support

the dataflow for inter-layer pipelining.

An efficient approach to get scalable performance is to

build a tiled architecture with multiple NN engines [5, 14, 22,

40, 44]. As shown in Figure 4, engines communicate through

a network-on-chip (NoC) that also connects them to off-chip

memory channels. The tiled architecture allows for coarse-
grained parallelism, where NN computations are coarsely

parallelized onto different engines. This is in addition to the

fine-grained parallelism of the spatially mapped 2D convo-

lutions on the PE array in each engine. To make an anal-

ogy to general-purpose processors, fine-grained parallelism

corresponds to SIMD or instruction-level parallelism, while

coarse-grained parallelism corresponds to multi-core.



There are two types of coarse-grained parallelism for NN

computations. First, multiple engines can process in paral-

lel the computations of a single layer [5, 14, 22]. Table 1

shows different schemes to leverage such intra-layer par-
allelism [14]. Batch parallelization partitions the batch so

that each engine processes different data samples (data par-

allelism). Fmap parallelization tiles the i/ofmaps and uses

each engine to process a sub-tile region of all fmaps. Output

parallelization parallelizes the ofmap loop in Figure 2 and

uses each engine to process a subset of the ofmaps. Similarly,

input parallelization parallelizes the ifmap loop.

Alternatively, we can use multiple engines to process mul-

tiple layers in a pipelined manner by spatially mapping the

NN DAG structures [2, 25, 36, 38, 40, 44]. Such inter-layer
pipelining is effective in increasing the hardware utilization

when layers are small and hardware resources are abundant.

This is the case for many recent NNs that use large numbers

of layers but each individual layer is rather small [17, 18, 45].

With inter-layer pipelining, the intermediate fmaps can be

forwarded between layers through the on-chip NoC, reduc-

ing the energy cost for off-chip memory accesses.

2.4 Baseline Architecture and Its Inefficiencies
We focus on optimizing intra-layer parallelism and inter-

layer pipelining on tiled NN architectures. Existing, state-of-

the-art techniques have significant inefficiencies.

Baseline hardware: We start with an optimized tiled NN

accelerator (Figure 4) similar to recent proposals [14, 44]. We

consider 16 × 16 tiles, where each tile is an Eyeriss-like NN

engine that includes an 8 × 8 PE array and a 32 kB private

SRAM buffer [7] (Figure 3). We leverage the state-of-the-

art row stationary dataflow for PE array mapping [6], and

the loop transformation techniques by Yang, et al. to opti-

mally manage SRAM buffers [46]. When switching layers,

we elide the off-chip accesses (no writeback, no refetch) if

the intermediate fmaps can fit entirely in on-chip buffers.

Baseline intra-layer dataflow: The baseline system sup-

ports intra-layer parallelism using hybrid output and fmap

parallelization as proposed in TETRIS [14]. All engines fetch

data in parallel from multiple off-chip memory channels.

If input data is shared between engines, they are fetched

from memory once and broadcast. Similarly, output data

are fully accumulated across engines and only the final re-

sults are written back to memory, following the dataflow in

ScaleDeep [44].

This approach uses the buffer within each engine as a pri-

vate cache that holds a full copy of any shared data. Such data

duplication can waste significant amounts of overall SRAM

buffer capacity. For example, duplicating a moderate size of

64 kB data across the 16 × 16 tiles could result in a waste of

16MB buffer space. This scenario is likely to happen. Table 1

shows that none of the intra-layer parallelization schemes

can fully partition all data types among NN engines. At least

one data type (ifmaps, ofmaps, or weights) is shared and thus

must be duplicated (denoted in italics). Data duplication re-

duces the effective capacity of on-chip buffers, which leads to

reduced reuse opportunities and more off-chip accesses. For

example, duplication may prevent the intermediate fmaps

between two layers from fitting in the on-chip SRAM. Also,

duplication leads to significantly larger area requirements

for the accelerator chip with larger SRAM buffers.

Baseline inter-layer pipelining: Previous proposals for inter-
layer pipelining assumed sufficient hardware resources, so

that the entire NN (all layers) can be mapped onto a single

or multiple chips [25, 40, 44]. This approach does not scale

to large NNs with hundreds of layers.

Our baseline system supports inter-layer pipelining by

dividing the layers of large NNs into segments. At each time,

only a single segment of layers is scheduled on the tiled

architecture. On-chip resources are allocated to the layers

in the segment proportional to their total number of opera-

tions [44]. Only the first layer input and the last layer output

in the segment require off-chip accesses. The intermediate

fmaps are directly forwarded through the on-chip buffers be-

tween layers. In addition, when all layers in the NN spatially

execute on different engines and their weights fit entirely in

the on-chip buffers, we support model weight pinning and

avoid accessing weights from the off-chip memory [13].

Still, the baseline approach has several inefficiencies. First,

direct forwarding intermediate fmaps requires large on-chip

buffers. The entire fmaps must be stored on-chip and dou-

ble buffered for concurrent read and write accesses from

adjacent layers [44]. This translates to tens or hundreds of

MBytes of on-chip SRAM (see Table 2), and can only be made

worse by the data duplication in intra-layer dataflow. Second,

when switching between segments, the hardware resource

utilization drops substantially due to the overheads of fill-

ing and draining the segment pipelines. Later layers in the

segment cannot start processing until the previous layers

produce their output data. Finally, all prior work has limited

the inter-layer pipelining to linear NN structures, with no

support for complex DAGs.

