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Abstract—We consider joint source and channel coding of natural
language over a noisy channel using deep learning. While the
typical approach based on separate source and channel code design
minimizes bit error rates, the proposed deep learning approach
preserves semantic information of sentences. In particular, unlike
previous work which used a fixed-length encoding per sentence,
a variable-length neural network encoder is presented. The per-
formance of this new architecture is compared to the one with
fixed-length encoding per sentence. We show that the variable-
length encoder has a lower word error rate compared with the
fixed-length encoder as well as separate source and channel coding
schemes across several different communication channels.

I. INTRODUCTION
In communication systems, source and channel codes are

typically designed separately. This is motivated by the separation
theorem [1], which states that no loss in optimality is incurred if
the source and channel codes are designed separately, for several
classes of channel, with infinite block length codes [2]. However,
the separation theorem assumes no constraint on the complexity
of the source and channel code design. Therefore, in practice,
when large block lengths may not be possible due to complexity
and/or delay constraints, jointly designing the source and channel
codes may be beneficial. Some examples demonstrating this
benefit include: wireless channels [3], video transmission over
noisy channels [4], and image transmission over noisy channels
[5], [6].

In this work, we consider design of joint source-channel
coding using deep neural networks for structured data such as
text data with small but variable code lengths. One of the first
works that considered joint source-channel coding using neural
networks is [7], where simple neural network architectures were
used as encoder and decoder for Gauss-Markov sources over the
additive white Gaussian noise channel. There are also a number
of works that use neural networks for compression without a
noisy channel (i.e., only source coding). In particular, in [8],
[9] image compression algorithms are developed using RNNs,
which outperformed other image compression techniques. Sen-
tence and document encoding is proposed in [10] using neural
autoencoders.

Our motivation in using deep learning for the joint source-
channel coding design is that in many applications, instead
of recovering the exact transmitted data, we are interested in
recovering the relevant information of interest from the data.
In particular, for text data, instead of recovering the exact
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sentence at the receiver, we are interested in recovering the
semantic information such as facts or meanings of the sentence.
Any sentence that conveys the information in the originally
transmitted sentence would be considered as an error free output
by the decoder, even if it differed from the exact sentence. For
example, the sentences “the car stopped” and “the automobile
came to a halt” are considered equivalent. For image and video
data, the information of interest could be the main object of
interest in an image rather than the entire image, and any image
that preserves this information is considered as an error free
output by the decoder.

In this work, we build upon our previous work in [11], where
we proposed a joint source-channel coding scheme for text data
using deep neural networks. In particular, the architecture used
in [11] encodes sentences of various length into a fixed-length
bit sequence. Here, we propose a new architecture where the
length of the encoding is proportional to the sentence length.
We evaluate the performance of this architecture for the binary
erasure channel (BEC), binary symmetric channel (BSC), and
the additive white Gaussian noise (AWGN) channel. Note that in
[11] we only considered the BEC channel. For our performance
metric, instead of using edit distance as a measure for word
error rate (WER) which does not capture semantic equivalence,
we propose a new metric. Specifically, the relative distance in
meaning between replaced words in the transmitted and received
sentences is used to calculate the error associated with the
replacement when evaluating edit distance. We show that this
new architecture results in better WER performance compared
to the fixed-length encoding in [11] and to separate source and
channel code design for all channel models considered.

II. SYSTEM MODEL

Our system model is defined as follows. Let V be the entire
vocabulary, which contains the set of all the words in the
language. Let s = [w1, w2, · · · , wm] be the sentence to be
transmitted where wi ∈ V is the ith word in the sentence. At
the transmitter, source and channel coding is used to convert
the sentence into a sequence of bits prior to transmission. Let
b = ϕ(s) be a binary vector, where the length of the vector
depends on the length of the sentence, and ϕ be the function
representing the combined effect of the source and channel
encoder. The encoded bit sequence is then transmitted over a
channel C. Let o = C(b) be the vector representing the channel
output (i.e., the observations at the receiver corresponding to
each of the transmitted bits). In this work, we assume the channel
is the BEC, BSC, or the AWGN channel. Therefore, o is not
necessarily a binary vector, and it could be a vector of real or
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Fig. 1: The encoder-decoder architecture.

natural numbers depending on the channel considered. Let the
combined effect of the source and channel decoder function be
given by ν(o). Then ŝ = [ŵ1, ŵ2, · · · , ŵm′ ] = ν(o), where ŝ
is the recovered sentence. Note that it is possible that m 6= m′.
The traditional approach to designing the source and channel
coding schemes is to minimize the word error rate while also
minimizing the number of transmission bits. However, jointly
optimizing the source coding and the channel coding schemes
is a difficult problem and therefore, in practice, they are treated
separately.

