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This is an article about modeling methods in information economics. A notion
of ‘favorableness’’ of news is introduced, characterized, and applied to four
simple models. In the equilibria of these models, (1) the arrival of good news
about a firm’s prospects always causes its share price to rise, (2) more Javorable
evidence about an agent’s effort leads the principal to pay a larger bonus,
(3) buyers expect that any product information withheld by a salesman is un-
favorable to his product, and (4) bidders figure that low bids by their competitors
signal a low value for the object being sold. :

1. Introduction

B  Information economics is the study of situations in which different economic
agents have access to different information. Many kinds of institutions and
patterns of behavior have been treated as attempts to cope with such informa-
tional asymmetries. For example, Spence (1973) has treated higher education
as an attempt by talented workers to signal their talents to employers. Akerlof
(1976) has offered a similar analysis of the *‘rat race,” in which employees
work faster than the socially optimal pace to distinguish themselves from less
talented coworkers. Milgrom and Roberts (1979) offer a signaling analysis of the
phenomenon of limit pricing, in which an established firm sets its price below
the monopoly price in an attempt to discourage potential competitors. In
each of these signaling models, the analysis is driven by a monotonicity
property: more talented workers buy more education (Spence) or work faster
(Akerlof) than their less talented counterparts, and lower cost firms set lower
prices.

Monotonicity also plays a key role in models of adverse selection. For
example, in the insurance market models of Rothschild and Stiglitz (1976),
C. Wilson (1977), and Pauly (1974) in which each individual knows his probabil-
ity of suffering a loss but the insurers do not, the individuals with the greatest
likelihood of loss buy the most comprehensive insurance coverage. Similarly,
in Akerlof’s (1970) famous ‘ ‘lemons’’ model, higher prices in the used car market
result in a higher average quality of the cars available, since owners of good
cars will simply keep them if the prevailing prices are too low.
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. Additional examples of the role of monotonicity can be found in the litera-
tures on search, advertising, and bidding. In bidding, for example, the typical
analysis proceeds on the basis of the intuition that a buyer’s bid should be an
increasing function of his true reservation price. This price, of course, is known
only to the buyer. For example, see Vickrey (1961, 1962) and Ortega-
Reichert {(1968). '

In view of the role of monotonicity in so much of information economics,
it is surprising that studies of rational expectations equilibria and of the problem
of moral hazard make no use of any such property. One might guess, for
example, that in a rational expectations model the arrival of good news about a
firm’s prospects would cause the price of its stock to rise. Such results have,
unfortunately, been out of reach because no device has been available for
modeling ‘‘good news.’’ The purpose of this article is to introduce such a device.

In the formal model treated in Section 2, there is a single, unknown, real-
valued parameter & which is of interest to a decisionmaker. The variable #
might represent “‘quality’’ or ‘‘intrinsic value’” in a rational expectations or
adverse selection model. The decisionmaker observes an informative signal x.
Depending on the nature of 9, an appropriate signal might be an array of experi-
mental data, a financial or geological report, a road map, a satellite photo-
graph, or a television news show. In the absence of extra assumptions, the form
that a signal takes is theoretically irrelevant to its ability to convey information.

Thinking of # as “‘effort” or *‘ability”” or “*quality,”” I shall say that ob-
servation x is more favorable than observation y if for every nondegenerate
prior distribution on @ the posterior corresponding to x dominates that
corresponding to y in the sense of strict first-order stochastic dominance. In
Section 2, I characterize the *‘more favorable than’’ reiation and develop some
related ideas.

The usefulness of the ideas is illustrated by a series of four applications.
The first of these is a simple security market model in which the announce-
ment of good news about a security’s future returns causes its price to rise.

