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Consider an extensive-form mechanism, run by an auctioneer who communicates
sequentially and privately with bidders. Suppose the auctioneer can deviate from the
rules provided that no single bidder detects the deviation. A mechanism is credible if
it is incentive-compatible for the auctioneer to follow the rules. We study the optimal
auctions in which only winners pay, under symmetric independent private values. The
first-price auction is the unique credible static mechanism. The ascending auction is the
unique credible strategy-proof mechanism.

KEYWORDS: Mechanism design, auction, credible, strategy-proof, sealed-bid.

1. INTRODUCTION

THE STANDARD MECHANISM DESIGN PARADIGM assumes that the auctioneer has full com-
mitment. She binds herself to follow the rules, and cannot deviate after observing the
bids, even when it is profitable ex post to renege (McAfee and McMillan (1987)). This
contrasts starkly with the way we model participants; incentive compatibility “requires
that no one should find it profitable to “cheat,” where cheating is defined as behavior
that can be made to look “legal” by a misrepresentation of a participant’s preferences or
endowment” (Hurwicz (1972)).

In this paper, we study incentive compatibility for the auctioneer. We require that the
auctioneer, having promised in advance to abide by certain rules, should not find it prof-
itable to “cheat,” where cheating is defined as behavior that can be made to look “le-
gal” to each participant by misrepresenting the preferences of the other participants. For
instance, in a second-price auction, the auctioneer can profit by exaggerating the second-
highest bid. Thus, as Vickrey (1961) observed, the first-price auction is “automatically
self-policing,” while the second-price auction requires special arrangements that tie the
auctioneer’s hands.1

To proceed, we must choose a communication structure for the bigger game played by
the bidders and the auctioneer. Clearly, if the bidders simultaneously and publicly an-
nounce their bids, then the problem is trivial, and reduces to the case of full commitment.
However, such announcements are uncommon in real-world auctions. Most bidders at
high-stakes auction houses do not place bids audibly, and instead use secret signals that
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other bidders cannot detect. These signals “may be in the form of a wink, a nod, scratch-
ing an ear, lifting a pencil, tugging the coat of the auctioneer, or even staring into the
auctioneer’s eyes—all of them perfectly legal” (Cassady (1967)). Many bidders are not
present in the auction room at all, but instead bid over the Internet or by telephone.2
Christie’s and Sotheby’s are legally permitted to call out fake (‘chandelier’) bids to give
the impression of higher demand; the New York Times reports that, because of this prac-
tice, “bidders have no way of knowing which offers are real.”3 An industry newsletter for
online advertising auctions reports:4

In a second-price auction, raising the price floors after the bids come in allows [online auctioneers] to make
extra cash off unsuspecting buyers [. . . ] This practice persists because neither the publisher nor the ad buyer
has complete access to all the data involved in the transaction, so unless they get together and compare their
data, publishers and buyers won’t know for sure who their vendor is ripping off.

To formalize these opportunities for rule-breaking, we assume that the auctioneer com-
municates privately with each bidder. This allows the auctioneer to misrepresent any bid-
der’s preferences to any other bidder. Of course, many real-world mechanisms have some
public communication. For instance, in typical auctions for art or wine, the auctioneer re-
veals the clearing price but hides the identity of the winner (Ashenfelter (1989)).5 As an-
other example, the U.S. National Resident Matching Program publishes aggregate statis-
tics about the match, but does not publish information that identifies individual doctors or
hospitals.6 In general, who shares information, and what information they share, depends
on context-specific features that are outside our framework. Fully private communication
is a tractable benchmark, so it is a natural place to start.7

Consider any protocol: a pair consisting of an extensive-form mechanism and a strategy
profile for the bidders. The auctioneer runs the mechanism as follows: Starting from the
initial history, she picks up the telephone and conveys a message to the bidder who is
called to play (an information set), along with a set of acceptable replies (actions). The
bidder chooses a reply. The auctioneer keeps making telephone calls, sending messages
and receiving replies, until she reaches a terminal history, whereupon she chooses the
corresponding outcome and the game ends.

Suppose some utility function for the auctioneer. For instance, assume that the auction-
eer wants revenue. Suppose that each bidder intrinsically observes certain features of the
outcome. For instance, each bidder observes whether or not he wins the object, and how
much he pays, but not how much other bidders pay.

By participating in the protocol, each bidder observes a sequence of communication
between himself and the auctioneer and some features of the outcome. Even if the auc-
tioneer deviates from her assigned strategy, bidder i’s observation could still have an in-
nocent explanation. That is, when the auctioneer plays by the rules, there exist types for
the other bidders that result in that same observation for i.

2The Wall Street Journal reports, “Many auction rooms are sparsely attended these days despite widespread
interest in the items being sold, with most bids coming in online or, even more commonly, by phone.” Why
auction rooms seem empty these days, The Wall Street Journal, June 15, 2014.

3Genteel auction houses turning aggressive, The New York Times, April 24, 2000.
4How SSPs use deceptive price floors to squeeze ad buyers, Digiday, Sep 13, 2017
5One justification for keeping the winner’s identity secret is that it gives bidders incentives to defect from

collusive arrangements. However, publishing the clearing price does not rule out cheating, since each losing
bidder may believe that someone else placed the second-highest bid.

6The match rules also limit the information that participants can share. 2019 Main Residency Match Partic-
ipation Agreement for Applicants and Programs, Sections 4.4 and 4.6.

7A fuller analysis would model the auctioneer’s reasons for privacy and disclosure, such as post-auction
strategic interaction (Dworczak (2020)).
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Given a protocol, some deviations may be safe, in the sense that for every type profile,
each bidder’s observation has an innocent explanation. That is, every observation that a
bidder might have (under the deviation) is also an observation he might have when the
auctioneer is running the mechanism. For instance, when a bidder bids $100 in a second-
price auction, receives the object, and is charged $99, that observation has an innocent
explanation—it could be that the second-highest value was $99. Thus, in a second-price
auction, the auctioneer can safely deviate by exaggerating the second-highest bid.8

Instead of just choosing a different outcome, the auctioneer may also alter the way she
communicates with bidders. For example, consider a protocol in which the auctioneer
acts as a middleman between one seller and one buyer. The seller chooses a price for
the object, which the auctioneer tells to the buyer. The object is sold to the buyer at that
price if and only if the buyer accepts, and the auctioneer takes a 10% commission. The
auctioneer has a safe deviation—she can quote a higher price to the buyer, and pocket
the difference if the buyer accepts.

A protocol is credible if running the mechanism is incentive-compatible for the auction-
eer, that is, if the auctioneer prefers playing by the book to any safe deviation. This is a
way to think about partial commitment power for any extensive-form mechanism.

Having defined the framework, we now consider how credibility interacts with other
design features. Most real-world auctions are variations on just a few canonical formats—
the first-price auction, the ascending auction, and (more recently) the second-price auc-
tion (Cassady (1967), McAfee and McMillan (1987), Edelman, Ostrovsky, and Schwarz
(2007)).9 The first-price auction is static (“sealed-bid”)—each bidder is called to play ex-
actly once, and has no information about the history of play when selecting his action. This
yields a substantial advantage: Sealed-bid auctions can be conducted rapidly and asyn-
chronously, thus saving logistical costs.10 The ascending auction is strategy-proof. Thus,
it demands less strategic sophistication from bidders, and does not depend sensitively on
bidders’ beliefs (Wilson (1987), Bergemann and Morris (2005), Chung and Ely (2007)).
The second-price auction is static and strategy-proof; it combines the virtues of the first-
price auction and the ascending auction (Vickrey (1961)).

We study the implications of credibility in the independent private values (IPV) model
(Myerson (1981)). For now, we assume that the value distributions are regular and sym-
metric, and restrict attention to auctions in which only winning bidders make (or receive)
transfers. Under these assumptions, the second-price auction (with reserve) is the unique
strategy-proof static optimal auction (Green and Laffont (1977), Holmström (1979), Mil-
grom and Segal (2002)). The second-price auction is not credible, so no optimal auction is
strategy-proof, static, and credible. This raises two natural questions: Is any auction static
and credible? Is any auction strategy-proof and credible?

Our first result is as follows: The first-price auction (with reserve) is the unique static
credible optimal auction. This implies that, in the class of static mechanisms, we must

8An auctioneer running second-price auctions in Connecticut admitted, “After some time in the business,
I ran an auction with some high mail bids from an elderly gentleman who’d been a good customer of ours and
obviously trusted us. My wife Melissa, who ran the business with me, stormed into my office the day after the
sale, upset that I’d used his full bid on every lot, even when it was considerably higher than the second-highest
bid.” (Lucking-Reiley (2000))

9The Dutch (descending) auction, in which the price falls until one bidder claims the object, is less prevalent
(Krishna (2010, p. 2)).

10Using data from U.S. Forest Service timber auctions, Athey, Levin, and Seira (2011) found that “sealed
bid auctions attract more small bidders, shift the allocation toward these bidders, and can also generate higher
revenue.”
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choose between incentive-compatibility for the auctioneer and dominant strategies for
the bidders.

Static mechanisms include the direct revelation mechanisms, in which each bidder sim-
ply reports his type. Thus, when designing credible protocols, restricting attention to reve-
lation mechanisms loses generality. The problem is that revelation mechanisms reveal too
much. For a bidder to have a dominant strategy, his payment must depend on the other
bidders’ types. If the auctioneer knows the entire type profile, and the winning bidder’s
payment depends on the other bidders’ types, then the auctioneer can safely deviate to
raise revenue. What happens when we instead allow arbitrary communication protocols—
when we use the full richness of extensive forms to regulate who knows what, and when?

For the next result, we discretize the type space, so that optimal clock auctions can be
represented as extensive-form mechanisms.

Our second result is as follows: The ascending auction (with an optimal reserve) is
credible. Moreover, under some technical conditions, it is the unique credible strategy-
proof optimal auction. No other extensive forms satisfy these criteria.

Notably, this result does not use open outcry bidding to ensure good behavior by the
auctioneer. Given an ascending auction with an optimal reserve, the auctioneer prefers
to follow the rules even though she communicates with each bidder individually by tele-
phone. If the auctioneer places chandelier bids, then she runs the risk that bidders will
quit. In equilibrium, this deters her from placing chandelier bids at any price above the
reserve.

These results imply an auction trilemma. Static, strategy-proof, or credible: An optimal
auction can have any two of these properties, but not all three at once. Moreover, picking
two out of three characterizes each of the standard auction formats (first-price, second-
price, and ascending). Figure 1 illustrates.

Next, we generalize these results by relaxing the assumption that only winners make
transfers and that the distributions are symmetric. The credible static auctions are now
twin-bid auctions. This is a larger class that includes all-pay auctions and first-price auc-
tions with entry fees. In a twin-bid auction, each bidder chooses from a set of feasible
bids, where a bid is a pair of numbers specifying what he pays if he wins and what he pays
if he loses. After taking all bids, the auctioneer chooses a winner that maximizes revenue.
Under mild assumptions, twin-bid auctions are not strategy-proof.

Under asymmetry, the static strategy-proof optimal auctions are virtual second-price
auctions: each bid is scored as its corresponding virtual value, and the winner pays the

FIGURE 1.—An auction trilemma: In the class of optimal auctions in which only the winner makes transfers,
no auction is static, strategy-proof, and credible. Picking two out of three properties uniquely characterizes
each standard format.
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least bid he could have reported while still having the highest score. Correspondingly, the
credible strategy-proof optimal auctions are virtual ascending auctions: bids are scored
according to their virtual values, so one bidder’s price may rise faster than another’s.
Thus, general extensive forms enable the auctioneer to credibly reject higher bids in favor
of lower bids, when it is optimal to do so.

For practical purposes, should an auction be static, strategy-proof, or credible? It de-
pends. Some Internet advertising auctions must be conducted in milliseconds, so latency
precludes the use of multi-round protocols. Strategy-proofness matters when bidders are
inexperienced or have opportunities for rent-seeking espionage. Credibility matters es-
pecially when bidders are anonymous to each other or require that their bids be kept
private. These real-world concerns are outside the model. Our purpose is not to elevate
some criterion as essential, but to investigate which combinations are possible.

1.1. Related Work

We are far from the first to conceive of games of imperfect information as being con-
ducted by a central mediator under private communication. Von Neumann and Morgen-
stern exposited such games as being run by “an umpire who supervises the course of play,”
conveying to each player only such information as is required by the rules (Von Neumann
and Morgenstern (1953, pp. 69–84)). Similarly, Myerson (1986) considered multi-stage
games in which “all players communicate confidentially with the mediator, so that no
player directly observes the reports or recommendations of the other players.”

The papers closest to ours are Dequiedt and Martimort (2015) and Li (2017). In De-
quiedt and Martimort (2015), two agents simultaneously and privately report their types
to the principal, who can misrepresent each agent’s report to the other agent. If we re-
strict attention to revelation mechanisms, then our definition of credibility is equivalent to
their requirement that the principal report truthfully. However, this restriction loses some
generality, so our model instead permits the auctioneer to communicate sequentially with
bidders by adopting extensive-form mechanisms. Li (2017) proposed a definition of bilat-
eral commitment power, and also introduced the messaging game that we use here. The
definition in Li (2017) is restricted to dominant-strategy mechanisms, whereas credibility
allows for Bayes–Nash mechanisms. Also, Li (2017) did not model the incentives faced by
the auctioneer, which is the entire subject of the present study.

Our paper is related to the literature on mechanisms with imperfect commitment, in
which some parts of the outcome are chosen freely by the designer after observing the
agents’ reports (Baliga, Corchon, and Sjöström (1997), Bester and Strausz (2000, 2001)).
Our paper also relates to the literature that studies multi-period auction design with lim-
ited commitment (Milgrom (1987), McAfee and Vincent (1997), Skreta (2006, 2015), Liu,
Mierendorff, Shi, and Zhong (2019)). In this paradigm, the auctioneer chooses a mecha-
nism in each period, but cannot commit today to the mechanisms that she will choose in
the future. In particular, if the object remains unsold, then the auctioneer may attempt to
sell the object again. Essentially, these papers have a post-auction game, and require that
the auctioneer is sequentially rational. Our machinery instead permits the auctioneer to
misrepresent bidders’ preferences during the auction.

Some papers model auctions as bargaining games in which the auctioneer cannot com-
mit to close a sale (McAdams and Schwarz (2007a), Vartiainen (2013)). These papers fix
a particular stage game, in which players can solicit, make, or accept offers, and study
equilibria of the repeated game. The auctioneer does not promise to obey any rules—she
is constrained only by the structure of the repeated game. In our model, the auctioneer in-
stead promises in advance to abide by certain rules, and can only deviate from those rules
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in ways that have innocent explanations. Thus, if the auctioneer promises to run a first-
price auction, then she must conclude the auction after collecting the bids. By contrast,
McAdams and Schwarz (2007a) and Vartiainen (2013) permit the auctioneer to restart
play in the next period, exploiting the new information that she has learned.

Several papers study auctioneer cheating in specific auction formats, such as shill-
bidding in second-price auctions (McAdams and Schwarz (2007b), Rothkopf and Harstad
(1995), Porter and Shoham (2005)) and in ascending auctions with common values
(Chakraborty and Kosmopoulou (2004), Lamy (2009)). Loertscher and Marx (2017) al-
lowed the auctioneer to choose when to stop the clocks in a two-sided clock auction. We
contribute to this literature by providing a definition of auctioneer incentive-compatibility
that is not tied to a particular format, and can thus be used as a design criterion.

Our paper contributes to the line of research that studies standard auction formats
by relaxing various assumptions of the benchmark model (Milgrom and Weber (1982),
Maskin and Riley (1984), Bulow, Huang, and Klemperer (1999), Fang and Morris (2006),
Hafalir and Krishna (2008), Bergemann, Brooks, and Morris (2017, 2019)). While the
usual approach is to compare the standard formats in terms of expected revenue, we
instead characterize the standard formats with a few simple desiderata. Of course, the
desiderata of Figure 1 do not exhaust the considerations of real-world auctioneers; factors
such as interdependent values, risk aversion, and informational robustness importantly
affect the choice of format.