3 Tangram Parallel Dataflows
We propose Tangram, a tiled NN architecture with novel

dataflow optimizations for intra-layer parallelism and inter-

layer pipelining. Tangram uses the same hardware resources

as the baseline, but its novel parallel dataflow overcomes the

buffer requirement and resource utilization challenges in pre-

vious designs (Sections 3.1 and 3.2). It also extends inter-layer

pipelining to support complex DAG structures in advanced

CNNs and LSTMs (Section 3.3). Tangram is designed for

inference tasks, but its dataflow optimizations can be simi-

larly applied to training (Section 3.4). This section focuses

on the dataflow optimizations. We discuss their hardware

and software implementations in Section 4.
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(b) Buffer sharing dataflow.

Figure 5. Intra-layer dataflow with output parallelization

sharing ifmaps. I[b][i]means the ith ifmap of the bth sample.

W[o][i] means the weights for the ith ifmap and oth ofmap.

3.1 Intra-Layer Parallelism with Buffer Sharing
We start by improving the dataflow across multiple NN

engines processing a single layer. Figure 5(a) reviews the

dataflow in the baseline (Section 2.4). In this example, we con-

sider output parallelization, where each engine processes a

different ofmap subset using the corresponding weights. The

same set of ifmaps are shared and duplicated in the buffers

of all engines (e.g., first at time ➊ I[:][0 :3] from memory 0,

then at time ➋ I[:][3 :6] from memory 1). When parallelizing

over po engines, there are po copies of the same ifmaps in

the SRAM. Similarly, with fmap or batch parallelization, the

shared weights are duplicated; with input parallelization,

the shared ofmaps are duplicated. This duplication wastes

expensive on-chip buffers and fails to benefit from data reuse

patterns both within one layer and across adjacent layers.

Buffer sharing dataflow (BSD): BSD is a parallel dataflow

optimization that eliminates shared data duplication across

engines. With BSD, each engine contributes its buffer ca-

pacity to store a subset of the shared data and continuously

exchanges data with other engines, until all shared data have

passed through and been processed locally by all engines.

Figure 5(b) illustrates BSD. We first skew the computation

order across the engines to make each engine fetch and pro-

cess a different subset of the shared data from the nearby

memory channel. At time ➊, engine 0 starts with I[:][0 :3],
engine 1 starts with I[:][3 :6], etc. Since the ofmap accumula-

tion is commutative, skewing the order does not affect the

accuracy. When all engines finish processing their current

subsets of data, we rotate the shared data in order to allow

each engine to process a different subset. At time ➋, after

the first rotation, engine 0 processes I[:][3 :6] sourced from

engine 1, engine 1 processes I[:][6 :9] sourced from engine

Engine 0,0 Engine 0,1 Engine 0,2 Engine 0,3

Engine 1,0 Engine 1,1 Engine 1,2 Engine 1,3

Engine 0,0 Engine 0,1 Engine 0,2 Engine 0,3

Engine 1,0 Engine 1,1 Engine 1,2 Engine 1,3

Rotate 
weights

Rotate 
ifmaps

Engine 0,0 Engine 0,1 Engine 0,2 Engine 0,3

Engine 1,0 Engine 1,1 Engine 1,2 Engine 1,3

Rotate 
weights

Rotate 
ifmaps

Figure 6. Buffer sharing dataflow with 2D data rotation for

hybrid output and fmap/batch parallelization. First rotate

weights vertically; then rotate ifmaps horizontally.

2, and engine 2 processes I[:][0 : 3] sourced from engine 0.

Further rotation steps ensure that all ifmaps pass through

all engines and are fully processed. We then fetch the next

ofmap subset and rotate the same ifmaps for another round

(not shown in Figure 5(b)), until the ifmaps are fully used to

update all ofmaps.

BSD is also applicable to weight sharing with fmap or

batch parallelization, as well as hybrid parallelization as

shown in Figure 6. With hybrid ifmap and weight sharing,

data are logically distributed in 2D, and rotation also happens

in 2D. We first rotate the weights vertically to complete

processing the fmaps currently in the local buffers (e.g., I[0 :
3][0 : 2] and O[0 : 3][0 : 1] in engine (0, 0)), and then rotate

the ifmaps horizontally to obtain new ranges of ifmaps (e.g.,

engine (0, 0) gets I[0 :3][2 :4] from engine (0, 1)).

Loop transformation model for BSD: We represent BSD

using the loop transformation model in [46]. As shown in

Figure 7, originally the on-chip buffer of each engine can

store Ni/ti ifmaps and No/to ofmaps, with 1/tb of the batch
Nb, corresponding to the top-level loop blocking factors.

Each time the engine fetches a subset of ifmaps, ofmaps, and

weights for on-chip processing according to the loop indices.

With BSD, the po engines with output parallelization now

buffer different ifmaps, po times larger than before, reducing

the ifmap loop factor by po. To rotate the ifmaps between

engines, an additional blocking loop level i ′′
0
is introduced,

and skewed by the engine index x . Because the rotation loop

is inside the ofmap loop, the Ni/(ti/po) ifmaps are rotated

r = to rounds on-chip and fully reused by all No ofmaps.