The second application is to a model in which a principal must design a
fee schedule for his agent in an uncertain venture. The principal is unable to
observe directly the effort expended by the agent, but he can observe the random
profit of the venture which is influenced by the agent’s effort. The agent is
assumed to be risk averse and to have a reservation level of utility, reflecting
his other opportunities. The principal’s problem is to design a fee schedule (in
which the agent’s fee may depend on the profit of the venture) that trades off
the necessity of providing the agent with appropriate work incentives against the
desire to provide some risk sharing. It has been something of a puzzle in the
earlier analyses of this model that the resulting fee schedule may not be in-
creasing in the venture’s profits. It turns out that nonmonotonicity in the fee
schedule can arise only when higher profits can be evidence of lower effort on
the part of the agent. When higher profits are evidence of greater effort, the
optimum fee schedule is steeper than any efficient risk-sharing fee schedule.

For the third application, I introduce games af persuasion, in which an
interested party (such as a salesman or a regulated firm) tries to influence a
decisionmaker (such as a consumer or a regulator) by selectively providing
data relevant to the decision. In one version of the model, at equilibrium,
the interested party reports the information that is most favorable to his case,
while withholding less favorable information. If communication between the
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parties is costless and if the decisionmaker can detect any withholding of
information, then, at equilibrium, the decisionmaker adopts a strategy of ex-
treme skepticism: he assumes that information is withheld only if it is very un-
favorable. In response, the interested party’s best strategy is one of full
disclosure. ' '

In the final application, a sealed-bid auction is studied. ¥t is shown that
winning the auction is ‘‘bad news,”’ that is, the winner’s estimate of the value
of his prize tends to be too high. Winning with a relatively low bid is especially
bad news, since it implies that no competitor has tendered even a moderate bid.

2. Representation theorems

B Let Obe asubset of IR, representing possible values of the random parameter
. 8. The set of possible signals about 8 is denoted by X which, for expositional
simplicity,’ is taken to be a subset of IR™. Let f (x]ﬂ) denote the conditional
density (or probability mass) function on X when & takes the particular value 6.
With this set-up, let us say that a signal x is more favorable than another signal
y if for every nondegenerate? prior distribution G for 6, the posterior distribu-
tion G(- ]x) dominates the posterior distribution G(- Iy) in the sense of strict
first-order stochastic dominance.

Recall that a distribution G, is said to dominate G, in the sense of first-order
stochastic dominance if for every increasing function U,3

J U(6)dG (0) > J U(0)dGy(0).

Intuitively, G, dominates G, if every decisionmaker whose utility is increasing
in 6 prefers gamble G, to gamble G,. It is well known that G, dominates
G, in this sense if and only if for every 4, G(8) = G,(9), with strict inequality
for some value of 6.4

To investigate the ‘“‘more favorable than’ relation, let G be a prior
distribution for & that assigns probabilities g(#) and g(8) to two possible values
¢ and 6 of 8. By Bayes’ theorem,

g@lx) _ g (x|
g0|x) 2O fx|o)’

0

1 also assume for simplicity that the densities are positive everywhere. The propositions
in this section are true exactly as stated for general measurable spaces and general density
functions. ‘

? A distribution is degenerate if it assigns probability one to a single point ¥, and nen-
degenerate otherwise.

* More precisely, the strict inequality must hold for all increasing functions U such that both
[ UdG, and f UdG, are finite.

. * One could also define **more favorable than” by using second-order stochastic dominance.
A distribution G, dominates G, in this sense if for every increasing concave function UJ,

. J UdGl < J UdGz'

When G has two-point support, these concepts of dominance are identical; so (2) is necessary
to conclude that x is more favorable than y in either sense. As Proposition 1 shows, it is also
sufficient.
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and a similar expression describes the posterior odds given y. In particular,
if 6<@6, if g(6) =26 =, and if x is more favorable than y, then
it follows that

f(x|8) L fo19)
fx|o fole

Proposition 1. x is more favorable than y if and only if for every 4 > 4,
fx|0fp1o) - fx|o)f () > 0. (2a)

Proof: Equation (2a) generalizes (2) by allowing for the possibility that
f (y|9) = 0, a possibility that I shall henceforth ignore. The derivation of (2)
constitutes the proof that it is necessary.