2. MODEL

2.1. Definitions

We now define the model. Proofs omitted from the main text are in Appendix B. The
environment consists of:

1. A finite set of agents, N .
2. A set of outcomes, X .
3. A type space, ΘN = ×i∈NΘi, endowed with σ-algebra F .
4. A probability measure D :F → [0�1].
5. Agent utilities ui :X ×Θi →R.
6. A partition Ωi of X for each i ∈N . (ωi denotes a cell of Ωi.)
The partition Ωi represents what agent i directly observes about the outcome. Concep-

tually, these partitions represent physical facts about the world, which are not objects of
design. They capture the bare minimum that each agent observes about the outcome,
regardless of the choice of mechanism.11

We represent the rules of the mechanism as an extensive game form with imperfect in-
formation. This specifies the information that will be provided to each agent, the choices
each agent will make, and the outcomes that will result, assuming that the auctioneer fol-
lows the rules. Crucially, we are not yet modeling the ways that the auctioneer can deviate.

A mechanism is an extensive game form with consequences in X . This is an extensive
game form for which each terminal history is associated with some outcome. Formally,
a mechanism G is a tuple (H�≺�P�A�A� (Ii)i∈N�g), where each part of the tuple is as
specified in Table I. The full definition of extensive forms is familiar to most readers, so we
relegate further detail to Appendix A. We restrict attention to mechanisms with perfect

11In the application that follows, we will assume that each bidder in an auction knows how much he paid and
whether he receives the object. In effect, this rules out the possibility that the auctioneer could hire pickpockets
to raise revenue, or sell the object to multiple bidders by producing counterfeit copies.
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TABLE I

NOTATION FOR EXTENSIVE GAME FORMS

Name Notation Representative Element

histories H h
precedence relation over histories ≺
reflexive precedence relation �
initial history h∅
terminal histories Z z
player called to play at h P(h)
actions A a
most recent action at h A(h)
information sets for agent i Ii Ii
outcome resulting from z g(z)
immediate successors of h succ(h)
actions available at Ii A(Ii)

recall and finite depth (i.e., there exists some K ∈ N such that no history has more than K
predecessors).

An interim strategy is a function from information sets to available actions, σi : Ii →A,
satisfying σi(Ii) ∈ A(Ii). Let Σi denote the set of i’s interim strategies, and denote an
interim strategy profile by σN = (σi)i∈N . An ex ante strategy is a function from types to
interim strategies, Si :Θi → Σi. An ex ante strategy profile is SN = (Si)i∈N , which implies
an interim strategy profile for each type profile, SN(θN)= (Si(θi))i∈N . We use Si(Ii� θi) to
denote the action played under ex ante strategy Si at information set Ii by type θi.

By convention, many papers make statements about mechanisms that implicitly refer
to a particular equilibrium of the mechanism, such as the claim “second-price auctions
are efficient.” To reduce ambiguity, we will state our results explicitly for pairs (G�SN)
consisting of a mechanism and a strategy profile, which we refer to as a protocol.

Let xG(σN) denote the outcome in G, when agents play according to σN . Let
uGi (σi�σ−i� θi)≡ ui(xG(σi�σ−i)� θi).

Several definitions that follow take the expectation of a utility function.12 We implic-
itly restrict attention to protocols and strategies such that the relevant utility function is
measurable.

DEFINITION 1: (G�SN) is Bayes incentive-compatible (BIC) if, for all i ∈ N , for all
θi ∈Θi,

Si(θi) ∈ arg max
σi

Eθ−i
[
uGi

(
σi� S−i(θ−i)� θi

)]
	

2.2. Pruning

At first glance, when constructing extensive-form mechanisms, it may seem important
to keep track of off-path beliefs. However, if certain histories are off-path at every type
profile, then we can delete those histories without altering the mechanism’s incentive
properties. Similarly, if an agent is called to play, but reveals no outcome-relevant infor-
mation about his type, we can skip that step without undermining incentives. Thus, we

12Definitions 1, 4, and 11.
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restrict attention to the class of pruned protocols.13 This technique allows us to remove
redundant parts of the game tree, and implies cleaner definitions for the theorems that
follow. In words, a pruned protocol has three properties:

1. For every history h, there exists some type profile such that h is on the path-of-play.
2. At every information set, there are at least two actions available (equivalently, every

non-terminal history has at least two immediate successors).
3. If agent i is called to play at history h, then there are two types of i compatible with

his actions so far, that could lead to different eventual outcomes.
Let z(σN) denote the terminal history that results from interim strategy profile σN .

Formally, we have the following:

DEFINITION 2: (G�SN) is pruned if, for any history h:
1. There exists θN such that h� z(SN(θN)).
2. If h /∈Z, then | succ(h)| ≥ 2.
3. If h /∈Z, then for i= P(h), there exist θi, θ′

i, θ−i such that
(a) h≺ z(SN(θi� θ−i)),
(b) h≺ z(SN(θ′

i� θ−i)),
(c) xG(SN(θi� θ−i)) 
= xG(SN(θ′

i� θ−i)).

By the next proposition, when our concern is to construct a BIC protocol, it is without
loss of generality to consider only pruned protocols.

PROPOSITION 1: If (G�SN) is BIC, then there exists (G′� S′
N) such that (G′� S′

N) is pruned
and BIC and for all θN , xG′

(S′
N(θN))= xG(SN(θN)).

Hence, from this point onwards, we restrict attention to pruned (G�SN). If the type
space ΘN is finite and the probability measure D has full support, then every information
set in a pruned protocol is reached with positive probability, which implies that any Bayes–
Nash equilibrium survives equilibrium refinements that restrict off-path beliefs.

2.3. A Messaging Game

We now explicitly model the auctioneer14 as a player (denoted 0). The auctioneer has
utility u0 :X ×ΘN →R.

The auctioneer promises in advance to run some protocol (G�SN). We now describe a
messaging game G∗ that includes the auctioneer as a player. In G∗, the auctioneer con-
tacts players privately and sequentially. At each step, she contacts some agent i, sending
a message that corresponds to one of i’s information sets in the mechanism G. Agent i
replies with one of the actions available at that information set. At any step, the auction-
eer can choose an outcome x and end the game. Thus, the auctioneer can deviate fromG
by altering the sequence of players or information sets, or by choosing different outcomes.

Formally, the messaging game generated by protocol (G�SN) is defined as follows: Let
the auctioneer’s message space be M = ⋃

i Ii.
1. The auctioneer chooses to:
(a) Either: Select outcome x ∈X and end the game.
(b) Or: Go to step 2.

13This is stronger than the definition of pruning in Li (2017), which includes only the first requirement.
14We use the term ‘auctioneer’ to refer to the mediator, but this could be any mediator who runs a mecha-

nism, such as a school choice authority or the National Resident Matching Program.
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2. The auctioneer chooses some agent i ∈N and sends a message m= Ii ∈ Ii.
3. Agent i privately observes message Ii and chooses reply r ∈A(Ii).
4. The auctioneer privately observes r.
5. Go to step 1.
There exists an auctioneer strategy in the messaging game that ‘follows the rules’ of

the mechanism G. These rules prescribe which agents to contact, in what order, what
messages to send, when to end the game, and what outcome to choose.

We use SG0 to denote the rule-following auctioneer strategy. Formally, SG0 is defined
by the following algorithm: Initialize ĥ := h∅. At each step, if ĥ is a terminal history in
G, end the game and choose outcome g(ĥ). Else, contact agent P(ĥ) and send message
m= IP(ĥ) such that ĥ ∈ IP(ĥ). Upon receiving reply r, update ĥ := h′ ∈ succ(ĥ) |A(h′)= r,
and iterate.15

We now make a substantive restriction: The auctioneer can only deviate in ways that
no agent can detect. Formally, in the messaging game, agent i observes the sequence
of communication between himself and the auctioneer (mk

i � r
k
i )
Ti
k=1, and directly observes

some details of the outcome, as specified by the partitionΩi. An observation for i is a tuple
((mk

i � r
k
i )
Ti
k=1�ωi), whereωi is the cell ofΩi that contains the outcome.16 Let oi(S0� SN�θN)

be i’s observation when the auctioneer plays S0, the agents play SN , and the type profile is
θN .

DEFINITION 3: Given some promised strategy profile (S0� SN), auctioneer strategy
Ŝ0 is safe if, for all agents i ∈ N and all type profiles θN , there exists θ̂−i such that
oi(Ŝ0� SN�θN)= oi(S0� SN� (θi� θ̂−i)). S∗

0 (S0� SN) denotes the set of safe strategies.
G∗ is the messaging game restricted to S∗

0 (S
G
0 � SN); this constrains the auctioneer to

only play safe deviations from the rule-following strategy.17

Definition 3 permits the auctioneer to deviate only if every agent’s observation has an
innocent explanation; there must exist θ̂−i such that i’s observation is consistent with the
auctioneer playing SG0 , the agents playing SN , and the other agents’ types being θ̂−i.

DEFINITION 4: (G�SN) is credible if

SG0 ∈ arg max
S0∈S∗

0 (S
G
0 �SN)

EθN

[
u0(S0� SN�θN)

]
�

where u0(S0� SN�θN) is the utility to the auctioneer from the outcome that results from
(S0� SN) when the type profile is θN .

This parallels the definition of agent incentive compatibility in Hurwicz (1972):

15We have not defined SG0 at information sets in the messaging game that are ruled out by SG0 . Since we are
not considering trembles by the auctioneer, all such strategies are outcome-equivalent, and this omission is
harmless.

16Note the lack of calendar time: The agent observes the sequence of past communications between himself
and the auctioneer, not a sequence of periods in which he either sees some communication or none.

17In describing the messaging game G∗, we have not specified payoffs for infinite sequences of communica-
tion. However, since (G�SN) has finite depth, any safe deviation has finite length, and the resulting payoffs are
well-defined.
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In effect, our concept of incentive compatibility merely requires that no one should find it profitable to
“cheat,” where cheating is defined as behavior that can be made to look “legal” by a misrepresentation
of a participant’s preferences or endowment, with the proviso that the fictitious preferences should be within
certain “plausible” limits.

In our definition, the auctioneer is allowed to behave in ways that can be made to look
“legal” by misrepresenting the preferences of the other agents, with the proviso that the
fictitious preferences should be within certain “plausible” limits. These limits are defined
by the type space.

Instead of just choosing different outcomes, Definition 4 permits the auctioneer to
modify G by altering the sequence of information sets. This may materially expand the
auctioneer’s strategic opportunities, as the following example illustrates.

EXAMPLE 1: Consider the mechanism on the left side of Figure 2. Each agent has one
information set, two moves (left and right), and two types (li and ri) that play the corre-
sponding moves. Agent 1 is assumed to observe whether the outcome is in the set {a�b}
or in {c}. Agents 2 and 3 perfectly observe the outcome.

The right side of Figure 2 illustrates a safe deviation: If agent 1 plays left, then the
auctioneer follows the rules. If agent 1 plays right, then instead of querying agent 2, the
auctioneer queries agent 3. If agent 3 then plays left, the auctioneer chooses outcome a.
If agent 3 plays right, only then does the auctioneer query agent 2, choosing c if 2 plays
left and b if 2 plays right.

For every type profile, each agent’s observation has an innocent explanation. The most
interesting case is when the type profile is (r1� l2� l3). In this case, following the rules results
in outcome b, but the deviation results in outcome a. Agent 1 cannot distinguish between
a and b, so (l2� l3) is an innocent explanation for 1. (l1� l3) is an innocent explanation for
2, and (l1� l2) is an innocent explanation for 3. Thus, if the auctioneer prefers outcome a
to any other outcome, then the mechanism is not credible.

Notably, this deviation involves not just choosing different outcomes, but communicat-
ing differently even before a terminal history is reached. Indeed, when the type profile
is (r1� l2� l3), the auctioneer can only get outcome a by deviating midway. If she waited
until the end and then deviated to choose a, then agent 2’s observation would not have
an innocent explanation. Once agent 2 is called to play, he knows that outcome a should
not occur.

Definition 4 takes the expectation of θN with respect to the ex ante distribution D.
However, when ΘN is finite and D has full support, Definition 4 implicitly requires the
auctioneer to best-respond to her updated beliefs in the course of running G. Recall that
a strategy for the auctioneer is a complete contingent plan. Suppose that in the course
of running G, the auctioneer discovers new information about agents’ types, such that

FIGURE 2.—A mechanism and a deviation. If agent 1 cannot distinguish outcomes a and b, then the devia-
tion is safe.
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she can profitably change her continuation strategy. There exists a deviating strategy that
adopts this new course of action contingent on the auctioneer discovering this informa-
tion, and plays by the rules otherwise. Thus, if S0 is an ex ante best response, then its
corresponding continuation strategies are also best responses along the equilibrium path-
of-play.

When our concern is to construct a credible protocol, it is also without loss of generality
to consider only pruned protocols.

PROPOSITION 2: If (G�SN) is credible and BIC, then there exists (G′� S′
N) such that

(G′� S′
N) is pruned, credible, and BIC, and for all θN , xG′

(S′
N(θN))= xG(SN(θN)).

OBSERVATION 1: (G�SN) is credible and BIC if and only if (SG0 � SN) is a Bayes–Nash
equilibrium of G∗.

Credibility restricts attention to ‘promise-keeping’ equilibria of the messaging game.
However, any equilibrium can be turned into a promise-keeping equilibrium by altering
the promise.

OBSERVATION 2: If S′
0 ∈ S∗

0 (S0� SN), then S∗
0 (S

′
0� SN) ⊆ S∗

0 (S0� SN). Thus, if (S′
0� SN) is

a Bayes–Nash equilibrium of the messaging game restricted to S∗
0 (S0� SN), then it is also a

Bayes–Nash equilibrium of the messaging game restricted to S∗
0 (S

′
0� SN).

Definition 4 is stated for pure strategies, but can be generalized to allow the auction-
eer to mix. To do so, we simply extend the definition of extensive game forms so that G
includes chance moves. We then specify that Ŝ0 is safe if, for all agents i ∈N and all type
profiles θN , for any observation of agent i that occurs for some realization of the auc-
tioneer’s randomization under (Ŝ0� SN�θN), there exists θ̂−i so that the same observation
occurs for some realization of the auctioneer’s randomization under (SG0 � SN�θi� θ̂−i).

In some settings, auctioneer randomization is needed to deliver the right incentives
for the agents. However, randomization does not improve auctioneer incentives: We can-
not construct a credible protocol (G�SN) by randomizing over deterministic non-credible
protocols. Given randomized (G�SN), let (G′� SN) be a deterministic protocol in which
we fix a particular realization of the auctioneer’s randomization. Suppose (G�SN) is cred-
ible, so the auctioneer is indifferent between SG0 and SG′

0 . Switching from G to G′ shrinks
the set of innocent explanations, and therefore the set of safe deviations. The auctioneer
preferred SG0 to any safe deviation in the larger set, and therefore prefers SG′

0 to any safe
deviation in the smaller set, so (G′� SN) is credible.

In the settings we are about to consider, randomization is not helpful for agent incen-
tives.18 Thus, we will restrict attention to deterministic protocols.

3. CREDIBLE OPTIMAL AUCTIONS

We now study credible auctions in the independent private values (IPV) model (My-
erson (1981)). We make this choice for two reasons: First, this is a benchmark model
in auction theory, so using it shows that the results are driven by credibility, and not by

18In auctions with independent private values, there always exists a deterministic mechanism that maximizes
expected revenue. For instance, we can run a second-price auction that scores bids according to their ironed
virtual value, breaking ties deterministically (Myerson (1981)).
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some hidden feature of an unusual model.19 Second, in the symmetric IPV model, rev-
enue equivalence implies that the standard auctions start on an equal footing—the value
distribution does not tip the scales in favor of a particular format, unlike the model with
affiliated signals (Milgrom and Weber (1982)) or the model with risk aversion (Maskin
and Riley (1984)).

Assume there are at least two agents, henceforth referred to as bidders. An outcome
x= (y� tN) consists of a winner y ∈N∪{0} and a profile of payments (one for each bidder)
tN ∈ R

|N|, so X = (N ∪ {0})×R
|N|.

Bidders have private values, that is,

ui
(
(y� tN)�θN

) = 1i=yvi(θi)− ti�
where vi :Θi → R. We will abuse notation slightly, and use θi to refer both to i’s type, and
to the real number associated with that type.
Ωi is as follows: Each bidder observes whether he wins the object and observes his own

payment. That is, (y� tN)� (y ′� t ′N) ∈ωi if and only if:
1. Either: y 
= i, y ′ 
= i, and ti = t ′i ,
2. Or: y = y ′ = i and ti = t ′i .
The auctioneer desires revenue, and her value for the object is normalized to zero:20

u0

(
(y� tN)�θN

) =
∑
i∈N
ti	

An allocation rule is a function ỹ : ΘN → N ∪ {0}, and a transfer rule is a function
t̃N :ΘN → R

|N|. For any protocol (G�SN), we can consider its induced allocation rule and
transfer rule (ỹG�SN (·)� t̃G�SNN (·)). Where it is clear, we suppress the dependence on (G�SN)
to ease notation.

