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FACTOR GRAPHS AND GRAPH ENSEMBLES

{ch:Graphs}

Systems involving a large number of simple variables with mutual dependencies
(or constraints, or interactions) appear recurrently in several fields of science.
It is often the case that such dependencies can be ‘factorized’ in a non-trivial
way, and distinct variables interact only ‘locally’. In statistical physics, the fun-
damental origin of such a property can be traced back to the locality of physical
interactions. In computer vision it is due to the two dimensional character of
the retina and the locality of reconstruction rules. In coding theory it is a useful
property for designing a system with fast encoding/decoding algorithms. This
important structural property plays a crucial role in many interesting problems.

There exist several possibilities for expressing graphically the structure of de-
pendencies among random variables: undirected (or directed) graphical models,
Bayesian networks, dependency graphs, normal realizations, etc. We adopt here
the factor graph language, because of its simplicity and flexibility.

As argumented in the previous Chapters, we are particularly interested in
ensembles of probability distributions. These may emerge either from ensembles
of error correcting codes, or in the study of disordered materials, or, finally,
when studying random combinatorial optimization problems. Problems drawn
from these ensembles are represented by factor graphs which are themselves
random. The most common examples are random hyper-graphs, which are a
simple generalization of the well known random graphs.

Section 9.1 introduces factor graphs and provides a few examples of their
utility. In Sec. 9.2 we define some standard ensembles of random graphs and
hyper-graphs. We summarize some of their important properties in Sec. 9.3. One
of the most surprising phenomena in random graph ensembles, is the sudden
appearance of a ‘giant’ connected component as the number of edges crosses a
threshold. This is the subject of Sec. 9.4. Finally, in Sec. 9.5 we describe the local
structure of large random factor graphs.

9.1 Factor graphs
{se:FactorGeneral}

9.1.1 Definitions and general properties
{se:FactorDefinition}

We begin with a toy example.

Example 9.1 A country elects its president among two candidates {A,B} ac-
cording to the following peculiar system. The country is divided into four regions
{1, 2, 3, 4}, grouped in two states: North (regions 1 and 2), and South (3 and 4).
Each of the regions chooses its favorites candidate according to popular vote: we
call him xi ∈ {A,B}, with i ∈ {1, 2, 3, 4}. Then a North candidate yN, and a
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Fig. 9.1. Factor graph representation of the electoral process described in Ex-
ample 1.{fig:ElectionFactor}

South candidate yS are decided according to the following rule. If the preferences
x1 and x2 in regions 1 and 2 agree, then yN takes this same value. In they don’t
agree yN is decided according to a fair coin trial. The same procedure is adopted
for the choice of yS, given x3, x4. Finally, the president z ∈ {A,B} is decided on
the basis of the choices yN and yS in the two states using the same rule as inside
each state.

A polling institute has obtained fairly good estimates of the probabilities
pi(xi) for the popular vote in each region i to favor the candidate xi. They ask
you to calculate the odds for each of the candidates to become the president.

It is clear that the electoral procedure described above has important ‘fac-
torization’ properties. More precisely, the probability distribution for a given
realization of the random variables {xi}, {yj}, z has the form:

P ({xi}, {yj}, z) = f(z, yN, yS) f(yN, x1, x2) f(yS, x3, x4)

4∏

i=1

pi(xi) . (9.1)

We invite the reader to write explicit forms for the function f . The election pro-⋆
cess, as well as the above probability distribution, can be represented graphically
as in Fig. 9.1. Can this particular structure be exploited when computing the
chances for each candidate to become president?

Abstracting from the previous example, let us consider a set of N variables
x1, . . . , xN taking values in a finite alphabet X . We assume that their joint
probability distribution takes the form

P (x) =
1

Z

M∏

a=1

ψa(x∂a) . (9.2)

Here we use the shorthands x ≡ {x1, . . . , xN}, and x∂a ≡ {xi | i ∈ ∂a}, where
∂a ⊆ [N ]. The set of indices ∂a, with a ∈ [M ], has size ka ≡ |∂a|. When necessary,
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Fig. 9.2. A generic factor graph is formed by several connected components.
Variables belonging to distinct components (for instance x3 and x15 in the graph
above) are statistically independent. {fig:DisconnectedFactor}

we shall use the notation {ia1 , . . . , iaka
} ≡ ∂a to denote the variable indices which

correspond to the factor a, and xia
1 ,...,ia

ka

≡ x∂a for the corresponding variables.

The compatibility functions ψa : X ka → R are non-negative, and Z is a
positive constant. In order to completely determine the form (9.2), we should
precise both the functions ψa(·), and an ordering among the indices in ∂a. In
practice this last specification will be always clear from the context.

Factor graphs provide a graphical representations of distributions of the
form (9.2). The factor graph for the distribution (9.2) contains two types of
nodes: N variable nodes, each one associated with a variable xi (represented
by circles);M function nodes, each one associated with a function ψa (squares).
An edge joins the variable node i and the function node a if the variable xi is
among the arguments of ψa(x∂a) (in other words if i ∈ ∂a). The set of function
nodes that are adjacent to (share an edge with) the variable node i, is denoted
as ∂i. The graph is bipartite: an edge always joins a variable node to a function
nodes. The reader will easily check that the graph in Fig. 9.1 is indeed the factor ⋆
graph corresponding to the factorized form (9.1). The degree of a variable node
(defined as in usual graphs by the number of edges which are incident on it) is
arbitrary, but the degree of a function node is always ≥ 1.

The basic property of the probability distribution (9.2) encoded in its factor
graph, is that two ‘well separated’ variables interact uniquely through those vari-
ables which are interposed between them. A precise formulation of this intuition
is given by the following observation, named the global Markov property:

{propo:GlobalMarkov}
Proposition 9.2 Let A,B, S ⊆ [N ] be three disjoint subsets of the variable
nodes, and denote by xA, xB and xS denote the corresponding sets of variables.
If S ‘separates’ A and B (i.e., if there is no path on the factor graph joining a
node of A to a node of B without passing through S) then

P (xA, xB |xS) = P (xA|xS)P (xB |xS) . (9.3)

In such a case the variables xA, xB are said to be conditionally independent.
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Fig. 9.3. The action of conditioning on the factor graph.
The probability distribution on the left has the form
P (x1...6) ∝ fa(x1...4)fb(x3,4,5)fc(x1,3,5,6)fd(x5). After conditioning on x3,
we get P (x1...6|x3 = x∗) ∝ f ′a(x1,2,4)f

′
b(x4,5)f

′
c(x1,5,6)fd(x5). Notice that the

functions f ′a(·), f ′b(·), f ′c(·) (gray nodes on the right) are distinct from fa(·),
fb(·), fc(·) and depend upon the value of x∗. {fig:ConditionFactor}

Proof: It is easy to provide a ‘graphical’ proof of this statement. Notice that, if
the factor graph is disconnected, then variables belonging to distinct components
are independent, cf. Fig. 9.2. Conditioning upon a variable xi is equivalent to
eliminating the corresponding variable node from the graph and modifying the
adjacent function nodes accordingly, cf. Fig. 9.3. Finally, when conditioning upon
xS as in Eq. (9.3), the factor graph gets split in such a way that A and B belong
to distinct components. We leave to the reader the exercise of filling the details.⋆
�

It is natural to wonder whether any probability distribution which is ‘globally
Markov’ with respect to a given graph can be written in the form (9.2). In general,
the answer is negative, as can be shown on a simple example. Consider the
small factor graph in Fig. (9.4). The global Markov property has a non trivial
content only for the following choice of subsets: A = {1}, B = {2, 3}, S =
{4}. The most general probability distribution such that x1 is independent from
{x2, x3} conditionally to x4 is of the type fa(x1, x2)fb(x2, x3, x3). The probability
distribution encoded by the factor graph is a special case where fb(x2, x3, x4) =
fc(x2, x3)fd(x, x4)fe(x4, x2).

The factor graph of our counterexample, Fig. 9.4, has a peculiar property:
it contains a subgraph (the one with variables {x2, x3, x4}) such that, for any
pair of variable nodes, there is a function node adjacent to both of them. We
call any factor subgraph possessing this property a clique24. It turns out that,
once one gets rid of cliques, the converse of Proposition 9.2 can be proved. We
shall ‘get rid’ of cliques by completing the factor graph. Given a factor graph F ,
its completion F is obtained by adding one factor node for each clique in the

24In usual graph theory, the word clique refers to graph (recall that a graph is defined by a
set of nodes and a set of edges which join node pairs), rather than to factor graphs. Here we
use the same word in a slightly extended sense.
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Fig. 9.4. A factor graph with four variables. {x1} and {x2, x3} are independent
conditionally to x4. The set of variables {x2, x3, x4} and the three function nodes
connecting two points in this set form a clique.{fig:FactorClique}

graph and connecting it to each variable node in the clique and to no other node
(if such a node does not already exist).

Theorem 9.3. (Hammersley-Clifford) Let P (·) be a strictly positive prob-
ability distributions over the variables x = (x1, . . . , xN ) ∈ XN , satisfying the
global Markov property (9.3) with respect to a factor graph F . Then P can be
written in the factorized form (9.2), with respect to the completed graph F .

Roughly speaking: the only assumption behind the factorized form (9.2) is the
rather weak notion of locality encoded by the global Markov property. This may
serve as a general justification for studying probability distributions having a
factorized form. Notice that the positivity hypothesis P (x1, . . . , xN ) > 0 is not
just a technical assumption: there exist counterexamples to the Hammersley-
Clifford theorem if P is allowed to vanish.

9.1.2 Examples
{se:FactorExamples}

Let us look at a few examples

Example 9.4 The random variablesX1, . . . ,XN taking values in the finite state
space X form a Markov chain of order r (with r < N) if

P (x1 . . . xN ) = P0(x1 . . . xr)

N−1∏

t=r

w(xt−r+1 . . . xt → xt+1) , (9.4)

for some non-negative transition probabilities {w(x−r . . . x−1 → x0)}, and initial
condition P0(x1 . . . xr), satisfying the normalization conditions

∑

x1...xr

P0(x1 . . . xr) = 1 ,
∑

x0

w(x−r . . . x−1 → x0) = 1 . (9.5)

The parameter r is the ‘memory range’ of the chain. Ordinary Markov chains
have r = 1. Higher order Markov chains allow to model more complex phe-
nomena. For instance, in order to get a reasonable probabilistic model of the
English language with the usual alphabet X = {a,b,. . . z, blank} as state space,
a memory of the typical size of words (r ≥ 6) is probably required.
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Fig. 9.5. On the left: factor graph for a Markov chain of length N = 6 and
memory range r = 2. On the right: by adding auxiliary variables, the same
probability distribution can be written as a Markov chain with memory range
r = 1. {fig:FactorMarkov}

It is clear that Eq. (9.4) is a particular case of the factorized form (9.2). The
corresponding factor graph includes N variable nodes, one for each variable xi,
N − r function nodes for each of the factors w(·), and one function node for the
initial condition P0(·). In Fig. 9.5 we present a small example with N = 6 and
r = 2.

Notice that a Markov chain with memory r and state space X can always be
rewritten as a Markov chain with memory 1 and state space X r. The transition
probabilities ŵ of the new chain are given in terms of the original ones

ŵ(~x→ ~y) =

{
w(x1, . . . , xr → yr) if x2 = y1, x3 = y2, . . . xr = yr−1 ,
0 otherwise,

(9.6)

where we used the shorthands ~x ≡ (x1, . . . , xr) and ~y = (y1, . . . , yr). Figure 9.5
shows the reduction to an order 1 Markov chain in the factor graph language.

What is the content of the global Markov property for Markov chains? Let
us start from the case of order 1 chains. Without loss of generality we can choose
S as containing one single variable node (let’s say the i-th) while A and B are,
respectively the nodes on the left and on the right of i: A = {1, . . . , r − 1} and
B = {r + 1, . . . , N}. The global Markov property reads

P (x1 . . . xN |xi) = P (x1 . . . xi−1|xi)P (xi+1 . . . xN |xi) , (9.7)

which is just a rephrasing of the usual Markov condition: Xi+1 . . . XN depend
upon X1 . . . Xi uniquely through Xi. We invite the reader to discuss the global⋆
Markov property for order r Markov chains.