For sufficiency, fix some nondegenerate G and choose ¢* for which
0 < G(*) < 1. For 9 =< @*, it follows from (2) that

| ralpace | rolpacd
e>a*

0>6°

>
Fix|6) fylo

)]

or equivalently,

falo  __ folo 3)
j Fx|BdGEH) j F&|8dG@)
B>0° [
Integrating (3) over 8 for # < @* yields
J F(x|0)dG(O) j F(»|6)dG(6)
=6* fg=8* (4)

< .
j £(x]8dG® j £ (| HdG@)
B>8= G0

The last expression is equivalent to
G(8* |x)/[1 — G(*|x)] < G(&*|y)[1 — G(6*|y)],
which implies that G(6*|x) < G(6*|). Q.E.D.

Definition. Let X C IR. The densities { f(- |B)} have the strict monotone likeli-
hood ratio property (strict MLRP) if for every x >y and 6 > 6, (2a) holds.
If the strict inequality in (2a) is changed to a weak inequality, then the adjective
**strict’’ is dropped from the definition.

The monotone likelihood ratio property takes its name from the fact that -
the likelihood ratio f(x|8)/f(x|8) is monotone in x, increasing if 8 > § and de-
creasing otherwise. This property plays a major role in statistical theory, as
described in most basic textbooks on the subject. Among the families of densities
and probability mass functions with this property are the normal (with mean 8),

‘the exponential (with mean ), the Poisson (with mean 8), the uniform (on

{0, 81), the chi-square (with noncentrality parameter @), and many others. With
the definition of strict MLRP and Proposition 1, we have:

Proposition 2. The family of densities {f(- |6)} has the strict MLRP iff x > y
implies that x is more favorable than y.
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Two signals x and y are called equivalent if for every @ and 8, .

| - fGofOle - ralorelp =0 ()
In view of (1), it is apparent that starting from any prior, equivalent signals
lead to identical posterior beliefs about 8. Two signals are called comparable
if they are equivalent or if one is more favorable than the other. ,

- Families ‘'of densities with the ‘strict-MLRP:have the convenient property
that any two signals are comparable.. The -next proposition establishes that
‘any information system with this comparability property.can be modeled using a
real-valued variable with the MLRP: : T e
Proposition 3. Let X be 'généfa'liarid_;"éupbose'that any two signals in X are
comparable. Then there exists a function H: X — IR such that H(%) is a sufficient
statistic for £ and such that the densities of H(%} have the strict MLRP,

Proof: Let h: R — IR be any bounded increasing function and define
- H = [ heucel), ®

where G is any hoﬁdegene{étﬁ;pi‘ibr for 6. Since signals are comparable, H(x)
> H(y) if and only if x'is more favorable than y. Therefore, by Proposition 2,
the densities of H(%) have the strict MLRP.. Also; since H(x) = H(y) iff x
and y are equivalent, H(%) is a sufficient statistic. Q.ED:

Occasionally, interesting situations arise in which there are natural fiotions
of good news, neutral news, and bad news. A signal x is called neutral if for
every prior distribution G,'G = G(- |x). It follows immediately from (1) that a
signal x is neutral if and only if for every 6 and 4, f(x|6) = f(x |6). A signal x
is good news if it is more favorable than neutral news (i.e., if f(x|) is increasing
in §) and it is bad news if it is less favorable. For example, if 1 — & is the un-
known failure rate of a certain system, then a period without failure s good news.