Let π(G�SN)= EθN [∑i∈N t̃
G�SN
i (θN)] denote the expected revenue of (G�SN). We will

specify the relevant distribution shortly.

DEFINITION 5: (G�SN) is optimal if it maximizes π(G�SN) subject to the constraints:
1. Incentive compatibility: (G�SN) is BIC.
2. Voluntary participation: For all i, there exists σ ′

i that ensures that i does not win and
has a zero net transfer, regardless of σ ′

−i.
21

3.1. Credible Static Optimal Auctions

We now characterize credible static optimal auctions. Assume that Θi = [0�1] and that
θi is independently distributed according to continuous full-support density fi : [0�1] →
R.

We restrict attention to protocols such that:

19As Brooks and Du (2018) observed, “The IPV model has been broadly accepted as a useful benchmark
when values are private, but there is no comparably canonical model when values are common.”

20The results that follow would require only small modifications if the auctioneer’s payoff was a weighted
average of revenue and social welfare.

21There are several standard ways of defining participation constraints, not entirely equivalent for our pur-
poses. This definition appears in Maskin and Riley (1984). The existence of this non-participating strategy is
used in the proof of Proposition 6, to establish that strategy-proof auctions are winner-paying. If we merely
required that the bidder’s interim expected payoff was non-negative, then the conclusion would not follow.
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1. For all θN , ỹ(·) and t̃i(·) are measurable functions (with respect to the Borel σ-
algebra on ΘN).22

2. For all θi, ỹ(θi� ·) and t̃i(θi� ·) are measurable functions (with respect to the Borel
σ-algebra on Θ−i).

3. For all θ−i, ỹ(·� θ−i) and t̃i(·� θ−i) are measurable functions (with respect to the Borel
σ-algebra on Θi).

These conditions ensure that expected transfers and allocations are well-defined, both
ex ante and interim. These are implicit in almost all papers with continuum type spaces
and transferable utility. We make these restrictions explicit because the proof of Theo-
rem 1 runs into some measure-theoretic subtleties.23

DEFINITION 6: (G�SN) is static if, for each bidder i, i has exactly one information set,
and for every terminal history z, there exists h≺ z such that P(h)= i.

Next, we prove that, in a credible static auction, the winner makes a payment that es-
sentially depends only on his own type. Thus, we can regard each bidder as placing bids,
with the assurance that if he wins the object, he pays exactly his bid.

THEOREM 1—Pay-as-Bid: If (G�SN) is credible and static, then, for each bidder i, there
exists a function b̃i : Θi → R such that almost everywhere in ΘN , if ỹ(θi� θ−i) = i, then
t̃i(θi� θ−i)= b̃i(θi).

PROOF: If the pay-as-bid property does not hold, then we can construct a safe devia-
tion that raises payments on a positive-measure set. However, we cannot simply charge
the ‘highest safe payment’ point-by-point, because there may be uncountably many oppo-
nent type profiles consistent with i winning the object, and the pointwise supremum of an
uncountable family of measurable functions may not be measurable.

LEMMA 1—Hajłasz and Malý (2002)24: Let � be a family of measurable functions de-
fined on a set E ⊆ R

n. There exists a countable subfamily �̂ ⊆ � such that, for all φ ∈ �,
sup �̂≥φ almost everywhere.

Consequently, let (θk−i)
∞
k=1 be a countable subset of opponent type profiles, such that

for all θ−i, supk t̃i(·� θk−i)≥ t̃i(·� θ−i) almost everywhere in Θi. supk t̃i(·� θk−i) is measurable.
We assert that b̃i(·)= supk t̃i(·� θk−i). Suppose the set{

θN
∣∣ ỹ(θN)= i and t̃i(θi� θ−i) 
= sup

k

t̃i
(
θi� θ

k
−i

)}

has positive measure. Then the set

Q=
{
θN

∣∣ ỹ(θN)= i and t̃i(θi� θ−i) < sup
k

t̃i
(
θi� θ

k
−i

)}

22That is, for any J ⊆N ∪ {0}, its preimage {θN | ỹ(θN) ∈ J} is a Borel set, and for any Borel set J ⊆ R, its
preimage {θN | t̃i(θN) ∈ J} is a Borel set.

23The restrictions rule out, for instance, that we can fix a Vitali set V , and specify that bidder 1 has transfer
1 if θ1 ∈ V and θ2 = 0	5, and transfer 0 otherwise, in which case 1’s expected transfer conditional on θ2 = 0	5
is not defined since V is not measurable.

24Lemma 2.6 in Hajłasz and Malý (2002), which is a special case of Lemma 2.6.1 in Meyer-Nieberg (1991).
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has positive measure. Since transfers and allocations can only change when the action
profile changes, Q is measurable with respect to the equilibrium action profiles.

We now construct a safe deviation: Fix some finite K. If the bidder’s chosen ac-
tions are consistent with any type profile (θi� θ−i) ∈ Q, then instead charge bidder i
maxk≤K t̃i(θi� θk−i). Let k∗ denote the arg max. If ỹ(θi� θk

∗
−i)= i, then allocate the object to i;

else keep the object. Otherwise, play according to SG0 . This deviation takes the maximum
of finitely many measurable functions, so the resulting transfer t̃Ki : ΘN → R is measur-
able.

For K large enough, this deviation is profitable. In particular, for any θN ∈Q, t̃Ki (θN) is
non-decreasing in K. Thus, by the monotone convergence theorem,

lim
K→∞

EθN

[
t̃Ki (θN) | θN ∈Q] = EθN

[
lim
K→∞

t̃Ki (θN)
∣∣ θN ∈Q

]
= EθN

[
sup
k

t̃i
(
θi� θ

k
−i

) ∣∣ θN ∈Q
]
> EθN

[
t̃i(θN) | θN ∈Q]

�

which completes the proof. Q.E.D.

DEFINITION 7: (G�SN) is a first-price auction if (G�SN) is static, and each bidder i
either chooses a bid bi from a set Bi ⊂R

+
0 or declines to bid, such that:

1. Each bidder i pays bi if he wins and 0 if he loses.
2. If any bidder places a bid, then some maximal bidder wins the object. Otherwise, no

bidder wins.
If Clauses 1 and 2 hold almost everywhere in ΘN , then (G�SN) is a first-price auction
almost everywhere.

We represent a reserve price by restricting the set Bi.
For the next theorem, we assume that the distributions are symmetric, that is, fi(·) =

fj(·) for all i, j, and regular, that is, θi − 1−Fi(θi)
fi(θi)

is strictly increasing. We also restrict
attention to winner-paying protocols.

DEFINITION 8: (G�SN) is winner-paying if, for all θN , if t̃i(θN) 
= 0, then ỹ(θN)= i.
THEOREM 2: Assume the distributions are symmetric and regular. Assume (G�SN) is

winner-paying and optimal. If (G�SN) is a first-price auction, then (G�SN) is credible and
static. If (G�SN) is credible and static, then (G�SN) is a first-price auction almost everywhere.

PROOF: Suppose (G�SN) is a first-price auction. (G�SN) is static by definition. Every
safe deviation that sells the object involves charging some bidder his bid, so no safe devi-
ation yields more revenue than following the rules. Thus, (G�SN) is credible.

Suppose (G�SN) is credible and static. By Theorem 1, there exists a function b̃i :Θi →R

such that, almost everywhere in ΘN , if type θi wins, then i pays b̃i(θi). (G�SN) is optimal,
so the participation constraint of the lowest type binds, and we can pick a non-negative
function b̃i : Θi → R

+
0 . We now partition i’s actions into bidding actions Bi = {b̃i(θi) |

θi ∈ Θi and ∃θ−i : ỹ(θi� θ−i) = i}, and actions that decline. (G�SN) is winner-paying, so
Clause 1 of Definition 7 holds almost everywhere.
(G�SN) is optimal, which determines the allocation rule and i’s interim expected trans-

fer almost everywhere (Myerson (1981)). By BIC, i’s interim expected transfer is increas-
ing in i’s type, and the distributions are symmetric and regular, so almost everywhere the
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winner has a maximal type, and thus a maximal bid. Thus, Clause 2 of Definition 7 holds
almost everywhere. Thus (G�SN) is a first-price auction almost everywhere. Q.E.D.

We now relax the assumption that the distributions are symmetric and regular, and
that the protocol is winner-paying and optimal. In particular, rather than requiring that
the protocol be optimal, we will require that, with probability 1, no bidder knows at the
interim stage that he will win for sure.

DEFINITION 9: (G�SN) is contestable if, almost everywhere inΘN , if ỹ(θi� θ−i)= i, then
there exists θ′

−i such that ỹ(θi� θ′
−i) 
= i.

Since Θi =Θj = [0�1], optimal auctions are contestable.
The first-price auctions of Theorem 2 generalize to a larger class that permits the auc-

tioneer to extract transfers from losing bidders, though each losing bidder’s transfer must
depend only on his own bid.

Whether this class is of more than technical interest will vary from case to case. Most
economically important auctions, such as those for art, for mineral rights, for spectrum,
or for online advertising, do not extract payments from losing bidders. Some real-world
auctions may need to respect ex post individual rationality, since otherwise one party will
try to annul the contract afterwards. The resulting transaction costs may constrain the
auctioneer to use winner-paying protocols.

We now state the definition that generalizes first-price auctions.

DEFINITION 10: (G�SN) is a twin-bid auction if (G�SN) is static, and each bidder
chooses a two-dimensional bid (bWi � b

L
i ) from a set Bi ⊂ R

2 such that:
1. Each bidder i pays bWi if he wins and bLi if he loses.
2. If any bidder places a bid such that bWi − bLi > 0, then some bidder wins the object.
3. If i wins the object, then bWi − bLi ≥ max{0�maxj 
=i bWj − bLj }.

If Clauses 1, 2, and 3 hold almost everywhere in ΘN , then (G�SN) is a twin-bid auction
almost everywhere.

Twin-bid auctions include first-price auctions and all-pay auctions, though the credibil-
ity of all-pay auctions is sensitive to the assumption that the object is costless to provide.
(More generally, bWi − bLi must be no less than the auctioneer’s cost of provision, which
rules out standard all-pay auctions.25) Twin-bid auctions also encompass first-price auc-
tions with entry fees (bLi is the entry fee), and first-price auctions in which losing bidders
are paid fixed compensation (bLi < 0). Bidders who place higher bids may also receive
more compensation if they lose; under the assumptions of Maskin and Riley (1984), this
is the form of the optimal auction for symmetric bidders with constant absolute risk aver-
sion.26

THEOREM 3: Assume (G�SN) is contestable. If (G�SN) is a twin-bid auction, then
(G�SN) is credible and static. If (G�SN) is credible and static, then (G�SN) is a twin-bid
auction almost everywhere.

25The case when bWi − bLi is exactly equal to the cost of provision was studied in Dequiedt and Martimort
(2007), an early draft of Dequiedt and Martimort (2015).

26Theorem 14 (Maskin and Riley (1984, pp. 1506–1507)). This claim follows from their Equations (75) and
(77), since μ is non-decreasing.
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The proof of Theorem 3 does not rely on independence, so the characterization holds
even with correlated types. Twin-bid auctions are not strategy-proof, except in degenerate
cases.

DEFINITION 11: (G�SN) is strategy-proof if, for all i ∈N , for all S′
−i, for all θi ∈Θi.

Si(θi) ∈ arg max
σi

Eθ−i
[
uGi

(
σi� S

′
−i(θ−i)� θi

)]
	

The definition above requires that Si is a best response to all S′
−i, taking the expectation

with respect to θ−i. It is natural to consider a stronger definition that requires Si to be a
best response to all S′

−i and all θ′
−i. Under private values, these definitions are equivalent.

PROPOSITION 3: Let (G�SN) be such that there exist θi < θ′
i < θ

′′
i < θ

′′′
i , θ−i, and θ′

−i
such that ỹ(θi� θ−i) 
= i= ỹ(θ′

i� θ−i) and ỹ(θ′′
i � θ

′
−i) 
= i= ỹ(θ′′′

i � θ
′
−i). If (G�SN) is a twin-bid

auction, then (G�SN) is not strategy-proof.

What happens to Theorem 3 if we remove the assumption that the protocol is con-
testable? In that case, then some bidder i could have actions that win the object for sure,
even when the difference bWi − bLi is not high enough to satisfy Clause 3 of Definition 10.
Since there is only one object for sale, at most one bidder can have incontestable actions.
The characterization of credible static mechanisms is otherwise unchanged. We omit the
proof, since it is an easy modification of the proof of Theorem 3.

3.2. Credible and Strategy-Proof Optimal Auctions

We now characterize credible strategy-proof optimal auctions. In particular, we will
show that certain ascending auctions are credible and strategy-proof.

We must make a modeling choice, because ascending auctions with discrete steps are
not optimal for continuum type spaces. We could proceed by introducing a model for
continuous-time auctions, as in Milgrom and Weber (1982). However, we wish to argue
that credibility and strategy-proofness select ascending auctions out of a general class,
and there is not yet any theory of continuous-time games that rivals the generality of
extensive-form games.27

Consequently, our approach is to discretize the type space, so that clock auctions (and
many other dynamic protocols) can be optimal. LetΘi = {θ1

i � 	 	 	 � θ
Ki
i }. Assume θ1

i = 0 and
that θk+1

i − θki > 0. (We are continuing to abuse notation, and use θki to refer both to i’s
kth type, and to vi(θki ), the real number associated with that type.)

Types are independently distributed, with probability mass function fi :Θi → (0�1] and
corresponding Fi(θki )= ∑k

l=1 fi(θ
l
i). FN is symmetric if, for all i, j, Θi =Θj and Fi = Fj .

The virtual values machinery in Myerson (1981) applies mutatis mutandis to the dis-
crete setting.

27For an explanation of some difficulties involved in continuous-time game theory, see Simon and Stinch-
combe (1989).
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DEFINITION 12: For each k, we define the virtual value of θki to be28

ηi
(
θki

) ≡ θki − 1 − Fi
(
θki

)
fi

(
θki

) (
θk+1
i − θki

)
	 (1)

FN = (Fi)i∈N is regular if, for all i, ηi(·) is strictly increasing.

Optimal auctions have a characterization in terms of virtual values when certain con-
straints bind. ǔG�SNi (k�k′) denotes the expected utility of bidder i when his type is θki and
he plays as though his type is θk′

i .

PROPOSITION 4—Elkind (2007): Assume FN is regular and (G�SN) satisfies the con-
straints in Definition 5. (G�SN) is optimal if and only if:

1. Participation constraints bind for the lowest types. ∀i : ǔG�SNi (1�1)= 0.
2. Incentive constraints bind locally downward. ∀i : ∀k ≥ 2 : ǔG�SNi (k�k) = ǔ

G�SN
i (k�

k− 1).
3. The allocation maximizes virtual value. ∀θN :
(a) If maxi ηi(θi) > 0, then ỹ(θN) ∈ arg maxi ηi(θi).
(b) If ηi(θi) < 0, then i 
= ỹ(θN).
Ties occur with positive probability under discrete type spaces, although the probability

goes to 0 as we make the discretization finer. For convenience, we will assume that the
protocol breaks ties deterministically according to a fixed priority order.

DEFINITION 13: Let ρ denote a reserve price. (G�SN) is orderly if there exists a strict
total order � on ρ∪ ⋃

i∈N Θi, such that
1. i wins the object if and only if θi�ρ and θi�θj for all j 
= i.
2. θi�θj if θi > θj .
3. θi�ρ if and only if θi ≥ ρ.
4. If θi = θj , θ′

i = θ′
j , and θi�θj , then θ′

i�θ′
j .

We use
�

min to denote the minimum of a set with respect to �, and
�

max similarly.

For two bidders, an ascending auction can proceed as follows: Choose an optimal re-
serve ρ∗. Ask each bidder to either bid ρ∗ or quit. If both quit, keep the object. Otherwise,
alternate between the bidders, asking each bidder to either raise his bid by one increment
or quit. When there is only one bidder left, allocate the object to that bidder and charge
him his current bid.