{ex:FirstLinearCode}
Example 9.5 Consider the code C of block-length N = 7 defined by the code-
book:

C = {(x1, x2, x3, x4) ∈ {0, 1}4 | x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0 , (9.8)

x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0 , x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0} .

Let P0(x) be the uniform probability distribution over the codewords: as dis-
cussed in Chap. 6, it is reasonable to assume that encoding produces codewords
according to such a distribution. Then:
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Fig. 9.6. Left: factor graph for the uniform distribution over the code defined
in Eq. (9.8). Right: factor graph for the distribution of the transmitted message
conditional to the channel output. Gray function nodes encode the information
carried by the channel output.{fig:FactorHamming}
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Fig. 9.7. Factor graph for an Edwards-Anderson model with size L = 4 in d = 2
dimensions. Full squares correspond to pairwise interaction terms −Jijσiσj .
Hatched squares denote magnetic field terms −Bσi. {fig:FactorIsing}

P0(x) =
1

Z0
I(x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0) I(x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0) · (9.9)

· I(x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0) ,

where Z0 = 16 is a normalization constant. This distribution has the form (9.2)
and the corresponding factor graph is reproduced in Fig. 9.6.

Suppose that a codeword in C is transmitted through a binary memoryless
channel, and that the message (y1, y2, . . . y7) is received. As argued in Chap. 6,
it is useful to consider the probability distribution of the transmitted message
conditional to the channel output, cf. Eq. (6.3). Show that the factor graph ⋆
representation for this distribution is the one given in Fig. 9.6, right-hand frame.
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Example 9.6 In Sec. 2.6 we introduced the Edwards-Anderson model, a sta-
tistical mechanics model for spin glasses, whose energy function reads: E(σ) =
−∑(ij) Jijσiσj −B

∑
i σi. The Boltzmann distribution can be written as

pβ(σ) =
1

Z

∏

(ij)

eβJijσiσj

∏

i

eβBσi , (9.10)

with i runs over the sites of a d-dimensional cubic lattice of side L: i ∈ [L]d, and
(ij) over the couples of nearest neighbors in the lattice. Once again, this distri-
bution admits a factor graph representation, as shown in Fig. 9.7. This graph
includes two types of function nodes. Nodes corresponding to pairwise interac-
tion terms −Jijσiσj in the energy function are connected to two neighboring
variable nodes. Nodes representing magnetic field terms −Bσi are connected to
a unique variable.

{ex:SatFactor}
Example 9.7 Satisfiability is a decision problem introduced in Chap. 3. Given
N boolean variables x1, . . . , xN ∈ {T, F} and a bunch ofM logical clauses among
them, one is asked to find a truth assignment verifying all of the clauses. The
logical AND of the M clauses is usually called a formula. As an example, consider
the following formula over N = 7 variables:

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x7 ∨ x6) . (9.11)

For a given satisfiability formula, it is quite natural to consider the uniform
probability distribution Psat(x1, . . . , xN ) over the truth assignments which satisfy
(9.11)(whenever such an assignment exist). A little thought shows that such a
distribution can be written in the factorized form (9.2). For instance, the formula
(9.11) yields

Psat(x1, . . . , x7) =
1

Zsat
I(x1 ∨ x2 ∨ x4) I(x2 ∨ x3 ∨ x5)) I(x4 ∨ x5) ·

·I(x5 ∨ x7 ∨ x6) , (9.12)

where Zsat is the number of distinct truth assignment which satisfy Eq. (9.11).
We invite the reader to draw the corresponding factor graph.⋆

Exercise 9.1 Consider the problem of coloring a graph G with q colors, already
encountered in Sec. 3.3. Build a factor graph representation for this problem,
and write the associated compatibility functions. [Hint: in the simplest such
representation the number of function nodes is equal to the number of edges
of G, and every function node has degree 2.]{ex:factor_colouring}

9.2 Ensembles of factor graphs: definitions
{se:EnsemblesDefinition}

We shall be generically interested in understanding the properties of ensembles
of probability distributions taking the factorized form (9.2). We introduce here
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a few useful ensembles of factor graphs. In the simple case where every function
node has degree 2, factor graphs are in one to one correspondence with usual
graphs, and we are just treating random graph ensembles, as first studied by
Erdös and Renyi. The case of arbitrary factor graphs is in many cases a simple
generalization. From the graph theoretical point of view they can be regarded
either as hyper-graphs (by associating a vertex to each variable node and an
hyper-edge to each function node), or as bipartite graphs (variable and function
nodes are both associated to vertices in this case).

For any integer k ≥ 1, the random k-factor graph with M function nodes
and N variables nodes is denoted by GN (k,M), and is defined as follows. For
each function node a ∈ {1 . . .M}, the k-uple ∂a is chosen uniformly at random
among the

(
N
k

)
k-uples in {1 . . . N}.

Sometimes, one may encounter variations of this basic distribution. For in-
stance, it can be useful to prevent any two function nodes to have the same
neighborhood (in other words, to impose the condition ∂a 6= ∂b for any a 6= b).
This can be done in a natural way through the ensemble GN (k, α) defined as fol-
lows. For each of the

(
N
k

)
k-uples of variables nodes, a function node is added to

the factor graph independently with probability α/
(
N
k

)
, and all of the variables

in the k-uple are connected to it. The total number M of function nodes in the
graph is a random variable, with expectation Mav = αN .

In the following we shall often be interested in large graphs (N → ∞) with a
finite density of function nodes. In GN (k,M) this means that M → ∞, with the
ratio M/N kept fixed. In GN (k, α), the large N limit is taken at α fixed. The
exercises below suggests that, for some properties, the distinction between the
two graph ensembles does not matter in this limit.

Exercise 9.2 Consider a factor graph from the ensemble GN (k,M). What is
the probability pdist that for any couple of function nodes, the corresponding
neighborhoods are distinct? Show that, in the limit N → ∞, M → ∞ with
M/N ≡ α and k fixed

pdist =






Θ(e−
1
2 α2N ) if k = 1 ,

e−α2

[1 + Θ(N−1)] if k = 2 ,
1 + Θ(N−k+2) if k ≥ 3 .

(9.13)
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Exercise 9.3 Consider a random factor graph from the ensemble GN (k, α),
in the large N limit. Show that the probability of getting a number of function
nodes M different from its expectation αN by an ‘extensive’ number (i.e. a
number of order N) is exponentially small. In mathematical terms: there exist
a constant A > 0 such that, for any ε > 0,

P [|M −Mav| > Nε] ≤ e−ANε2

. (9.14)

Consider the distribution of a GN (k, α) random graph conditioned on the num-
ber of function nodes being M . Show that this is the same as the distribution
of a GN (k,M) random graph conditioned on all the function nodes having
distinct neighborhoods.

An important local property of a factor graph is its degree profile. Given
a graph, we denote by Λi (by Pi) the fraction of variable nodes (function nodes)
of degree i. Notice that Λ ≡ {Λn : n ≥ 0} and P ≡ {Pn : n ≥ 0} are in fact two
distributions over the non-negative integers (they are both non-negative and
normalized). Moreover, they have non-vanishing weight only on a finite num-
ber of degrees (at most N for Λ and M for P ). We shall refer to the couple
(Λ, P ) as to the degree profile of the graph F . A practical representation of
the degree profile is provided by the generating functions Λ(x) =

∑
n≥0 Λn x

n

and P (x) =
∑

n≥0 Pn x
n. Because of the above remarks, both Λ(x) and P (x)

are in fact finite polynomials with non-negative coefficients. The average vari-
able node (resp. function node) degree is given by

∑
n≥0 Λn n = Λ′(1) (resp.∑

n≥0 Pn n = P ′(1))
If the graph is randomly generated, its degree profile is a random variable. For

instance, in the random k-factor graph ensemble GN (k,M) defined above, the
variable node degree Λ depends upon the graph realization: we shall investigate
some of its properties below. In contrast, its function node profile Pn = I(n = k)
is deterministic.

It is convenient to consider ensembles of factor graphs with a prescribed
degree profile. We therefore introduce the ensemble of degree constrained
factor graphs DN (Λ, P ) by endowing the set of graphs with degree profile
(Λ, P ) with the uniform probability distribution. Notice that the number M of
function nodes is fixed by the relationMP ′(1) = NΛ′(1). Moreover, the ensemble
is non-empty only if NΛn and MPn are integers for any n ≥ 0. Even if these
conditions are satisfied, it is not obvious how to construct efficiently a graph in
DN (Λ, P ). Since this ensemble plays a crucial role in the theory of sparse graph
codes, we postpone this issue to Chap. 11. A special case which is important in
this context is that of random regular graphs in which the degrees of variable
nodes is fixed, as well as the degree of function nodes. In a (k, l) random regular
graph, each variable node has degree l and each function node has degree k,
corresponding to Λ(x) = xl and P (x) = xk.
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9.3 Random factor graphs: basic properties
{se:EnsemblesProperties}

In this Section and the next ones, we derive some simple properties of random
factor graphs.

For the sake of simplicity, we shall study here only the ensemble GN (k,M)
with k ≥ 2. Generalizations to graphs in DN (Λ, P ) will be mentioned in Sec. 9.5.1
and further developed in Chap. 11. We study the asymptotic limit of large graphs
N → ∞ with M/N = α and k fixed.

9.3.1 Degree profile
{subsec:DegreeRandom}

The variable node degree profile {Λn : n ≥ 0} is a random variable. By linearity
of expectation E Λn = P[degi = n], where degi is the degree of the node i. Let
p be the probability that a uniformly chosen k-uple in {1, . . . , N} contains i.
It is clear that degi is a binomial random variable with parameters M and p.
Furthermore, since p does not depend upon the site i, it is equal to the probability
that a randomly chosen site belongs to a fixed k-uple. In formulae

P[degi = n] =

(
M

n

)
pn(1 − p)M−n , p =

k

N
. (9.15)

If we consider the large graph limit, with n fixed, we get

lim
N→∞

P [degi = n] = lim
N→∞

E Λn = e−kα (kα)n

n!
. (9.16)

The degree of site i is asymptotically a Poisson random variable.
How correlated are the degrees of the variable nodes? By a simple generaliza-

tion of the above calculation, we can compute the joint probability distribution of
degi and degj , with i 6= j. Think of constructing the graph by choosing a k-uple
of variable nodes at a time and adding the corresponding function node to the
graph. Each node can have one of four possible ‘fates’: it connects to both nodes
i and j (with probability p2); it connects only to i or only to j (each case has
probability p1); it connects neither to i nor to j (probability p0 ≡ 1− 2p1 − p2).
A little thought shows that p2 = k(k − 1)/N(N − 1), p1 = k(N − k)/N(N − 1)
and

P[degi = n, degj = m] =

min(n,m)∑

l=0

(
M

n− l, m− l, l

)
pl
2p

n+m−2l
1 pM−n−m+l

0 (9.17)

where l is the number of function nodes which connect both to i and to j and
we used the standard notation for multinomial coefficients (see Appendix A).

Once again, it is illuminating to look at the large graphs limit N → ∞ with
n and m fixed. It is clear that the l = 0 term dominates the sum (9.17). In fact,
the multinomial coefficient is of order Θ(Nn+m−l) and the various probabilities
are of order p0 = Θ(1), p1 = Θ(N−1), p2 = Θ(N−2). Therefore the l-th term of
the sum is of order Θ(N−l). Elementary calculus then shows that
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P[degi = n, degj = m] = P[degi = n] P[degj = m] + Θ(N−1) . (9.18)

This shows that the nodes’ degrees are (asymptotically) pairwise independent
Poisson random variables. This fact can be used to show that the degree profile
{Λn : n ≥ 0} is, for large graphs, close to its expectation. In fact

E

[
(Λn − EΛn)

2
]

=
1

N2

N∑

i,j=1

{
P[degi = n, degj = n] − P[degi = n]P[degj = n]

}

= Θ(N−1) , (9.19)

which implies (via Chebyshev inequality) P[|Λn − EΛn| ≥ δ EΛn] = Θ(N−1) for
any δ > 0.

