EE365: Model Predictive Control

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
Outline

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
Stochastic control

- dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$, $t = 0, \ldots, T - 1$
- $x_t \in \mathcal{X}$, $u_t \in \mathcal{U}$, $w_t \in \mathcal{W}$
- $x_0, w_0, \ldots, w_{T-1}$ independent
- stage cost $g_t(x_t, u_t)$; terminal cost $g_T(x_T)$
- state feedback policy $u_t = \mu_t(x_t)$, $t = 0, \ldots, T - 1$
- stochastic control problem: choose policy to minimize

$$J = \mathbb{E} \left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T) \right)$$
Stochastic control

- can solve stochastic control problem in some cases
 - $\mathcal{X}, \mathcal{U}, \mathcal{W}$ finite (and as a practical matter, not too big)
 - $\mathcal{X}, \mathcal{U}, \mathcal{W}$ finite dimensional vector spaces, f_t affine, g_t convex quadratic
 - and a few other special cases
- in other situations, must resort to heuristics, suboptimal policies
Certainty-equivalent control

- a simple (usually) suboptimal policy
- replace each w_t with some predicted, likely, or typical value \hat{w}_t
- stochastic control problem reduces to deterministic control problem, called **certainty-equivalent problem**
- **certainty-equivalent policy** is optimal policy for certainty-equivalent problem
- useful when we can’t solve stochastic problem, but we can solve deterministic problem
- sounds unsophisticated, but can work very well in some cases
- also called **model predictive control** (MPC) (for reasons we’ll see later)
Where \hat{w}_t comes from

- most likely value: choose \hat{w}_t as value of w_t with maximum probability
- a random sample of w_t (yes, really)
- a nominal value
- a prediction of w_t (more on this later)
- when w_t is a number or vector: $\hat{w}_t = E w_t$, rounded to be in U_t
Optimal versus CE policy via dynamic programming

- optimal policy: $V^*_T(x) = g_T(x)$; for $t = T - 1, \ldots, 0$,

 $V^*_t(x) = \min_u (g_t(x, u) + \mathbb{E} V^*_{t+1}(f_t(x, u, w_t)))$

 $\mu^*_t(x) \in \arg\min_u (g_t(x, u) + \mathbb{E} V^*_{t+1}(f_t(x, u, w_t)))$

- CE policy: $V^\text{ce}_T(x) = g_T(x)$; for $t = T - 1, \ldots, 0$,

 $V^\text{ce}_t(x) = \min_u (g_t(x, u) + V^\text{ce}_{t+1}(f_t(x, u, \hat{w}_t)))$

 $\mu^\text{ce}_t(x) \in \arg\min_u (g_t(x, u) + V^\text{ce}_{t+1}(f_t(x, u, \hat{w}_t)))$
Computing CE policy via optimization

- CE policy μ^{ce} is typically not computed via DP
 (if you could do this, why not use DP to compute optimal policy?)

- instead we evaluate $\mu_t^{ce}(x)$ by solving a deterministic control
 (optimization) problem

 \[
 \begin{align*}
 \text{minimize} & \quad \sum_{\tau=t}^{T-1} g_\tau(x_\tau, u_\tau) + g_T(x_T) \\
 \text{subject to} & \quad x_{\tau+1} = f_\tau(x_\tau, u_\tau, \hat{w}_\tau), \quad \tau = t, \ldots, T-1 \\
 & \quad x_t = x
 \end{align*}
 \]

 with variables $x_t, \ldots, x_T, u_t, \ldots, u_{T-1}$

 - find a solution $\bar{x}_t, \ldots, \bar{x}_T, \bar{u}_t, \ldots, \bar{u}_{T-1}$

 - then $\mu_t^{ce}(x) = \bar{u}_t$ (and optimal value of problem above is $V_t^{ce}(x)$)

- we don’t have a formula for μ_t^{ce} (or V_t^{ce}) but we can compute $\mu_t^{ce}(x)$
 ($V_t^{ce}(x)$) for any given x by solving an optimization problem
Certainty-equivalent control

- need to solve a (deterministic) optimal control problem in each step, with a given initial state
- these problems become shorter (smaller) as \(t \) increases toward \(T \)
- call solution of optimization problem at time \(t \)

\[
\bar{x}_t|t, \ldots, \bar{x}_T|t, \quad \bar{u}_t|t, \ldots, \bar{u}_T|t
\]

