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Uncertainty : How to make the Dinosaur a lizard?!
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What is this talk about?

1. Heavy-tail makes it challenging to bound uncertainty

2. We can control heavy-tail by truncation

3. Truncation gives optimal bound
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Part 1: problem setup

▶ Heavy-tail distributions: the dinosaur
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Heavy-tails don’t have finite MGF

▶ SubGaussian distributions
▶ P

(
|X | > t

)
≤ exp

(
−ct2)

▶ ∥X∥p = O(√p)

▶ E
[
exp (λX )

]
≤ exp

(
cλ2)

▶ Heavy-tailed distributions

▶ E
[
exp (λX )

]
= ∞, ∀λ > 0

▶ e.g. Weibull with k < 1,

N (0, 1)α α > 2, Log-Normal, ...

normal distribution
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Rise of the heavy-tails: A new era dawns

▶ Data is heavy-tailed

▶ Multiplication makes tail heavier
▶ XY , X n

▶ N (0, 1), N (0, 1)2, N (0, 1)3

▶ Real applications
▶ Neural nets
▶ Phase retrieval
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U-statistics, a low risk unbiased estimator

▶ Un = 1
(n

m)
∑

1≤i1<i2<...<im≤n
h(Xi1 , ..., Xim), h(·) symmetric

▶ Xi iid
▶ Un → E [h]
▶ h = X1 → µ̂ = X̄n

▶ h = (X1−X2)2

2 → σ̂2

▶ How fast P
(∣∣Un − E [h]

∣∣ > ϵ
)

→ 0?
▶ Sample size n
▶ High-dimensional statistics
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Concentration inequality, a tool for uncertainty control

▶ P
(
|Un| > ϵ

)
≤ exp

(
−L(n, ϵ)

)
▶ E [h] = 0 (no generality loss)
▶ Simple
▶ Tight (asymptotically)

▶ Recall
▶ Un = 1

(n
m)

∑
h(Xi1 , ..., Xim )

▶ E
[
exp

(
λh(X1, ..., Xm)

)]
= ∞, ∀λ > 0
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Part 2

▶ The Solution: Tail Truncation
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Bound tail and body, separately

▶ Define:

▶ k = ⌊ n
m ⌋

▶ hL = h 1(h ≤ L)
▶ P (h > t) ≃ exp

(
−I(t)

)
, I(t) ≪ t

▶ P (Un > t) ≤ P
(
Un(hL) > t

)
+ P

(
∃ij |h(Xi1 , ..., Xim) > L

)
Theorem (1)

P (Un > t) ≲ exp
(
− kt2

2Var(h)

)
+ (1 +

(n
m

)
) exp

(
−I(kt)

)
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There are two different regions of deviation

P (Un > t) ≲ exp
(

− kt2

2Var(h)

)
+

(
1 +

(n
m

))
exp

(
−I(kt)

)

▶ Regions:
▶ Small t, Gaussian decay
▶ Large t, like exp

(
−I(kt)

)
▶ Change point: kt2 ≃ I(kt)

10 5 0 5 10 15 20 25
E[Xi] + t

10 9

10 7

10 5

10 3

10 1

101

P(
S_

m
 / 

m
 >

 E
[X

i] 
+ 

t)

E[
X_

i]=
0

t_max=3.52

Xi~ N(0, 1)^5,  m=10^3
simulate for 10^7 iterations

ubdd for small t
ubdd for large t
S_m emp density
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Derivation
P (Un > t) ≤ P

(
Un(hL) > t

)
+ P

(
∃ij |h(Xi1 , ..., Xim ) > L

)
≤ e−λtE

[
eλUn(hL)

]
+

(
n
m

)
e−I(L)

▶ issues
▶ dependent terms in Un(hL)
▶ E

[
eλUn(hL)

]
L→∞−−−→ ∞, fixed λ

▶ Optimize λ, L together
▶ Sharpness

First term ≤ exp
(

− kt2

2v(kt,β
I(kt)

kt )

)
+ exp

(
−βI(kt) max( 1

2 , c(t, β, k))
)

▶ v(L, η) ≜ E
[
h2

L1(h ≤ 0) + h2
L exp(ηhL)1(h > 0)

]
→ Var(h)

▶ c(t, β, k) ≜ 1 − β
2t

I(kt)
kt v(kt, β I(kt)

kt ) → 1
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Part 3

▶ Tail truncation is optimal (in several cases)
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For large same size, the bound is tight

P (Un > t) ≲ exp
(

− kt2

2Var(h)

)
+

(
1 +

(n
m

))
exp

(
−I(kt)

)
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E[Xi] + t

10 9
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101

P(
S_

m
 / 

m
 >

 E
[X

i] 
+ 

t)

E[
X_

i]=
0

t_max=3.52

Xi~ N(0, 1)^5,  m=10^3
simulate for 10^7 iterations

ubdd for small t
ubdd for large t
S_m emp density

Theorem (2)

lim
n→∞

− log P(Un>t)
I(kt) = 1

▶ Assumptions
▶ kt2 ≫ I(kt)
▶ I(t) ≥ c α

√
t → sub-Weibull

▶ (h > t) ≃ (∃i |Xi | > f (t))
▶ h = |X1 − X2| , (X1 − X2)2 , max

(
|X1| ,|X2| , ...,|Xm|

)
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It yields Large Deviation Principle (LDP)

▶ Recall
▶ lim

n→∞
− log P(Un>t)

I(kt) = 1
▶ I(t) ≪ t

▶ LDP
▶ I(kt) = c

√
kt =⇒ lim

n→∞
− log P(Un>t)√

n = c
√

t
m

▶ Un satisfies LDP, with speed
√

n, and rate function c
√

t
m
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√

n = c α

√
t
m
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√

n, and rate function c α

√
t
m
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Future Work: This was a piece of the puzzle

▶ Extend Heavy-tailed Analysis toolbox
▶ Why only U-statistics?
▶ Fn = F (X1, ..., Xn) n→∞−−−→ E [F ]

▶ Applications
▶ Finance
▶ Differential Privacy
▶ Asymptotic Hypothesis Testing

▶ Bahadur Efficiency

▶ · · ·
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Thanks
Truncation can turn dinos to lizards, so heavy-tails better beware - they’re next in line

for a makeover!

😊 😱 👍

Cartoon characters credit: Mina Latifi

Milad Bakhshizadeh Inaugural CAMDA Conference
Exponential tail bounds and Large Deviation Principle for Heavy-Tailed U-Statistics 16/16



Backup

Another application

▶ Phase retrieval
▶ y = |Xβ| + N (0, σ2In)
▶ β̂ = arg min

b

∥∥∥y2 − (Xb)2
∥∥∥2
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Backup

The extreme event:

One Xi large =⇒
(n−1

m−1
)

kernel terms large

▶ Recall:
▶ Un = 1

(n
m)

∑
h(Xi1 , ..., Xim )

▶ (∃i |Xi | > f (t)) ≃ (h > t)

▶ − log P(Un>t)
I(kt) → 1

▶ E =
(
∃i s.t. |Xi | > f (kt)

)
(the event)

▶ P (E) ≃ exp
(
−I(kt)

)
▶ E =⇒ (Un > t) , Un > 1

(n
m)

(n−1
m−1

)
kt = m

n kt ≃ t
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