The pairwise independence expressed in Eq. (9.18) is essentially a conse-
quence of the fact that, given two distinct variable nodes i and j the probability
that they are connected to the same function node is of order Θ(N−1). It is
easy to see that the same property holds when we consider any finite number of
variable nodes. Suppose now that we look at a factor graph from the ensemble
GN (k,M) conditioned to the function node a being connected to variable nodes
i1, . . . , ik. What is the distribution of the residual degrees deg′i1 , . . . , deg′ik

(by
residual degree deg′i, we mean the degree of node i once the function node a has
been pruned from the graph)? It is clear that the residual graph is distributed
according to the ensemble GN (k,M − 1). Therefore the residual degrees are (in
the large graph limit) independent Poisson random variables with mean kα. We
can formalize these simple observations as follows.

{PoissonPropo}
Proposition 9.8 Let i1, . . . , in ∈ {1, . . . , N} be n distinct variable nodes, and G
a random graph from GN (k,M) conditioned to the neighborhoods of m function
nodes a1, . . . , am being ∂a1, . . . , ∂am. Denote by deg′i the degree of variable node
i once a1, . . . , am have been pruned from the graph. In the limit of large graphs
N → ∞ with M/N ≡ α, k, n and m fixed, the residual degrees deg′i1 , . . . , deg′in

converge in distribution to independent Poisson random variables with mean kα.

This property is particularly useful when investigating the local properties of a
GN (k,Nα) random graph. In particular, it suggests that these local properties
are close to the ones of the ensemble DN (Λ, P ), where P (x) = xk and Λ(x) =
exp[kα(x− 1)].

A remark: in the above discussion we have focused on the probability of
finding a node with some constant degree n in the asymptotic limit N → ∞.
One may wonder whether, in a typical graph G ∈ GN (k,M) there may exist
some variable nodes with exceptionally large degrees. The exercise below shows
that this is not the case.
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Fig. 9.8. A factor graph from the GN (k,M) with k = 3, N = 23 and M = 8. It
contains Zisol = 2 isolated function nodes, Zcoupl = 1 isolated couples of function
nodes and Zcycle,3 = 1 cycle of length 3. The remaining 3 variable nodes have
degree 0. {fig:RandomFactor}

Exercise 9.4 We want to investigate the typical properties of the maximum
variable node degree ∆(G) in a random graph G from GN (k,M).

(i) Let nmax be the smallest value of n > kα such that NP[degi = n] ≤ 1.
Show that ∆(G) ≤ nmax with probability approaching one in the large
graph limit. [Hints: Show that NP[degi = nmax + 1] → 0 at large N ;
Apply the first moment method to Zl, the number of nodes of degree l.]

(ii) Show that the following asymptotic form holds for nmax:

nmax

kαe
=

z

log(z/ log z)

[
1 + Θ

(
log log z

(log z)2

)]
, (9.20)

where z ≡ (logN)/(kαe).

(iii) Let nmax be the largest value of n such that NP[degi = n] ≥ 1. Show
that ∆(G) ≥ nmax with probability approaching one in the large graph
limit. [Hints: Show that NP[degi = nmax − 1] → ∞ at large N ; Apply
the second moment method to Zl.]

(iv) What is the asymptotic behavior of nmax? How does it compare to nmax?

9.3.2 Small subgraphs
{SmallSection}

The next simplest question one may ask concerning a random graph, is the
occurrence in it of a given small subgraph. We shall not give a general treatment
of the problem here, but rather work out a few simple examples.

Let’s begin by considering a fixed k-uple of variable nodes i1, . . . , ik and ask
for the probability p that they are connected by a function node in a graph
G ∈ GN (k,M). In fact, it is easier to compute the probability that they are not
connected:
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1 − p =

[
1 −

(
N

k

)−1
]M

. (9.21)

The quantity in brackets is the probability that a given function node is not a
neighbor of i1, . . . , ik. It is raised to the power M because the M function nodes
are independent in the model GN (k,M). In the large graph limit, we get

p =
αk!

Nk−1
[1 + Θ(N−1)] . (9.22)

This confirms an observation of the previous Section: for any fixed (finite) set of
nodes, the probability that a function node connects any two of them vanishes
in the large graph limit.

As a first example, let’s ask how many isolated function nodes appear in
a graph G ∈ GN (k,M). We say that a node is isolated if all the neighboring
variable nodes have degree one. Call the number of such function nodes Zisol. It
is easy to compute the expectation of this quantity

EZisol = M

[(
N

k

)−1(
N − k

k

)]M−1

. (9.23)

The factorM is due to the fact that each of theM function nodes can be isolated.
Consider one such node a and its neighbors i1, . . . , ik. The factor in

(
N
k

)−1(N−k
k

)

is the probability that a function node b 6= a is not incident on any of the nodes
i1, . . . , ik. This must be counted for any b 6= a, hence the exponent M − 1. Once
again, things become more transparent in the large graph limit:

EZisol = Nαe−k2α[1 + Θ(N−1)] . (9.24)

So there is a non-vanishing ‘density’ of isolated function nodes. This density
approaches 0 at small α (because there are few function nodes at all) and at
large α (because function nodes are unlikely to be isolated). A more refined
analysis shows that indeed Zisol is tightly concentrated around its expectation:
the probability of an order N fluctuation vanishes exponentially as N → ∞.

There is a way of getting the asymptotic behavior (9.24) without going
through the exact formula (9.23). We notice that EZisol is equal to the number
of function nodes (M = Nα) times the probability that the neighboring variable
nodes i1, . . . , ik have degree 0 in the residual graph. Because of Proposition 9.8,
the degrees deg′i1 , . . . , deg′ik

are approximatively i.i.d. Poisson random variables
with mean kα. Therefore the probability for all of them to vanish is close to
(e−kα)k = e−k2α.

Of course this last type of argument becomes extremely convenient when
considering small structures which involve more than one function node. As a
second example, let us compute the number Zisol,2 of couples of function nodes
which have exactly one variable node in common and are isolated from the rest
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of the factor graph (for instance in the graph of Fig. 9.8, we have Zisol,2 = 1).
One gets

EZisol,2 =

(
N

2k − 1

)
· k
2

(
2k − 1

k

)
·
(

αk!

Nk−1

)2

· (e−kα)2k−1

[
1 + Θ

(
1

N

)]
.(9.25)

The first factor counts the ways of choosing the 2k − 1 variable nodes which
support the structure. Then we count the number of way of connecting two
function nodes to (2k− 1) variable nodes in such a way that they have only one
variable in common. The third factor is the probability that the two function
nodes are indeed present (see Eq. (9.22)). Finally we have to require that the
residual graph of all the (2k − 1) variable nodes is 0, which gives the factor
(e−kα)2k−1. The above expression is easily rewritten as

EZisol,2 = N · 1

2
(kα)2 e−k(2k−1)α [1 + Θ(1/N)] . (9.26)

With some more work one can prove again that Zisol,2 is in fact concentrated
around its expected value: a random factor graph contains a finite density of
isolated couples of function nodes.

Let us consider, in general, the number of small subgraphs of some definite
type. Its most important property is how it scales with N in the large N limit.
This is easily found. For instance let’s have another look at Eq. (9.25): N enters
only in counting the (2k−1)-uples of variable nodes which can support the chosen
structure, and in the probability of having two function nodes in the desired
positions. In general, if we consider a small subgraph with v variable nodes and
f function nodes, the number Zv,f of such structures has an expectation which
scales as:

EZv,f ∼ Nv−(k−1)f . (9.27)

This scaling has important consequences on the nature of small structures which
appear in a large random graph. For discussing such structures, it is useful to
introduce the notions of ‘connected (sub-)graph’, of ‘tree’, of ‘path’ in a factor
graphs exactly in the same way as in usual graphs, identifying both variable nodes
and function nodes to vertices (see Chap. 3). We further define a component
of the factor graph G as a subgraph C which is is connected and isolated, in the
sense that there is no path between a node of C and a node of G\C

Consider a factor graph with v variable nodes and f function nodes, all of
them having degree k.This graph is a tree if and only if v = (k − 1)f + 1. Call ⋆
Ztree,v the number of isolated trees over v variable nodes which are contained in a
GN (k,M) random graph. Because of Eq. (9.27), we have EZtree,v ∼ N : a random
graph contains a finite density (when N → ∞) of trees of any finite size. On the
other hand, all the subgraphs which are not trees must have v < (k − 1)f + 1,
and Eq. (9.27) shows that their number does not grow with N . In other words,
almost all finite components of a random factor graph are trees.
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Exercise 9.5 Consider the largest component in the graph of Fig. 9.8 (the one
with three function nodes), and let Zcycle,3 be the number of times it occurs
as a component of a GN (k,M) random graph. Compute EZcycle,3 in the large
graph limit.

Exercise 9.6 A factor graph is said to be unicyclic if it contains a unique (up
to shifts) closed, non reversing path ω0, ω1, . . . , ωℓ = ω0 satisfying the condition
ωt 6= ωs for any t, s ∈ {0 . . . ℓ− 1}, with t 6= s.

(i) Show that a factor graph with v variable nodes and f function nodes, all
of them having degree k is unicyclic if and only if v = (k − 1)f .

(ii) Let Zcycle,v(N) be the number of unicyclic components over v nodes in
a GN (k,M) random graph. Use Eq. (9.27) to show that Zcycle,v is finite
with high probability in the large graph limit. More precisely, show that
limn→∞ limN→∞ PGN

[Zcycle,v ≥ n] = 0.

9.4 Random factor graphs: The giant component
{GiantSection}

While we have just argued that most components of any fixed (as N → ∞) size
of a GN (k,M) factor graph are trees, we shall now see that there is much more
than just finite size trees in a large GN (k,M) factor graph. We always consider
the limit N → ∞,M → ∞ taken at fixed α = M/N . It turns out that when
α becomes larger than a threshold value, a ‘giant component’ appears in the
graph. This is a connected component containing an extensive (proportional to
N) number of variable nodes, with many cycles.

9.4.1 Nodes in finite trees

We want to estimate which fraction of a random graph from the GN (k,M)
ensemble is covered by finite size trees. This fraction is defined as:

xtr(α, k) ≡ lim
s→∞

lim
N→∞

1

N
ENtrees,s , (9.28)

where Ntrees,s is the number of sites contained in trees of size not larger than
s. In order to compute ENtrees,s, we use the number of trees of size equal to
s, which we denote by Ztrees,s. Using the approach discussed in the previous
Section, we get

ENtrees,s =

s∑

v=0

v · EZtrees,v = (9.29){eq:NumberOfTrees}

=

s∑

v=0

v

(
N

v

)
· Tk(v) ·

(
αk!

Nk−1

) v−1
k−1

· (e−kα)v

[
1 + Θ

(
1

N

)]
=

= N(αk!)−1/(k−1)
s∑

v=0

1

(v − 1)!
Tk(v)

[
(αk!)

1
k−1 e−kα

]v
,
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Fig. 9.9. Left: graphical representation of Eq. (9.32) for the fraction of nodes
of a GN (k,M) random factor graph that belong to finite-size tree components.
The curves refer to k = 3 and (from top to bottom) α = 0.05, 0.15, 0.25, 0.35,
0.45. Right: typical size of the giant component. {fig:Giant}

where Tk(v) is the number of trees which can be built out of v distinct variable
nodes and f = (v − 1)/(k − 1) function nodes of degree k. The computation
of Tk(v) is a classical piece of enumerative combinatorics which is developed in
Sec. 9.4.3 below. The result is

Tk(v) =
(v − 1)! vf−1

(k − 1)!ff !
, (9.30)

and the generating function T̂k(z) =
∑∞

v=1 Tk(v)zv/(v − 1)!, which we need in
order to compute ENtrees,s from (9.29), is found to satisfy the self consistency
equation:

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
. (9.31)

It is a simple exercise to see that, for any z ≥ 0, this equation has two solutions ⋆
such that T̂k(z) ≥ 0, the relevant one being the smallest of the two (this is a

consequence of the fact that T̂k(z) has a regular Taylor expansion around z = 0).