In general, assume that N data are shared by p engines

(e.g., Ni ifmaps shared by po engines), and that each engine

buffer stores 1/t of the shared data. If the total number of

rotation rounds is r decided by the outer loop factors, the

subset index of the shared data in the xth engine at time step

T will be

i0 = ⌊
T

rp
⌋ × p + (x +T mod p) mod p, 0 ≤ T < ⌈

t

p
⌉ × r × p (2)

In the case of hybrid parallelization, the index of each shared

data can be calculated independently.



for b0 ← 0 to t
b
do

for i0 ← 0 to ti do
// fetch ifmap subset [b0][i0].
for o0 ← 0 to to do
// fetch ofmap subset [b0][o0], weight subset

[o0][i0].
// on-chip processing.

(a) Loop blocking without BSD.

for b0 ← 0 to t
b
do

for i′
0
← 0 to ti/po do

// fetch ifmap subset [b0][i′
0
] into po engines.

for o0 ← 0 to to do
// fetch ofmap subset [b0][o0], weight subset

[o0][i0].
for i′′

0
← 0 to po do

i0 = i′
0
× po + (x + i′′

0
) mod po

// rotate to get ifmap subset [b0][i0].
// on-chip processing.

(b) Loop blocking with BSD.

Figure 7. Loop transformation model for BSD, for output

parallelization that shares ifmaps. Ifmap data rotation is or-

chestrated by the additional loop level i ′′
0
.

Using the above model, the compiler can statically analyze

the dataflow and fully manage the hardware at runtime. We

present further implementation details in Section 4.

BSD benefits: BSD optimizes the use of SRAM buffers across
all engines. With ifmap sharing as an example, we can rotate

the ifmaps multiple rounds, each for a different set of ofmaps.

This allows for the reuse of a larger set of ifmaps (those across

all engines, I[:][0 : 9], rather than those in a single engine,

I[:][0 : 3], in Figure 5(b)) across all the ofmaps without the

need for off-chip accesses. With the loop blocking shown

in Figure 7, the number of ofmap off-chip fetches is decided

by the outer level ifmap loop factor. Previously the ofmaps

are fetched ti times, each being updated using Ni/ti ifmaps.

With BSD, the ofmaps are updated with po× more ifmaps

each time, and thus only fetched ti/po times from off-chip.

BSD also improves data reuse when switching between

adjacent layers. Without BSD, each engine needs a private

copy of the input data from the previous layer. If these ifmaps

do not fit in the buffer of a single engine, we have to spill

them using off-chip memory. By eliminating data duplica-

tion with BSD, as long as the ifmaps can fit on-chip using

all SRAM buffers, we can directly reuse the buffered inter-

mediate fmaps from the previous layer, and elide off-chip

accesses when switching layers.

In fact, BSD is equivalent to the ideal case where a sin-

gle, large buffer with the aggregate capacity of all engine

buffers stores all data with no duplication. So it achieves

the maximum on-chip data reuse. Moreover, by combining

computation skew and data rotation, we ensure that the data
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Figure 8. Timing diagram of inter-layer pipelining with al-

ternate layer loop ordering (ALLO). Orange, blue, and green

boxes denote top level batch, ifmap, ofmap loops, respec-

tively. Arrows indicate data dependencies and inter-layer

data forwarding. The top level loop blocking of each layer

is shown on the right. Matched fmap access patterns are

denoted in red.
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Figure 9. Intermediate fmap buffering of inter-layer pipelin-

ingwith alternate layer loop ordering (ALLO). Blue and green

boxes denote ifmaps and ofmaps of each layer, respectively.

currently being processed always reside in the local buffer

and do not need to be accessed remotely. Hence the buffers

operate like an optimal NUCA cache [3, 16]. Data rotation

happens between neighbor engines, which minimizes the

number of NoC hops.

3.2 Inter-Layer Pipelining with ALLO
As discussed in Section 2, while inter-layer pipelining can

improve overall performance and resource utilization in the

presence of small layers, it requires significant on-chip buffer

capacity to hold the intermediate fmap data between layers.

Moreover, data dependencies between layers result in long

pipeline filling/draining delays that degrade performance.

A simple approach to alleviate these issues is to break

up the input data batch of each pipeline stage into multiple

subsets. Instead of waiting for its entire input to be available,

each layer can start processing as soon as a subset of its input

samples are ready. This approach requires that the outermost

loop of each layer is blocked by the same factor tb. It reduces
on-chip buffer requirements and pipeline filling/draining de-

lays to 1/tb. However, tb is constrained by the total batch size
Nb, which is small for inference tasks. It also sacrifices the

weight reuse, as the weights must be fetched tb times (once

per each data subset). Therefore, tb can only be moderate,

around 4 to 8, leading to limited savings.



Alternate layer loop ordering (ALLO) dataflow: We pro-

pose a novel pipelining dataflow, called Alternate layer loop
ordering (ALLO), that further reduces the pipeline delays and
buffer requirements on top of breaking up the data batch.

ALLO modifies the intermediate fmap data access patterns,

in order to allow the next layer to start processing as soon as

a subset of the fmaps within a single data sample are ready.
For example, in Figure 8, L-1 computes each ofmap sequen-

tially. If the next layer (L-2) also sequentially accepts these

data as its ifmaps, it can start processing after waiting for a

single fmap rather than all fmaps. Since each ofmap gener-

ated by L-1 is immediately used as an ifmap by L-2, we only

need to store a single fmap that is currently being processed,

rather than all fmaps, as Figure 9 shows.

