
Language Models

Martin Kay

September 17, 2006

In statistically based natural language processing a language model is

used in the generation of output strings to assess likelihood that a given

string of words is a sentence in a particular language. If the information

about the ordering of the words in the sentences in a texts were discarded

so that each sentence was regarded simply as a bag of words, then the better

of two language models would be able to do a better job of restoring their

order. According to the simplest view of statistical machine translation,

this is just what the language model is called upon to do. For each source

sentence, a translation model proposes a bag of words to be used in its

translation and it is the job of the language model to order them in the best

way. There is, in fact, more to it than this, but it at least gives a setting for

the use of language models.

Language models are based on so-called n-grams. An n-gram is simply

a sequence of n words. The likelihood that a permutation of the given bag

of words is a sentence of the language is estimated by taking the product

of the probabilities of all the n-grams that it contains. Thus, a sentence of

k words contains k � n+ 1 n-grams, and the probability of each of them is

estimated on the basis of a body of training data. Various tricks are used

to allow for permutations that did not occur at all in the training data.

The value of n is �xed at a fairly low value|say 3, 4, or 5|because,

though larger values generally give better results, the amount of training

data required to permit a useful estimate of the probability of longer strings

grows at an overwhelming rate with value of n.

This note results from my re
ections on the possibility of language mod-

els based on sequences of variable size. If a given set of training data of

fairly modest size contains some three or four instances of strings consisting

of eight or ten words, then this is surely a remarkable fact, and one from

which it should be possible to derive important advantages.

Observe, �rst of all, that it is a relatively straightforward matter to

catalog the repeated sequences of whatever length in a corpus of text. They

1

can be read out directly from a su�x tree which can be constructed from

the text at a cost in time and space that is linearly related to the length of

the text. Given an arbitrary bag of words, it is also straightforward, and

not overwhelmingly expensive in computational resources, to draw up a list

of all the strings constructable from it, of whatever length, that were seen

in the training corpus. Given an arbitrary string that uses all the words in

the bag, it is therefore simple to determine just which of these it contains.

Suppose that each of the strings from the training data is assigned a

�gure of merit (fom, plural fom's (sic.)) based on a variety of properties

including, most notably, its length and the number of its occurrences in the

training data. It remains to derive from the fom's the constituent strings,

a �gure of merit for a string covering all the words. This is apparently

di�cult for two reasons, especially if fom's are based on probabilities. First,

as we have already observed, reasonable sized corpora provide little more

than anecdotal information about long substrings and, second, there is no

obvious way of combining the fom's of strings of di�erent sizes into a single

fom for the complete string. The probabilities of strings of di�erent lengths

are not commensurate: a longer string is generally speaking altogether less

probable than a shorter one. I will return to this question shortly.

First, let us assume that a solution to this problem is at hand, and that

it has some simple properties that would be desirable if it were to be useful

in the kind of process we have in mind. In particular, let us assume that

it has a reasonable monotonicity property so that, if a pair of strings is

concatenated, the fom of the result will be readily calculable from those of

the parts and it will either never be greater than, or never less than, the

fom of either constituent.

The following procedure composes a list of strings from the members of

a given bag, all of which occur in the training data. Walk the su�x tree

constructed from the training data, increasing in depth only when all the

characters in the path to the new node are in the given bag. When this

ceases to be the case, record the string constructed from the current path

as a new member of the set unless the potential new member is a proper

substring of some existing member.

Using this set of strings, the set of strings each of which consumes the

whole of the initial bag can be constructed as follows:

1. Draw up a list of strings, composed only of words in the initial bag,

that occurred in the training data, in decreasing order according to

their fom's. The strings are maximal in the sense that if one string is

a substring of another, only the latter is included, though the existence

2

of the shorter string will, in general, be re
ected in the calculation of

the fom of the other. Call this list the initial agenda.

2. Create a second list, initially empty, called the chart.

3. Repeat the following until a complete string has been created, that is,

a string that consumes all the words in the initial bag.

(a) Take a string, � from the head of the agenda together with each

string � in the chart in turn. If the bag of words required to

compose both strings is contained in the initial bag, create the

strings �� and �� and put them into the agenda list in the place

dictated by their fom's.

Notice that the concatenation of, say, � with a following � implicitly con-

catenates all su�xes of � with all pre�xes of � and any of these that occurred

in the training data will, in general, have to be considered in computing the

fom of the new string. It is not hard to see that, if fom's are well behaved,

this procedure produces the best complete string|the one with the highest

fom|before any others. In other words, it constitutes a best-�rst algorithm.

Outlining these procedures �rst makes it clearer what it means for fom's

to be well behaved. Most importantly, only if the fom of a string �� is

no less than those of � and � will the procedure just outlined constitute a

best-�rst algorithm.

The trouble with many best-�rst algorithms, including this one, is that

they are almost breadth-�rst algorithms because the best complete result

emerges only after almost all almost partial results have been computed.

This presumably provided the primary motivation for the development of

the A� algorithm, which takes into account the minimum possible cost of

developing a partial result into a complete result. There are various ways

in which the present algorithm might be turned into a version of A�, but

the details depend of the particular way in which fom's are to be computed.

This remains the principal outstanding question.

As we said at the outset, the canonical problem for a language model

is to restore to the extent possible the original order to a bag of the words

found in a sentence. The standard approach is to seek the order that is most

probable in the language as a whole, estimated on the basis of a training

corpus. A major problem with this, as we also noted, is that the probability

estimates of substrings of di�erent lengths are incommensurate.

But, could it be that the standard statistic is not only di�cult to use,

but also not the best one for the job? A very di�erent one, which may be

3

easier to use is the probability the substring, given the bag of the words that

make it up. In other words, it is the number of instances of the substring in

the training data, divided by the number of sentences that contain all the

words in it.

Consider a string S that contains substrings s1; s2:::sk, all of which are

also substrings of the training corpus, that are maximal with respect to S.

Might the fom's of the substrings, f1; f2:::fk, be assigned in such a way that

the fom of S would be f1 + f2:::+ fk, or something comparably simple?

4