The following definition generalizes the two-bidder auction, and will shortly be used to
characterize credible strategy-proof optimal auctions.

DEFINITION 14: (G�SN) is an ascending auction if:
1. The induced allocation rule ỹ(·) is orderly.
2. The induced payment rule satisfies threshold pricing, that is,

t̃i(θN)=
{

min
{
θ′
i ∈Θi | ỹ

(
θ′
i� θ−i

) = i} if ỹ(θN)= i�
0 otherwise	

28Since 1 − Fi(θi) is equal to 0 at the upper bound, we can define θKi+1
i arbitrarily for the purposes of

Equation (1).
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3. All bidders start with a profile of initial bids bN := (θ1
i )i∈N .

4. At each non-terminal history h, some bidder i is called to play, and is offered some
price p ∈Θi. Each available action either accepts the price or quits.

(a) The offered price p is no less than i’s current bid.
(b) If i accepts the price, then his bid is updated bi := p.
(c) If i quits, then he is not called to play again, does not win the object, and pays 0.
(d) When i is called to play at h, he knows the offered price, and knows, for each action,

whether that action accepts or quits.
5. At each information set Ii:
(a) Either: There is a unique action that accepts.
(b) Or: If i plays any action that accepts, then he is not called to play again, wins the

object, and pays the offered price p.
6. If i wins the object, then he pays his current bid.

By definition, ascending auctions have threshold pricing and bid-or-quit decisions. This
implicitly limits the price offers that each bidder receives. In particular, no bidder is ever
offered a price higher than is needed to win, given the profile of current bids and the
tie-breaking order.

In stating Definition 14, we have deliberately omitted what each bidder is told about the
other bidders. The protocol could require that each bidder is informed about the number
of active bidders or the identities of the active bidders. The protocol could specify that
each bidder places an increasing sequence of bids, receiving no other information until
he quits or is the last bidder left. These all count as ascending auctions for the purposes
of the definition.

OBSERVATION 3: If FN is regular and symmetric, then there exists an optimal ascending
auction. In any ascending auction, participation constraints bind for the lowest types and in-
centive constraints bind locally downward. Given an optimal reserve ρ∗ = mink θki | ηi(θki ) >
0, the ascending auction maximizes the virtual value of the winning bidder. By Proposition 4,
such an auction is optimal.

Credibility and strategy-proofness pin down most of the game tree, except for certain
corner cases. In particular, consider optimal auctions for a single bidder; the bidder will
win and pay the reserve price if and only if his type is above the reserve. Thus, many
extensive-form mechanisms are credible. For instance, the auctioneer could first ask the
bidder to report whether his type is even or odd, and then to report whether his type is
above the reserve. There exist many protocols that are essentially ‘long-winded’ ways to
make a take-it-or-leave-it offer. These situations sometimes occur in multi-bidder auc-
tions, for instance, if bidder 1 quits before the reserve is met, and only bidder 2 is left.

For these corner cases, ruling out long-winded protocols yields a simpler and more
transparent characterization. Rather than describing all the drawn-out ways that the auc-
tioneer could make a take-it-or-leave-it offer, we will instead assume that, once the auc-
tioneer is in a position to make such an offer, she does so directly and in a single step. In
particular, we will restrict attention to the class of concise protocols, defined as follows.

DEFINITION 15: Under (G�SN), i faces a posted price at h if P(h)= i and there exists
a price τh such that, at all terminal histories that follow h, if i wins, then i pays τh. (G�SN)
is concise if, for any history h, if i faces a posted price at h, then:

1. The information set containing h is singleton.
2. For all h′ � h, P(h′) 
= i.
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We go on to characterize credible strategy-proof optimal auctions. Notably, optimality
and strategy-proofness together imply that the protocol is winner-paying. Thus, we do not
need to make that assumption separately in the results that follow.

The definition of extensive-form mechanisms permits the auctioneer to communicate
with bidders in any order, to convey information to the bidder called to play, and to ask
that bidder to report any partition of his type space. Thus, there are many optimal auc-
tions. However, the optimal auctions that are credible and strategy-proof are exactly the
ascending auctions. To be precise, we have the following:

THEOREM 4: Assume that FN is regular and symmetric and that (G�SN) is optimal. If
(G�SN) is an ascending auction, then (G�SN) is credible and strategy-proof.

Assume additionally that (G�SN) is concise and orderly. If (G�SN) is credible and strategy-
proof, then (G�SN) is an ascending auction.

PROOF OVERVIEW: Suppose (G�SN) is an ascending auction. By inspection, it is
strategy-proof. What remains is to show that it is credible. Suppose that the auctioneer
has a profitable safe deviation. For every bidder i, Si remains a best response to any safe
deviation by the auctioneer. Thus, since the auctioneer has a profitable safe deviation, she
can openly commit to that deviation without altering the bidders’ incentives—we can de-
fine a new protocol (G′� S′

N) that is BIC and has voluntary participation, but yields strictly
more expected revenue than (G�SN). But (G�SN) is optimal, a contradiction.

Suppose (G�SN) is credible and strategy-proof. To prove that (G�SN) is an ascending
auction, we must show that, for any extensive form that is not an ascending auction, there
exists a profitable safe deviation for the auctioneer. Fix a protocol and a history h where
bidder i is called to play. Consider the types θi consistent with h, such that there exists
θ−i consistent with h, such that i wins at (θi� θ−i). A key feature of ascending auctions is
that, at each history, either these types pool on the same action, or i faces a posted price.
This ‘winner-pooling’ property is stated precisely in Proposition 11, and is closely related
to unconditional winner privacy as defined by Milgrom and Segal (2020). If these types
do not pool and i does not face a posted price, then the auctioneer can sometimes deviate
to charge i a higher price. In a second-price auction, the auctioneer simply exaggerates
the value of the second-highest bid. In general, however, the deviation must be more
subtle in order to be safe—instead of just choosing a different outcome, the auctioneer
may systematically misrepresent bidders’ actions midway through the extensive form. We
construct an algorithm that produces a profitable safe deviation for any such extensive
form. This establishes that auctions that satisfy the desiderata are winner-pooling, which
pins down the extensive form of the game. (The proof is in the Appendix.) Q.E.D.

By Theorem 2, restricting attention to revelation mechanisms forces a sharp choice
between incentives for the auctioneer and strategy-proofness for the bidders. Theorem 4
shows that allowing other extensive forms relaxes this trade-off.

The characterization in Theorem 4 assumes optimality. This is not just a feature of our
proof technique: the ascending auction is credible because it is optimal. If the reserve
price is below-optimal, then the auctioneer could profitably deviate by chandelier bidding
up to the optimal reserve. If the type distributions are asymmetric, then the auctioneer
may profitably deviate by enforcing bidder-specific reserve prices.29 We characterize the
asymmetric case in Theorem 6.

29Symmetric beliefs may seem like a knife-edge case. However, in some real-world auctions, strong bid-
ders can mask their identities and bid through proxies so as to avoid discriminatory pricing. When faced with
anonymous bidders, it is quite reasonable for auctioneers to hold symmetric beliefs.
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While first-price auctions and ascending auctions seem to be disparate formats, they
share a common feature. In both formats, if an bidder might win the auction without
being called to play again, then that bidder knows exactly how much he will pay for the
object. Thus, we can regard each bidder as placing bids in the course of the auction, with
the assurance that if he wins without further intervention, he will pay his bid. This ‘pay-
as-bid’ feature is shared by all credible auctions:

THEOREM 5—Extensive Pay-as-Bid: Assume (G�SN) is credible. Suppose that, with pos-
itive probability, i is called to play at information set Ii, takes some action a, and wins without
being called to play again. Conditional on that event, there is a price ti(Ii� a) that i will pay
with probability 1.

PROOF: Suppose that the event obtains, and there are two distinct prices ti < t ′i , such
that i pays each with positive conditional probability. The auctioneer has a profitable
safe deviation: when i is meant to pay ti, she can deviate to charge t ′i , so (G�SN) is not
credible. Q.E.D.

Theorem 5 provides a consideration in favor of multi-stage auctions. Suppose we wish
to have bidder i’s payment depend on bidder j’s private information. In order for the
auction to be credible, bidder imust place a bid that incorporates that information, which
requires i to learn that information during the auction. The converse of Theorem 5 is not
true. For a counterexample, consider a ‘pay-as-bid’ static auction that allocates the object
to the bidder who placed the second-highest bid.

Theorem 4 assumed that the distribution was symmetric; we now state a version that al-
lows asymmetry. To proceed, we define a technical condition on the distribution. Clauses 1
and 2 of the following definition require that the distribution is generic, which removes
distractions from tie-breaking. Clause 3 states that for any ηi(θ′

i) in the interior of the
convex hull of ηj(Θj), we can find θj with virtual value ‘just below’ ηi(θ′

i). This is implied
by continuum type spaces and continuous densities, but must be assumed separately for
finite type spaces.

DEFINITION 16: FN is interleaved if, ∀i 
= j:
1. ∀θi� θj : ηi(θi) 
= ηj(θj),
2. ∀θi : ηi(θi) 
= 0,
3. ∀θi� θ′

i: if ηi(θi) < ηi(θ′
i) and ηj(θ1

j ) < ηi(θ
′
i) < ηj(θ

Kj
j ), then ∃θj : ηi(θi) < ηj(θj) <

ηi(θ
′
i).

Under asymmetry, we can construct an optimal auction by modifying the ascending
auction to score bids according to their corresponding virtual values, and to sell only
when the high bidder’s virtual value is positive.

DEFINITION 17: (G�SN) is a virtual ascending auction if
1. The induced allocation rule is

ỹ(θN) ∈
{

arg max
i

ηi(θi) if maxηi(θi) > 0�

{0} otherwise	

2. The protocol satisfies Clauses 2 to 6 of Definition 14.
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THEOREM 6: Assume that FN is regular and that (G�SN) is optimal. If (G�SN) is a virtual
ascending auction, then (G�SN) is credible and strategy-proof.

Assume additionally that FN is interleaved and that (G�SN) is concise. If (G�SN) is credi-
ble and strategy-proof, then (G�SN) is a virtual ascending auction.

Virtual ascending auctions score bids asymmetrically: Bidder imay be asked to bid $100
in order to beat j’s bid of $50, and then to bid $101 to beat j’s bid of $51. Since the auction-
eer is communicating privately, she could safely deviate to equalize the prices that bidders
face (providedΘi and Θj overlap enough). Nonetheless, it is incentive-compatible for the
auctioneer to follow the rules. For each bidder, truthful bidding is a best response to
any safe deviation. Thus, if the auctioneer has a profitable safe deviation, then she could
openly promise to deviate without undermining bidders’ incentives. In that case, the orig-
inal protocol was not optimal, a contradiction. It may seem intuitive that the auctioneer
cannot credibly reject higher bids in favor of lower bids, but multi-round communication
permits her to do so.

The virtual ascending auction can be modified to deal with irregular distributions: we
simply alter Definition 17 to use ironed virtual values instead of virtual values, following
the construction in Elkind (2007). In effect, if we iron virtual values in the interval θki to
θk

′
i , the auctioneer promises ahead of time to jump i’s price directly from θki to θk

′+1
i . The

proof that this is credible is the same as in the regular case.
Finally, the virtual ascending auction can be used to construct a static credible optimal

auction. Consider a modified all-pay auction; each type θi makes a bid equal to the ex-
pected payment of θi in the virtual ascending auction, to be paid regardless of whether he
wins. The winner is the bidder with the highest virtual value. This twin-bid auction is BIC
and optimal, but neither strategy-proof nor ex post individually rational.30

3.3. A Note on the Dutch Auction

The Dutch (descending) auction is neither strategy-proof nor static, but it is credible.
In a Dutch auction, the price falls until one bidder claims the object. Thus, each bidder
only sees a sequence of descending prices (p1

i �p
2
i �p

3
i � 	 	 	); once he claims the object, he

wins at that price. Consequently, once one bidder makes a claim, it is not safe to deviate—
the auctioneer must sell to that bidder at his current price. Fixing SN , each bidder has a
claim-price pi(θi) at which he will agree. For a given θN , the rule-following auctioneer
strategy yields revenue maxi∈N pi(θi). No safe deviation results in bidder i paying more
than pi(θi), so the revenue from following the rules first-order stochastically dominates
the revenue from any safe deviation.

4. EXTENSIONS

In the Supplemental Material (Akbarpour and Li (2020)), we study a number of exten-
sions to the benchmark model.

First, we relax the assumption that bidders’ types are independent, so that the optimal
auction extracts full surplus (Cremer and McLean (1988)). Static Cremer–Maclean mech-
anisms are not credible, since two type profiles with the same winning bidder may have

30This format is closely related to the ‘all-pay’ procurement auctions studied in Dequiedt and Martimort
(2015).
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different profiles of transfers. Even using extensive-form mechanisms does not in general
allow credible full-surplus extraction.

Next, we assume symmetric and affiliated type spaces, and constrain the auctioneer to
use ex post incentive-compatible and ex post individually rational mechanisms. In this set-
ting, a modified ascending auction is optimal (Roughgarden and Talgam-Cohen (2013)),
and is also credible.

Finally, we assume independent private values, and relax the assumption that there is
a single object for sale. Instead, the feasible sets of winning bidders are a matroid. We
prove that there exists a credible strategy-proof optimal auction.

5. ALTERNATIVE DEFINITIONS

5.1. Group-Credible Mechanisms

Our main purpose in this paper is to study auctioneer incentives under private commu-
nication. Nonetheless, it is natural to consider what happens under other communication
structures. Here, we develop an extension that permits agents to share information in
groups, and show that increasing information-sharing makes it harder for the auctioneer
to deviate.

Essentially, we partition agents into groups in advance, and permit each group of agents
to share information after the auction, so that the auctioneer can only hide deviations by
misrepresenting the behavior of other groups. Let Λ be a partition onN , and let λ denote
a cell of Λ.

DEFINITION 18: Given some promised strategy profile (S0� SN), auctioneer strategy Ŝ0

isΛ-safe if, for all groups λ ∈Λ and all type profiles θN , there exists θ̂−λ such that for all i ∈
λ, oi(Ŝ0� SN�θN)= oi(S0� SN� (θλ� θ̂−λ)). SΛ

0 (S0� SN) denotes the set of Λ-safe strategies.

Definition 18 permits the auctioneer to deviate only if every group’s observations have
an innocent explanation; there must exist θ̂−λ such that all observations by agents in λ are
consistent with the auctioneer playing SG0 , the agents playing SN , and the other groups’
types being θ̂−λ. Notably, the order of quantifiers in Definition 18 requires a single expla-
nation to be offered to the entire group, which is more demanding than if we permit each
observation in the group to have a different explanation.

Coarser partitions imply more information-sharing between agents.

DEFINITION 19: (G�SN) is Λ-credible if

SG0 ∈ arg max
S0∈SΛ0 (SG0 �SN)

EθN

[
u0(S0� SN�θN)

]
	

PROPOSITION 5: If Λ is coarser than Λ′ and (G�SN) is Λ′-credible, then (G�SN) is Λ-
credible.

PROOF: We will prove that, if Λ is coarser than Λ′, then SΛ
0 (S

G
0 � SN) ⊆ SΛ′

0 (S
G
0 � SN).

From that, Proposition 5 follows immediately.
Take any Ŝ0 ∈ SΛ

0 (S
G
0 � SN), any group λ′ ∈Λ′, and any θN . Since Λ is coarser than Λ′, we

can find a group λ ∈Λ such that λ⊇ λ′. Let θ̂−λ be such that, for all i ∈ λ, oi(Ŝ0� SN�θN)=
oi(S

G
0 � SN� (θλ� θ̂−λ)). Observe that (θ̂−λ� θλ\λ′) is an innocent explanation for group λ′ at

type profile θN . Thus, Ŝ0 ∈ SΛ′
0 (S

G
0 � SN). Q.E.D.



CREDIBLE AUCTIONS: A TRILEMMA 447

One interpretation of Proposition 5 is that starting with a Λ-credible mechanism and
increasing information-sharing does not undermine auctioneer incentives. Equivalently,
starting with a mechanism that is not Λ-credible and reducing information-sharing does
not restore auctioneer incentives. When Λ is the finest partition, then Definition 19 is
equivalent to Definition 4.

The second-price auction is not Λ-credible, unless Λ is the coarsest partition. If even
a single bidder is unwilling to share information about his bids, then the auctioneer can
profitably deviate by misrepresenting that bidder’s behavior.

