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Applications
• Increasing Resolution
Coherent Diffraction Imaging (CDI)

diffraction, and in practice only by the signal-to-noise ratio
in the diffraction measurement. This freedom from the
resolution restrictions of conventional x-ray microscopy
becomes increasingly important as the length scale of
features in the samples studied decreases. CXDI with
application to 2D crystallography was earlier tested with
a computer generated 2D crystal structure [22] and a finite
periodic array of nanoislands [23]. Here we report on a
proof-of-principle CXDI experiment on a 2D finite crystal
structure.

Free-electron lasers are especially well suited for such
coherent 2D crystallography. They provide femtosecond
coherent pulses with extremely high power. Only the com-
bination of all of these unique properties will allow the
realization of 2D crystallographic x-ray imaging on bio-
logical systems. Brilliant, ultrashort pulses could overcome
the radiation damage problem [3] which is a severe limi-
tation of conventional crystallography at third-generation
synchrotron sources [24]. Higher luminosity and hence
improved statistics for such experiments can be obtained
by the use of pulse trains that can be provided by FLASH
and the European XFEL [2,7].

In our experiment FLASH [7] was operated in a regime
producing 21 bunches of electrons per pulse train, with a
pulse train repetition rate of 5 Hz. The bunches within each
pulse train were spaced at 1 MHz. The average pulse
energy was 15 !J which is equivalent to 6! 1011 photons
per pulse or 1:3! 1013 photons per train at the source.

We demonstrate finite crystallography by using a crystal
array that was prepared on a 100 nm thick Si3N4 membrane
coated with 600 nm of Au, and 200 nm of Pd. The finite
crystal sample was manufactured by milling holes in the
film in a regular array pattern using a Focused Ion Beam
(FIB). The ‘‘unit cell’’ of our crystal consists of a large hole
of 500 nm diameter (representing a ‘‘heavy atom’’ in
conventional crystallography) and a smaller hole of
200 nm diameter (representing a ‘‘light atom’’). The cen-

ters of these holes were separated by 495 nm. The whole
structure is composed of five unit cells in each direction,
making the total structure size about 10 !m! 10 !m.
The diffraction data were measured at FLASH on the

PG2 monochromator beam line [25] with a fundamental
wavelength of 7.97 nm. The monochromator was used in
specular reflection (zeroth order) mode. The last mirror of
the beam line is a focusing mirror with long focal length
("2 m) which provides an image of the source [25]. We
estimate a beam size in the focal plane of the order of
150 !m FWHM in the horizontal and vertical directions
with a flux of 4:5! 1010 ph=pulse determined by ray
tracing.
The experiment was conducted in a dedicated CXDI

vacuum chamber [26] which was connected to the PG2
beam line. The chamber consists of an upstream shutter, a
sample stage, and a flight tube to the charged-coupled
device (CCD). The FEL beam was incident on the sample
at a distance of 71.5 m from the source. The diffracted
radiation then propagated 535 mm to the detector position
(see Fig. 1). The detector used was an in-vacuum CCD
(PI-MTE 2048B) with 2048! 2048 pixels, each 13:5 !m
square with 16-bit digitization. For a 10 !m sample size
with our experimental conditions we found that far-field
conditions are well satisfied and the diffraction pattern is
adequately sampled with a sampling rate of 30 in each
dimension. We used a 0.2 s exposure time to collect a series
of single pulse train data from our sample with a coherent
flux on the sample area of 1:5! 1010 photons per pulse
train. This is an order of magnitude higher than the ex-
pected coherent flux of about 3! 109 photons on the same
sample area for the same exposure time at a third-
generation synchrotron source [27]. A beamstop was posi-
tioned in front of the CCD to protect the camera from the
direct beam. A typical data set is shown in Fig. 2(a). It
demonstrates an excellent visibility for our 2D finite crys-
tal structure of 10 !m size. By comparing the visibility

FIG. 1 (color online). A sketch of the experiment. The beam from the beam line first interacts with the sample, and then the
diffracted radiation propagates to a CCD detector. To enhance the measured resolution of the data the direct beam was incident near the
corner of the detector.
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Wirtinger Flow
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Phase Retrieval for Structured Signals
•Compression family
x ∈ Q compact, Er : Q → {0, 1}r , Dr : {0, 1}r → Q, ‖Dr(Er(z))− z‖ ≤ δr , ∀ z ∈ Q

•α dimension
F = {Er ,Dr} , dimα (F) = lim

r→∞

r

log 1δr
•COmpresive PhasE Retrieval (COPER)
Cr = Dr ◦ Er(Q), d(z) =
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givenm ≥ η dimα(Q), η > 1.

•error δr→0−−−→ 0

•GD-COPER
dist(x , z0) <‖z0‖ , z t+1 = D ◦ E

(
z t − µ∇d(z t)

)

• inf
θ∈R

∥∥∥eiθx − zT
∥∥∥ ≤ (1− 2τ) (1− τ)T + 3

τ
δr with high probability,

where 0 < τ < 0.5 depends on initial error.
•Remarks

Theoretical General Practical
• m needs to be as large as
dimα(Q)

• It can employ ANY structure • Stable to the initialization
• Mild initial condition • Having the compressionmethod is enough • Fast and efficient

Authors: MiladBakhshizadeh*, ArianMaleki*, Shirin Jalali**
*: Columbia University **: Nokia Bell-labs

Results
•Peak Signal to Noise Ratio
PSNR(z) = 20 log10 255√MSE
MSE(z) = 1

n
‖z − x‖2

•Convergence
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GD-COPER Wirtinger Flow

Gaussion,m/n = .73
PSNR = 27.4

Gaussion,m/n = .73
DVG

DCT,m/n = 10
PSNR = 49.9

DCT,m/n = 10
PSNR = 37.6

Initialization
25

TABLE VIII: The impact of initialization on the performance of GD-COPER and Wirtinger flow. “n-init-error” is

the normalized mean square error of the initialization. The initializations chosen in this simulation are in the form

of xinit = �xo + (1 � �)x, where xo is an all-white image and x is the true signal.