ALLO dataflow makes two adjacent layers in the pipeline

segment access their shared intermediate fmaps with the

same sequential pattern, in order to forward and buffer the

fmaps in a finer granularity. However, because CONV and

FC layers cannot have sequential accesses to both the ifmaps

and ofmaps, it is only possible to apply ALLO to alternate

pairs of adjacent layers in a pipeline segment. For example,

in Figures 8 and 9, while L-1 and L-2 can be optimized with

ALLO, the ofmaps of L-2 must be updated multiple times

with the sequentially accessed ifmaps, therefore they must

be fully buffered, and cannot benefit from ALLO.

Loop transformation model for ALLO: Similar to BSD,

ALLO can also be realized using loop transformation tech-

niques. We notice that, sequentially accessing the i/ofmaps

corresponds to putting the i/ofmap loop at the outer level,

right below the top batch loop required by breaking up

batches. Therefore, ALLO requires the adjacent layers in

the pipeline segment to use alternate orders for the ifmap

loop and the ofmap loop. To enforce exactly the same subsets,

the loop blocking factors should also match. As shown in

Figure 8, L-1 and L-2 use alternate loop orders, having the

ofmap loop and the ifmap loop at the outer level, respectively

(denoted in red). They also use the same blocking factor 4.

So every time L-1 will produce one fourth of the ofmaps and

immediately forward them to L-2 to be consumed.

ALLO benefits: If two adjacent layers have matched outer

i/ofmap loops with blocking factor t , ALLO reduces the

pipeline filling/draining delays and the on-chip buffer ca-

pacity for intermediate fmaps both by a factor of t . These
benefits are on top of breaking up the pipelined data batch.

Since CONV and FC layers typically have hundreds of fmaps

(Ni,No > Nb), the savings from ALLO (ti, to) can be substan-

tially higher than pipelining the batch (tb).
Nevertheless, ALLO can only be applied to half of the pairs

of adjacent layers in a pipeline segment. When there are ℓ
layers in the segment and ℓ−1 intermediate fmap data, ALLO

still requires to fully delay and buffer ⌊ ℓ−1
2
⌋ of intermediate

data. Segments with two layers are a special case; ALLO can

optimize the intermediate fmap dataflow and require no fully

delay or buffering.

Combining ALLO and BSD: ALLO is compatible with the

BSD optimization for intra-layer parallelism. ALLO orches-

trates the dataflow between layers, while BSD is applied

within a layer. Moreover, ALLO requires specific orders and

blocking factors within the top-level loops for off-chip access
(Figure 8), while BSD adds an additional loop level below the

top level (Figure 7) for on-chip data rotation.

Combining ALLO and BSD enables higher savings in on-

chip buffer capacity. In fact, BSD helps most with the half

of layers in the pipeline segment that cannot use ALLO.

For these layers, the intermediate fmap data must be fully

buffered on-chip. BSD ensures no data duplication within

these layers, so the required buffer capacity is minimized.

3.3 Inter-Layer Pipelining for Complex NN DAGs
Recent NNs, such as ResNet [17] and various LSTMs [41, 45],

feature complex DAG structures that go beyond the single

linear chain of layers in early NNs. To support inter-layer

pipelining for such complex NN DAG structures, we first

improve the allocation strategy, and then provide practical

and general heuristics to optimize the spatial mapping of

NN layers on the tiled accelerator.

2D region allocation: Prior designs used static 1D alloca-

tion strategies to divide on-chip engines into regions that

process different layers [44]. Each layer gets one or more

columns in the 2D array of NN engines, and fmap data flow

in the horizontal direction through all layers. This alloca-

tion strategy is not sufficient for NN DAG structures with

complex data forwarding patterns. Instead, we propose a 2D

zig-zag allocation strategy shown in Figure 10(a). Regions

are folded into the next row when they cannot fit in the

remaining space in the current row (e.g., R1 and R4).

This 2D allocation strategy has two major advantages.

First, it is more fine-grained than 1D allocation and allows to

more accurately size the regions to match the computation

needs of the layers. Hence, the resources are better utilized

and the latencies of pipeline stages are equalized. Second,

when the fmap data are forwarded to non-adjacent regions

(e.g., R0 to R3), 2D allocation results in shorter distances

across the NoC.

Spatial layer mapping heuristics: In complex NN DAG

structures, a layer can have multiple predecessor and/or suc-

cessor layers. Correspondingly, a region may need to receive

input data from both on-chip and off-chip sources. Output

data may also need to be forwarded to multiple destinations,

and possibly also stored back to memory. Hence, it is no

longer trivial to determine which subset of layers should be

mapped concurrently for pipeline execution (segment selec-

tion), and how to map layers within a segment to available
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(b) Spatial mapping of complex DAGs. Left: GoogLeNet inception; middle: ResNet module; right: LSTM.
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Figure 10. Inter-layer pipelining support for complex NN DAGs.

regions (region mapping). We propose the following prac-

tical heuristics to prune the design space that the compiler

has to consider when optimizing layer pipelining for a wide

set of NNs (see Section 4.2).