5.2. A ‘Prior-Free’ Definition

The definition of credibility depends on the joint distribution of agent types (Defini-
tion 4). It may be useful to have a definition that is ‘prior-free,’ for settings such as match-
ing or maxmin mechanism design.

DEFINITION 20: Given (G�SN), S0 ∈ S∗
0 (S

G
0 � SN) is always-profitable if, for all θN ,

u0(S0� SN�θN)≥ u0

(
SG0 � SN�θN

)
with strict inequality for some θN .
(G�SN) is prior-free credible if no safe deviation is always-profitable.

For comparison, (G�SN) is credible if no safe deviation is profitable in expectation.
Prior-free credibility allows one to dispense with strong assumptions about the auction-
eer’s beliefs.

With continuum type spaces, credibility neither implies nor is implied by prior-free
credibility. This is because some always-profitable deviations are strictly profitable only
on a zero-measure set.

Replacing credibility with prior-free credibility does not essentially change any of our
characterizations. Indeed, for the continuum type spaces, requiring prior-free credibility
sharpens the results, since it pins down the payment rule even on measure-zero sets:

THEOREM 7: Assume the continuum type-space model of Section 3.1.
Assume that (G�SN) is winner-paying and optimal. (G�SN) is prior-free credible and static

if and only if (G�SN) is a first-price auction.

With finite type spaces, prior-free credibility is a weaker requirement than credibility.
Nonetheless, prior-free credibility is enough to pin down the extensive form of the as-
cending auction:

THEOREM 8: Assume the finite type-space model of Section 3.2.
Assume that FN is regular and symmetric and that (G�SN) is optimal. If (G�SN) is an

ascending auction, then (G�SN) is prior-free credible and strategy-proof.
Assume additionally that (G�SN) is concise and orderly. If (G�SN) is prior-free credible

and strategy-proof, then (G�SN) is an ascending auction.

6. DISCUSSION

It is worth considering why real-world auctioneers might lack full commitment power.
Vickrey (1961) suggested that the seller could delegate the task of running the auction to a
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third party who has no stake in the outcome. However, auction houses such as Sotheby’s,
Christie’s, and eBay charge commissions that are piecewise-linear functions of the sale
price.31 Running an auction takes effort, and many dimensions of effort are not con-
tractible. Robust contracts reward the auctioneer linearly with revenue (Carroll (2015)),
so it is difficult to employ a third party who is both neutral and well-motivated.32

Many real-world auctions allow for private communication. There are several reasons
for this practice. First, bidders frequently desire privacy for reasons both intrinsic and
strategic. A mobile operator may be unwilling to publicize its value for a band of spec-
trum, because its rivals will take advantage of this information. In recent spectrum auc-
tions in Ireland, the Netherlands, Austria, and Switzerland, the auctioneer did not dis-
close the losing bids, even after the auction (Dworczak (2020)). Second, auctioneers want
to prevent collusion. Thus, in many procurement auctions, bidders are forbidden from
conferring—they must submit their bids only to the auctioneer. Third, in auctions that
take place over the Internet, bidders are often anonymous to each other, which prevents
them from sharing information.

When an auctioneer makes repeated sales, reputation could help enforce the full-
commitment outcome. However, the force of reputation depends on the discount rate and
the detection rate of deviations. Safe deviations are precisely those that a bidder could not
detect immediately. Online advertising auctions are repeated frequently, so it is plausible
that bidders could examine the statistics to detect foul play.33 However, some economi-
cally important auctions are infrequent or not repeated at all—for instance, auctions for
wireless spectrum or for the privatization of state-owned industries. Even established auc-
tion houses such as Christie’s and Sotheby’s have faced regulatory scrutiny, based in part
on concerns that certain deviations are difficult for individual bidders to detect.

Modern auctioneers could use cryptography to prove that the rules of the auction have
been followed, without disclosing additional information to bidders. Cryptographic veri-
fication relies on digital infrastructure: Participants typically need access to a public bul-
letin board, a sound method of creating and sharing public keys, and a time-lapse en-
cryption service that provides public keys and commits to release the corresponding de-
cryption keys only at pre-defined times (Parkes, Thorpe, and Li (2015)).34 It can be costly
to construct this infrastructure, and to persuade bidders that it works as the auctioneer
claims. By using credible mechanisms, auctioneers may increase the resources and atten-
tion available for substantive purposes.

Not all auctioneers have full commitment power, just as not all firms are Stackelberg
leaders. When the auctioneer lacks full commitment, it can be hazardous for bidders to
reveal all their information at once. In a first-price auction, a bidder ‘reveals’ his value

31As of January 2020, Christie’s and Sotheby’s use three-piece functions, with the auctioneer’s share starting
at 25%, then falling to 20%, and then 13.5%. For most categories, eBay charges 10% of the sale price, up to a
maximum of US$750.

32As Myerson (2009) observed, “The problems of motivating hidden actions can explain why efficient insti-
tutions give individuals property rights, as owners of property are better motivated to maintain it. But property
rights give people different vested interests, which can make it more difficult to motivate them to share their
private information with each other.”

33However, bidders in online advertising auctions have expressed concerns that supply-side platforms (SSPs)
are deviating from the rules of the second-price auction. The industry news website Digiday alleged, “Rather
than setting price floors as a flat fee upfront, some SSPs are setting high price floors after their bids come in as
a way to squeeze out more money from ad buyers who believe they are bidding into a second-price auction.”
https://digiday.com/marketing/ssps-use-deceptive-price-floors-squeeze-ad-buyers/, accessed 11/30/2017.

34Bidders may even need special training or software assistance to play their part in a cryptographic protocol.

https://digiday.com/marketing/ssps-use-deceptive-price-floors-squeeze-ad-buyers/
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in return for a guarantee that his report completely determines the price he might pay.35

In an ascending auction, a bidder reports whether his value is above b only when the
auctioneer (correctly) asserts that bids below b are not enough to win. Credibility is a
shared foundation for these seemingly disparate designs. How this principle extends to
other environments is an open question.

APPENDIX A: DEFINITION OF EXTENSIVE GAME FORMS WITH CONSEQUENCES IN X

An extensive game form with consequences in X is a tuple (H�≺�P�A�A� (Ii)i∈N�g),
where:

1. H is a set of histories, along with a binary relation ≺ on H that represents prece-
dence:

(a) ≺ is a partial order, and (H�≺) form an arborescence,36 with root denoted h∅.
(b) We use h� h′ if h= h′ or h≺ h′.
(c) Z ≡ {h ∈H : ¬∃h′ : h≺ h′}.
(d) succ(h) denotes the set of immediate successors of h.
2. P is a player function. P :H \Z→N .
3. A is a set of actions.
4. A :H \h∅ →A labels each non-initial history with the last action taken to reach it:
(a) For all h, A is one-to-one on succ(h).
(b) A(h) denotes the actions available at h:

A(h)≡
⋃

h′∈succ(h)

A
(
h′)	

5. Ii is a partition of {h : P(h)= i} such that:
(a) A(h)=A(h′) whenever h and h′ are in the same cell of the partition.
(b) For any Ii ∈ Ii, we denote: P(Ii)≡ P(h) for any h ∈ Ii.A(Ii)≡A(h) for any h ∈ Ii.
(c) Each action is available at only one information set: If a ∈A(Ii), a′ ∈A(I ′

j), Ii 
= I ′
j ,

then a 
= a′.
6. g is an outcome function. It associates each terminal history with an outcome. g :

Z→X .

APPENDIX B: PROOFS OMITTED FROM THE MAIN TEXT

B.1. Proposition 1

Suppose that (G�SN) does not satisfy Clause 1 of Definition 2. We can modify (G�SN)
so that it satisfies Clause 1, remains BIC, and results in the same outcomes for each type
profile.

In particular, suppose there exists h such that there is no θN such that h� z(SN(θN)).
Since the game tree has finite depth, we can locate an earliest possible h, that is, an h such
that no predecessor satisfies this property. Consider h′ that immediately precedes h, and
the information set I ′

i such that h ∈ I ′
i . There is some action a′ at I ′

i that is not played by any
type of i that reaches I ′

i . We can delete all histories that follow i playing a′ at I ′
i (and define

(≺′�A′�P ′� (I ′
i )i∈N�g

′) and S′
N so that they are as in G, but restricted to the new smaller

35This property is generalized in a natural way by the ‘first-price’ menu auction (Bernheim and Whinston
(1986)).

36That is, a directed rooted tree such that every edge points away from the root.
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set of historiesH ′). Since these histories were off the path-of-play, their deletion does not
affect the incentives of agents in N \ i. Since each type θi preferred Si(θi) to any interim
strategy that played a′ at I ′

i , his new interim strategy S′
i(θi) remains incentive-compatible.

Thus, the transformed (G′� S′
N) is BIC. We do this for all such histories simultaneously, to

produce a protocol that satisfies Clause 1.
Suppose that (G�SN) satisfies Clause 1 but not Clause 2. We now modify (G�SN) so

that it satisfies Clause 1 and Clause 2, remains BIC, and results in the same outcomes for
each type profile.

Suppose there exists h /∈Z such that | succ(h)| = 1. We simply rewrite the transformed
game (G′� S′

N) that deletes h (and all the other histories in that same information set) and
‘automates’ i’s singleton action at h. That is, for all h′ ∈ Ii for Ii such that h ∈ Ii, we remove
h′ from the set of histories, and define (≺′�A′�P ′� (I ′

i )i∈N�g
′) and S′

N so that they are as
in G, but restricted to H \ Ii. We do this for all singleton-action histories simultaneously,
to produce a protocol that satisfies Clause 1 and Clause 2.

We now take (G�SN) that satisfies Clauses 1 and 2, and transform it to satisfy Clause 3.
Informally, our argument proceeds as follows: Suppose there is some h at which Clause 3
is not satisfied, where we denote i= P(h). Upon reaching h, i’s continuation strategy no
longer affects the outcome. Consider a modified protocol (G′� S′

N): Play proceeds exactly
as in (G�SN), except after history h is reached. Whenever, under (G�SN), i would be
called to play at h′ where h � h′, we instead skip i’s turn and continue play as though i
chose the action that would be selected by some type θi.

Formally, suppose Clauses 1 and 2 hold for (G�SN), but there exists h /∈ Z such that,
for i= P(h), there does not exist θi, θ′

i, θ−i such that
1. h≺ z(SN(θi� θ−i)),
2. h≺ z(SN(θ′

i� θ−i)),
3. xG(SN(θi� θ−i)) 
= xG(SN(θ′

i� θ−i)).
Since Clause 1 holds, there exists (θi� θ−i) such that h≺ z(SN(θi� θ−i)). Upon reaching

h, we can henceforth ‘automate’ play as though i had type θi. First, we delete any history
h′ such that h � h′ and P(h′) = i; this ensures that i is no longer called to play after h.
Next, we delete any history h′ such that h � h′ and there does not exist θ′′

−i such that
h′ � z(SN(θi� θ′′

−i)); this has the effect of ‘automating’ play as though i has type θi. Given
the new smaller set of histories H ′, we again define (≺′�A′�P ′� (I ′

i )i∈N�g
′) and S′

N so that
they are as in G, but restricted to H ′. We perform this deletion simultaneously for all
histories that violate Clause 3.

By construction, for all θ′
i, if i is playing as though his type is θ′

i and we would have
reached some deleted history h under (G�SN), then the outcome is the same under
(G′� S′

N) as when i is playing as though his type is θi under (G�SN) (which by hypoth-
esis is the same as when i is playing as though his type is θ′

i under (G�SN)). Plainly, if
we would not have reached a deleted history under (G�SN), then the outcomes under
(G�SN) and (G′� S′

N) are identical. Thus, (G′� S′
N) is BIC, satisfies Clauses 1, 2, and 3, and

results in the same outcomes for each type profile.
This completes the proof of Proposition 1.

B.2. Proposition 2

To prove Proposition 2, we show that each of the three transformations we used in the
proof of Proposition 1 also preserve credibility. That is, for each (G′� S′

N) that is produced
from (G�SN) by one of the three transformations, if the auctioneer has a profitable safe
deviation from SG

′
0 , then she also has a profitable safe deviation from SG0 .
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Consider the first transformation (deleting all histories that are not reached at any type
profile). Suppose the auctioneer had a profitable safe deviation S′

0 from SG
′

0 . The auction-
eer could make that same deviation in the messaging game generated by (G�SN) (with
her play specified arbitrarily after actions that correspond to deleted histories). At every
type profile, the agents never reply with actions corresponding to the deleted histories, so
the auctioneer’s deviation is in S∗

0(S
G
0 � SN).

Consider the second transformation (deleting all histories with singleton action sets).
Suppose the auctioneer had a profitable safe deviation S′

0 from SG
′

0 . The auctioneer could
make that same deviation from SG0 , except that for any deleted information set, the auc-
tioneer delays sending the corresponding message until the last possible moment. That is,
consider S0 that is the same as S′

0, except that:
1. If agent i last received message Ii, and S′

0 specifies that the auctioneer sends I ′
i to

i, let (I1
i � I

2
i � 	 	 	 � I

K
i ) denote the sequence of deleted information sets that i would have

encountered between Ii and I ′
i under G (this sequence is possibly empty, and is unique

by perfect recall). S0 specifies that the auctioneer first sends (I1
i � I

2
i � 	 	 	 � I

K
i ) and then

(immediately thereafter) sends I ′
i .

2. If agent i last received message Ii, and S′
0 specifies that the auctioneer chooses out-

come x, let (I1
i � I

2
i � 	 	 	 � I

K
i ) denote the (possibly empty) sequence of deleted information

sets that i would have encountered (underG) between Ii and some terminal history z � Ii
such that ∃ωi ∈Ωi : {g(z)} ∪ {x} ∈ωi. At least one such history exists because S′

0 is a safe
deviation. S0 specifies that the auctioneer sends (I1

i � I
2
i � 	 	 	 � I

K
i ) before choosing x.

S0 is a profitable safe deviation from SG0 .
Consider the third transformation (deleting histories where i is called to play, following

any history h such that, for any two types of i that reach h, both types of i result in the same
outcome). Suppose S′

0 was a profitable safe deviation from SG
′

0 . The auctioneer can make
that same deviation from SG0 , except that she delays any ‘outcome-irrelevant’ queries to i
until just before she selects the outcome.

Formally, take any θN , i, and θ̂−i such that oi(S′
0� SN�θN) = oi(S

G′
0 � SN� (θi� θ̂−i)). If

oi(S
G′
0 � SN� (θi� θ̂−i) 
= oi(S

G
0 � SN� (θi� θ̂−i)), then this can only be because oi(SG0 � SN� (θi�

θ̂−i)) contains additional communication at the end of the sequence that corresponds to
deleted histories at which i is called to play. Let h be the earliest such deleted history that
would be encountered under (G�SN) at type profile (θi� θ̂−i). We can ‘fill in’ the missing
communication for agent i, as follows. Initialize ĥ := h:

1. If ĥ ∈Z, then terminate.
2. Else if P(ĥ) 
= i, then for IP(ĥ) such that ĥ ∈ IP(ĥ):
(a) ĥ := h′ | h′ ∈ succ(ĥ) and SP(ĥ)(IP(ĥ)� θ̂P(ĥ))=A(h′).
(b) Go to step 1.
3. Else:
(a) Send (to agent i) message Ii such that ĥ ∈ Ii.
(b) Upon receiving reply a, choose ĥ := h′ |A(h′)= a and h′ ∈ succ(ĥ).
(c) Go to step 1.
Since (under SN) i’s play in the deleted histories makes no difference to the outcome,

delaying communication with i until the outcome is about to be selected results in a safe
deviation. Thus, whenever S′

0 would select an outcome, we can run the above algorithm
for every agent whose resulting observation would not have an innocent explanation, and
then select the same outcome, thus producing a profitable safe deviation from SG0 . This
completes the proof of Proposition 2.
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B.3. Theorem 3

Suppose (G�SN) is a twin-bid auction. (G�SN) is static by definition. Given any profile
of bids (bWi � b

L
i )i∈N , every safe deviation charges bWi if bidder i wins and bLi if he loses, so

the auctioneer prefers SG0 to any safe deviation. Thus, (G�SN) is credible.
Suppose (G�SN) is credible and static. By Theorem 1, there exists a function b̃Wi :Θi →

R such that, almost everywhere in ΘN , if type θi wins, then i pays b̃Wi (θi).
By Lemma 1, let (θk−i)

∞
k=1 be a countable subset such that, for all θ−i, infk t̃i(·� θk−i) ≤

t̃i(·� θ−i) almost everywhere in Θi.
Define

t̃Li (θi� θ−i)=
{
t̃i(θi� θ−i) if ỹ(θi� θ−i) 
= i�
inf
k
t̃i
(
θi� θ

k
−i

) − 1 otherwise	

Intuitively, the function constructed above ‘penalizes’ the auctioneer’s revenue from i
unless the type profile is consistent with i losing.