This section ends-with a proposition that will be useful in the subsequent
applications. e Tl L e e
Proposition 4, Let ¥ be a random_variable whose densities-have the strict
MLRP. For any two intervals [a, b] and [c, d] witha = ¢ and b = d, ‘where
at least one inequality is"strict, the signal {% € [q, b]} is more favorable
than'{% €'[¢,d]}. A e
Proqof: Let-U be any bounded increasing function and fix any.nondegenerate
prior distribution for 8. Given any numbers o and 8 with a < 8, let f, ; denote
the conditional density of %, given % € [a, 8]. ‘The first step is_to ‘showthat
{% = B} is more favorable than { € [«; 8]}, which, in turn, i§ more favorable
than {X = a}. Using Proposition2, ~ =~~~

E[U@)|% € o, B1] =

P
_E[U®)|x = x]foax)dx
fB:' - : L '1_
< J ELU®)|% = Blfos(x)dx = ELUB)|% = g).
ThE-iﬁequaiitY E{U(B) |t € [@, B}} > VE[rUI(é): %= a] has an analogéﬁé prédf.
Next, if a =d, then E[U@d)|x € [a, b]] > ELU@)|% = a] = E[U(®)|7
= d] > E[U(8)|% € [c, d]], and the proof is complete. If ¢ < d, then



MILGROM / 385

E[U(®)|% € [a, b]] = P{x € [a, d]|% € [a, b} ELUH)|x € [a, d]]
+ P{x € [d, b]|% € [a, BI}E[U(B)|% € [d, b]1.

But since E[U(®)|% € [d, b]] > E[U(B)|% = d] > E[UB)|% € [a, d]], we
conclude that E[U(8)|% € [a, b]] > E[U(d)|% € [a, d]] and similarly that
E[U(®)|% € [c, d]] < E[U()|% € [a, d1]. These last two inequalities estab-
lish the result. Q.E.D.

3. Application: securities markets

B The first example is a simple model of a securities market in which the
public announcement of good news about the future returns on a security causes
its price to rise.

Let there be two securities: a riskless security for which the return will be
1 and a risky security with the random return §. All investors are assumed
to be identical with a concave, differentiable utility-of-wealth function U.
Each investor is endowed with one unit each of the risky and riskless securities.
Clearly, no trading takes place, so that setting the price of the riskless security
at one, the price, p, of the risky security can be computed from the typical
investor’s first-order condition:

_ E[6U'(1 + 0]
E[U'( + 8)]

Let g(-) denote the density (or mass function) for 8, and define another
density g by )
g(6) = g(OU'(1 + HE[U'(1 + &)].

Letting E denote the expectations operator corresponding to the density 2(8),
we can express the price as: o
' p = E[d].

Now suppose that some news x is publicly revealed. Then reasoning as
before and applying Bayes' theorem lead to the following expressions for a
new market-clearing price, p(x):

_ EBU'A + §)a]
E[U'(1 + 8)|x]

Letx and y be signals with x more favorable than y. The definition of ‘*more
favorable’ requires that for any prior distribution for 8, including the prior
£, the posterior, given x, stochastically dominates the posterior, given y. It
follows that E[8|x] > E[8|y]; more favorable news leads to higher prices. In
particular, good news x causes the price to rise (p(x) > p) and bad news
causes it to fall.

Expectation expressions of the form p(x) = E{élx} are abundant in
financial market theory. In them, x usuaily represents the information avail-
able at some point in time {cf., Cox and Ross (1976) and Harrison and
Kreps (1979)).

p(x) = E[8]x1.

4. Application: moral hazard

B In Holmstrom’s (1979) treatment of the principal-agent problem, an agent
expends effort # to influence the profit of a venture. Let « denote the profit and
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let & denote the random state of nature. Realized profits depend on both 6 and
a: 7 = (@, 6). It is assumed that effort always improved profits (87/66 > 0),
but there are diminishing returns to effort (927/86% < 0).5 The agent dislikes
expending effort; his payoff U(x) — ¢ is an increasing function of his wealth
x and a decreasing function of effort. In addition, the agent is risk averse:
U" < 0. The principal has utility for wealth only. His payoff is denoted by G(x),
where G’ > 0 and G" = 0. A fee schedule or sharing rule s(-) is a function
that specifies the agent’s compensation for each possible profit level of the
venture. Notice that s depends only on 7, because the variables 6 and & cannot
be observed by the principal.

