Mean field asymptotics in high-dimensional statistics:
A few references

Andrea Montanari*

August 29, 2020

Abstract

This is a guided bibliography to some theoretical topics in high-dimensional statistics and probability theory that are covered during the OOPS summer school in July 2020. This list of references is incomplete even for what concerns this set of topics. I will be improving it.

1 Background material

Statistics [BVDG11]. Physics and algorithms [EVdB01, MM09].

2 Exact asymptotics

Various approaches. Early approaches in the context of compressed sensing made use of tools from convex geometry [DT10b, DT10a], which were substantially refined in [ALMT14]. A sharp asymptotic characterization od the Lasso was first obtained in [BM12] using an analysis via AMP. Other papers that use the same approach include [DM16, CS18, SC19], Leave-one out techniques were used in [EKBB+13, EK18].

Gaussian comparison. Gordon inequality was first proven in [Gor88]. Its application to convex-concave problems developed in [TOH15]. Applications of this approach include [TAH18, MM18, SAH19].

Bayes optimal estimators. Exact asymptotics for the Bayes error were derived in [DAM16, BDM+16], using again the connection to AMP, in [LM19, Mio17] using leave-one-out techniques. Adaptive interpolation method [BM19, BKM+19].

3 Approximate Message Passing

‘Historical’ background on AMP and its motivations can be found in [TAP77, Kab03, DMM09].

*Department of Electrical Engineering and Department of Statistics, Stanford University
Sharp analysis of AMP algorithms was developed in various degrees of generality, beginning with [Bol14] and then in [BM11, BLM15, JM13, BMN20, CL20]. (In particular [BMN20] streamlines and generalized the conditioning proof.) Optimality of Bayes-AMP among generalized first order methods was proven in [CMW20].

4 Optimization of mean-field spin glasses

The classical physics papers in this area are collected in [MPV87]. For a survey of mathematical work in this area, see [Tal10, Pan13].

Important structural properties of Parisi formula were proven in [JT16, AC17, Che17, AC15].

Optimization algorithms for mean field spin glasses were developed in [Sub18] (for the spherical case) and [Mon19, AMS20] (for the Ising case).

Negative results about optimization in problems with overlap gap were proven among others in [GS14, GJ19, GJW20].

References


[AC17] _______, *Parisi formula for the ground state energy in the mixed p-spin model*, The Annals of Probability 45 (2017), no. 6b, 4617–4631. 2