Since ỹ(·� θ−i), t̃i(·� θ−i), and infk t̃i(·� θk−i) are measurable, it follows that t̃Li (·� θ−i) is

measurable. Again applying Lemma 1, let (θ
k

−i)
∞
k=1 be a countable subset of opponent

type profiles such that, for all θ−i, supk t̃
L
i (·� θ

k

−i)≥ t̃Li (·� θ−i) almost everywhere in Θi.
We now assert that, almost everywhere in ΘN , if type θi does not win, then that type is

charged b̃Li (θi)= supk t̃
L
i (·� θ

k

−i). Suppose the set

{
θN

∣∣ ỹ(θN) 
= i and t̃i(θi� θ−i) 
= sup
k

t̃Li
(
θi� θ

k

−i
)}

has positive measure. Observe that for (θi� θ−i) in the above set, t̃i(θi� θ−i) = t̃Li (θi� θ−i).
Consequently, the set

Q=
{
θN

∣∣ ỹ(θN) 
= i and inf
k
t̃i
(
θi� θ

k
−i

) ≤ t̃i(θi� θ−i) < sup
k

t̃Li
(
θi� θ

k

−i
)}

has positive measure. Q is measurable with respect to the equilibrium action profiles.
We now construct a profitable safe deviation. Fix some finite K. If the bidders’ cho-

sen actions are consistent with any type profile (θi� θ−i) ∈ Q, charge max{t̃i(θi� θ−i)�

maxk≤K t̃Li (θi� θ
k

−i)}, without changing the allocation or the other bidders’ transfers. Oth-
erwise, play according to SG0 . The resulting transfer t̃Ki : ΘN → R is measurable. Notice
that our construction of Q and t̃Li (·) means that we charge more than t̃i(θi� θ−i) only if
maxk≤K t̃Li (θi� θ

k

−i) is consistent with i losing.
For K large enough, this deviation is profitable. In particular, for all (θi� θ−i) ∈ Q,

t̃Ki (θi� θ−i) is non-decreasing in K and converges as K → ∞ to supk t̃
L
i (θi� θ

k

−i). Thus, by
the monotone convergence theorem,

lim
K→∞

EθN

[
t̃Ki (θN) | θN ∈Q] = EθN

[
sup
k

t̃Li
(
θi� θ

k
−i

) ∣∣ θN ∈Q
]

> EθN

[
t̃i(θN) | θN ∈Q]

�

which establishes that the deviation is profitable.
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We have shown that there exist b̃Wi : Θi → R and b̃Li : Θi → R such that, almost
everywhere in θN , i pays b̃Wi (θi) if ỹ(θi� θ−i) = i and b̃Li (θi) if ỹ(θi� θ−i) 
= i. If, for
all θ−i, ỹ(θi� θ−i) 
= i, then we set b̃Wi (θi) to be equal to b̃Li (θi) − 1. We then define
Bi = {(b̃Wi (θi)� b̃Li (θi)) | θi ∈ Θi}, which implies that Clause 1 of Definition 10 holds al-
most everywhere. Let Υ denote the subset of ΘN on which Clause 1 holds.

Suppose then that Clause 2 does not hold on a positive measure set. Then, for some
bidder i, the set {

θN | ỹ(θN)= 0 and b̃Wi (θi)− b̃Li (θi) > 0
} ∩Υ

has positive measure. The auctioneer can raise expected revenue by deviating at all type
profiles in this set, allocating the object to i and charging b̃Wi (θi). Thus Clause 2 holds
almost everywhere.

Suppose then that Clause 3 does not hold on a positive measure set. (G�SN) is con-
testable, so for some bidder i, the set

Q′ =
{
θN

∣∣ ỹ(θN)= i and b̃Wi (θi)− b̃Li (θi) <max
{

0�max
j 
=i

b̃Wj (θj)− b̃Lj (θj)
}

and ∃θ′
−i : ỹ

(
θi� θ

′
−i

) 
= i
}

∩Υ

has positive measure. The auctioneer can raise expected revenue by deviating at all type
profiles in this set. Take any type profile in θN ∈Q′:

1. If b̃Wi (θi)− b̃Li (θi) < 0, then keep the object and changes i’s payment to bLi (θi).
2. Else, if b̃Wi (θi)− b̃Li (θi) <maxj 
=i b̃Wj (θj)− b̃Lj (θj), then award the object to the bidder

who maximizes the right-hand side, changes i’s payment to b̃Li (θi) and the other bidder’s
payment to b̃Wj (θj).
Hence, Clause 3 holds almost everywhere, which completes the proof.

B.4. Proposition 3

Suppose (G�SN) is a twin-bid auction and strategy-proof. Strategy-proofness requires

t̃i
(
θ′
i� θ−i

) − t̃i(θi� θ−i)≤ θ′
i� (2)

θ′′
i ≤ t̃i

(
θ′′′
i � θ

′
−i

) − t̃i
(
θ′′
i � θ

′
−i

)
	 (3)

ỹ(·) is non-decreasing in θi, so ỹ(θi� θ′
−i) 
= i and ỹ(θ′′′

i � θ−i)= i. It follows that

t̃i(θi� θ−i)= t̃i
(
θi� θ

′
−i

) = t̃i
(
θ′′
i � θ

′
−i

)
�

t̃i
(
θ′′′
i � θ

′
−i

) = t̃i
(
θ′′′
i � θ−i

) = t̃i
(
θ′
i� θ−i

)
�

where the first equality in each line follows from the definition of a twin-bid auction and
the second equality follows from strategy-proofness. Substituting into Equation (3) yields

θ′′
i ≤ t̃i

(
θ′
i� θ−i

) − t̃i(θi� θ−i)�

which contradicts Equation (2).
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B.5. Theorem 4

B.5.1. Ascending → Credible, Strategy-Roof

Here we show that if (G�SN) is optimal and an ascending auction, then it is strategy-
proof and credible. Essentially, we will exploit the fact that ascending auctions are obvi-
ously strategy-proof (Li (2017)); that is, starting from any information set at which bidder
i deviates from Si, every possible outcome from the deviation is no better than every pos-
sible outcome from Si. This implies that (G�SN) is strategy-proof, and also implies that Si
is a best response to any safe deviation by the auctioneer.

Since we are holding fixed (G�SN), we will drop the superscripts on ỹG�SN and t̃G�SNi to
reduce clutter.

LEMMA 2: If (G�SN) is an ascending auction, then (G�SN) is strategy-proof.

We will prove that, given any ascending auction (G�SN), for all interim strategies σi
and all S′

−i, θi, and θ−i,

uGi
(
Si(θi)� S

′
−i(θ−i)� θi

) ≥ uGi
(
σi� S

′
−i(θ−i)� θi

)
� (4)

which implies that (G�SN) is strategy-proof.
Consider the paths of play induced by (Si(θi)� S′

−i(θ−i)) and (σi� S′
−i(θ−i)). If these are

identical, then Equation (4) holds trivially. Otherwise, let h be any history at which these
paths diverge, that is, the history at which Si(θi) and σi choose different actions for the
first time. There are three cases to consider.

Case 1: Suppose that at h, σi plays a quitting action. After the quitting action, i
does not win and pays 0, so uGi (σi� S

′
−i(θ−i)� θi) = 0. Since (G�SN) is pruned, we can

find θ′
−i such that (Si(θi)� S′

i(θ−i)) and (Si(θi)� Si(θ′
−i)) result in the same path-of-play.

uGi (Si(θi)� S
′
−i(θ−i)� θi) = uGi (Si(θi)� S−i(θ′

−i)� θi) ≥ 0, where the inequality follows since
(G�SN) is orderly and has threshold pricing.

Case 2: Suppose that at h, σi plays an accepting action, and Si(θi) quits. Then
uGi (Si(θi)� S

′
−i(θ−i)� θi) = 0. Since (G�SN) is pruned, we can find (θ′

i� θ
′
−i) such that

(σi� S
′
−i(θ−i)) and (Si(θ′

i)� S−i(θ′
−i)) result in the same path-of-play, so

uGi
(
σi� S

′
−i(θ−i)� θi

) = uGi
(
Si

(
θ′
i

)
� S−i

(
θ′

−i
)
� θi

)
	 (5)

(G�SN) is orderly and Si(θi) specifies that i quits at h, so ỹ(θi� θ′
−i) 
= i. (G�SN) has thresh-

old pricing, so if ỹ(θ′
i� θ

′
−i) 
= i, then uGi (Si(θ

′
i)� S−i(θ′

−i)� θi) = 0. If ỹ(θ′
i� θ

′
−i)= i, then by

threshold pricing, t̃i(θ′
i� θ

′
−i) > θi, so uGi (Si(θ

′
i)� S−i(θ′

−i)� θi) < 0.
Case 3: Suppose that at h, σi plays an accepting action, and Si(θi) plays a distinct ac-

cepting action. Since there is more than one accepting action, we must be in the case
governed by Clause 5(b) of Definition 14. Thus, both actions result in i winning at the
current offered price p, and yield the same utility.

This completes the proof of Lemma 2.

LEMMA 3: Let (G�SN) be an ascending auction. For every bidder i, if S′
0 is a safe deviation,

then Si is a best response to (S′
0� S−i).

Let S′
0 be an arbitrary safe deviation. Take any type θi. Suppose that Si(θi) and deviating

strategy S′
i(θi) choose different actions for the first time after receiving message Ii. There
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are three cases to consider; we will show that, in each case, S′
i(θi) is not a profitable

deviation.
Case 1: Upon receiving message Ii, S′

i(θi) quits. S′
0 is safe, so S′

i(θi) results in zero utility
after receiving Ii. S′

0 is safe and (G�SN) is orderly and has threshold pricing, so Si(θi)
results in at least zero utility.

Case 2: Upon receiving message Ii, Si(θi) quits and S′
i(θi) accepts. This results in some

observation oi(S′
0� (S

′
i� SN\i)� θN), which pins down whether i wins and how much i pays.

(G�SN) is pruned, so we can find θ′
i such that oi(S′

0� (S
′
i� SN\i)� θN)= oi(S

′
0� SN� (θ

′
i� θ−i)).

S′
0 is safe, so we can find θ′

−i such that oi(S′
0� SN� (θ

′
i� θ−i)) = oi(S

G
0 � SN� (θ

′
i� θ

′
−i)). If

ỹ(θ′
i� θ

′
−i)) 
= i, then since (G�SN) has threshold pricing, i does not profit by deviating.

Suppose ỹ(θ′
i� θ

′
−i)= i. (G�SN) is orderly and Si specifies that θi quits at Ii, so since θ′

−i is
consistent with reaching Ii, ỹ(θi� θ′

−i) 
= i. (G�SN) has threshold pricing, so t̃i(θ′
i� θ

′
−i) > θi.

Thus, i does not profit by deviating in this case.
Case 3: Upon receiving message Ii, Si(θi) accepts a price, and S′

i(θi) accepts a price,
with a distinct action. Then Ii satisfies Clause 5(b) of Definition 14. S′

0 is safe, so both
actions result in i winning at the offered price p.

This completes the proof of Lemma 3.
Suppose now that (G�SN) is an ascending auction but not credible, so the auctioneer

has a profitable safe deviation S′
0. Consider a corresponding G′ in which the auctioneer

‘commits openly’ to that deviation, that is to say, G′ such that S′
0 runs G′. By Lemma 3,

for all i, Si is a best response to (S′
0� S−i), so (G′� SN) is also BIC. (G′� SN) has voluntary

participation. (We abuse notation slightly to use SN as a strategy profile for G and G′.
Every information set inG′ has a corresponding information set inG, so it is clear what is
meant.) By hypothesis, S′

0 is a profitable deviation, so π(G′� SN) > π(G�SN), so (G�SN) is
not optimal. Thus, if (G�SN) is optimal and an ascending auction, then (G�SN) is credible.
This completes the proof of the first claim in Theorem 4.

B.5.2. Credible, Strategy-Proof → Ascending

We start by deriving several properties of credible strategy-proof optimal (G�SN), with-
out assuming that FN is regular or symmetric.

PROPOSITION 6: If (G�SN) is optimal and strategy-proof, then (G�SN) is winner-paying.

PROOF: For all (θi� θ−i), if ỹ(θi� θ−i) 
= i, then t̃i(θi� θ−i)≤ 0. Suppose not. (G�SN) sat-
isfies voluntary participation. When i’s opponents imitate θ−i,37 type θi can profitably de-
viate to non-participation if t̃i(θi� θ−i) > 0, contradicting strategy-proofness.
θ1
i ≤ 0, so ηi(θ1

i ) < 0. (G�SN) is optimal, so θ1
i never wins (by Proposition 4). θ1

i ’s par-
ticipation constraint binds, so for all θ−i, t̃i(θ1

i � θ−i)= 0.
Take any (θi� θ−i). If ỹ(θi� θ−i) 
= i and t̃i(θi� θ−i) > 0, then when i’s opponents imitate

θ−i, θ1
i can profitably imitate θi, contradicting strategy-proofness. Thus, (G�SN) is winner-

paying. Q.E.D.

PROPOSITION 7: If (G�SN) is strategy-proof, then the allocation rule is monotone. That is,
if θi < θ′

i and ỹ(θi� θ−i)= i, then ỹ(θ′
i� θ−i)= i.

PROOF: Suppose not, so ỹ(θ′
i� θ−i) 
= i. By strategy-proofness, −t̃i(θ′

i� θ−i) ≥ θ′
i −

t̃i(θi� θ−i), which implies −t̃i(θ′
i� θ−i) > θi − t̃i(θi� θ−i), so θi can profitably imitate θ′

i, a
contradiction. Q.E.D.

37Formally, define S′
−i such that for all j 
= i, Ij , and θ′

j , S
′
j(Ij� θ

′
j)= Sj(Ij� θj)
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DEFINITION 21: (G�SN) has threshold pricing if

t̃i(θN)=
{

min
{
θ′
i ∈Θi | ỹ

(
θ′
i� θ−i

) = i} if ỹ(θN)= i�
0 otherwise	

(6)

PROPOSITION 8: If (G�SN) is optimal and strategy-proof, then (G�SN) has threshold pric-
ing.

PROOF: Proposition 6 pins down the payments whenever ỹ(θN) 
= i.
We prove the rest by induction. (G�SN) is optimal, so θ1

i ’s participation constraint binds.
Thus, Equation (6) holds when for θ1

i . Suppose that Equation (6) holds for all θk′
i such

that k′ ≤ k. We prove it holds for θk+1
i .

Take any θ−i. There are three cases to consider.
If ỹ(θki � θ−i)= i, then strategy-proofness implies that ỹ(θk+1

i � θ−i)= i and t̃i(θk+1
i � θ−i)=

t̃i(θ
k
i � θ−i)= minθ′

i∈Θi θ
′
i | ỹ(θ′

i� θ−i)= i.
If ỹ(θk+1

i � θ−i) 
= i, then t̃i(θi� θ−i)= 0.
Notice that, in the previous two cases, θk+1

i is exactly indifferent between Si and deviat-
ing to imitate type θki . Finally, suppose ỹ(θki � θ−i) 
= i and ỹ(θk+1

i � θ−i)= i. t̃i(θk+1
i � θ−i) ≤

θk+1
i , since (G�SN) is strategy-proof. If t̃i(θk+1

i � θ−i) < θk+1
i , then (G�SN) is not opti-

mal, since the incentive constraints do not bind locally downward (Proposition 4). Thus,
t̃i(θ

k+1
i � θ−i)= θk+1

i , and the inductive step is proved. Q.E.D.

Given (G�SN), let Θh
i denote the types of i that are consistent with i’s actions up to

history h, that is,

Θh
i = {

θi | ∀h′�h′′ � h : [h′ ∈ Ii�h′′ ∈ succ
(
h′)] → [

Si(Ii� θi)=A
(
h′′)]}	 (7)

For N̂ ⊆N , let Θh

N̂
= ×i∈N̂Θ

h
i .