It is the fact that 8 and & are unobservable that leads to the moral hazard
problem. If, for example, the principal were risk neutral (i.e., G* = 0) and 8
were observable, then any Pareto optimal sharing rule would involve the agent’s
receiving a fixed fee for undertaking a specified level of effort, and the prin-
cipal would bear all risks (Spence and Zeckhauser, 1971). Since @ is assumed
not to be observable, however, a contract based on a specified level of effort
is not enforceable, and the agent must be given some incentive to expend effort.

In this setting, it might seem reasonable that the sharing rule should be
increasing, since a rule with some decreasing segments is undesirable from a
risk-sharing point of view and appears to reduce the agent’s effort incentive.
As the following example shows, this appearance is misleading. Let P {& = 0}
=P{a=1} =.51et6 = [0, .9}, and let 7+ = & + 6. Then & can be perfectly
inferred from any realization =. If the principal is risk neutral and the agent is
risk averse, then the agent’s compensation in the optimal contract will depend
only on 6. Thus, the agent’s share when 7 = 1.0 can quite sensibly be smaller
than his share when 7 = .1,

A plausible model in which the sharing rule is increasing results if one
assumes that 7 has the MLRP as information about 8. To formalize this, let
S (7:-!6) denote the conditional distribution of output, given effort. Assume that
f is differentiable and let f; denote 8£/86. Holmstrém showed that the optimal
sharing rule must satisfy the following relationship for some 6*,4, and ¢ (¢ > 0):

£37 — £
Glr = stm) _ Skmlon) @
U'(s(m) fix|6%)
From the concavity of U and G, it is apparent that s is increasing in # if

fe(‘ﬂ"f 0*)/f(7r| 6*) is increasing in «. This latter condition is a local characteriza-
*ion of the monotone likelihood ratio property.

Proposition 5. The family { f(wle)} has the MLRP if and only if for every
0%, fg(’JTI G*)f ('rrl 8%} is increasing.
Proof. Notice that fo/f = 8 In f/86. It follows that for any ¢ and ¢,
i
faloyser|e = exp[ - Ut 01 f el e

&
The conclusion follows easily. Q.E.D.

In this principal-agent model, the MLRP assumption captures the intuitive
idea that greater profits are evidence of greater effort by the agent, so that the
fee schedule should slope upwards to provide the correct incentives. Indeed,

# The assumption of diminishing returns to effort was absent from Holmstrom's analysis, but it
is needed, as Grossman and Hart (1980) have shown.
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one can deduce from (7) and the MLRP that s crosses any first-best sharing
rule at most once and only from below. That reflects the intuition that the
desire to provide incentives results in steeper fee schedules than would be
desirable for pure risk-sharing.

5. Application: the persuasion game

W The two previous sections display routine applications of the more-favorable-
than relation to well-known models. This powerful modeling tool can also be
used to render tractable a whole range of new problems.

The model considered in this section is a simple version of what I call a
persuasion game, in which one or more interested parties provide information
to a decisionmaker in an attempt to influence his decision. Persuasion games
can be used to model regulatory decisions, courtroom battles, and sales en-
counters. The kinds of questions that these games help to answer are: How
effectively does an adversary system provide useful information to decision-
makers? When should a buyer rely on a salesman, and when should he incu
costs to gather his own information? '

Let us consider a simple sales encounter in which a commodity of unknown

“quality 4 is to be exchanged for money. If the buyer purchases g units of the

commodity at price p, his payoff is 8F(q) — pg. The salesman’s payoff is his
commission, which is some increasing function of g. It is assumed that F is
bounded, increasing, concave, and differentiable, and that F "0} = 4+,

Let the salesman have N pieces of data about his product, represented
by X = (X, ..., %y). The salesman may report or conceal any of these vari-
ables, but he cannot misreport them. Such a feature might arise if the informa-
tion is verifiable by a product demonstration or if there are truth-in-ad-
vertising laws.