Target n-init-error �

m
n

= 1 m
n

= 2 m
n

= 3

GD-C WF GD-C WF GD-C WF

0.0 0.0 27.84 inf 31.55 inf 35.11 inf

0.09 0.1 28.04 DVG 31.5 DVG 35.19 DVG

0.17 0.2 27.44 DVG 31.24 DVG 35.12 DVG

0.26 0.3 26.99 DVG 31.47 DVG 35.26 DVG

0.35 0.4 26.68 DVG 31.23 DVG 35.02 DVG

0.43 0.5 26.89 DVG 31.62 DVG 34.66 19.12

0.52 0.6 26.5 DVG 32.18 DVG 33.89 18.97

0.61 0.7 26.69 DVG 32.4 DVG 33.54 17.94

0.7 0.8 26.56 DVG 31.97 13.86 33.71 17.13

0.78 0.9 26.26 DVG 31.74 12.92 34.16 16.12

0.87 1.0 26.71 DVG 32.0 12.11 34.6 15.21

Target n-init-error �

m
n

= 1 m
n

= 2 m
n

= 3

GD-C WF GD-C WF GD-C WF

0.0 0.0 23.65 inf 26.23 inf 27.53 inf

0.1 0.1 23.55 DVG 26.26 DVG 27.65 DVG

0.2 0.2 23.69 DVG 26.14 DVG 27.68 DVG

0.3 0.3 23.49 DVG 26.28 DVG 27.46 DVG

0.39 0.4 23.45 DVG 26.14 DVG 27.49 DVG

0.49 0.5 23.49 DVG 26.13 DVG 27.6 DVG

0.59 0.6 23.45 DVG 26.19 DVG 27.56 DVG

0.69 0.7 23.48 DVG 26.18 DVG 27.43 16.88

0.79 0.8 22.82 DVG 26.44 12.72 27.53 15.9

0.89 0.9 22.97 DVG 26.43 11.9 27.5 14.92

0.99 1.0 22.62 DVG 26.27 11.03 27.56 14.0

for all v � 0. We have
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In addition, h(0) = 1
2 > 0 and h(1) = 0.

Lemma 4 (Chi squared concentration). For any ⌧ � 0 we have

P
⇣
�2(m) > m(1 + ⌧)

⌘
 e�

m
2 (⌧�ln(1+⌧)) ⌧ > 0.

The proof of this lemma can be found in [18].
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TABLE IV: Wirtinger Flow performance with spectral and all-white initialization

Target m
n

All-white Spectral

n-init-err PSNR Run time n-init-err PSNR Run time

1 0.57 DVG 1.7 1.39 DVG 2.4

2 0.57 DVG 1.4 1.39 DVG 4.4

3 0.57 17.1 4.3 1.39 DVG 6.2

4 0.57 20.3 5.5 1.37 DVG 7.4

5 0.57 23.2 6.5 1.37 DVG 9.3

6 0.57 26.9 7.7 1.38 DVG 11.2

7 0.57 29.4 9.8 1.13 DVG 12.3

8 0.57 32.8 13.5 0.89 DVG 16.2

9 0.57 36.2 17.5 0.63 9.4 74.8

10 0.57 39.0 44.5 0.64 DVG 32.5

15 0.57 51.3 50.6 0.49 20.5 99.4

Target m
n

All-white Spectral

n-init-err PSNR Run time n-init-err PSNR Run time

1 0.86 DVG 2.8 1.39 DVG 4.8

2 0.86 12.1 9.1 1.39 DVG 8.4

3 0.86 15.1 11.4 1.39 DVG 10.9

4 0.86 18.2 14.9 1.39 DVG 13.6

5 0.86 21.1 20.0 1.41 DVG 15.1

6 0.86 24.2 25.1 1.37 DVG 17.1

7 0.86 27.4 28.2 1.06 DVG 19.5

8 0.86 30.4 28.4 0.9 DVG 22.8

9 0.86 33.4 31.6 1.33 DVG 26.0

10 0.86 35.5 32.2 0.6 24.4 56.1

15 0.86 56.7 43.7 0.48 11.0 81.7

Target m
n

All-white Spectral

n-init-err PSNR Run time n-init-err PSNR Run time

1 0.98 DVG 2.6 1.39 DVG 5.0

2 0.98 DVG 2.8 1.39 DVG 7.2

3 0.98 14.0 9.6 1.39 DVG 8.9

4 0.98 17.0 11.9 1.4 DVG 10.6

5 0.98 20.0 15.9 1.38 DVG 12.6

6 0.98 23.2 17.7 1.21 DVG 15.0

7 0.98 26.1 21.8 1.31 DVG 17.0

8 0.98 29.0 24.1 1.39 DVG 17.9

9 0.98 32.2 26.2 0.65 20.4 30.8

10 0.98 34.7 13.6 0.6 21.3 30.9

15 0.98 57.1 21.9 0.48 21.2 55.3