Using this characterization of T̂k(z), one can show that xtr(α, k) is the smallest
positive solution of the equation

xtr = exp
(
−kα+ kαxk−1

tr

)
. (9.32)

This equation is solved graphically in Fig. 9.9, left frame. In the range α ≤ αp ≡
1/(k(k − 1)), the only non-negative solution is xtr = 1: almost all sites belong
to finite size trees. When α > αp, the solution has 0 < xtr < 1: the fraction of
nodes in finite trees is strictly smaller than one.

9.4.2 Size of the giant component

This result is somewhat surprising. For α > αp, a finite fraction of variable nodes
does not belong to any finite tree. On the other hand, we saw in the previous
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Section that finite components with cycles contain a vanishing fraction of nodes.
Where are all the other nodes (there are about N(1 − xtr) of them)? It turns
out that, roughly speaking, they belong to a unique connected component, the
so-called giant component which is not a tree. One basic result describing this
phenomenon is the following.

Theorem 9.9 Let X1 be the size of the largest connected component in a GN (k,M)
random graph with M = N [α + oN (1)], and xG(α, k) = 1 − xtr(α, k) where
xtr(α, k) is defined as the smallest solution of (9.32). Then, for any positive ε,

|X1 −NxG(α, k)| ≤ Nε , (9.33)

with high probability.

Furthermore, the giant component contains many loops. Let us define the cyclic
number c of a factor graph containing v vertices and f function nodes of degree
k, as c = v − (k − 1)f − 1. Then the cyclic number of the giant component is
c = Θ(N) with high probability.

Exercise 9.7 Convince yourself that there cannot be more than one compo-
nent of size Θ(N). Here is a possible route. Consider the event of having two
connected components of sizes ⌊Ns1⌋ and ⌊Ns2⌋ for two fixed positive num-
bers s1 and s2 in a GN (k,M) random graph with M = N [α + oN (1)] (with
α ≥ s1+s2). In order to estimate the probability of such an event, imagine con-
structing the GN (k,M) graph by adding one function node at a time. Which
condition must hold when the number of function nodes is M − ∆M? What
can happen to the last ∆M nodes? Now take ∆M = ⌊N δ⌋ with 0 < δ < 1.

The appearance of a giant component is sometimes referred to as percola-
tion on the complete graph and is one of the simplest instance of a phase
transition. We shall now give a simple heuristic argument which predicts cor-
rectly the typical size of the giant component. This argument can be seen as the
simplest example of the ‘cavity method’ that we will develop in the next Chap-
ters. We first notice that, by linearity of expectation, EX1 = NxG, where xG

is the probability that a given variable node i belongs to the giant component.
In the large graph limit, site i is connected to l(k − 1) distinct variable nodes, l
being a Poisson random variable of mean kα (see Sec. 9.3.1). The node i belongs
to the giant component if any of its l(k−1) neighbors does. If we assume that the
l(k−1) neighbors belong to the giant component independently with probability
xG, then we get

xG = El[1 − (1 − xG)l(k−1)] . (9.34)

where l is Poisson distributed with mean kα. Taking the expectation, we get

xG = 1 − exp[−kα+ kα(1 − xG)k−1] , (9.35)

which coincides with Eq. (9.32) if we set xG = 1 − xtr.
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Tree =

root
root(1)

root(2)

root(n)

Fig. 9.10. A rooted tree G on v+1 vertices can be decomposed into a root and
the union of n rooted trees G1, . . . , Gn, respectively on v1, . . . , vn vertices. {fig:CayleyRec}

The above argument has several flaws but only one of them is serious. In
writing Eq. (9.34), we assumed that the probability that none of l randomly
chosen variable nodes belongs to the giant component is just the product of the
probabilities that each of them does not. In the present case it is not difficult to
fix the problem, but in subsequent Chapters we shall see several examples of the
same type of heuristic reasoning where the solution is less straightforward.

9.4.3 Counting trees {se:tkdev}
This paragraph is a technical annex where we compute Tk(v), the number of
trees with v variable nodes, when function nodes have degree k. Let us begin by
considering the case k = 2. Notice that, if k = 2, we can uniquely associate to any
factor graph F an ordinary graph G obtained by replacing each function node by
an edge joining the neighboring variables (for basic definitions on graphs we refer
to Chap. 3). In principle G may contain multiple edges but this does not concern
us as long as we stick to F being a tree. Therefore T2(v) is just the number of
ordinary (non-factor) trees on v distinct vertices. Rather than computing T2(v)
we shall compute the number T ∗

2 (v) of rooted trees on v distinct vertices. Recall
that a rooted graph is just a couple (G, i∗) where G is a graph and i∗ is a
distinguished node in G. Of course we have the relation T ∗

2 (v) = vT2(v).
Consider now a rooted tree on v + 1 vertices, and assume that the root has

degree n (of course 1 ≤ n ≤ v). Erase the root together with its edges and mark
the n vertices that were connected to the root. One is left with n rooted trees of
sizes v1, . . . , vn such that v1 + · · ·+ vn = v. This naturally leads to the recursion

T ∗
2 (v + 1) = (v + 1)

v∑

n=1

1

n!

∑

v1...vn>0
v1+···+vn=v

(
v

v1, · · · , vn

)
T ∗

2 (v1) · · ·T ∗
2 (vn) , (9.36)

which holds for any v ≥ 1. Together with the initial condition T ∗
2 (1) = 1, this

relation allows to determine recursively T ∗
2 (v) for any v > 0. This recursion is

depicted in Fig. 9.10.
The recursion is most easily solved by introducing the generating function

T̂ (z) =
∑

v>0 T
∗
2 (v) zv/v!. Using this definition in Eq. (9.36), we get

T̂ (z) = z exp{T̂ (z)} , (9.37)
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which is closely related to the definition of Lambert’sW function (usually written

as W (z) exp(W (z)) = z). One has in fact the identity T̂ (z) = −W (−z). The

expansion of T̂ (z) in powers of z can be obtained through Lagrange inversion
method (see Exercise below). We get T ∗

2 (v) = vv−1, and therefore T2(v) = vv−2.
This result is known as Cayley formula and is one of the most famous results
in enumerative combinatorics.

Exercise 9.8 Assume that the generating function A(z) =
∑

n>0Anz
n is so-

lution of the equation z = f(A(z)), with f an analytic function such that
f(0) = 0 and f ′(0) = 1. Use Cauchy formula An =

∮
dz
2πi z

−n−1A(z) to show
that

An = coeff
{
f ′(x) (x/f(x))n+1; xn−1

}
. (9.38)

Use this result, known as ‘Lagrange inversion method’, to compute the power
expansion of T̂ (z) and prove Cayley formula T2(v) = vv−2.

Let us now return to the generic k case. The reasoning is similar to the k = 2
case. One finds that the generating function T̂k(z) ≡ ∑v>0 T

∗
k (v)zv/v! satisfies

the equation :⋆

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
, (9.39)

from which one deduces the number of trees with v variable nodes:

T ∗
k (v) =

v! vf−1

(k − 1)!ff !
. (9.40)

In this expression the number of function nodes f is fixed by v = (k − 1)f + 1.

9.5 The local tree-like structure in random graphs
{LocalSection}

9.5.1 Neighborhood of a node
{se:Neighborhood}

There exists a natural notion of distance between variable nodes of a factor
graph. Given a path (ω0, . . . , ωℓ) on the factor graph, we define its length as the
number of function nodes in it. Then the distance between two variable nodes
is defined as the length of the shortest path connecting them (by convention it
is set to +∞ when the nodes belong to distinct connected components). We also
define the neighborhood of radius r of a variable node i, denoted by Bi,r(F )
as the subgraph of F including all the variable nodes at distance at most r from
i, and all the function nodes connected only to these variable nodes.

What does the neighborhood of a typical node look like in a random graph?
It is convenient to step back for a moment from the GN (k,M) ensemble and
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consider a degree-constrained factor graph F
d
= DN (Λ, P ). We furthermore de-

fine the edge perspective degree profiles as λ(x) ≡ Λ′(x)/Λ′(1) and ρ(x) ≡
P ′(x)/P ′(1). These are polynomials

λ(x) =

lmax∑

l=1

λl x
l−1 , ρ(x) =

kmax∑

k=1

ρk x
k−1 , (9.41)

where λl (respectively ρk) is the probability that a randomly chosen edge in the
graph is adjacent to a variable node (resp. function node) of degree l (degree k).
The explicit formulae

λl =
lΛl∑
l′ l

′Λl′
, ρk =

kPk∑
k′ k′Pk′

, (9.42)

are derived by noticing that the graph F contains nlΛl (resp. mkPk) edges
adjacent to variable nodes of degree l (resp. function nodes of degree k).

Imagine constructing the neighborhoods of a node i of increasing radius r.
Given Bi,r(F ), let i1, . . . , iL be the nodes at distance r from i, and deg′i1 , . . . , deg′iL

their degrees in the residual graph25. Arguments analogous to the ones leading
to Proposition 9.8 imply that deg′i1 , . . . , deg′iL

are asymptotically i.i.d. random
variables with deg′in

= ln − 1, and ln distributed according to λln . An analogous
result holds for function nodes (just invert the roles of variable and function
nodes).

This motivates the following definition of an r-generations tree ensemble
Tr(Λ, P ). If r = 0 there is a unique element in the ensemble: a single isolated
node, which is attributed the generation number 0. If r > 0, first generate a tree
from the Tr−1(Λ, P ) ensemble. Then for each variable-node i of generation r− 1
draw an independent integer li ≥ 1 distributed according to λli and add to the
graph li − 1 function nodes connected to the variable i (unless r = 1, in which
case li function nodes are added, with li distributed according to Λli). Next, for
each of the newly added function nodes {a}, draw an independent integer ka ≥ 1
distributed according to ρk and add to the graph ka−1 variable nodes connected
to the function a. Finally, the new variable nodes are attributed the generation
number r. The case of uniformly chosen random graphs where function nodes
have a fixed degree, k, corresponds to the tree-ensemble Tr(e

kα(x−1), xk). (In this
case, it is easy to checkthat the degrees in the residual graph have a Poisson dis- ⋆
tribution with mean kα, in agreement with proposition 9.8 ) With a slight abuse
of notation, we shall use the shorthand Tr(k, α) to denote this tree ensemble.

It is not unexpected that Tr(Λ, P ) constitutes a good model for r-neighborhoods
in the degree-constrained ensemble. Analogously, Tr(k, α) is a good model for
r-neighborhoods in the GN (k,M) ensemble when M ≃ Nα. This is made more
precise below.

25By this we mean F minus the subgraph Bi,r(F ).



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

190 FACTOR GRAPHS AND GRAPH ENSEMBLES

Theorem 9.10 Let F be a random factor graph in the DN (Λ, P ) ensemble (re-
spectively in the GN (k,M) ensemble), i a uniformly random variable node in F ,
and r a non-negative integer. Then Bi,r(F ) converges in distribution to Tr(Λ, P )
(resp. to Tr(k, α)) as N → ∞ with Λ, P fixed (α, k fixed).

In other words, the factor graph F looks locally like a random tree from the
ensemble Tr(Λ, P ).

9.5.2 Loops

We have seen that in the large graph limit, a factor graph F
d
= GN (k,M)

converges locally to a tree. Furthermore, it has been shown in Sec. 9.3.2 that
the number of ‘small’ cycles in such a graph is only Θ(1) an N → ∞. It is
therefore natural to wonder at which distance from any given node loops start
playing a role.

More precisely, let i be a uniformly random site in F . We would like to know
what is the typical length of the shortest loop through i. Of course, this question
has a trivial answer if k(k − 1)α < 1, since in this case most of the variable
nodes belong to small tree components, cf. Sec. 9.4. We shall hereafter consider
k(k − 1)α > 1.