The sales encounter can be conveniently modeled as a game with in-
complete information. In this game a report by the salesman is a closed non-
empty subset of IRY; the report § is to be interpreted as an assertion by the
salesman that £ € S. A reporting strategy r is a function from IR¥ to the
closed nonempty subsets of IR¥ with the property that x € r(x) forallx € R¥.
The condition x € r{x) models the constraint that the salesman must report
truthfully. The salesman’s report can be very precise, as when r(x) = {x},
or it can be very vague, as when r(x) = IR%, but it can never be false.

A purchase decision is a nonnegative real number g, representing the
quantity purchased. A purchasing strategy, b, is a function from reports to

‘purchase decisions. Thus, 5(§) specifies how much to buy when the salesman

reports . A pair (b, r} is a Nash equilibrium if holding » fixed, 5 is optimal
for the buyer and, holding b fixed, r is optimal for the salesman.

Some Nash equilibria of the sales encounter game are unnatural. For
example, at one equilibrium, the buyer resolves to ignore the salesman’s
report and the salesman makes only uninformative reports, i.e., r(x) = R¥
and b(S) = q*, where ¢g* maximizes E[0F(q) — pq]. It seems unreasonable,
however, that the buyer would actually choose to ignore even very precise
information, and that the salesman would expect such behavior. For the sales
encounter game, a more sensible solution concept than the Nash equilibrium
is the sequential equilibrium introduced by Kreps and Wilson (1980). At a
sequential equilibrium, the buyer must always act in his own self-interest; he
cannot resolve to ignore a report that is relevant to his decision. Every
sequential equilibrium is Nash, but not every Nash equilibrium is sequential,
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Consider how the buyer interprets the reports he receives. When the sales-
man makes a report .S, the buyer can safely conclude that ¥ € §, but he may
choose to draw a sharper conclusion. For example, if the salesman reports
that his product ‘‘meets or exceeds’’ a certain standard, the buyer might infer
that the product does not substantially exceed the standard. This idea can be
formalized as follows. Given a report §, let ¢(S) be a nonempty subset of
S representing the conclusion or conjecture reached by the buyer. The inter-
pretation is that if the seller reports S, the buyer will conclude that # € ¢(5).

For the sales encounter game, a sequential equilibrium is a triple (b, r, ¢)
satisfying three conditions:

(i) For every possible report S, b(S) solves max, E[0F(q) — p-q [.i € c(8).
(ii) For every x € IRV, r(x) solves maxg b(S), subject tox € .
(iii) For every § in the range of r, c(S) = r 4S).

Condition (i) states that the buyer will maximize his expected payoff, given his
conjectures, in response to any report the salesman makes. Condition (ii) is the
usual best response condition for the salesman. Condition (iii) is a rational
expectations condition. It asserts that the buyer's conjectures are consistent
with the salesman’s strategy, or, more informally, that the buyer takes the
salesman’s motives into account in considering the report.

For any Nash equilibrium (b, r), the triple (&, r, ¢) with ¢ = r? satisfies
conditions (ii), (iii), and (i)’:

(i)’ For every report S in the range of r, b(S ) solves max, E[6F(q) — pq |JE € ¢(S)).

The distinguishing feature of the sequential equilibrium is that, for any report
the salesman may make, the buyer is obliged to listen to the salesman’s report,
~ form a conjecture consistent with that report, and base his purchase decision
upon that conjecture.

One more definition is required for the statement of the next proposition.
A reporting strategy r is called a strategy of full disclosure if r together with
any optimal response (b, ¢) satisfies b(r(x)) = b({x}). Intuitively this condition
means that r does not conceal any information relevant to the buyer’s decision.
In the present context, it is direct to show that the only information relevant
to the buyer’s decision is E[élx]. Consequently, r is a strategy of full dis-
closure if E[§|% = x] = E[8]|r(%) = r(x)].