The problem considered in this work is jointly designing the
source and channel codes by using deep neural networks in
the design of ϕ and ν. Instead of designing these modules to
minimize the word error rate, the goal is to design them such
that the meaning between the transmitted sentence s and the
recovered sentence ŝ is preserved. Therefore, the transmitted
and recovered sentences may have different words and different
lengths. We now describe each module in the system.

III. NEURAL NETWORK ARCHITECTURE

The network architecture we consider is similar to the
sequence-to-sequence learning framework [12], which has re-
sulted in state-of-the-art performance in different tasks such as
machine translation [13], [14]. The complete neural network
architecture is shown in Fig. 1. It has three components: the
encoder, the channel, and the decoder. The encoder takes as
an input a sentence s, and outputs a bit vector b. The channel
takes an input bit vector b and produces an output vector o.
The effects of this module is random. The channel output o is
the input to the decoder, and the output of the decoder is the
estimated sentence ŝ. We now describe each of these modules
in detail.

A. The Encoder

The first step in the encoder uses an embedding vector to
represent each word in the vocabulary. In this work, we initialize
our embedding vectors using Glove [15]. The embedding is
represented by:

E = ϕe(s), (1)

where E = [e1, e2, · · · , em, eeos] is the m + 1 embeddings of
words in the sentence. In the second step, the embedded words
are the inputs to a stacked bidirectional long short term memory

(BLSTM) network [16]. The LSTM cell used in this work is
similar to that used in [17]. The BLSTM stack is represented by

r = ϕBLSTM(E), (2)

where r is the output state of the BLSTM stack. The output
of the BLSTM is then fed into a multilayer perceptron (MLP),
where the final layer of the perceptron has a tanh activation
function. The MLP is used to systematically reduce or increase
the dimension of r to `max, where `max is the maximum number
of bits that is used to encode a sentence. This is given by

v = ϕMLP(r), (3)

where v ∈ [−1, 1]`max . The final encoding step is to binarize
v from the interval [−1, 1] to binary values {−1, 1}. Define a
stochastic binarization function as

ϕsto
β (x) = x+ Zx, (4)

where Zx ∈ {1 − x,−x − 1} is a random variable distributed
according to

P (Zx) =

{
1+x
2 Zx = 1− x

1−x
2 Zx = −x− 1

. (5)

Then final binarization step during training is

b = ϕsto
β (v) (6)

for the forward pass. During the back-propagation step of the
training, the gradients pass through the ϕsto

β function unchanged.
This is because the derivative with respect to the expectation
E[ϕsto

β (v)] = v is used to calculate the gradient [18]. Once
the network is trained, for deployment or testing, instead of the
stochastic function ϕsto

β (v), the deterministic function ϕdet
β (v) =

2u(v)− 1 is used, where u(x) is the unit step function.
Since in this work we consider variable-length encoding,

where the length of the encoding is dependent on the length
of the sentence, only the first ` = L(m) encoded bits are
transmitted. Here L is a function that maps the sentence length
m into the length of transmitted bits `. To model this effect in
our neural network architecture, we set the last `max − ` bits in
b to 0. Note that bits are represented using -1 and 1 and 0 is
equivalent to dropping a bit.

B. The Channel

The next module in the neural network models the channel.
The function that represents the relationship between the channel
input and the channel output must be differentiable function to
allow for end-to-end training of the encoder and the decoder
using stochastic gradient descent. In this work we consider three
different channels: the BEC, the BSC, and the AWGN channel.

The BEC can be represented by a dropout layer [19],

o = CBEC(b, pd), (7)

where o is the vector of observations at the receiver, and pd
is the probability that a bit is dropped. The elements of o are
in {−1, 0, 1}, where 0 indicates erasure (i.e., a dropped bit).
Every bit in b may be dropped independent of other bits with
probability pd.



The BSC can be represented by,

o = CBSC(b, pe) = npe � b, (8)

where npe is a noise vector with every element equal to -1
with probability pe and 1 otherwise, and � is element-wise
multiplication. Finally, the AWGN channel is represented by

o = CAWGN(b, σ
2) = b+ nσ2 , (9)

where nσ2 is an additive noise term with elements that are
independent and identically distributed (i.i.d.) Gaussian random
variables with variance σ2.