Segment selection: The layers in an NN are considered in

the DAG topological order to form pipeline segments. A

layer may be added into a segment only if it shares some

data dependencies with other layers in the segment. The

data dependencies can be either receiving the output data

from a layer in the segment as in the simple linear pipelining

case, or sharing the input data fetched from off-chip memory

with another layer in the segment. The later case is specific

to complex DAGs with forks. For instance, the GoogLeNet

inception module shown in Figure 10(b) has four layers shar-

ing the off-chip input data (R0, R1, R3, and R5). Spatially

mapping them on-chip in a single segment allows us to fetch

the shared data only once.

The output data of each layer should be either used exclu-

sively by the other layers in the same segment, or directly

stored back to the off-chip memory. There is little benefit to

pack half of the consuming layers in the same segment as

the producing layer, because the intermediate data still need

to be stored back to memory for the other half. It is better to

gather all the consuming layers into a new segment, if they

cannot fit in the current one. This is the case for GoogLeNet

in Figure 10(b). For LSTM cells, we relax this constraint and

allow at most one consuming layer to be in a different seg-

ment (see Figure 10(b) LSTM cell, R2). This relaxation also

helps with training as Section 3.4 will discuss.

Region mapping:We group ACT, POOL, and element-wise

layers into the regions of their previous CONV or FC layers.

These layers do not need to access any weights and typically

have small computation loads. Hence they increase only

slightly the compute and buffer needs for each region.

NN layers can be mapped to a single region if they form a

linear dependency chain. The engine buffers in the region

sequentially store the output fmap data of each layer in the

chain, and make them directly available only to the single

successor layer. In Figure 10(b), the R2 region of the LSTM

cell has a linear chain of four layers (see blue arrows), where

the three element-wise layers are merged with the FC F-gate.

The layers that use the same region sequentially can have

only one dependency from a neighbor region. This input

dependency determines the timing of this region relative to

the other regions. In classical linear pipelining, each layer has

a single dependency on its predecessor layer in the previous

region. With complex DAGs, regions can form a linear chain

or a tree of dependencies. We do not allow more than one

neighbor dependency per region to avoid conflicting timing

requirements that lead to pipeline stalls.

3.4 Dataflow Optimizations for NN Training
While Tangram is primarily designed for NN inference, the

intra-layer and inter-layer dataflow optimizations can be

applied similarly to NN training. The error backward prop-

agation of CONV and FC layers can be formulated as new

CONV or FC layers with different dimensions [40, 44]. The

BSD optimization in Section 3.1 can be applied to better

parallelize these backward layers. For inter-layer pipelining,

training extends the NN DAG structure with more layers

for backward propagation. Our improved inter-layer pipelin-

ing scheme in Section 3.3 can handle such complex DAG

structures. ALLO from Section 3.2 can also be used for both

forward and backward pipeline segments. The new backward

layers have input data dependencies on the output fmaps of

their corresponding forward layers. With the relaxed rule

of allowing one consuming layer in a different segment, the

forward portion of the NN DAG can still be well pipelined.

4 Tangram Implementation
The intra-layer and inter-layer dataflow optimizations in

Tangram require only small hardware changes in tiled NN

architectures. Their implementations are mostly software,

including (a) a search tool that identifies the optimized par-

allelization schemes for each NN, and (b) a compiler that

produces the code for the selected schemes.



4.1 Hardware Support
Existing tiled NN architectures support limited data forward-

ing within one layer and across layers [44]. Similar to the

prior design, all parallel dataflows in Tangram are statically

scheduled. At runtime, each NN engine in the tiled accel-

erator simply executes the instructions generated by the

compiler to access data from SRAM buffers and perform

NN computations. The lack of dynamic scheduling greatly

simplifies the hardware design.

To implement the intra-layer buffer sharing dataflow, we

enhance the engine buffer controllers so that they can issue

accesses to both the off-chip memory and the other on-chip

engine buffers. Additional control logic orchestrates data

rotation and computation skew according to the loop trans-

formation model in Figure 7 and Equation (2). We also need

to synchronize the data rotation among the engines to avoid

stalls or data overwrites. We leverage theMEMTRACK primi-

tive from ScaleDeep [44], which relies on the hardware buffer

controllers to track whether the data has received enough up-

dates before it can be read, and enough read accesses before

it can be overwritten. Deadlock is eliminated by transferring

the data in units of buffer lines and reserving a few free lines

in each buffer. Load imbalance is not an issue as long as

the hybrid parallelization partitions the data approximately

uniformly [14].

The data forwarding needed for inter-layer pipelining

is already available in tiled NN architectures [40, 44]. In

Tangram, ALLO forwards the intermediate data in a more

fine-grained manner as soon as a subset of fmaps are ready.

We use the same MEMTRACK primitive to synchronize the

data at the necessary granularity. For complex NN DAGs, on-

chip fmaps can be forwarded to multiple destination regions,

and one engine may require data from multiple sources.

4.2 Dataflow Design Space Exploration
There are a large number of design options for how to map

a multi-layer NN on a tiled accelerator. Recent work has

already established the need for hybrid parallelization for

intra-layer processing [14]. With inter-layer pipelining, we

can either choose a deeper pipeline (longer segments) with

fewer engines per layer, or use a shallower pipeline (shorter

segments) and give each layer more engines and buffer ca-

pacity. For complex NN DAGs, there are additional tradeoffs

for segment selection and mapping (see Section 3.3). In fact,

the choice of pipeline depth reveals a tradeoff in performance

and energy. Deeper pipelines avoid more intermediate off-

chip accesses, but reduce per-layer resources and likely make

per-layer dataflow suboptimal. The pipeline filling/draining

delays also increase with the number of layers per segment,

leading to resource underutilization for deeper pipeline.