A heuristic guess of the size of this loop can be obtained as follows. Assume
that the neighborhood Bi,r(F ) is a tree. Each function node has k − 1 adjacent
variable nodes at the successive generation. Each variable node has a Poisson
number adjacent function nodes at the successive generation, with mean kα.
Therefore the average number of variable nodes at a given generation is [k(k−1)α]
times the number at the previous generation. The total number of nodes in
Bi,r(F ) is about [k(k− 1)α]r, and loops will appear when this quantity becomes
comparable with the total number of nodes in the system. This yields [k(k −
1)α]r = Θ(N), or r = logN/ log[k(k − 1)α]. This is of course a very crude
argument, but it is also a very robust one: one can for instance change N with
N1±ε affecting uniquely the prefactor. It turns out that the result is correct, and
can be generalized to the DN (Λ, P ) ensemble:

Proposition 9.11 Let F be a random factor graph in the DN (Λ, P ) ensemble
(in the GN (k,M) ensemble), i a uniformly chosen random variable node in F ,
and ℓi the length of the shortest loop in F through i. Assume that c = λ′(1)ρ′(1) >
1 (c = k(k − 1)α > 1). Then, with high probability,

ℓi =
logN

log c
[1 + o(1)] . (9.43)

We shall refer the reader to the literature for the proof, the following exercise
gives a slightly more precise, but still heuristic, version of the previous argument.
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Exercise 9.9 Assume that the neighborhood Bi,r(F ) is a tree and that it
includes n ‘internal’ variables nodes (i.e. nodes whose distance from i is smaller
than r), nl ‘boundary’ variable nodes (whose distance from i is equal to r), and
m function nodes. Let Fr be the residual graph, i.e. F minus the subgraph

Bi,r(F ). It is clear that Fr
d
= GN−n(k,M −m). Show that the probability, pr,

that a function node of Fr connects two of the variable nodes on the boundary
of Bi,r(F ) is

pr = 1 −
[
(1 − q)

k
+ k (1 − q)

k−1
q
]M−m

, (9.44)

where q ≡ nl/(N − n). As a first estimate of pr, we can substitute in this
expression nl, n, m, with their expectations (in the tree ensemble) and call pr

the corresponding estimate. Assuming that r = ρ log N
log[k(k−1)α] , show that

pr = 1 − exp

{
−1

2
k(k − 1)αN2ρ−1

}
[1 +O(N−2+3ρ)] . (9.45)

If ρ > 1/2, this indicates that, under the assumption that there is no loop of
length 2r or smaller through i, there is, with high probability, a loop of length
2r + 1. If, on the other hand, ρ < 1/2, it indicates that there is no loop of
length 2r + 1 or smaller through i. This argument suggests that the length of
the shortest loop through i is about log N

log[k(k−1)α] .

Notes

A nice introduction to factor graphs is the paper (Kschischang, Frey and Loeliger,
2001), see also (Aji and McEliece, 2000). They are also related to graphical
models (Jordan, 1998), to Bayesian networks (Pearl, 1988), and to Tanner graphs
in coding (Tanner, 1981). Among the alternatives to factor graphs, it is worth
recalling ‘normal realizations’ discussed by Forney in (Forney, 2001).

The proof of the Hammersley-Clifford theorem (initially motivated by the
probabilistic modeling of some physical problems) goes back to 1971. A proof,
more detailed references and some historical comments can be found in (Clifford,
1990).

The theory of random graphs has been pioneered by Erdös and Renyi (Erdös
and Rényi, 1960). The emergence of a giant component in a random graph is a
classic result which goes back to their work. Two standard textbooks on random
graphs like (Bollobás, 2001) and (Janson, Luczak and Ruciński, 2000) provide
in particular a detailed study of the phase transition. Graphs with constrained
degree profiles were studied in (Bender and Canfield, 1978). A convenient ‘con-
figuration mode’ for analyzing them was introduced in (Bollobás, 1980) and
allowed for the location of the phase transition in (Molloy and Reed, 1995). Fi-
nally, (Wormald, 1999) provides a useful survey (including short loop properties)
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of degree constrained ensembles.
For general background on hyper-graphs, see (Duchet, 1995). The threshold

for the emergence of a giant component in a random hyper-graph with edges of
fixed size k (corresponding to the factor graph ensemble GN (k,M)) is discussed
in (Schmidt-Pruzan and Shamir, 1985). The neighborhood of the threshold is
analyzed in (Karoński and Luczak, 2002) and references therein.

Ensembles with hyper-edges of different sizes were considered recently in com-
binatorics (Darling and Norris, 2005), as well as in coding theory (as code ensem-
bles). Our definitions and notations for degree profiles and degree constrained
ensembles follows the coding literature (Luby, Mitzenmacher, Shokrollahi, Spiel-
man and Stemann, 1997; Richardson and Urbanke, 2001a).

The local structure of random graphs, and of more complex random objects
(in particular random labeled graphs) is the object of the theory of local weak con-
vergence (Aldous and Steele, 2003). The results in Section 9.5.1 can be phrased
in this framework, cf. for instance ???.
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SATISFIABILITY

{ch:sat}

Because of Cook’s theorem, see Chapter 3, satisfiability lies at the heart of com-
putational complexity theory: this fact has motivated an intense research activity
on this problem. This Chapter will not be a comprehensive introduction to such a
vast topic, but rather present some selected research directions. In particular, we
shall pay special attention to the definition and analysis of ensembles of random
satisfiability instances. There are various motivations for studying random in-
stances. For testing and improving algorithms that solve satisfiability, it is highly
desirable to have an automatic generator of ‘hard’ instances at hand. As we shall
see, properly ‘tuned’ ensembles provide such a generator. Also, the analysis of
ensembles has revealed a rich structure and induced fruitful contacts with other
disciplines. We shall come back to satisfiability, using methods inspired from
statistical physics, in Chapter ??.

Section 10.1 recalls the definition of satisfiability and introduces some stan-
dard terminology. A basic, and widely adopted, strategy for solving decision
problems consists in exploring exhaustively the tree of possible assignments of
the problem’s variables. In Section 10.2 we present a simple implementation of
this strategy for solving satisfiability. In Section 10.3 we introduce some impor-
tant ensembles of random instances. The hardness of satisfiability depends on
the maximum clause length. When clauses have length 2, the decision problem is
solvable in polynomial time. This is the topic of section 10.4. Finally, in Section
10.5 we discuss the existence of a phase transition for random K-satisfiability
with K ≥ 3, when the density of clauses is varied, and derive some rigorous
bounds on the location of this transition.

10.1 The satisfiability problem
{se:sat_intro}

10.1.1 SAT and UNSAT formulas

An instance of the satisfiability problem is defined in terms of N Boolean vari-
ables, and a set of M constraints between them, where each constraint takes
the special form of a clause. A clause is the logical OR of some variables or their
negations. Here we shall adopt the following representation: a variable xi, with
i ∈ {1, . . . , N}, takes values in {0, 1}, 1 corresponding to ‘true’, and 0 to ‘false’;
the negation of xi is xi ≡ 1 − xi. A variable or its negation is called a literal,
and we shall denote it zi , with i ∈ {1, . . . , N} (therefore zi denotes any of xi,
xi). A clause a, with a ∈ {1, ...,M}, involving Ka variables is a constraint which
forbids exactly one among the 2Ka possible assignments to these Ka variables.
It is written as the logical OR (denoted by ∨) function of some variables or their

193
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Fig. 10.1. Factor graph representation of the formula
(x1 ∨ x2 ∨ x4)∧(x1 ∨ x2)∧(x2 ∨ x4 ∨ x5)∧(x1 ∨ x2 ∨ x5)∧(x1 ∨ x3 ∨ x5).{fig:facgraphsatex}

negations. For instance the clause x2 ∨ x12 ∨ x37 ∨ x41 is satisfied by all the vari-
ables’ assignments except those where x2 = 0, x12 = 1, x37 = 0, x41 = 1. When
it is not satisfied, a clause is said to be violated.

We denote by ∂a the subset {ia1 , . . . , iaKa
} ⊂ {1, . . . , N} containing the indices

of the Ka = |∂a| variables involved in clause a. Then clause a is written as Ca =
zia

1
∨zia

2
∨· · ·∨zia

Ka
. An instance of the satisfiability problem can be summarized

as the logical formula (called a conjunctive normal form (CNF)):

F = C1 ∧ C2 ∧ · · · ∧ CM . (10.1)

As we have seen in Chapter 9, Example 9.7, there exists 26 a simple and natural
representation of a satisfiability formula as a factor graph associated with the
indicator function I(x satisfies F ). Actually, it is often useful to use a slightly
more elaborate factor graph using two types of edges: A full edge is drawn be-
tween a variable vertex i and a clause vertex a whenever xi appears in a, and a
dashed edge is drawn whenever xi appears in a. In this way there is a one to one
correspondence between a CNF formula and its graph. An example is shown in
Fig. 10.1.

Given the formula F , the question is whether there exists an assignment of
the variables xi to {0, 1} (among the 2N possible assignments), such that the
formula F is true. An algorithm solving the satisfiability problem must be able,
given a formula F , to either answer ‘YES’ (the formula is then said to be SAT),
and provide such an assignment, called a SAT-assignment, or to answer ‘NO’,
in which case the formula is called UNSAT. The restriction of the satisfiability
problem obtained by requiring that all the clauses in F have the same length
Ka = K, is called the K-satisfiability (or K-SAT) problem.

As usual, an optimization problem is naturally associated to the decision
version of satisfiability: Given a formula F , one is asked to find an assignment

26It may happen that there does not exist any assignment satisfying F , so that one cannot
use this indicator function to build a probability measure. However one can still characterize
the local structure of I(x satisfies F ) by the factor graph
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which violates the smallest number of clauses. This is called the MAX-SAT
problem.

{ex:2-satex1}
Exercise 10.1 Consider the 2-SAT instance defined by the formula F1 = (x1∨
x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3). Show that this
formula is SAT and write a SAT-assignment. [Hint: assign for instance x1 = 1;
the clause x4∨x1 is then reduced to x4, this is a unit clause which fixes x4 = 1;
the chain of ‘unit clause propagation’ either leads to a SAT assignment, or to
a contradiction.]

{ex:2-satex2}
Exercise 10.2 Consider the 2-SAT formula F2 = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x2 ∨
x4) ∧ (x4 ∨ x1) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3). Show that this formula is UNSAT by
using the same method as in the previous Exercise.

{ex:3-satex1}
Exercise 10.3 Consider the 3-SAT formula F3 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨
x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨
x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4). Show that it is UNSAT. [Hint: try to
generalize the previous method by using a decision tree, cf. Sec. 10.2.2 below,
or list the 16 possible assignments and cross out which one is eliminated by
each clause.]

As we already mentioned, satisfiability was the first problem to be proved
NP-complete. The restriction defined by requiring Ka ≤ 2 for each clause a, is
polynomial. However, if one relaxes this condition to Ka ≤ K, with K = 3 or
more, the resulting problem is NP-complete. For instance 3-SAT is NP-complete
while 2-SAT is polynomial. It is intuitively clear that MAX-SAT is “at least as
hard” as SAT: an instance is SAT if and only if the minimum number of violated
clauses (that is the output of MAX-SAT) vanishes. It is less obvious that MAX-
SAT can be “much harder” than SAT. For instance, MAX-2-SAT is NP-hard,
while as said above, its decision counterpart is in P.

The study of applications is not the aim of this book, but one should keep
in mind that satisfiability is related to a myriad of other problems, some of
which have enormous practical relevance. It is a problem of direct importance
to the fields of mathematical logic, computing theory and artificial intelligence.
Applications range from integrated circuit design (modeling, placement, routing,
testing,. . . ) to computer architecture design (compiler optimization, scheduling
and task partitioning,. . . ) and to computer graphics, image processing etc. . .

10.2 Algorithms {se:sat_algo}
10.2.1 A simple case: 2-SAT {se:2satalgo}
The reader who worked out Exercises 10.1 and 10.2 has already a feeling that
2-SAT is an easy problem. The main tool for solving it is the so-called unit
clause propagation (UCP) procedure. If we start from a 2-clause C = z1 ∨ z2
and fix the literal z1, two things may happen:
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• If we fix z1 = 1 the clause is satisfied and disappears from the formula

• If we fix z1 = 0 the clause is transformed into the unit clause z2 which
implies that z2 = 1.

Given a 2-SAT formula, one can start from a variable xi, i ∈ {1, . . . , N} and
fix, for instance xi = 0. Then apply the reduction rule described above to all
the clauses in which xi or xi appears. Finally, fix recursively in the same way
all the literals which appear in unit clauses. This procedure may halt for one of
the following reasons: (i) the formula does not contain any unit clause; (ii) the
formula contains the unit clause zj together with its negation zj .

