Phase Retrieval

Recover $x_o \in \mathbb{C}^n$ from $\|\boldsymbol{a}_{i}^{t}\boldsymbol{x}_{o}\|$, $1 \leq i \leq m$ • Gaussion $\mathbf{y}_i = \mathbf{a}_i^t \overset{i.i.d.}{\sim} \mathcal{N}(0, \mathcal{I}_n)$ $\boldsymbol{a}_i^t = \left(\cos\frac{i\pi}{n}(k+\frac{1}{2})\right)_{k=1}^n$ • DCT $M_{k,l} \in \{-1, 0, 1\}$ • Masks

Applications

 Increasing Resolution Coherent Diffraction Imaging (CDI)

- Crystallography
- Astronomy

Wirtinger Flow

 $d(z) = \frac{1}{2m} \sum_{i=1}^{m} \left\| \mathbf{y}_{i}^{2} - \left| \mathbf{a}_{i}^{t} \mathbf{z} \right|^{2} \right\|^{2}$ $\operatorname{dist}(z, \mathbf{x}_{o}) = \min_{\phi \in \mathbb{R}} \left\| z - e^{i\phi} \mathbf{x} \right\|$ $\operatorname{dist}(z_o, x) \leq \frac{1}{8} \|x\|$ $\boldsymbol{z}_{\tau+1} = \boldsymbol{z}_{\tau} - \mu_{\tau+1} \nabla d(\boldsymbol{z}_{\tau})$

E. J. Candes, X. Li and M. Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms

- glv

- Remarks

Phase Retrieval for Structured Signals

Compression family

 $x \in \mathcal{Q}$ compact, $\mathcal{E}_r : \mathcal{Q} \to \{0,1\}^r$, $\mathcal{D}_r : \{0,1\}^r \to \mathcal{Q}$, $\|\mathcal{D}_r(\mathcal{E}_r(z)) - z\| \le \delta_r$, $\forall z \in \mathcal{Q}$ $\cdot \alpha$ dimension

$$= \{\mathcal{E}_r, \mathcal{D}_r\}, \qquad \dim_{\alpha}(\mathcal{F}) = \lim_{r \to \infty} \frac{r}{\log \frac{1}{\delta_r}}$$

•COmpresive PhasE Retrieval (COPER)

$$= \mathcal{D}_{r} \circ \mathcal{E}_{r}(\mathcal{Q}), \quad d(z) = \frac{1}{2m} \sum_{i=1}^{m} \left| \mathbf{y}_{i}^{2} - \left| \mathbf{a}_{i}^{t} z \right|^{2} \right|^{2}, \quad \hat{\mathbf{x}}$$
$$\mathbb{P}\left(\inf_{\theta} \left\| e^{i\theta} \mathbf{x} - \hat{\mathbf{x}} \right\|^{2} \le 32\sqrt{3}\delta_{r}^{\epsilon_{\eta}} \right) \ge 1 - 2^{-c_{\eta}r} - e^{-0.2}$$
$$\mathbf{en} \ m \ge \eta \ \dim_{\alpha}(\mathcal{Q}), \quad \eta > 1.$$

•error $\rightarrow 0$

•GD-COPER

 $\begin{aligned} \mathsf{dist}(\boldsymbol{x}, \boldsymbol{z}_0) < \|\boldsymbol{z}_0\|, \quad \boldsymbol{z}_{t+1} &= \mathcal{D} \circ \mathcal{E}\left(\boldsymbol{z}_t - \mu \nabla d(\boldsymbol{z}_t)\right) \\ \bullet \quad \inf_{\theta \in \mathbb{R}} \left\| \mathrm{e}^{i\theta} \boldsymbol{x} - \boldsymbol{z}_T \right\| &\leq (1 - 2\tau) \left(1 - \tau\right)^T + \frac{3}{\tau} \delta_r \quad \text{with high probability,} \end{aligned}$ where $0 < \tau < 0.5$ depends on initial error.

Theoretical • *m* needs to be as large as $\dim_{\alpha}(\mathcal{Q})$ Mild initial condition

General

- It can employ ANY structure
- Having the compression method is enough

Authors: Milad Bakhshizadeh*, Arian Maleki*, Shirin Jalali** *: Columbia University

$\hat{\mathbf{x}}_{\mathbf{COPER}} = \arg\min_{\mathbf{c}\in\mathcal{Q}}\mathbf{d}(\mathbf{c})$

.6*m*

Practical

- Stable to the initialization
- Fast and efficient

**: Nokia Bell-labs

Results

DCT, m/n = 10**PSNR =** 49.9

DCT, m/n = 10**PSNR =** 37.6

Initialization

Target	n-init-error		\ \	$\frac{m}{n} = 1$		$\frac{m}{n} = 2$				$\frac{m}{n} =$		= 3
				GD-C	WF		GD-C	WF		GD-C		WF
	0.0		0.0	27.84	inf	31.55		inf		35.11		inf
	0.09		0.1	28.04	DVG	31.5		DVG		35.19		DVG
	0.17		0.2	27.44	DVG	31.24		DVG		35.12		DVG
	0.26		0.3	26.99	DVG		31.47	DVG		35.26		DVG
	0.35		0.4	26.68	DVG	31.23		DVG		35.02		DVG
	0.43		0.5	26.89	DVG		31.62	DV	VG 3		56	19.12
	0.52		0.6	26.5	DVG		32.18 DV		G	33.89		18.97
	0.61		0.7	26.69	DVG		32.4	DV	G	33.54		17.94
	0.7		0.8	26.56	DVG		31.97	13.8	13.86		71	17.13
	0.78		0.9	26.26	DVG		31.74	12.9	12.92 34		16	16.12
	0.87		1.0	26.71	DVG		32.0 12.1		.1	34.6		15.21
· · · · · · · · · · · · · · · · · · ·		r	•	T.					i			1
Target	$\frac{m}{n}$	All-white					Spectral					
		n-init-err		PSNR	Run time	2	n-init-err		PS	SNR R		ın time
	1 0.98		8	DVG	2.6	2.6		1.39		DVG		5.0
	2	0.9	8	DVG	2.8		1.39		DVG			7.2
	3	0.98		14.0	9.6		1.39		DVG			8.9
	4	0.98		17.0	11.9		1.4		D	DVG		10.6
	5	0.9	8	20.0	15.9		1.38		DVG			12.6
	6	0.98		23.2	17.7		1.21		D	DVG		15.0
	7	0.9	8	26.1	21.8	1.3		1	DVG			17.0
	8	0.98		29.0	24.1		1.3	1.39		DVG		17.9
	9	0.98		32.2	26.2		0.6	5	20.4			30.8

 10
 0.98
 34.7
 13.6
 0.6
 21.3
 30.9

 15
 0.98
 57.1
 21.9
 0.48
 21.2
 55.3