- interpret as **plan of future action** at time \(t \)
 (based on assumption that disturbances take values \(\hat{w}_t, \ldots, \hat{w}_{T-1} \))
- solving problem above is **planning**
- CE control executes first step in plan of action
- once new state is determined, update plan
Example: Multi-queue serving

- N queues with capacity C: state is $q_t \in \{0, \ldots, C\}^N$
- observe random arrivals w_t from some known distribution
- can serve up to S queues in each time period:
 \[u_t \in \{0, 1\}^N, \quad u_t \leq q_t, \quad 1^T u_t \leq S \]
- dynamics $q_{t+1} = (q_t - u_t + w_t)_{[0,C]}$
- stage cost
 \[g_t(q_t, u_t, w_t) = \alpha^T q_t + \beta^T q_t^2 + \gamma^T (q_t - u_t + w_t - C)_+ \]
 - queue cost
 - rejection cost
- terminal cost $g^T(q_T) = \lambda^T q_T$
Example: Multi-queue serving

consider example with

- $N = 5$ queues, $C = 3$ capacity, $S = 2$ servers, horizon $T = 10$
- $|\mathcal{X}| = 1024$, $|\mathcal{U}| = 16$, $|\mathcal{W}| = 32$
- $\omega_t^{(i)} \sim \text{Bernoulli}(p_i)$
- (randomly chosen) parameters:

\[
\begin{align*}
\rho &= \begin{pmatrix} 0.47, & 0.17, & 0.25, & 0.21, & 0.60 \end{pmatrix} \\
\alpha &= \begin{pmatrix} 1.32, & 0.11, & 0.63, & 1.41, & 1.83 \end{pmatrix} \\
\beta &= \begin{pmatrix} 0.98, & 2.95, & 0.16, & 2.12, & 2.59 \end{pmatrix} \\
\gamma &= \begin{pmatrix} 0.95, & 4.23, & 7.12, & 9.27, & 0.82 \end{pmatrix} \\
\lambda &= \begin{pmatrix} 0.57, & 1.03, & 0.24, & 0.74, & 2.11 \end{pmatrix}
\end{align*}
\]
Example: Multi-queue serving

- use deterministic values $\hat{w}_t = (1, 0, 0, 0, 1)$, $t = 0, \ldots, T - 1$
- other choices lead to similar results (more later)
- problem is small enough that we can solve it exactly (for comparison)
Example: Multi-queue serving

- 10000 Monte Carlo simulations with optimal and CE policies
- $J^* = 55.55$, $J^{ce} = 57.04$ (very nearly optimal!)
Example: Multi-queue serving

- red indicates $\mu^{ce}(x) \neq \mu^*(x)$; policies differ in 37.91% of entries
Example: Multi-queue serving

- with (reasonable) different assumed values, such as $\hat{w}_t = (0, 0, 0, 0, 1)$, get different policies, also nearly optimal
- interpretation: CE policies work well because
 - there are many good (nearly optimal) policies
 - the CE policy takes into account the dynamics, stage costs
- there is no need to use CE policy when (as in this example) we can just as well compute the optimal policy
Outline

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
Linear-quadratic regulator (LQR)

- $\mathcal{X} = \mathbb{R}^n$, $\mathcal{U} = \mathbb{R}^m$
- $x_{t+1} = Ax_t + Bu_t + w_t$
- x_0, w_0, w_1, \ldots independent zero mean, $\mathbb{E} x_0 x_0^T = X_0$, $\mathbb{E} w_t w_t^T = W_t$
- cost (with $Q_t \geq 0$, $R_t > 0$)
 \[J = \frac{1}{2} \sum_{t=0}^{T-1} (x_t^T Q_t x_t + u_t^T R_t u_t) + \frac{1}{2} x_T^T Q_T x_T \]
- can solve exactly, since V_t^* is quadratic, μ_t^* is linear
- can compute J^* exactly
CE for LQR

- use $\hat{w}_t = E w_t = 0$ (i.e., neglect disturbance)

- for LQR, CE policy is actually optimal
 - in LQR lecture we saw that optimal policy doesn’t depend on W
 - choice $W = 0$ corresponds to deterministic problems in CE