In the first case, a partial SAT assignment (i.e. an assignment of a subset of
the variables such that no clause is violated) has been found. We will prove below
that such a partial assignment can be extended to a complete SAT assignment
if and only if the formula is SAT. One therefore repeats the procedure by fixing
a not-yet-assigned variable xj .

In the second case, the partial assignment cannot be extended to a SAT as-
signment. One proceeds by changing the initial choice and setting xi = 1. Once
again, if the procedure stops because of reason (i), then the formula can be effec-
tively reduced and the already-fixed variables do not need to be reconsidered in
the following. If on the other hand, also the choice xi = 1 leads to a contradiction
(i.e. the procedure stops because of (ii)), then it is immediate to show that the⋆
formula is necessarily UNSAT.

It is clear that the algorithm defined in this way is very efficient. Its complex-
ity can be measured by the number of variable-fixing operations that it involves.
Since each variable is considered at most twice, this number is at most 2N .

For proving the correctness of this algorithm, we still have to show the fol-
lowing fact: if the formula is SAT and UCP stops because of reason (i), then the
resulting partial assignment can be extended to a global SAT assignment (The
implication in the reverse direction is obvious). The key point is that the residual
formula is formed by a subset R of the variables (the ones which have not yet
been fixed) together with a subset of the original clauses (those which involve
uniquely variables in R). If a SAT assignment exists, its restriction to R satis-
fies the residual formula and constitutes an extension of the partial assignment
generated by UCP.

Exercise 10.4 Write a code for solving 2-SAT using the algorithm described
above.
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Fig. 10.2. Factor graph representation of the 2SAT formula
F = (x1 ∨ x2)∧(x1 ∨ x3)∧(x2 ∨ x3) (left) and corresponding directed graph
D(F ) (right).{fig:DirectedGraph}

{ex:2sat-directed}
Exercise 10.5 A nice way of understanding UCP, and why it is so effective
for 2-SAT, consists in associating to the formula F a directed graph D(F ) (not
to be confused with the factor graph!) as follows. Associate a vertex to each
of the 2N literals (for instance we have one vertex for x1 and one vertex for
x1). Whenever a clause like e.g. x1 ∨ x2 appears in the formula, we have two
implications: if x1 = 1 then x2 = 1; if x2 = 0 then x1 = 0. Represent them
graphically by drawing an oriented edge from the vertex x1 toward x2, and an
oriented edge from x2 to x1. Prove that the F is UNSAT if and only if there
exists a variable index i ∈ {1, . . . , N} such that: D(F ) contains a directed
path from xi to xi, and a directed path from xi to xi. [Hint: Consider the UCP
procedure described above and rephrase it in terms of the directed graph D(F ).
Show that it can be regarded as an algorithm for finding a pair of paths from
xi to xi and vice-versa in D(F ).]

Let us finally notice that the procedure described above does not give any
clue about an efficient solution of MAX-2SAT, apart from determining whether
the minimum number of violated clauses vanishes or not. As already mentioned
MAX-2SAT is NP-hard.

10.2.2 A general complete algorithm
{se:dpll}

As soon as we allow an unbounded number of clauses of length 3 or larger, sat-
isfiability becomes an NP-complete problem. Exercise 10.3 shows how the UCP
strategy fails: fixing a variable in a 3-clause may leave a 2-clause. As a conse-
quence, UCP may halt without contradictions and produce a residual formula
containing clauses which were not present in the original formula. Therefore, it
can be that the partial assignment produced by UCP cannot be extended to a
global SAT assignment even if the original formula is SAT. Once a contradiction
is found, it may be necessary to change any of the choices made so far in order
to find a SAT assignment (as opposite to 2SAT where only the last choice had
to be changed). The exploration of all such possibilities is most conveniently
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described through a decision tree. Each time that a contradiction is found, the
search algorithm backtracks to the last choice for which both possibilities were
not explored.

The most widely used complete algorithms (i.e. algorithms which are able
to either find a satisfying assignment, or prove that there is no such assignment)
rely on this idea. They are known under the name DPLL, from the initials of
their inventors, Davis, Putnam, Logemann and Loveland. The basic recursive
process is best explained on an example, as in Fig. 10.3. Its structure can be
summarized in few lines:

DPLL

Input: A CNF formula F.

Output: A SAT assignment, or a message ‘F is UNSAT’.

1. Initialize n = 0, and G(0) = F.

2. If G(n) contains no clauses, return the assignment xi = 0 for

each i present in G(n) and stop.

3. If G contains the empty clause return the message ‘F is UNSAT’

and stop.

4. Select a variable index i among those which have not yet been fixed.

5. Let G(n + 1) be the formula obtained from G(n) by fixing xi =
1.

6. Set n← n + 1 and go to 2.

7. Set n← n− 1. (No SAT assignment was found such that xi = 1.)

8. Let G(n + 1) be the formula obtained from G(n) by fixing xi =
0.

9. Set n← n + 1 and go to 2.

The algorithm keeps track of the current satisfiability formula as G(n). As shown
in Fig. 10.3 the algorithm state can be represented as a node in the decision tree.
The index n corresponds to the current depth in this tree.

It is understood that, whenever a variable is fixed (instructions 5 and 8

above), all the clauses in which that variable appears are reduced. More precisely,
suppose that the literal xi appears in a clause: the clause is eliminated if one fixes
xi = 1, and it is shortened (by elimination of xi) if one fixes xi = 0. Vice-versa, if
the literal xi is present, the clause is eliminated if one fixes xi = 0 and shortened
in the opposite case.

In the above pseudo-code, we did not specify how to select the next variable
to be fixed in step 4. Various versions of the DPLL algorithm differ in the order
in which the variables are taken in consideration and the branching process is
performed. Unit clause propagation can be rephrased in the present setting as
the following rule: whenever the formula G(n) contains clauses of length 1, xi

must be chosen among the variables appearing in such clauses. In such a case,
no real branching takes place. For instance, if the literal xi appears in a unit
clause, setting xi = 0 immediately leads to an empty clause and therefore to a
stop of the process: one is obviously forced to set xi = 1.
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Apart from the case of unit clauses, deciding on which variable the next
branching will be done is an art, and can result in very different performances.
For instance, it is a good idea to branch on a variable which appears in many
clauses, but other criteria, like the number of UCP that a branching will generate,
can also be used. It is customary to characterize the performances of this class of
algorithms by the number of branching points it generates. This does not count
the actual number of operations executed, which may depend on the heuristic.
However, for any reasonable heuristics, the actual number of operations is within
a polynomial factor (in the instance size) from the number of branchings and
such a factor does not affect the leading exponential behavior.

Whenever the DPLL procedure does not return a SAT assignment, the for-
mula is UNSAT: a representation of the explored search tree provides a proof.
This is sometimes also called an UNSAT certificate. Notice that the length of
an UNSAT certificate is (in general) larger than polynomial in the input size.
This is at variance with a SAT certificate, which is provided, for instance, by a
particular SAT assignment.

Exercise 10.6 Resolution and DPLL.

(i) A powerful approach to proving that a formula is UNSAT relies on the
idea of the resolution proof. Imagine that F contains two clauses: xj∨A,
and xj ∨B, where A and B are subclauses. Show that these two clauses
automatically imply the resolvent on xj , that is the clause A ∨B.

(ii) A resolution proof is constructed by adding resolvent clauses to F . Show
that, if this process produces an empty clause, then the original formula
is necessarily UNSAT. An UNSAT certificate is simply given by the se-
quence of resolvents leading to the empty clause.

(iii) Although this may look different from DPLL, any DPLL tree is an exam-
ple of resolution proof. To see this proceed as follows. Label each ‘UNSAT’
leave of the DPLL tree by the resolution of a pair of clauses of the origi-
nal formula which are shown to be contradictory on this branch (e.g. the
leftmost such leaf in Fig. 10.3 corresponds to the pair of initial clauses
x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3, so that it can be labeled by the resolvent
of these two clauses on x3, namely x1 ∨ x2). Show that each branching
point of the DPLL tree can be labeled by a clause which is a resolvent of
the two clauses labeling its children, and that this process, when carried
on an UNSAT formula, produces a root (the top node of the tree) which
is an empty clause.

10.2.3 Incomplete search
{se:Schoning}

As we have seen above, proving that a formula is SAT is much easier than
proving that it is UNSAT: one ‘just’ needs to exhibit an assignment that satisfies
all the clauses. One can therefore relax the initial objective, and look for an
algorithm that only tries to deal with the first task. This is often referred to
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Fig. 10.3. A sketch of the DPLL algorithm, acting on the formula
(x1 ∨ x2 ∨ x3)∧(x1 ∨ x3 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2 ∨ x4). In order to get a more readable
figure, the notation has been simplified: a clause like (x1 ∨ x2 ∨ x4) is denoted
here as (1̄ 2 4). One fixes a first variable, here x1 = 0. The problem is then
reduced: clauses containing x1 are eliminated, and clauses containing x1 are
shortened by eliminating the literal x1. Then one proceeds by fixing a second
variable, etc. . . At each step, if a unit clause is present, the next variable to be
fixed is chosen among the those appearing in unit clauses. This corresponds
to the unit clause propagation (UCP) rule. When the algorithm finds a con-
tradiction (two unit clauses fixing a variable simultaneously to 0 and to 1), it
backtracks to the last not-yet-completed branching point and explores another
choice for the corresponding variable. In this case for instance, the algorithm
first fixes x1 = 0, then it fixes x2 = 0, which implies through UCP that x3 = 0
and x3 = 1. This is a contradiction, and therefore the algorithm backtracks to
the last choice, which was x2 = 0, and tries instead the other choice: x2 = 1,
etc. . . Here we have taken the naive rule of branching in the fixed order given by
the clause index.{fig:DPL_example}

as an incomplete search algorithm. Such an algorithm can either return a
satisfying assignment or just say ‘I do not know’ whenever it is unable to find
one (or to prove that the formula is UNSAT).

A simple incomplete algorithm, due to Schöning, is based on the simple ran-
dom walk routine:

Walk( F )

Input: A CNF formula F.

Output: A SAT assignment, or a message ‘I do not know’.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

ALGORITHMS 201

1. Assign to each variable a random value 0 or 1 with probability

1/2.

2. Repeat 3N times:

3. If the current assignment satisfies F return it and stop.

4. Choose an unsatisfied clause uniformly at random.

5. Choose a variable xi uniformly at random among the ones belonging

to this clause.

6. Flip it (i.e. set it to 0 if it was 1 and vice-versa).

For this algorithm one can obtain a guarantee of performance:

Proposition 10.1 Denote by p(F ) the probability that this routine, when ex-
ecuted on a formula F , returns a satisfying assignment. If F is SAT, then
p(F ) ≥ pN where

pN =
2

3

(
K

2(K − 1)

)N

. (10.2)

One can therefore run the routine many times (with independent random num-
bers each time) in order to increase the probability of finding a solution. Suppose
that the formula is SAT. If the routine is run 20/pN times, the probability of
not finding any solution is (1 − pN )20/pN ≤ e−20. While this is of course not a
proof of unsatisfiability, it is very close to it. In general, the time required for
this procedure to reduce the error probability below any fixed ε grows as

τN
.
=

(
2(K − 1)

K

)N

. (10.3)

This simple randomized algorithm achieves an exponential improvement over the
naive exhaustive search which takes about 2N operations.

Proof: Let us now prove the lower bound (10.2) on the probability of finding
a satisfying assignment during a single run of the routine Walk( · ). Since, by
assumption, F is SAT, we can consider a particular SAT assignment, let us say
x∗. Let xt be the assignment produced by Walk( · ) after t spin flips, and dt be
the Hamming distance between x∗ and xt. Obviously, at time 0 we have

P{d0 = d} =
1

2N

(
N

d

)
. (10.4)

Since x∗ satisfies F , each clause is satisfied by at least one variable as assigned
in x∗. Mark exactly one such variable per clause. Each time Walk( · ) chooses a
violated clause, it flips a marked variable with probability 1/K, reducing the
Hamming distance by one. Of course, the Hamming distance can decrease also
when another variable is flipped (if more than one variable satisfies that clauses

in x∗). In order to get a bound we introduce an auxiliary integer variable d̂t

which decreases by one each time a marked variable is selected, and increases
by one (the maximum possible increase in Hamming distance due to a single
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flip) otherwise. If we choose the initial condition d̂0 = d0, it follows from the

previous observations that dt ≤ d̂t for any t ≥ 0. We can therefore upper bound
the probability that Walk( · ) finds a solution by the probability that d̂t = 0 for

some 0 ≤ t ≤ 3N . But the random process d̂t = 0 is simply a biased random
walk on the half-line with initial condition (10.4): at each time step it moves to
the right with probability 1/K and to the right with probability 1 − 1/K. The
probability of hitting the origin can then be estimated as in Eq. (10.2), as shown
in the following exercise.