PROPOSITION 9: If P(h) 
= i and h′ ∈ succ(h), then Θh
i =Θh′

i . If h ≺ h′, then Θh
i ⊇Θh′

i .
If h ∈ Ii and h′ ∈ Ii, then Θh

i =Θh′
i .

The first two claims are clear by inspection. The second follows because the definition
of Θh

i invokes only i’s past information sets and actions, and G has perfect recall. Thus,
we define ΘIi

i =Θh
i | h ∈ Ii. Define also

θhi = min
{
θi ∈Θh

i

}
� (8)

θ
h

i = max
{
θi ∈Θh

i

}
	 (9)

The next proposition states that strategy-proofness constrains what bidders can learn
about each others’ play midway through the protocol. In essence, it says that if, at some
history h where i is called to play, i can affect whether or not θj wins, then i cannot (at
this information set) rule out the possibility that j’s type is instead some θ′

j > θj .

PROPOSITION 10: Assume (G�SN) is optimal and strategy-proof. Take any information set
Ii and history h ∈ Ii. Take any θi� θ′

i ∈Θh
i , θj ∈Θh

j , and θN\{i�j} ∈Θh
N\{i�j}.

If ỹ(θi� θj� θN\{i�j}) = j and ỹ(θ′
i� θj� θN\{i�j}) 
= j, then ∀θ′

j > θj : ∃h′ ∈ Ii : θ′
j ∈ Θh′

j and
θN\{i�j} ∈Θh′

N\{i�j}.
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PROOF: Suppose not. We construct a strategy profile S′
−j such that θ′

j has a profitable
deviation. For l ∈ N \ {i� j}, let l imitate θl; that is, ∀Il : ∀θ′

l : S′
l(Il� θ

′
l) = Sl(Il� θl). Let i

imitate θ′
i unless he encounters Ii, and let him imitate type θi if he has encountered Ii.

Formally:

∀I ′
i : ∀θ′′

i : S′
i

(
I ′
i� θ

′′
i

) =
{
Si

(
I ′
i� θi

)
if ∃h′′ ∈ I ′

i : ∃h′′′ ∈ Ii : h′′′ � h′′�
Si

(
I ′
i� θ

′
i

)
otherwise	

(10)

By Proposition 8, (G�SN) has threshold pricing. If type θ′
j deviates to imitate θj , then

(when facing S′
j), the path-of-play passes through Ii, so j wins at price minθ′′

j ∈Θj θ
′′
j |

ỹ(θi� θ
′′
j � θN\{i�j})= j, for a positive surplus since θ′

j > θj . On the other hand, if type θ′
j plays

according to Sj , then the path-of-play does not pass through Ii, so j either wins at a strictly
higher price minθ′′

j ∈Θj θ
′′
j | ỹ(θ′

i� θ
′′
j � θN\{i�j})= j, or does not win and has zero surplus. Thus,

j has a profitable deviation, and (G�SN) is not strategy-proof, a contradiction. Q.E.D.

Let W h
i denote the subset of i’s types that might reach h and then win. Similarly, let Lhi

denote the subset of i’s types that might reach h and then lose:

W h
i = {

θi ∈Θh
i | ∃θ−i ∈Θh

−i : ỹ(θi� θ−i)= i}� (11)

Lhi = {
θi ∈Θh

i | ∃θ−i ∈Θh
−i : ỹ(θi� θ−i) 
= i}	 (12)

DEFINITION 22: (G�SN) is winner-pooling if, for all Ii, h ∈ Ii:
1. Either: ∀θi� θ′

i ∈W h
i : Si(Ii� θi)= Si(Ii� θ′

i),
2. Or: W h

i ∩Lhi = ∅.

PROPOSITION 11: Assume FN is symmetric and regular, and (G�SN) is optimal, orderly,
credible, and strategy-proof. (G�SN) is winner-pooling.

Before starting the proof of Proposition 11, we highlight that this is the reason that
we have assumed regularity and orderliness in the statement of Theorem 4. Together,
regularity and orderliness imply that, if there are two distinct types θi < θ′

i in W h
i that do

not pool on the same action, then there exists θ−i such that θi loses when facing θ−i, but
θ′
i wins. This enables us to construct profitable safe deviations for the auctioneer.38

PROOF: Under the assumptions of Proposition 11, we will show that if (G�SN) is not
winner-pooling, then the auctioneer has a profitable safe deviation, so (G�SN) is not cred-
ible.

Let h∗ be some history at which the winner-pooling property does not hold; we pick h∗

such that, for all h ≺ h∗, h is not a counterexample to winner-pooling. Since (G�SN) is
orderly and the winner-pooling property held at all predecessors to h∗, it follows that for
all i, either W h∗

i = ∅ or W h∗
i = {θi | θi� �

max
j 
=i

θh
∗
j and θi�ρ}.

Let i∗ denote P(h∗), and I∗
i∗ the corresponding information set. Since the winner-

pooling property does not hold at h∗, W h∗
i∗ ∩ Lh∗

i∗ 
= ∅ and there exist two distinct actions
taken by types in W h∗

i∗ at I∗
i∗ .

38If type spaces were continuous, regularity would by itself imply the desired property for every optimal
allocation rule. However, for discrete types, we need to pick a particular allocation rule—and the orderly one
will do.
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Since (G�SN) is orderly,
�

minW h∗
i∗ ∈W h∗

i∗ ∩Lh∗
i∗ . Define

θ∗
i∗ =

�
minθi∗ ∈W h∗

i∗ | Si∗
(
I∗
i∗� θi∗

) 
= Si∗
(
I∗
i∗�

�
minW h∗

i∗
)
	 (13)

We are going to squeeze extra revenue out of bidder i∗ when his type is θ∗
i∗ : by his actions

at h∗, he hints that his type is more than high enough to win. Let h∗∗ be the immediate
successor of h∗ that would be reached by θ∗

i∗ , that is,

h∗∗ = h | h ∈ succ
(
h∗) and θ∗

i∗ ∈Θh
i∗ 	 (14)

Since W h∗
i∗ ∩Lh∗

i∗ 
= ∅ and (G�SN) is orderly, {j ∈N |W h∗
j 
= ∅} includes i∗ and at least one

other bidder. For each i ∈N , we assign a nemesis:

ψ(i)= �
max

{
j ∈N \ {i} |W h∗

j 
= ∅}
	 (15)

By choosing i’s nemesis in this way, we ensure a useful property; given any θj , we can find
θψ(i) such that i has the same allocation and transfer when the highest opponent type is θj
and when it is θψ(i). Similarly, given any θi, we can find θψ(i) that forces i to pay exactly θi
if he wins (by threshold pricing). Formally, we say θψ(i) is i-equivalent to θj if

{θi | θi�θj} = {θi | θi�θψ(i)}� (16)

where � is the reflexive order implied by the strict order �.
Given SG0 , we now exhibit a (partial) behavioral strategy that deviates from SG0 upon en-

countering h∗∗ and is strictly profitable. We describe this algorithmically. The description
is lengthy, because it must produce a safe deviation for any extensive game form in a large
class. We start by defining several subroutines for the algorithm.

The algorithm calls the following subroutine: Given some variable ĥ that takes values
in the set of histories, we can start at the initial value of ĥ and communicate with i as
though the opponent types were θ−i, updating ĥ as we go along. When we do this, we say
that we simulate θ−i against i starting from ĥ, until certain specified conditions are met.
Formally:

1. If [conditions], STOP.
2. Else if P(ĥ) 
= i, set ĥ := h ∈ succ(ĥ) | θ−i ∈Θh

−i.
3. Else if P(ĥ)= i:
(a) Send message Ii | ĥ ∈ Ii to i.
(b) Upon receiving r ∈A(Ii), set ĥ := h | (h ∈ succ(ĥ) and A(h)= r).
(c) Go to step 1.
The algorithm also calls the following subroutine: Given some history h and some θ−i,

where i was called to play at h’s immediate predecessor, we may find the cousin of h
consistent with θ−i. This is the history that immediately follows from the same information
set, is consistent with the action i just took, but is also consistent with the opponent types
being θ−i. Formally, let cousin(h�θ−i) be equal to h′ such that ∃Ii : ∃h′′�h′′′:

1. h′′�h′′′ ∈ Ii.
2. h ∈ succ(h′′).
3. h′ ∈ succ(h′′′).
4. A(h)=A(h′).
5. θ−i ∈Θh′

−i.
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Clearly, it is not always possible to find such a history. But we will be careful to prove that
cousin(h�θ−i) is well-defined when we call it.

Our algorithm keeps track of several variables:
1. A best offer, initialized β := θ∗

i .
2. A set of ‘active’ bidders, initialized N̂ :=N .
3. The bidder we are currently communicating with, î := i∗.
4. A simulated history, for each bidder: ĥi∗ := h∗∗ and for i ∈N \ {i∗}, ĥi := h∗.
The algorithm proceeds in three stages. At h∗∗, i∗’s type could be at least θ∗

i∗ , but it
could also be too low to exploit (if some types not in W h∗

i∗ took the same action as θ∗
i∗ at

h∗). In Stage 1, we check whether i∗’s type is at least θ∗
i∗ . If it is, we set β to be the least type

consistent with i∗’s responses, and go to Stage 2. Otherwise, we lower β appropriately, and
proceed to Stage 2. In Stage 2, we cycle through the bidders, updating β to be equal to
the highest type we have confirmed so far, until we have found the bidder with the highest
type (breaking ties with �). Finally, in Stage 3, we sell to the bidder with the highest type
(if it is above the reserve), at a price greater than or equal to the price in the original
protocol. We use := for the assignment operator, and :∈ to assign an arbitrary element in
the set on the right-hand side.

Stage 1
1. Pick θψ(i∗) that is i∗-equivalent to β.

2. Simulate (θψ(i∗)� θ
h∗
N\{i∗�ψ(i∗)}) against i∗ starting from ĥi∗ , until either θĥi∗i∗ �β or

ĥi∗ ∈Z.
3. If θĥi∗i∗ �β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗}, β := �
min
i 
=i∗�θi

θi | θi ∈W h∗
i and go to Stage 2.

Stage 2
1. If N̂ = 1, go to Stage 3.
2. Set î :∈ {i ∈ N̂ | θĥii �β}.
3. Pick θψ(î) that is î-equivalent to β.

4. If (θψ(î)� θ
h∗
N\{î�ψ(î)}) /∈Θ

ĥ
î

−î, set ĥî := cousin(ĥî� (θψ(î)� θ
h∗
N\{î�ψ(î)})).

5. Simulate (θψ(î)� θ
h∗
N\{î�ψ(î)}) against î starting from ĥî, until either θ

ĥ
î

î
�β or ĥî ∈Z.

6. If θ
ĥ
î

î
�β, set β := θĥî

î
and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {î} and go to Step 1 of Stage 2.
Stage 3
1. Set î := i | i ∈ N̂ .
2. Pick θψ(î) that is î-equivalent to β.

3. If (θψ(î)� θ
h∗
N\{î�ψ(î)}) /∈Θ

ĥ
î

−î, set ĥî := cousin(ĥî� (θψ(î)� θ
h∗
N\{î�ψ(î)})).

4. Simulate (θψ(î)� θ
h∗
N\{î�ψ(î)}) against î starting from ĥî, until ĥî ∈Z.

5. Choose the outcome that corresponds to that terminal history, x= g(ĥî), and termi-
nate.

Since (G�SN) is orderly, the deviation does not change the allocation. In particular,
some bidder î is removed from N̂ only when we know that θψ(î)�θî; since θψ(î) is î-
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equivalent to β, the latter implies that β�θî.39 Moreover, since (G�SN) is orderly and
has threshold pricing (by Proposition 8), the resulting algorithm results in transfers that
are always at least as high as the transfers under (G�SN). The transfers are strictly higher

for at least one type profile, namely (θ∗
i∗� θ

h∗
−i∗). Under (G�SN), t̃i∗(θ∗

i∗� θ
h∗
−i∗) = �

minW h∗
i∗ ,

whereas under the deviation, i∗’s transfer is θ∗
i∗ . Thus, the deviation is profitable.

It remains to prove that the deviation is safe. When we first start communicating with
any bidder î under the deviation, we are simulating opponent types that are consistent
with h∗, because the winner-pooling property holds at all histories prior to h∗, and we
have chosen the simulated nemesis type θψ(î) to be in W h∗

ψ(î)
. (Thus, Step 4 of Stage 2

and Step 3 of Stage 3 are not triggered if this is the first time the deviating algorithm is
communicating with that bidder.)

Whenever the deviation communicates with some bidder î for a second time, we have
to prove that we can find cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) in the way the
algorithm requires. Let θold

ψ(î)
and βold denote the simulated nemesis type and the best offer

from the last time the algorithm communicated with î. Let θnew
ψ(î)

and βnew denote the cur-
rent simulated nemesis type and best offer. Observe that we always revise the nemesis type
upwards: βold �βnew, so θold

ψ(î)
≤ θnew

ψ(î)
. If θold

ψ(î)
= θnew

ψ(î)
, we are done, since (θold

ψ(î)
� θh

∗
N\{î�ψ(î)}) ∈

Θ
ĥ
î

−î. Otherwise, consider h′, the immediate predecessor of ĥî. At h′, î is called to play,

and it is not yet clear whether ψ(î) wins. In particular, θold
ψ(î)

would win against θh
′
î

, but

would lose against θ
ĥ
î

î
, that is, ỹ(θh

′
î
� θold

ψ(î)
� θh

∗
N\{î�ψ(î)}) = ψ(î) 
= ỹ(θ

ĥ
î

î
� θold

ψ(î)
� θh

∗
N\{î�ψ(î)}). By

Proposition 10, there exists another history h′′ in the same information set as h′, such that
(θnew

ψ(î)
� θh

∗
N\{î�ψ(î)}) ∈Θh′′

−î . Thus, we can find cousins in the way that the algorithm requires.

Observe that, whenever î is removed from N̂ , he has seen a communication sequence
that is consistent with his reaching a terminal history with an opponent type profile such
that î does not win and has a zero transfer, and the Stage 3 outcome respects that. At
Stage 3, the final bidder î’s observation is consistent with (θψ(î)� θ

h∗
N\{î�ψ(î)}). Thus, the algo-

rithm produces a profitable safe deviation. Q.E.D.

PROPOSITION 12: Assume FN is symmetric and regular, and (G�SN) is optimal, orderly,
concise, credible, and strategy-proof. For any non-terminal history h and any bidder i:

1. If W h
i 
= ∅, then Θh

i ⊇ {θi | ỹ(θi� θh−i)= i}.
2. For all θi� θ′

i ∈Lhi \W h
i , for all θ−i ∈Θh

−i. ỹ(θi� θ−i)= ỹ(θ′
i� θ−i).

Moreover, if W h
P(h) ∩LhP(h) = ∅ and W h

P(h) 
= ∅, then P(h) faces a posted price at h.

PROOF: We will prove by induction. The step-κ inductive hypothesis is: For any non-
terminal history h with no more than κ predecessors,

1. If W h
i 
= ∅, then Θh

i ⊇ {θi | ỹ(θi� θh−i)= i}.
2. For all θi� θ′

i ∈Lhi \W h
i , for all θ−i ∈Θh

−i. ỹ(θi� θ−i)= ỹ(θ′
i� θ−i).

The hypothesis holds for κ= 0, since for the initial history h∅, for all i, Θh∅
i =Θi, and

the protocol is orderly.

39Since (G�SN) is orderly, we must eventually learn either that θî�θψ(î) or vice versa, since this information
is necessary to determine whether î or ψ(î) should win when the other bidders’ types are θh

∗
N\{î�ψ(î)}. Thus,

reaching Step 4 of Stage 1 or Step 7 of Stage 2 implies that β�θî .
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Suppose the inductive hypothesis holds for some κ. We will prove it holds for κ+1. Let
h be a non-terminal history with κ predecessors. We will prove that the property holds for
any immediate successor, that is, any h′ ∈ succ(h).

There are four cases to consider, and we will make repeated use of Proposition 9.
Case 1: Consider any bidder i such that W h

i = ∅. Take any h′ ∈ succ(h). Then W h′
i = ∅.