- another hint that CE isn’t as dumb as it might first appear

- when $E w_t \neq 0$, CE policy is not optimal
Constrained LQR

- same as LQR, but replace $\mathcal{U} = \mathbb{R}^m$ with $\mathcal{U} = [-1, 1]^m$
- *i.e.*, constrain control inputs to $[-1, 1]$ (‘actuator limits’)
- cannot practically compute (or even represent) V_t^*, μ_t^*
- we don’t know optimal value J^*
CE for constrained linear-quadratic regulator

- CE policy usually called MPC for constrained LQR
- use $\hat{w}_t = E w_t = 0$
- evaluate $\mu^c_t(x)$ by solving (convex) quadratic program (QP)

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \sum_{\tau=t}^{T-1} \left(x_\tau^T Q_\tau x_\tau + u_\tau^T R_\tau u_\tau \right) + \frac{1}{2} x_T^T Q_T x_T \\
\text{subject to} & \quad x_{\tau+1} = A x_\tau + B u_\tau, \quad \tau = t, \ldots, T - 1 \\
& \quad x_\tau \in \mathbb{R}^n, \quad u_\tau \in [-1, 1]^m \quad \tau = t, \ldots, T - 1 \\
& \quad x_t = x
\end{align*}
\]

with variables $x_t, \ldots, x_T, u_t, \ldots, u_{T-1}$

- find solution $\bar{x}_t, \ldots, \bar{x}_T, \bar{u}_t, \ldots, \bar{u}_{T-1}$
- execute first step in plan: $\mu^{mpc}_t(x) = \bar{u}_t$
- these QPs can be solved super fast (e.g., in microseconds)
Example

consider example with

- $n = 8$ states, $m = 2$ inputs, horizon $T = 50$
- A, B chosen randomly, A scaled so $\max_i |\lambda_i(A)| = 1$
- $X = 3I, \; W = 1.5I$
- $Q_t = I, \; R_t = I$

associated (unconstrained) LQR problem has

- $||u||_\infty > 1$ often
- $J^{lqr} = 85$ (a lower bound on J^{lqr} for constrained LQR problem)
Example

- \(\mu_t^{\text{clip}}(x) = (K_t^{\text{lqr}} x)[{-1,1}]\) (‘saturated LQR control’)
 - yields performance \(J^{\text{clip}} = 1641.8\)
- MPC policy \(\mu_t^{\text{mpc}}(x)\)
 - yields performance \(J^{\text{mpc}} = 1135.3\)
- we don’t know \(J^*\) (other than \(J^* > J^{\text{lqr}} = 85\))
- sophisticated lower bounding techniques can show \(J^{\text{mpc}}\) very near \(J^*\)
Sample traces

Constrained linear-quadratic regulator
Outline

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
Infinite horizon MPC

- want approximate policy for infinite horizon average (or total) cost stochastic control problem
- replace w_t with some typical value \hat{w} (usually constant)
- in most cases, cannot solve resulting infinite horizon deterministic control problem
- instead, solve the deterministic problem over a rolling horizon (or planning horizon) from current time t to $t + T$
Infinite horizon MPC

- to evaluate $\mu^{\text{mpc}}(x)$, solve optimization problem

$$\text{minimize} \quad \sum_{\tau=t}^{t+T-1} g(x_{\tau}, u_{\tau}) + g^{\text{eoh}}(x_{t+T})$$

$$\text{subject to} \quad x_{\tau+1} = f(x_{\tau}, u_{\tau}, \hat{w}), \quad \tau = t, \ldots, t + T - 1$$

$$x_t = x$$

with variables $x_t, \ldots, x_{t+T}, u_t, \ldots, u_{t+T-1}$

- find a solution $\bar{x}_t, \ldots, \bar{x}_{t+T}, \bar{u}_t, \ldots, \bar{u}_{t+T-1}$

- then $u_{t}^{\text{mpc}}(x_t) = \bar{u}_t$

- g^{eoh} is an end-of-horizon cost

- these optimization problems have the same size (cf. finite horizon MPC)
Infinite horizon MPC

- design parameters in MPC policy:
 - disturbance predictions \widehat{w}_t (typically constant)
 - horizon length T
 - end-of-horizon cost g^{eoh}
- some common choices: $g^{eoh}(x) = 0$, $g^{eoh}(x) = \min_u g(x, u)$
- performance of MPC policy evaluated by Monte Carlo simulation
- for T large enough, particular value of T and choice of g^{eoh} shouldn’t affect performance very much
Example: Supply chain management