Proposition 6.5 At every sequential equilibrium of the sales encounter game,
the salesman uses a strategy of full disclosure.

Proof: Let (b, r, ¢) be an equilibrium and let x be an arbitrary signal in IR”.
From condition (ii), it follows that b({x}) = b(r(x)). From (i) and the fact that
c({x}) = {x}, the foregoing inequality can hold only if E[8|% = x] < E[8|#
€ c(r(x))]. Using (iii), this becomes E[8]% = x] = E[#|r(¥) = r(x)]. Since x
was arbitrary, the inequality can be written E[§|%] < E[8|r(%)]. (The expres-
sions on the left- and right-hand sides of this inequality represent random
variables whose values depend on the particular realization of . The inequality
between these two random variables was just shown to hold for all possible
realizations x of ¥.) If the inequality were ever strict, we could conclude that
E[E[8|%1] < E[E[8|r(x)]]. But by a well-known identity of probability theory,

§ The argument given here is essentially the same as the one given by Grossman (1980),
though the equilibrium concept is slightly different.
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EIE[8|%)] = E[f] = E[E[8|r(0)]]. Hence, E[8]£] = E[6]r(7)], so that r is a
strategy of full disclosure. 0.E.D.

It can be shown that, at a sequential equilibrium, the buyer suspects that
any information withheld is unfavorable to the product, i.e., the conjectiure
¢{(5) minimizes EE9|55 € e(S5)] subject to ¢(§) C 5.7 When the buyer is so sus-
picious, the salesman’s best strategy is one of full disclosure.

In the formulation given above, the idea that reports can be verified takes
an extreme form. In effect, it is assumed that the buyer can verify both product
information and statements like: *‘I have reported everything I know.” In other
words, the buyer can detect when the seller is concealing information. One
promising approach to modeling the salesman’s ability to conceal information
is to let N be a random variable whose realization canmot be verified. That
approach, however, is not explored here.

Another interesting way to generalize the sales encounter game is to allow
for costly communications or for constraints on the player’s abilities to transmit,
receive, or process information. A particularly simple model with constraints
on communication is studied below.

Specifically, consider a modification of the sales encounter game in which
the buyer can assimilate only k observations, where k¢ < N. To formalize that
restriction, let the salesman’s reports be limited to sets of the form § = A
X +++ X Sy, where at most k of the S,’s can be different from IR.

For this model, it is useful to assume that 7, . . . , %y are (conditionally
on ) independent and drawn from a common family of distributions { F(- |6)}
with the strict monotone likelihood ratio property. Let IR be defined to include
—c and let the salesman be constrained to report only closed sets §. With these
restrictions, one can speak of the least favorable observation x; in each §,.

Proposition 7. The modified sales encounter game has a sequential equilibrium
in which the salesman always reports the k most favorable observations.

Proof: Define m; = min S; and let /7 be the kth smallest element of {my, ..., my}.
Let M; = max {m,, a}. For any S, let ¢(8) = [m, M,] X -+ X [my, My].

This specification of c(-) can be stated less formally — but more clearly —
as follows. For the & sets S; that are different from IR, the buyer conjectures
that ¥; = m; = min S, i.e., he makes the least favorable conjecture consistent
with §;. For the other N — £ sets §; = IR, he conjectures that %; = m. If the
salesman reports more than N — k sets § 3 = IR, then the buyer conjectures
that %; = —oo for each such .

Define & by condition (i) and define r to be the strategy given in the proposi-
tion. We must show that (b, r, ¢) is an equilibrium, i.e., that (i)—(iii) hold. It
follows directly from the specifications of ¢ and r that ¢ = ! on the range of r.
Thus, condition (iii) is satisfied. Condition (i)} holds by definition.

Since c(S) depends only on the minima m; of the sets S;, the report [m,, «)

X ==+ X [my, ») leads to the same purchase decision as does the report S.
Hence, the salesman’s problem reduces to one of selecting an N-tuple
(m,, . .., my}, with at least N — k components equal to —, to maximize b(3).