To manage these tradeoffs, we developed a search tool

that explores different intra-layer and inter-layer dataflow

schemes for a tiled accelerator. The tool takes the NN topol-

ogy and the hardware specification as input. It supports com-

mon NN types including CNNs, DNNs, and LSTMs. It relies

on well-known optimizations for the dataflow within each

NN engine [6, 46]. The tool generates a large number of con-

figurations with different inter-layer pipelining, intra-layer

parallelism, off-chip loop blocking, and on-chip dataflow. It

uses the heuristics discussed in Section 3.3 to trim the design

space. Our cost model is similar to [6, 14, 46]. For each indi-

vidual layer, on-chip and off-chip dataflows are exhaustively

searched; across layers, we use a combination of dynamic

programming and beam search in the layer topological order.

We leverage this tool to compare parallel dataflow schemes

for tiled architectures in Section 6. The tool is available at

https://github.com/stanford-mast/nn_dataflow.

4.3 Code Generation
The Tangram compiler generates the code for the parallel

dataflow selected by the search tool. In addition to the NN

topology, the input to the compiler includes the pipeline

segment partitioning, the region allocation for each segment,

the hybrid intra-layer parallelization scheme, the BSD and

ALLO information given as loop transformation models, and

the array mapping and loop blocking for each single engine.

Our compiler focuses on the data exchanges between on-

chip buffers and the data transfers to/from off-chip mem-

ories. The parallel dataflow optimizations in Tangram do

not change how the NN engine itself works once data are

available in each local buffer. Hence, our compiler can be

easily retargeted to tiled accelerators using different en-

gines [21, 27, 44]. Based on the dataflow schemes, the com-

piler combines the loop transformation models at different

levels (ALLO, BSD, and single-engine loop blocking) to get

the complete nested loop structure [46]. Then, it generates

the data access instructions according to the specific order

dictated by the loop structure. The compiler also inserts nec-

essary data synchronization primitives at certain points in

the nested loops. The instructions are offloaded to the en-

gine buffer controller, which notifies the PE array to start

the computation when all data have been fetched [22].

5 Methodology
Workloads: We evaluate Tangram using four state-of-the-

art CNNs from ImageNet ILSVRC, as well as two DNNs

(multi-layer perceptrons, MLPs) and two LSTMs in medium

(-M) and large (-L) scales, summarized in Table 2. The variety

of characteristics in these NNs allows us to explore various

tradeoffs in parallel dataflow optimizations. All CNNs have

several hundreds of MBytes memory footprints. VGGNet has

significantly larger layers than the others. GoogLeNet and

ResNet have large numbers of layers. MLPs and LSTMs only

contain FC layers and their sizes are dominated by the model

weights, with very small fmaps. AlexNet, GoogLeNet, ResNet,

https://github.com/stanford-mast/nn_dataflow


Table 2. Representative NNs for evaluation. Fmap and

weight sizes are shown for the largest layer and the entire

NN (largest/total) with 16-bit fixed-point data and batch 64.

CONVs FCs Fmap size Weight size

AlexNet [23] 10 3 17.7/ 95.4 MB 72/116MB

VGGNet [39] 13 3 392.0/1841.7 MB 196/264 MB

GoogLeNet [42] 57 1 98.0/ 453.4 MB 2/ 13MB

ResNet [17] 155 1 98.0/4318.5MB 5/115MB

MLP-M [9] - 4 125/220 kB 1.5/2.7MB

MLP-L [9] - 4 188/376 kB 2.9/6.1MB

LSTM-M [45] - 4 64/ 576 kB 1/ 4MB

LSTM-L [41] - 16 125/4125 kB 4/61MB

and both LSTMs have complex DAG structures as in Figure 1.

We use a default batch size of 64, and also explore batch sizes

from 1 to 256. Datacenter NN inference accelerators can use

batch sizes as high as 200 [21].

Systemmodels: Wemodel the NN engine shown in Figure 3

after Eyeriss [7]. Assuming 28 nm technology, the engine

runs at 500MHz. The PE area and power are scaled from [7,

11, 28], assuming 0.004mm
2
and 1 pJ for each 16-bit MAC.

We useMcPAT 1.3 tomodel the area and power of the register

files and the SRAM buffers at different capacities, and to

calculate the characteristics of the PE array bus wires at

different lengths [26]. The NoC power is estimated to be

0.61 pJ/bit per hop [26, 43]. The default configuration for the

NN engine contains an 8 × 8 PE array, with a 64 B register

file per PE and a 32 kB shared SRAM buffer.

We evaluate a tiled hardware architecture with a 100mm
2

cost-effective chip area budget, with 16 × 16 engines. This

results in a total of 16384 PEs and 8MB on-chip SRAM. The

chip connects to four off-chip memory channels of LPDDR4-

3200 chips, with a total of 24Gb capacity and 25.6GBps
bandwidth. The power consumption is calculated using the

Micron model [29] and the parameters from datasheets [30].

We use performance in GOPS (giga ops per second) and en-

ergy efficiency in GOPS/W as the main comparison metrics.