Moreover, Lhi \W h
i =Θh

i ⊇Θh′
i = Lh

′
i \W h′

i . Thus, by the inductive hypothesis for κ, for
all θi� θ′

i ∈Lh′
i \W h′

i , for all θ−i ∈Θh′
−i, ỹ(θi� θ−i)= ỹ(θ′

i� θ−i).
Case 2:. Consider any bidder i 
= P(h) such that W h

i 
= ∅. Take any h′ ∈ succ(h). Then,
applying the inductive hypothesis for κ and (G�SN) orderly yields

Θh′
i =Θh

i ⊇ {
θi | ỹ

(
θi� θ

h
−i

) = i} ⊇ {
θi | ỹ

(
θi� θ

h′
−i

) = i}	 (17)

If W h
i = W h′

i , then Lhi \W h
i = Lh

′
i \W h′

i , so part 2 of the inductive hypothesis holds for
i at h′. If W h

i 
= W h′
i , then W h

i ⊃ W h′
i . Thus, since Θh

j = Θh′
j for j 
= P(h) and (G�SN) is

orderly, for all θi ∈Lh′
i \W h′

i , θi�θh
′
P(h′). Again by (G�SN) orderly, part 2 of the inductive

hypothesis holds for i at h′.
Case 3: Consider i= P(h), such that W h

i ∩Lhi 
= ∅. Let Ii be such that h ∈ Ii. By Propo-
sition 11, there exists a∗ ∈A(Ii) such that, for all θi ∈W h

i , Si(Ii� θi)= a∗. Let h′ be any im-
mediate successor. SinceΘh

−i =Θh′
−i,L

h
i \W h

i ⊇Lh′
i \W h′

i , so by the inductive hypothesis for
κ, the second part of the inductive hypothesis holds for i at h′. If h′ is an immediate suc-
cessor that follows play of a∗, then Θh′

i ⊇W h
i = {θi | ỹ(θi� θh−i) = i} = {θi | ỹ(θi� θh′

−i) = i},
where the first equality follows from the inductive hypothesis for κ and (G�SN) orderly,
and the second equality follows from Θh

−i =Θh′
−i. If h′ is an immediate successor that fol-

lows play of any action other than a∗, then W h′
i = ∅.

Case 4: Consider i = P(h), such that W h
i ∩ Lhi = ∅, W h

i 
= ∅. By the inductive hypoth-
esis for κ, Θh

i ⊇ {θi | ỹ(θi� θh−i) = i}. Let θ′
i = min{θi | ỹ(θi� θh−i) = i}. θ′

i ∈W h
i , so θ′

i /∈ Lhi .
Hence, for all θ−i ∈Θh

−i, min{θi | ỹ(θi� θ−i)= i} ≤ θ′
i. By (G�SN) orderly, for all θ−i ∈Θh

−i,
min{θi | ỹ(θi� θ−i) = i} ≥ θ′

i. Thus, by threshold pricing (Proposition 8), i faces a posted
price τh = θ′

i at h. (G�SN) is concise, so i is not called to play at any successor of h. By
the definition of W h

i , Lhi , and the induced allocation rule ỹ(·), it follows that, for any
h′ ∈ succ(h), either Lh′

i = ∅ or W h′
i = ∅. If Lh′

i = ∅, then conditional on reaching h′, i wins
at price τh, and by (G�SN) pruned, h′ is terminal and the inductive hypothesis holds triv-
ially. If W h′

i = ∅, then Lhi \W h
i = Lhi ⊇ Lh

′
i = Lh

′
i \W h′

i , so the inductive hypothesis for κ
implies that part 2 of the inductive hypothesis holds for i at h′.

Our analysis of Case 4 also proves the final claim in Proposition 12. Q.E.D.

We now have the pieces in place to complete the characterization. Assume FN is sym-
metric and regular, and (G�SN) is optimal, orderly, concise, credible, and strategy-proof.
Clause 1 of Definition 14 holds by assumption. Clause 2 holds by Proposition 8. We will
now show that we can label offered prices, accepting actions, and quitting actions, so that
the rest of the definition holds.

Take any non-terminal history h, and let i = P(h), let h ∈ Ii. There are three cases to
consider:

Case 1: W h
i = ∅. In this case, Θh

i = Lhi , so by Proposition 12, for all θi� θ′
i ∈Θh

i , and all
θ−i ∈ Θh

−i, ỹ(θi� θ−i) = ỹ(θ′
i� θ−i). By threshold pricing, for all j ∈ N , all θi� θ′

i ∈ Θh
i , and

all θ−i ∈Θh
−i, t̃j(θi� θ−i)= t̃j(θ′

i� θ−i). That is, conditional on reaching h, i’s type no longer
affects the outcome. By (G�SN) pruned, no histories fall into this case.

Case 2: W h
i ∩Lhi 
= ∅. Then, by Proposition 11, there exists action a∗ available at h such

that, for all θi ∈W h
i , Si(Ii� θi)= a∗. This action is the unique accepting action. All other
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actions quit. The offered price is min{θi ∈ Θh
i | Si(Ii� θi) = a∗}. By defining the offered

price in this way, we have ensured (by Proposition 9) that the offered price is no less than
i’s current bid. Observe that for any history h′ that follows play of a 
= a∗ at h, W h′

i = ∅.
Thus, if i plays a 
= a∗, then he does not win, pays zero, and (by our analysis of Case 1)
is not called to play again. Proposition 12 implies that θKi ∈W h

i , so Si(Ii� θKi )= a∗. Thus,
since i’s strategy is measurable with respect to his types and information sets, i knows
which action accepts, which actions reject, and the price offered.

Case 3: W h
i 
= ∅, W h

i ∩ Lhi = ∅. By Proposition 12, i faces a posted price τh at h. The
offered price is τh. By (G�SN) concise, Ii is a singleton set, and i is not called to play
at any successor of h. Since i faces a posted price at most once along the path-of-play,
if he was called to play at any predecessor h′ of h, then that h′ was in Case 2. Thus, by
Proposition 12 and threshold pricing, the offered price τh is at least his current bid. By the
definition of W h

i , Lhi , and the induced allocation rule ỹ(·), it follows that for any action a
available at h, either {θi | Si(Ii� θi)= a} ⊆W h

i or {θi | Si(Ii� θi)= a} ⊆ Lhi . Actions of the
first kind accept, and actions of the second kind reject. Ii is singleton, so i knows which
actions accept, which actions reject, and the offered price. W h

i ∩Lhi = ∅, so if i plays any
action that accepts, then he wins the object and pays the offered price.

It remains to prove that if i wins the object at some terminal history z, then he pays his
current bid. Let h be the latest predecessor of z at which i was called to play. If h is in
Case 3, then the conclusion follows trivially. Suppose h is in Case 2. By Proposition 12,
Θh
i ⊇ {θi | ỹ(θi� θh−i)= i}. By construction, all types in {θi | ỹ(θi� θh−i)= i} play the accepting

action a∗ at h. Thus,

min
{
θi ∈Θh

i | Si(Ii� θi)= a∗} ≤ min
{
θi | ỹ

(
θi� θ

h
−i

) = i} ≤ min
{
θi | ỹ

(
θi� θ

z
−i

) = i}	 (18)

i wins at z, so z must follow play of a∗, and i’s current bid at z is min{θi ∈Θh
i | Si(Ii� θi)=

a∗}. Moreover, all types who played a∗ at h win upon reaching z, so

min
{
θi ∈Θh

i | Si(Ii� θi)= a∗} ≥ min
{
θi | ỹ

(
θi� θ

z
−i

) = i}	 (19)

Thus, min{θi ∈Θh
i | Si(Ii� θi)= a∗} = min{θi | ỹ(θi� θz−i)= i}. By threshold pricing, at z, i

pays min{θi | ỹ(θi� θz−i)= i}, so i pays his current bid.
This completes the proof of Theorem 4.

B.6. Theorem 6

B.6.1. Virtual Ascending → Credible, Strategy-Proof

Suppose FN is regular, and (G�SN) is optimal and a virtual ascending auction. (G�SN)
is strategy-proof. The proof requires only small modifications to the proof of Theorem 4;
at each point we relied on ỹ(·) being orderly, we instead rely on ỹ(·) maximizing virtual
value. We omit the details to avoid repetition.

Again by a parallel argument to Theorem 4, Si is a best response to any (S′
0� S−i) for

S′
0 ∈ S∗

0 (S
G
0 � SN). Thus, if (G�SN) is not credible, then there exists (G′� SN) is BIC and

has voluntary participation, but yields strictly higher expected revenue for the auction-
eer, which implies that (G�SN) is not optimal. Thus, if (G�SN) is optimal and a virtual
ascending auction, then (G�SN) is credible.

B.6.2. Credible, Strategy-Proof → Virtual Ascending

Propositions 7, 8, 9, and 10 pin down some details even when FN is not symmetric. We
start by proving an analogue to Proposition 11.
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PROPOSITION 13: Assume FN is regular and interleaved, and (G�SN) is optimal and
strategy-proof. If (G�SN) is credible, then (G�SN) is winner-pooling.

PROOF: As before, we will show that if (G�SN) is not winner-pooling, then the auction-
eer has a profitable safe deviation, so (G�SN) is not credible. Let h∗ be some history at
which the winner-pooling property does not hold; we pick h∗ such that, for all h ≺ h∗, h
is not a counterexample to winner-pooling. Since (G�SN) is regular and interleaved, and
the winner-pooling property held at all predecessors to h∗, Proposition 4 implies that for
all i, eitherW h∗

i = ∅ orW h∗
i = {θi | ηi(θi) >max(0�

�
max
j 
=i

ηj(θ
h∗
j ))}. Let us define i∗, θ∗

i∗ and

h∗∗ as before.
The proof of Proposition 11 works here with the following modifications: First, we de-

fine

ψ(i)= arg max
j∈N\{i}

{
ηj

(
θ
Kj
j

) |W h∗
j 
= ∅}

	 (20)

Second, we say θψ(i) i-separates at γ ∈R if{
θi | ηi(θi)≥ γ} = {

θi | ηi(θi)≥ ηj(θψ(i))
}
	 (21)

Third, we initialize β := min{ηi∗(θ∗
i∗)�ηψ(i∗)(θ

Kψ(i∗)
ψ(i∗) )} and specify the algorithm as:

Stage 1
1. Pick θψ(i∗) that i∗-separates at β.

2. Simulate (θψ(i∗)� θh
∗
N\{i∗�ψ(i∗)}) against i∗ starting from ĥi∗ , until either ηi∗(θ

ĥi∗
i∗ )≥ β or

ĥi∗ ∈Z.
3. If ηi∗(θ

ĥi∗
i∗ )≥ β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗},
β := min

i 
=i∗�θi
ηi(θi) | θi ∈W h∗

i (22)

and go to Stage 2.
Stage 2
1. If N̂ = 1, go to Stage 3.
2. Set î :∈ {i ∈ N̂ | ηi(θĥii ) < β}.
3. Pick θψ(î) that î-separates at β.

4. If (θψ(î)� θ
h∗
N\{î�ψ(î)}) /∈Θ

ĥ
î

−î, set ĥî := cousin(ĥî� (θψ(î)� θ
h∗
N\{î�ψ(î)})).

5. Simulate (θψ(î)� θ
h∗
N\{î�ψ(î)}) against î starting from ĥî, until either ηî(θ

ĥ
î

î
)≥ β or ĥî ∈Z.

6. If ηî(θ
ĥ
î

î
)≥ β, set β := ηî(θĥîî ) and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {î} and go to Step 1 of Stage 2.
Stage 3
1. Set î := i | i ∈ N̂ .
2. Pick θψ(î) that î-separates at β.

3. If (θψ(î)� θ
h∗
N\{î�ψ(î)}) /∈Θ

ĥ
î

−î, set ĥî := cousin(ĥî� (θψ(î)� θ
h∗
N\{î�ψ(î)})).

4. Simulate (θψ(î)� θ
h∗
N\{î�ψ(î)}) against î starting from ĥî, until ĥî ∈Z.
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5. Choose the outcome that corresponds to that terminal history, x= g(ĥî), and termi-
nate.

This deviating algorithm does not change the allocation; the object is kept if
maxi ηi(θi) ≤ 0, and allocated to arg maxi ηi(θi) otherwise (where arg maxi ηi(θi) is sin-
gleton since FN is interleaved). Revenue is at least as high as under SG0 , and strictly higher
when θN = (θ∗

i∗� θ
h∗
−i∗).

It remains to check that the various steps of the algorithm are well-defined. We can pick
separating types in Step 1 of Stage 1, because either β= ηψ(i∗)(θ

Kψ(i∗)
ψ(i∗) ) or β= ηi∗(θ

∗
i∗) <

ηψ(i∗)(θ
Kψ(i∗)
ψ(i∗) ). In the first case, θ

Kψ(i∗)
ψ(i∗) will i∗-separate at β. In the second case, since

ηi∗(θ
∗
i∗) > ηψ(i∗)(θ

1
ψ(i∗)), by FN interleaved there exists θψ(i∗) that will i∗-separate at β.

When we pick separating types in Step 3 of Stage 2 and Step 2 of Stage 3, β is equal
to ηj(θj) for some bidder j where θj ∈ W h∗

j . Consider θ′
î
= min{θî | ηî(θî) ≥ β}. Since

θj ∈W h∗
j , it follows (by FN regular and interleaved) that ηî(θ

′
î
) > ηψ(î)(θ

1
ψ(î)
). If ηî(θ

′
î
) <

ηψ(î)(θ
K
ψ(î)

ψ(î)
), then, by FN interleaved, there exists θψ(î) that will î-separate at β. If ηî(θ

′
î
)≥

ηψ(î)(θ
K
ψ(î)

ψ(î)
), then since β never exceeds min{ηî(θî) | ηî(θî)≥ ηψ(î)(θ

K
ψ(î)

ψ(î)
)}, it follows that

θ
K
ψ(î)

ψ(î)
will î-separate at β.

We can choose cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) because FN is
regular and (G�SN) is strategy-proof and optimal, by the same argument as in the proof of
Theorem 4 that invokes Proposition 10. Thus, the algorithm is well-defined, and produces
a profitable safe deviation, which completes the proof. Q.E.D.

We now state a claim that is analogous to Proposition 12.

PROPOSITION 14: Assume FN is interleaved and regular, and (G�SN) is optimal, credible,
and strategy-proof. For any non-terminal history h and any bidder i:

1. If W h
i 
= ∅, then Θh

i ⊇ {θi | ỹ(θi� θh−i)= i}.
2. For all θi� θ′

i ∈Lhi \W h
i , for all θ−i ∈Θh

−i. ỹ(θi� θ−i)= ỹ(θ′
i� θ−i).

Moreover, if W h
P(h) ∩LhP(h) = ∅ and W h

P(h) 
= ∅, then P(h) faces a posted price at h.

PROOF: The proof follows in parallel to the proof of Proposition 12. The only modifi-
cations are that we invoke Proposition 13 instead of Proposition 11, and that we rely on
ỹ(·) maximizing virtual value for a regular interleaved distribution, instead of ỹ(·) being
orderly. Q.E.D.

Having established Propositions 13 and 14, we then follow the construction at the end
of the proof of Theorem 4 to label offered prices, accepting actions, and quitting actions,
so that the rest of the definition holds. This completes the proof of Theorem 6.

B.7. Theorem 7

By inspection, first-price auctions are prior-free credible and static.
Suppose (G�SN) is prior-free credible and static. Suppose there exist θi, θ−i, θ′

−i such
that i wins the object at (θi� θ−i) and at (θi� θ′

−i), but ti(θi� θ−i) < ti(θi� θ′
−i). We now con-

struct a deviation: If the action profile is consistent with (θi� θ−i), award the object to i
and instead charge ti(θi� θ′

−i). This deviation is always-profitable.
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Consequently, there exists a function b̃i :Θi → R such that if type θi wins, then i pays
b̃i(θi). Notably, this property holds everywhere, and not just almost everywhere.

We now partition i’s actions into bidding actions Bi = {b̃i(θi) | θi ∈ Θi and ∃θ−i :
ỹ(θi� θ−i) = i}, and actions that decline. The same steps as in the proof of Theorem 2
establish that (G�SN) is a first-price auction.

B.8. Theorem 8

With finite type spaces, credible protocols are prior-free credible, so the first claim
follows trivially.

In the proof of Theorem 4, we show that if (G�SN) is optimal, orderly, concise, and
strategy-proof but not an ascending auction, then there exists a safe deviation that is
always-profitable, so (G�SN) is not prior-free credible. Thus, the second claim follows.
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