This is equivalent to maximizingE[éff € c{S)] = E[é|)’r, € [my, M1, ...,%y
€ [my, My]]. By Proposition 4, the expectation is an increasing function of

* If for any closed set, S, this minimum does not exist, then no sequential equilibrivm exists.
One sufficient condition for existence of an equilibrium is that f(xiﬁ) be continuous and have
compact support. The conditions used for Proposition 7 are also sufficient.
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(my,...,my, My, ...,My). Then, since %,, ..., Xy are independent and
identically distributed and since the M,'s are nondecreasing functions of
(m;, . . ., my), the expectation is a symmetric increasing function of the m;'s

alone. Consequently, the specified reporting strategy is the one that maximizes
the expectation E[6|c(S)], and condition (i) is satisfied. Q.E.D.

In both variations of the sales encounter game studied here, the buyer’s
attitude at equilibrium is one of extreme skepticism, and that feature makes the
analysis tractable and intuitively comprehensible.

6. Application: auction theory

M An interesting variation of adverse selection is the phenomencn known
as the winner’s curse which arises in competitive bidding. Intuitively, the idea
is that a bidder is more likely to win an auction when he overestimates the
value of the object being sold than when he underestimates it. Consequently,
bidders who make unbiased value estimates will find that, on average, they have
overestimated the value of the objects they win at auction. As noted by Mil-
grom (1979, 1981), bidders can earn positive profits, despite the winner’s curse,
by adjusting their bids downwards and by gathering extra information to im-
prove the accuracy of their estimates.

Let us now be more specific. Consider a sealed-bid tender auction for the
mineral rights on some unexplored tract of land. The U.S. Department of the
Interior periodically conducts such auctions for potential oil-bearing tracts.

Let § denote the value of the oil on the tract and let #; represent bidder
i’s estimate of that value. Let there be n competitors in the auction and suppose
competitor i tenders a bid of B,(%;). Assume that, conditioned on @, %, . . . , &,
are independent and drawn from families of distributions with the MLRP. Then -
one can sensibly assume that each B; is nondecreasing.®

If bidder 1 were to win the auction with a bid of b, he wouid find, on
average, that the value of the oil was E[8|%;, Bo(%;) < b, ..., By{(%;) < b].
Plainly, the news {B,(%;) < »} is neutral {(because it conveys no information),
so that by Proposition 4, { B/(%;) < b} is bad news for any finite 5. Thus, the
estimate E[8|%,] exceeds the average value expectation E[8|%,, By(%;)
<b,...,B,(%,) < b]; this is precisely the winner’s curse.

Curiously, Proposition 4 implies that the average value expectation is an
increasing function of b: higher bids alleviate the winner’s curse. Intuitively,
when a very high bid wins an auction, little can be inferred from the competitors’
failure to place higher bids. But when a low bid wins, one can infer that the
others had relatively low estimates of 6.

7. Conclusion

B This article introduces and develops the idea that individual pieces of in-
formation can be ordered by favorableness. Four applications are considered.
In a securities market model, more favorable news about a security’s future
returns leads to a higher price for that security. In a principal-agent model,
when high profits constitute favorable evidence about the agent’s effort, the op-

8 Equilibrium analyses of such a model have been given by R. Wilson (1977) and Milgrom
and Weber (1980). At the equilibria of these models, the bidding strategies are increasing functions.
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timal incentive contract entails a steeper fee schedule than does any efficient
risk sharing contract. In a model of a sales encounter, the salesman reports
the most favorable data about his product and the buyer takes a skeptical view
of any information the salesman conceals. In an auction model, the winner
reduces his estimate of the value of the object being sold when he learns that
he has won, because winning implies that other bidders have relatively low
value estimates. The ‘‘more favorable than” relation and the related ideas
developed in this article make it easy to analyze these models and to interpret
the results. Perhaps this fact is, in itself, favorable news about the quality of
those ideas,
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