Exercise 10.7 Analysis of the biased random walk d̂t.

(i) Show that the probability for d̂t to start at position d at t = 0 and be at
the origin at time t is

P
{
d̂0 = d ; d̂t = 0

}
=

1

2N

(
N

d

)
1

Kt

(
t

t−d
2

)
(K − 1)

t−d
2 (10.5)

for t+ d even, and vanishes otherwise.

(ii) Use Stirling’s formula to derive an approximation of this probability to

the leading exponential order: P
{
d̂0 = d ; d̂t = 0

} .
= exp{−NΨ(θ, δ)},

where θ = t/N and δ = d/N .

(iii) Minimize Ψ(θ, δ) with respect to θ ∈ [0, 3] and δ ∈ [0, 1], and show
that the minimum value is Ψ∗ = log[2(K − 1)/K]. Argue that pN

.
=

exp{−NΨ∗} to the leading exponential order.

�

Notice that the above algorithm applies a very noisy strategy. While ‘fo-
cusing’ on unsatisfied clauses, it makes essentially random steps. The opposite
philosophy would be that of making greedy steps. An example of ‘greedy’ step
is the following: flip a variable which will lead to the largest positive increase in
the number of satisfied clause.

There exist several refinements of the simple random walk algorithm. One of
the greatest improvement consists in applying a mixed strategy: With probability
p, pick an unsatisfied clause, and flip a randomly chosen variable in this clause
(as in Walk); With probability 1 − p, perform a ‘greedy’ step as defined above.

This strategy works reasonably well if p is properly optimized. The greedy
steps drive the assignment toward ‘quasi-solutions’, while the noise term allows
to escape from local minima.

10.3 Random K-satisfiability ensembles
{se:sat_random_intro}

Satisfiability is NP-complete. One thus expects a complete algorithm to take
exponential time in the worst case. However empirical studies have shown that
many formulas are very easy to solve. A natural research direction is therefore
to characterize ensembles of problems which are easy, separating them from
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those that are hard. Such ensembles can be defined by introducing a probability
measure over the space of instances.

One of the most interesting family of ensembles is random K-SAT. An
instance of random K-SAT contains only clauses of length K. The ensemble is
further characterized by the number of variables N , and the number of clauses
M , and denoted as SATN (K,M). A formula in SATN (K,M) is generated by se-
lecting M clauses of size K uniformly at random among the

(
N
K

)
2K such clauses.

Notice that the factor graph associated to a random K-SAT formula from the
SATN (K,M) ensemble is in fact a random GN (K,M) factor graph.

It turns out that a crucial parameter characterizing the random K-SAT en-
semble is the clause density α ≡ M/N . We shall define the ‘thermodynamic’
limit as M → ∞, N → ∞, with fixed density α. In this limit, several important
properties of random formulas concentrate in probability around their typical
values.

As in the case of random graphs, it is sometimes useful to consider slight
variants of the above definition. One such variant is the SATN (K,α) ensemble.
A random instance from this ensemble is generated by including in the formula
each of the

(
N
K

)
2K possible clauses independently with probability αN2−K/

(
N
K

)
.

Once again, the corresponding factor graph will be distributed according to the
GN (K,α) ensemble introduced in Chapter 9. For many properties, differences
between such variants vanish in the thermodynamic limit (this is analogous to
the equivalence of different factor graph ensembles).

10.3.1 Numerical experiments

Using the DPLL algorithm, one can investigate the properties of typical instances
of the random K-SAT ensemble SATN (K,M). Figure 10.4 shows the probability
PN (K,α) that a randomly generated formula is satisfiable, for K = 2 and K = 3.
For fixed K and N , this is a decreasing function of α, which goes to 1 in the
α → 0 limit and goes to 0 in the α → ∞ limit. One interesting feature in
these simulations is the fact that the crossover from high to low probability
becomes sharper and sharper when N increases. This numerical result points
at the existence of a phase transition at a finite value αc(K): for α < αc(K)
(α > αc(K)) a random K-SAT formula is SAT (respectively, UNSAT) with
probability approaching 1 as N → ∞.

The conjectured phase transition in random satisfiability problems with K ≥
3 has drawn considerable attention. One important reason comes from the study
of the computational effort needed to solve the problem. Figure 10.5 shows the
typical number of branching nodes in the DPLL tree required to solve a typical
random 3-SAT formula. One may notice two important features: For a given value
of the number of variables N , the computational effort has a peak in the region
of clause density where a phase transition seems to occur (compare to Fig. 10.4).
In this region it also increases rapidly with N . Looking carefully at the datas
one can distinguish qualitatively three different regions: at low α the solution is
‘easily’ found and the computer time grows polynomially; at intermediate α, in
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Fig. 10.4. Probability that a formula generated from the random K-SAT en-
semble is satisfied, plotted versus the clause density α. Left: K = 2, right: K = 3.
The curves have been generated using a DPLL algorithm. Each point is the re-
sult of averaging over 104 random formulas. The curves for K = 2 correspond to
formulas of size N = 50, 100, 200, 400 (from right to left). In the case K = 3 the
curves correspond to N = 50 (full line), N = 100 (dashed), N = 200 (dotted).
The transition between satisfiable and unsatisfiable formulas becomes sharper as
N increases. {fig:alphac_SAT_num}

the phase transition region, the problem becomes typically very hard and the
computer time grows exponentially. At larger α, in the region where a random
formula is almost always UNSAT, the problem becomes easier, although the size
of the DPLL tree still grows exponentially with N .

The hypothetical phase transition region is therefore the one where the hard-
est instances of random 3-SAT are located. This makes such a region particularly
interesting, both from the point of view of computational complexity and from
that of statistical physics.

10.4 Random 2-SAT{se:2sat}

From the point of view of computational complexity, 2-SAT is polynomial while
K-SAT is NP-complete for K ≥ 3. It turns out that random 2-SAT is also much
simpler to analyze than the other cases. One important reason is the existence
of the polynomial decision algorithm described in Sec. 10.2.1 (see in particular
Exercise 10.5). This can be analyzed in details using the representation of a 2-
SAT formula as a directed graph whose vertices are associated to literals. One
can then use the mathematical theory of random directed graphs. In particular,
the existence of a phase transition at critical clause density αc(2) = 1 can be
established.

Theorem 10.2 Let PN (K = 2, α) the probability for a SATN (K = 2,M) ran-
dom formula to be SAT. Then

lim
N→∞

PN (K = 2, α) =

{
1 if α < 1 ,
0 if α > 1 .

(10.6)

{thm:2sat_threshold}



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

PHASE TRANSITION IN RANDOM K(≥ 3)-SAT 205

 10

 100

 1000

 10000

 3  3.5  4  4.5  5  5.5  6  6.5  7

α

#nodes

Fig. 10.5. Computational effort of our DPLL algorithm applied to random
3-SAT formulas. Plotted is the average (over 104 instances) of the logarithm of
the number of branching nodes in the search tree, versus the clause density α.
From bottom to top: N = 50, 100, 150, 200.{fig:algoperf_3SAT_num}

Proof: Here we shall prove that a formula is almost surely SAT for α < 1. The
result for α > 1 is a consequence of theorem 10.5 below. We use the directed
graph representation defined in Ex. 10.5. In this graph, define a bicycle of length s
as a path (u,w1, w2, . . . , ws, v), where the wi are literals on s distinct variables,
and u, v ∈ {w1, . . . , ws, w1, . . . , ws}. As we saw in Ex. 10.5, if a formula F is
UNSAT, its directed graph D(F ) has a cycle containing the two literals xi and
xi for some i. From such a cycle one easily builds a bicycle. Therefore:

P(F is UNSAT) ≤ P(D(F )has a bicycle) ≤
N∑

s=2

Ns2s(2s)2Ms+1

(
1

4
(
N
2

)

)s+1

.

(10.7) {eq:proof2sat1}

The sum is over the size s of the bicycle; Ns is an upper bound to
(
N
s

)
, the

number of ways one can choose the s variables; 2s is the choice of literals, given
the variables; (2s)2 is the choice of u, v; Ms+1 is an upper bound to

(
M

s+1

)
, the

choices of the clauses involved in the bicycle; the last factor is the probability
that each of the chosen clauses of the bicycle appears in the random formula. A
direct summation of the series in 10.7 shows that, in the large N limit, the result
behaves as C/N with a fixed C whenever M/(N − 1) < 1. �

10.5 Phase transition in random K(≥ 3)-SAT
{se:Ksat_intro}

10.5.1 Satisfiability threshold conjecture

As noticed above, numerical studies suggest that random K-SAT undergoes a
phase transition between a SAT phase and an UNSAT phase, for any K ≥ 2.
There is a widespread belief that this is indeed true, as formalized by the following
conjecture:
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Conjecture 10.3 For any K ≥ 2, there exists a threshold αc(K) such that:

lim
N→∞

PN (K,α) =

{
1 if α < αc(K) ,
0 if α > αc(K) .

(10.8)

{conj:sat_threshold}

As discussed in the previous Section, this Conjecture is proved in the case K = 2.
The existence of a phase transition is still an open mathematical problem for
larger K, although the following theorem gives some strong support:

{thm:Friedgut}
Theorem 10.4 (Friedgut) Let PN (K,α) the probability for a random formula
from the SATN (K,M) ensemble to be satisfiable, and assume K ≥ 2. Then there

exists a sequence of α
(N)
c (K) such that, for any ε > 0,

lim
N→∞

PN (K,α) =

{
1 if α < α

(N)
c (K) − ε ,

0 if α > α
(N)
c (K) + ε ,

(10.9)

In other words, the crossover from SAT to UNSAT becomes sharper and sharper
as N increases. For N large enough, it takes place in a window smaller than
any fixed width ε. The ‘only’ missing piece to prove the satisfiability threshold

conjecture is the convergence of α
(N)
c (K) to some value αc(K) as N → ∞.

10.5.2 Upper bounds
{sec:UpperBoundSat}

Rigorous studies have allowed to establish bounds on the satisfiability threshold

α
(N)
c (K) in the large N limit. Upper bounds are obtained by using the first

moment method. The general strategy is to introduce a function U(F ) acting on
formulas, with values in N, such that:

U(F ) =

{
0 if F is UNSAT,
≥ 1 otherwise.

(10.10){eq:satUBcond}

Therefore, if F is a random K-SAT formula

P {F is SAT} ≤ EU(F ) . (10.11){eq:sat1mom}

The inequality becomes an equality if U(F ) = I(F is SAT). Of course, we do
not know how to compute the expectation in this case. The idea is to find some
function U(F ) which is simple enough that EU(F ) can be computed, and with
an expectation value that goes to zero as N → ∞, for large enough α.

The simplest such choice is U(F ) = Z(F ), the number of SAT assignments
(this is the analogous of a “zero-temperature” partition function). The expec-
tation EZ(F ) is equal to the number of assignments, 2N , times the probability
that an assignment is SAT (which does not depend on the assignment). Consider
for instance the all zeros assignment xi = 0, i = 1, . . . , N . The probability that
it is SAT is equal to the product of the probabilities that is satisfies each of
the M clauses. The probability that the all zeros assignment satisfies a clause
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is (1 − 2−K) because a K-clause excludes one among the 2K assignments of
variables which appear in it. Therefore

EZ(F ) = 2N (1 − 2−K)M = exp
[
N
(
log 2 + α log(1 − 2−K)

)]
. (10.12){eq:satZann}

This result shows that, for α > αUB,1(K), where

αUB,1(K) ≡ − log 2/ log(1 − 2−K) , (10.13){eq:alphaub1sat}

EZ(F ) is exponentially small at large N . Equation (10.11) implies that the
probability of a formula being SAT also vanishes at large N for such an α:

{thm:satupb1}
Theorem 10.5 If α > αUB,1(K), then limN→∞ P{F is SAT} = 0. Therefore

α
(N)
c (K) < αUB,1(K) + δ for any δ > 0 and N large enough.