C. The Decoder

At the receiver, the decoder first expands or shrinks the
dimension of the observation vector o using an MLP:

c = νMLP(o). (10)

This module changes the dimension of the observation vector to
the dimension of the initial state of the next module, a stacked
LSTM decoder. The stacked LSTM decoder uses c as its initial
state to decode the sentence word by word. This is given by

ŝ = νLSTM(c, <sos>), (11)

where ŝ is the decoded sentence. The first input to the LSTM
stack is the embedding vector for a special start of the sentence
symbol <sos>. Note that after the first word ŵ1 is estimated,
its embedding vector will be used as the input for the next time
step. During deployment and testing we always use the estimated
words and the beam search algorithm to find the most likely
sequences of words [20], [13].

IV. RESULTS
In this section we compare the deep learning approach with

traditional separate source and channel code design. The source
code used to generate the results is available on github1.

A. The Dataset

The dataset we work with here is the News Crawl 2015 dataset
[21]. This was obtained by crawling through the article text of
various online publications in English. We first log the most
popular 20000 words that appear in the dataset and make this our
vocabulary. We then select sentences from lengths 4-30 with less
than 20% unknown words. 90% of these sentences are placed
in a training dataset and the rest in a test dataset. The training
dataset has 18.5 million sentences and the test dataset has more
than 2 million.

B. Deep Learning Approach

We use the pre-trained Glove embeddings [15] of dimension
200 to initialize the word embeddings of the words in our
vocabulary. We also add a few special words such as unknown
words, padded words, start, and end symbols with randomized
initialization. In a multithreaded process, we read the input files
and batch sentences of size 512 according to their lengths and
this is fed to the encoder BLSTM. The encoder BLSTM has two
layers of dimension 256 with peephole connections.

The resultant end states of the BLSTM layers are concate-
nated. In the work of [11], a dense layer is used for channel

1https://github.com/nfarsad/NN JSCC

coding to bring this to a vector of dimension `, the number of
transmission bits. In this work, we further process the training
dataset to log the frequencies of sentences of various lengths. For
instance, the smallest batch (of length 4-7) are alloted 250 bits.
There is a linear increment of 50 bits for subsequent batches.
This results in an average bit allotment of 400 for sentences
in the dataset. A dense layer produces a map to vectors of
these dimensions. The decoder consists of two LSTM layers
of dimension 512 with peephole connections. A learning rate of
0.001 with the Adam optimizer was employed for 6 epochs on
the training dataset. A beam decoder with beam size 10 is used
in the testing stage.

C. Separate Source and Channel Coding

Baselines which are separate source and channel coding
schemes are used for comparison. Separate source and channel
coding is optimal in the asymptote of arbitrarily large block
lengths and delays. We try 3 approaches to source coding:

1) Universal compressors: The popular gzip tool which uses
the Lempel-Ziv universal compression [22] scheme and
Huffman coding is the first method. Such a universal
compressor reaches the entropic limit of compression for
any kind of data in the asymptote. Empirically, perfor-
mance is good only for large collections of sentences.
We use collection of 30 sentences for our numerical
evaluations here. Note that the other baselines and the
variable length deep encoder operate on single sentences
(i.e., collection of sentences are not required to achieve a
good compression performance).

2) Huffman coding: In the method, we encode single sen-
tences at a time by using a Huffman encoding scheme on
the characters using character frequencies obtained from
the training dataset.

3) Fixed length character encoding: This is the simplest base-
line where each character (a-z and some special symbols)
have a fixed 5-bit encoding. The earlier baselines cannot
be decoded from noisy versions of their encodings whereas
we can partially retrieve the sentence from a noisy version
of this baseline.

After carrying out source coding, we use Reed-Solomon codes
[23] for channel coding. Given x bits of redundancy added, they
can correct up to x erasures (that arise in the binary erasure
channel) or bx/2c errors. Errors occur in the binary symmetric
channel or the maximum likelihood bit-stream at the decoder
in the AWGN channel. In the case of gzip or Huffman codes,
we will not be able to decode any of the messages unless the
channel coding perfectly corrects for all errors in the channel.
We optimize the number of parity bits added based on channel
statistics to minimize the overall word rate that arises from the
following trade-off: add too few parity bits and risk failing to
decode the entire sentence, or batch with high probability or add
too many parity bits that will necessitate dropping words to fit
in the bit budget.

D. Performance Metric

A human judge is the best performance metric to establish the
fidelity of reconstruction but is not scalable when we are looking
at millions of sentences. In prior works on speech recognition
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(a) Word error as erasure or bit-drop rate increases for 400 bit encoding.
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(b) Word error as the sentence length changes for a binary symmetric
channel with error rate 0.5.
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(c) Word error with sentence length for deep neural fixed and variable
encoding. Erasure channel with drop rate 0.9 and 400 bit average length
encoding.
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(d) Word error as the sentence length changes for an AWGN channel
with standard deviation 0.6.