- n nodes (warehouses/buffers)
- $x_t \in \mathbb{R}^n$ is amount of commodity at nodes at time t
- m unidirectional links between nodes, external world
- $u_t \in \mathbb{R}^m$ is amount of commodity transported along links at time t
- incoming and outgoing note incidence matrix:

$$A_{ij}^{\text{in(out)}} = \begin{cases}
1 & \text{link } j \text{ enters (exits) node } i \\
0 & \text{otherwise}
\end{cases}$$

(include wholesale supply links and retail delivery links)

- dynamics: $x_{t+1} = x_t + A^{\text{in}} u_t - A^{\text{out}} u_t$
Example: Supply chain management

- buffer limits: $0 \leq x_t \leq x_{\text{max}}$
- warehousing/storage cost: $W(x_t) = \alpha^T x_t + \beta^T x_t^2$, $\alpha, \beta \geq 0$
- link capacities: $0 \leq u_t \leq u_{\text{max}}$
- $A^{\text{out}} u_t \leq x_t$ (can’t ship out what’s not on hand)
Example: Supply chain management

- shipping/transportation cost: \(S(u_t) = S_1((u_t)_1) + \cdots + S_n((u_t)_n) \)

- for internode link, \(S_i((u_t)_i) = \gamma(u_t)_i \) is transportation cost

- for wholesale supply link, \(S_i((u_t)_i) = (p^{wh}_t)_{i}(u_t)_i \) is purchase cost

- for retail delivery link, \(S_i((u_t)_i) = -p^{ret}_t \min\{(d_t)_i,(u_t)_i\} \) is the negative retail revenue, where \(p^{ret}_t \) is retail price and \((d_t)_i \) is the demand

- we assume wholesale prices \((p^{wh}_t)_{i} \) are IID, demands \((d_t)_i \) are IID

- link flows \(u_t \) chosen as function of \(x_t, p^{wh}_t, d_t \)

- objective: minimize average stage cost

\[
J = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} (S(u_t) + W(x_t))
\]
Example

- $n = 4$ nodes, $m = 8$ links
- links 1,2 are wholesale supply; links 7,8 are retail delivery
Example

- buffer capacities $x_{\text{max}} = 3$
- link flow capacities $u_{\text{max}} = 2$
- storage cost parameters $\alpha = \beta = 0.01; \gamma = 0.05$
- wholesale prices are log-normal with means 1, 1.2; variances 0.1, 0.2
- demands are log-normal with means 1, 0.8; variances 0.4, 0.2
- retail price is $p^{\text{ret}} = 2$

Infinite horizon model predictive control
Example

- MPC parameters:
 - future wholesale prices and retail demands assumed equal to their means (current wholesale prices and demands are known)
 - horizon $T = 30$
 - end-of-horizon cost $g^{eoh} = 0$

- MPC problem is QP (and readily solved)

- results: average cost $J = -1.69$
 - wholesale purchase cost 1.20
 - retail delivery income -3.16

- lower bounding techniques for similar problems suggests MPC is very nearly optimal
MPC sample trajectory: supply

wholesale price

wholesale order

line: \((p_t^\text{wh})_1, (p_t^\text{wh})_2\); bar: \(u_1, u_2\)

Infinite horizon model predictive control
MPC sample trajectory: delivery

solid: delivery; dashed: demand
MPC sample trajectory

Infinite horizon model predictive control
MPC sample trajectory

storage

shipping

Infinite horizon model predictive control
Outline

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
Rolling disturbance estimates

- in MPC, we interpret \hat{w}_t as predictions of disturbance values
- no need to assume they are independent, or even random variables
- when w_t are not independent (or interpreted as random variables), additional information can improve predictions \hat{w}_t
- we let $\hat{w}_{t|s}$ denote the updated estimate of w_t made at time s using all information available at time s
- these are called rolling estimates of w_t
- $\hat{w}_{t|s}$ can come from a statistical model, experts’ predictions, ...
- MPC with rolling disturbance prediction works very well in practice, is used in many applications (supply chain, finance)
MPC architecture

- MPC (rolling horizon, with updated predictions) splits into two components
 - the **predictor** uses all information available to make predictions of current and future values of w_t
 - the **planner** optimizes actions over a planning horizon that extends into the future, assuming the predictions are correct

- the MPC action is simply the current action in the current plan
- MPC is not optimal except in a few special cases
- but it often performs extremely well