The performance captures both the impact of PE utilization

across the NN engines and the impact of off-chip memory ac-

cesses. We also model the impact of data multicast latencies

from SRAM buffers to PE registers. We aggressively assume

separate buses for each data type and that each bus can multi-

cast eight data elements per cycle [7]. We have validated the

performance model against cycle-accurate memory access

trace simulations with zsim [35] and DRAMSim2 [34].

6 Evaluation
We start with an overall comparison of Tangram against

the baseline systems in Section 6.1, followed by a detailed

analysis of the parallel dataflow optimizations in Section 6.2.

In Section 6.3 we further investigate other batch sizes and

hardware configurations.

6.1 Overall Tangram Comparison
Figure 11 shows the energy and performance comparison

over all evaluated NNs on the three systems with the same

hardware resources. The monolithic engine (M) organizes all

PEs in a single 128 × 128 array, with a heavily banked global

buffer of 8MB. The baseline architecture (B) and Tangram

(T) both tile the resources into 16 × 16 smaller engines as

shown in Figure 4. They support both intra-layer parallelism

and inter-layer pipelining. The baseline uses the techniques

summarized in Section 2.4, whileTangram uses the optimiza-

tions presented in Section 3. All three systems support direct

fmap reuse across adjacent layers without DRAM writeback

as long as the intermediate fmaps fit on-chip. The two tiled

architectures also allow model pinning.

Compared to the monolithic and baseline systems, Tan-

gram improves on average the performance by 7.2× and

2.0×, and saves 41% and 45% system energy, respectively.

Tangram sustains 6107.4GOPS performance with 88mm
2

at 28 nm, and achieves 439.8GOPS/W energy efficiency in-

cluding off-chip memories, or 936.4GOPS/W for the chip

itself. These numbers are on par with ScaleDeep, a recent NN

accelerator in 14 nm [44]. It demonstrates that optimizing

intra-layer and inter-layer dataflow in software can provide

energy efficiency improvements equivalent to two hardware

technology node generations.

The monolithic engine spends significant energy on the

array buses (up to 20%), and its performance is also limited

primarily by the high latency of data multicast on these long

buses. On the other hand, since all on-chip SRAM resources

are aggregated into a single global buffer, it is quite effective

at capturing reuse within and across layers, resulting in low

energy consumption for off-chip memories. However, we do

not partition the monolithic buffer to store the weights from

multiple layers simultaneously on-chip, so model pinning is

not supported (e.g., for MLP-M).

The two tiled architectures use multiple but smaller PE

arrays, so the overheads of the array bus within each engine

are reduced. However, the baseline suffers from the increased

pressure for buffer capacity due to significant data duplica-

tion, and the delays of filling/draining pipelines. Both limit

the effectiveness of parallelization. Therefore, it consumes

substantially higher energy on the off-chip memory and the

NoC, in particular for the CNNs with large intermediate

fmap data. In contrast, Tangram uses the optimized BSD

and ALLO dataflows for intra-layer and inter-layer paral-

lelism, and supports pipelining of complex NN DAGs such as

GoogLeNet and LSTMs. These optimizations reduce off-chip

accesses, resulting in energy and performance benefits.

Notice that for MLPs and LSTMs, the energy efficiency is

dominated by the weight access through the memory hier-

archy in the monolithic engine. The two tiled architectures
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Figure 11. Comparison between monolithic architecture, baseline tiled architecture, and Tangram. All three designs use

16384 PEs and 8 MB buffers. In the two tiled architectures resources are organized into 256 tiled engines (16 × 16).

support model pinning when the weights of all layers can fit

in the on-chip SRAM, which fully eliminates off-chip weight

access and greatly improves efficiency. This is the case for

MLP-M and MLP-L in Figure 11. Tangram uses dataflow

optimizations to reduce the buffer capacity requirements,

which enables additional model pinning opportunities such

as for LSTM-M. The reduced pressure also allows MLP-L to

use more optimized dataflow within each layer, and reduces

its energy consumption in the engine buses and buffers. Fi-

nally, LSTM-L is too large to use model pinning even with

Tangram optimizations.

6.2 Parallel Dataflow Analysis
In order to better understand the effectiveness of intra-layer

and inter-layer dataflow optimizations proposed in Section 3,

Figure 12 compares the energy consumption of Tangram

against two systems without the two sets of optimizations,

respectively. For intra-layer parallelism, all CNNs signifi-

cantly benefit from the buffer sharing dataflow (BSD) due to

their large fmap sizes. Eliminating duplication for the large

fmaps greatly saves buffer spaces and improves data reuse

within and across layers. BSD also helps with MLP-L and

LSTM-M, because the reduced buffer pressure allows more

optimized per-layer dataflow to be used with the pipeline

schemes, decreasing the buffer access and array multicast

energy cost (see Section 4.2). On the other hand, MLP-M and

LSTM-L exhibit limited benefits from BSD.

With layer pipelining optimizations, AlexNet, GoogLeNet,

ResNet, and the two LSTMs enjoy substantial energy sav-

ings. Even with complex DAG structures, these NNs are

able to use deeper pipeline segments with more layers in

Tangram, since ALLO reduces the intermediate data buffer-

ing requirements. First, deeper pipelining eliminates more

DRAM accesses of the intermediate data. Second, by allo-

cating a smaller region for each layer, the NoC energy for

intra-layer traffic is reduced. Third, by using fewer spatial

PEs, more operations are co-located to increase PE-level

data reuse, which also reduces the bus and buffer energy. In

particular, simultaneously pipelining all layers in LSTM-M

enables model pinning, greatly saving the energy by 4.6×.