Fig. 2: Performance plots.
Punctuation error TX: watch ” this week ” later .

RX: watch ” this week ,” later .
Rephrasing TX: this writer ’ s lasting impression of him regards his performance in the last new year ’ s derby .

RX: this writer ’ s lasting impression of him is his performance in the last new year ’ s derby .
Rephrasing TX: that would probably mean a drop in income for some doctors , particularly high - priced specialists , as well as for many

hospitals .
RX: that would probably mean a drop in income for some doctors , particularly high - grade specialists , as well as for many
hospitals .

Incorrect but prescient TX: world no . 2 <unk> <unk> and world no . 4 maria sharapova are also battling injury concerns .
RX: world no . 2 <unk> <unk> and world no . <unk> maria sharapova are also battling for doping .

Subtle error TX: if you win the game , you ’ re not going to be second - guessed as much .
RX: if you win the game , you ’ re not going to be second - guessed by much .

Proper names error TX: 19 , 2014 , in lancaster , n . y
RX: 19 , 2014 , in northwest pasadena n y .

Long sentence correctly
decoded

TX: the cosmic event will be visible for much of the globe , although best viewing will be in the pacific region , including parts
of the western united states .
RX: the cosmic event will be visible for much of the globe , although best viewing will be in the pacific region , including parts
of the western united states .

TABLE I: Sample sentences which were transmitted and received using the deep learning approach.

and machine translation [11], [24], [25], the edit distance or
Levenshtein distance is used to measure the dissimilarity of two
sentences. The metric is obtained by using a recursive algorithm
that finds the smallest sequence of insert, substitute, and delete
operations on words to map one sentence to another. The length
of this sequence normalized by the sentence length is the word
error rate.

This automated metric, however, penalizes all substitutions
equally even if a word has been replaced by a synonym. In order
to factor this effect in, we propose a modified edit distance that

uses a dissimilarity score between words as the substitution cost.
The similarity score considered between words here is the Wu-
Palmer score for relatedness. This metric still does not capture
other semantic elements and will penalize synonymous phrases
[26].

E. Results
In Fig. 2a, we observe the impact of the bit drop rate

of the erasure channel on the word error rate. We find that
gzip outperforms the other baselines as it is a more efficient
compression scheme across multiple batches. In the case where



the bit drop rate is high, the deep neural network outperforms
the baselines, implying the neural encoding is more resilient to
channel errors.

In Fig. 2b we observe the performance of the source-channel
coding schemes with a binary symmmetric channel. Here we
see the word error rate as it scales with sentence lengths. As
the sentence length is longer for the same bit allocation rate,
the performance of the deep learning method is comparable to
the baseline. The performance for the longest sentence length
is poorer in the figure as the number of training instances of
high sentence lengths are fewer. Finally, we note that word
errors for the baselines imply that a word was not transmitted
or could not be decoded whereas for the deep learning method,
a word error may still occur in a sentence that has preserved the
semantic information. We produce a similar plot to demonstrate
the efficacy of the deep neural network joint source-channel
encoder on the third channel model - the additive white Gaussian
noise channel in Fig. 2d.

In Fig. 2c, we compare the fixed length encoding network of
[11] to the variable length encoding network of this paper. As can
be seen, the increased bit allotment for longer sentences results
in fewer errors without much loss in performance for shorter
sentences. The variable encoding shares the property with the
fixed encoding that similar sentences have encodings that do
not differ by too much.

A few representative errors are shown in Table I. Proper
names have similar word vectors and are thus determined to
have similar meaning. This also happens with numbers. A future
direction would be to improve performance with numbers and
infrequent words.

V. CONCLUSION

We considered the problem of joint source-channel coding of
text data across a wireless channel using deep learning networks
from natural language processing. Our proposed model works for
a variety of channel models including erasure, binary symmetric
and additive white Gaussian noise channels. The model outper-
forms separate source and channel coding baselines in regimes
where we have fewer bits to encode a sentence by replicating
the strategy of producing encodings of different lengths for
sentences of different lengths. We also introduce a modified edit
distance metric that does not penalize the substitution of words
by synonyms as much.

In the numerical evaluations, we use a single layer for the
MLP at the encoder and decoder. Since the MLP can have
considerable effect in correcting errors that are introduced by
the channel, a deeper multilayer MLP may be able to perform
better. Other future directions would include designing networks
for the joint source and channel transmission of images, audio,
or video.
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