Finally, VGGNet and the two MLPs do not benefit much from

Tangram inter-layer optimizations, as they use only simple

linear topologies.

6.3 Hardware and Batch Size Scaling
Figure 13(a) shows the energy of Tangram relative to the

baseline as we scale from 16 to 1024 engines (tiles). The bene-

fits of Tangram increase when more hardware resources are

available and are organized into more tiles. In this case, it be-

comes more difficult for a single layer to utilize all resources,

and the inefficiencies of the baseline system mentioned in

Section 2.4 become more critical. Tangram successfully ad-

dresses these issues, and achieves up to 67% energy saving

when scaling to 1024 engines with 65536 PEs.

Figure 13(b) shows the impact of batch sizes. The tiled

baseline actually performs worse than the monolithic engine

at large batches, because the inefficient resource utilization

becomes more serious when the data size becomes larger.

Tangram allows for more efficient data reuse and pipelining

with more independent data samples, enabling higher energy

improvements with larger batches.

For small batches, Tangram can still provide benefits, al-

though the savings become smaller. When using batch size

1, which is common in latency-sensitive inference scenar-

ios [13]. Tangram slightly improves the energy efficiency for

most NNs such as AlexNet by roughly 10% compared to the

tiled baseline. GoogLeNet exhibits more significant energy

saving because multiple layers in the pipeline segment share

the input, and LSTM-M benefits from model pinning with

Tangram which eliminates the dominant weight access (not

shown in the figure).

7 Related Work
NN accelerators: The importance of NNs has motivated a

number of accelerators with 1D inner-product engines [4, 5]

or 2D spatial PE arrays [7, 11, 12, 21, 28] with low-precision

arithmetics and small control overheads. Tangram uses a

similar architecture as tiled accelerators [5, 14, 22, 44]. Recent

work has also prototyped NN accelerators on FPGAs [2, 25,
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Figure 12. Comparison between Tangram and two systems that disable intra-layer and inter-layer optimizations, respectively.
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Figure 13. Effectiveness of Tangram optimizations using

different numbers of engines and batch sizes for AlexNet.

32, 37, 38, 48], and leveraged ReRAM crossbars for in-situ

analog dot-product operations [9, 36, 40].

A notable technique to further improve NN efficiency is

to exploit sparsity in NN workloads in order to avoid re-

dundant operations and reduce memory footprints. Recent

work either dynamically pruned zero and small values [1, 33],

or statically compressed the NN structures into sparse for-

mats [10, 15, 47, 49]. While Tangram focuses on dense NNs,

its insights should be useful for scaling sparse NN accelera-

tors as well. In fact, sparsity mostly affects the fine-grained

parallelism by changing the dataflow inside the engines [31].

The coarse-grained parallelism remains similar to the dense

case. We will explore this issue in details in future work.

Intra-layer parallelism: DaDianNao was a tiled architec-

ture with on-chip eDRAM [5]; however the dataflow between

tiles was neither thoroughly studied nor optimized. NN ac-

celerators with 3D memory associate one NN engine to each

of the 3D channels. Neurocube proposed a simple heuristic

for NN partitioning across tiles [22] and TETRIS extended it

to hybrid partitioning schemes [14]. They both suffered from

the inefficiencies discussed in Section 2.4 and modeled in our

baseline system. Our BSD proposal shares similar insights

with non-uniform cache access (NUCA) [3, 16]. It leverages

application-specific knowledge of NNs to statically schedule

computation skew and data rotation in order to optimally

migrate data between tiles.

Inter-layer pipelining: ISAAC [36] and PipeLayer [40] used

inter-layer pipelining in ReRAM-based accelerators, but did

not consider dataflow optimizations. The fused-layer CNN

accelerator sacrificed programmability to fuse the operations

between layers in a fine-grained manner [2]. Li et al. imple-

mented an inter-layer pipeline with an optimization for FC

layers similar to ALLO [25]. But the design was limited to

small CNNs and did not scale to large, complex networks

such as ResNet and LSTMs. Shen et al. proposed to use het-

erogeneous engines to process different layers for higher

utilization, but intermediate data were still written back to

DRAMwith no bandwidth and energy saving [38]. ScaleDeep

was a scale-out server architecture that mapped entire NNs

for training [44]. Its coarse-grained dataflow suffered from

the inefficiencies as our baseline. To pipeline an NN across

multiple GPUs, Jia et al. used dynamic programming to find

the optimal strategies under a cost model [19, 20]. The above

designs mostly mapped the whole NNs to the systems, and

none of them studied the tradeoff of pipeline depth as Tan-

gram does.

8 Conclusion
This work focused on dataflow that improves coarse-grained

parallelism on tiled NN accelerators. We presented optimiza-

tions for both intra-layer parallelism and inter-layer pipelin-

ing that decrease buffer requirements, reduce off-chip ac-

cesses, alleviate frequent stalls in pipelined execution, and

target complex DAG patterns in recent NNs. These optimiza-

tions provide significant performance and energy advantages

over existing tiled andmonolithic designs. Moreover, the ben-

efits of these parallel dataflow optimizations will increase as

NNs become larger and more complex.
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