One should not expect this bound to be tight. The reason is that, in the
SAT phase, Z(F ) takes exponentially large values, and its fluctuations tend to
be exponential in the number of variables.
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Example 10.6 As a simple illustration consider a toy example: the random
1-SAT ensemble SATN (1, α). A formula is generated by including each of the
2N literals as a clause independently with probability α/2 (we assume of course
α ≤ 2). In order for the formula to be SAT, for each of the N variables, at
most 1 of the corresponding literals must be included. We have therefore

PN (K = 1, α) = (1 − α2/4)N . (10.14)

In other words, the probability for a random formula to be SAT goes exponen-
tially fast to 0 for any α > 0: αc(K = 1) = 0 (while αUB,1(K) = 1). Consider
now the distribution of Z(F ). If F is SAT, then Z(F ) = 2n, where n is the
number of clauses such that none of the corresponding literals is included in
F . One has:

P {Z(F ) = 2n} =

(
N

n

) (
1 − α

2

)2n [
α
(
1 − α

2

)]N−n

, (10.15)

for any n ≥ 0. We shall now use this expression to compute EZ(F ) in a
slightly indirect but instructive fashion. First, notice that Eq. (10.15) implies
the following large deviation principle for n > 0:

P
{
Z(F ) = 2Nν

} .
= exp{−N Iα(ν)} (10.16)

Iα(ν) ≡ −H(ν) − (1 + ν) log(1 − α/2) − (1 − ν) logα .(10.17)

We now compute the expectation of Z(F ) via the saddle point approximation

EZ(F )
.
=

∫
e−NIα(ν)+Nν log 2dν

.
= exp

{
N max

ν
[−Iα(ν) + ν log 2]

}
.(10.18)

The maximum is achieved at ν∗ = 1−α/2. One finds Iα(ν∗) = log(1−α/2) +
(α/2) log 2 > 0: the probability of having Z(F )

.
= 2Nν∗

is exponentially small.
On the other hand −Iα(ν∗) + ν∗ log 2 = log(2 − α) > 0 for α < 1, the factor
2Nν∗

overcomes the exponentially small probability of having such a large Z(F ),
resulting in an exponentially large EZ(F ).

Exercise 10.8 Repeat the derivation of Theorem 10.5 for the SATN (K,α)
ensemble (i.e. compute EZ(F ) for this ensemble and find for which values of α
this expectation is exponentially small). Show that the upper bound obtained
in this case is α = 2K log 2. This is worse than the previous upper bound
αUB,1(K), although one expects the threshold to be the same. Why? [Hint: The
number of clauses M in a SATN (K,α) formula has binomial distribution with
parameters N , and α. What values of M provide the dominant contribution to
EZ(F )?]

In order to improve upon Theorem 10.5 using the first moment method, one
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needs a better (but still simple) choice of the function U(F ). A possible strategy
consists in defining some small subclass of ‘special’ SAT assignments, such that
if a SAT assignment exists, then a special SAT assignment exists too. If the
subclass is small enough, one can hope to reduce the fluctuations in U(F ) and
sharpen the bound.

One choice of such a subclass consists in ‘locally maximal’ SAT assignments.
Given a formula F , an assignment x for this formula is said to be a locally
maximal SAT assignment if and only if: (1) It is a SAT assignment, (2) for any
i such that xi = 0, the assignment obtained by flipping the i-th variable from 0
to 1 is UNSAT. Define U(F ) as the number of locally maximal SAT assignments
and apply the first moment method to this function. This gives:

{thm:satupb2}
Theorem 10.7 For any K ≥ 2, let αUB,2(K) be the unique positive solution of
the equation:

α log(1 − 2−K) + log

[
2 − exp

(
− Kα

2K − 1

)]
= 0 . (10.19) {eq:alphaub2sat}

Then α
(N)
c (K) ≤ αUB,2(K) for large enough N .

The proof is left as the following exercise:

Exercise 10.9 Consider an assignment x where exactly L variables are set to
0, the remaining N −L ones being set to 1. Without loss of generality, assume
x1, . . . , xL to be the variables set to zero.

(i) Let p be the probability that a clause constrains the variable x1, given
that the clause is satisfied by the assignment x (By a clause constraining
x1, we mean that the clause becomes unsatisfied if x1 is flipped from 0
to 1). Show that p =

(
N−1
K−1

)
[(2K − 1)

(
N
K

)
]−1.

(ii) Show that the probability that variable x1 is constrained by at least one of
the M clauses, given that all these clauses are satisfied by the assignment
x, is equal to q = 1 − (1 − p)

M

(iii) Let Ci be the event that xi is constrained by at least one of the M clauses.
If C1, . . . , CL were independent events, under the condition that x satisfies
F , the probability that x1, . . . xL are constrained would be equal qL. Of
course C1, . . . , CL are not independent. Find an heuristic argument to
show that they are anti-correlated and their joint probability is at most
qL (consider for instance the case L = 2).

(iv) Show that E [U(F )] = (1− 2−K)M
∑N

L=0

(
N
L

)
qL = (1− 2−K)M [1 + q]

N

and finish the proof by working out the large N asymptotics of this
formula (with α = M/N fixed).

In Table 10.1 we report the numerical values of the upper bounds αUB,1(K)
and αUB,2(K) for a few values of K. These results can be slightly improved
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upon by pursuing the same strategy. For instance, one may strengthen the con-
dition of maximality to flipping 2 or more variables. However the quantitative
improvement in the bound is rather small.

10.5.3 Lower bounds

Two main strategies have been used to derive lower bounds of α
(N)
c (K) in the

large N limit. In both cases one takes advantage of Theorem 10.4: In order to

show that α
(N)
c (K) ≥ α∗, it is sufficient to prove that a random SATN (K,M)

formula, with M = αN , is SAT with non vanishing probability in the N → ∞
limit.

The first approach consists in analyzing explicit heuristic algorithms for find-
ing SAT assignments. The idea is to prove that a particular algorithm finds a
SAT assignment with finite probability as N → ∞ when α is smaller than some
value.

One of the simplest such bounds is obtained by considering unit clause prop-
agation. Whenever there exist unit clauses, assign one of the variables appearing
in these clauses in order to satisfy it, and proceed recursively. Otherwise, chose
a variable uniformly at random among those which are not yet fixed assign it to
0 or 1 with probability 1/2. The algorithm halts if it finds a contradiction (i.e. a
couple of opposite unit clauses) or if all the variables have been assigned. In the
latter case, the found assignment satisfies the formula.

This algorithm is then applied to a random K-SAT formula with clause den-
sity α. It can be shown that a SAT assignment is found with positive probability

for α small enough: this gives the lower bound α
(N)
c (K) ≥ 1

2

(
K−1
K−2

)K−2
2K

K in

the N → ∞ limit. In the Exercise below we give the main steps of the reasoning
for the case K = 3, referring to the literature for more detailed proofs.
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{ex:UCPAnalysis}
Exercise 10.10 After T iterations, the formula will contain 3-clauses, as well
as 2-clauses and 1-clauses. Denote by Cs(T ) the set of s-clauses, s = 1, 2, 3, and
by Cs(T ) ≡ |Cs(T )| its size. Let V(T ) be the set of variables which have not yet
been fixed, and L(T ) the set of literals on the variables of V(T ) (obviously we
have |L(T )| = 2|V(T )| = 2(N − T )). Finally, if a contradiction is encountered
after Thalt steps, we adopt the convention that the formula remains unchanged
for all T ∈ {Thalt, . . . , N}.

(i) Show that, for any T ∈ {1, . . . , N}, each clause in Cs(T ) is uniformly
distributed among the s-clauses over the literals in L(T ).

(ii) Show that the expected change in the number of 3- and 2-clauses is

given by E [C3(T + 1) − C3(T )] = − 3C3(T )
N−T and E [C2(T + 1) − C2(T )] =

3C3(T )
2(N−T ) −

2C2(T )
N−T .

(iii) Show that, conditional on C1(T ), C2(T ), and C3(T ), the change in the

number of 1-clauses is distributed as follows: C1(T + 1) − C1(T )
d
=

−I(C1(T ) > 0) + B
(
C2(T ), 1

N−T

)
. (We recall that B(n, p) denotes a

binomial random variable of parameters n, and p (cf. App. A)).

(iv) It can be shown that, as N → ∞ at fixed t = T/N , the variables
C2/3(T )/N concentrate around their expectation values, and these con-
verge to smooth functions cs(t). Argue that these functions must solve
the ordinary differential equations: dc3

dt = − 3
1−tc3(t);

dc2

dt = 3
2(1−t)c3(t) −

2
1−tc2(t). Check that the solutions of these equations are: c3(t) = α(1−t)3,
c2(t) = (3α/2)t(1 − t)2.

(v) Show that the number of unit clauses is a Markov process described by

C1(0) = 0, C1(T + 1) − C1(T )
d
= −I(C1(T ) > 0) + η(T ), where η(T )

is a Poisson distributed random variable with mean c2(t)/(1 − t), where
t = T/N . Given C1 and a time T , show that the probability that there
is no contradiction generated by the unit clause algorithm up to time T

is
∏T

τ=1 (1 − 1/(2(N − τ)))
[C1(τ)−1]I(C1(τ≥1)

.

(vi) Let ρ(T ) be the probability that there is no contradiction up to
time T . Consider T = N(1 − ǫ); show that ρ(N(1 − ǫ)) ≥ (1 −
1/(2Nǫ))AN+B P(

∑N(1−ǫ)
τ=1 C1(τ) ≤ AN + B). Assume that α is such

that, ∀t ∈ [0, 1 − ǫ] : c2(t)/(1 − t) < 1. Show that there exists A,B

such that limN→∞ P(
∑N(1−ǫ)

τ=1 C1(τ) ≤ AN + B) is finite. Deduce that
in the large N limit, there is a finite probability that, at time N(1 − ǫ),
the unit clause algorithm has not produced any contradiction so far, and
C1(N(1 − ǫ)) = 0.

(vii) Conditionnaly to the fact that the algorithm has not produced any con-
tradiction and C1(N(1 − ǫ)) = 0, consider the problem that remains at
time T = N(1 − ǫ). Transform each 3-clause into a 2-clause by removing
from it a uniformly random variable. Show that one obtains, for ǫ small
enough, a random 2-SAT problem with a small clause density ≤ 3ǫ2/2,
so that this is a satisfiable instance.

(viii) Deduce that, for α < 8/3, the unit clause propagation algorithm finds a
solution with a finite probability
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More refined heuristics have been analyzed using this type of method and

lead to better lower bounds on α
(N)
c (K). We shall not elaborate on this here, but

rather present a second strategy, based on a structural analysis of the problem.
The idea is to use the second moment method. More precisely, we consider a
function U(F ) of the SAT formula F , such that U(F ) = 0 whenever F is UNSAT
and U(F ) > 0 otherwise. We then make use of the following inequality:

P{F is SAT} = P{U(F ) > 0} ≥ [E U(F )]2

E[U(F )2]
. (10.20){eq:sat2mom}

The present strategy is more delicate to implement than the first moment method,

used in Sec. 10.5.2 to derive upper bounds on α
(N)
c (K). For instance, the sim-

ple choice U(F ) = Z(F ) does not give any result: It turns out that the ratio⋆
[EZ(F )]2/E[Z(F )2] is exponentially small in N for any non vanishing value of
α, so that the inequality (10.20) is useless. Again one needs to find a function
U(F ) whose fluctuations are smaller than the number Z(F ) of SAT assignments.
More precisely, one needs the ratio [EU(F )]2/E[U(F )2] to be non vanishing in
the N → ∞ limit.

A successful idea uses a weighted sum of SAT assignments:

U(F ) =
∑

x

M∏

a=1

W (x, a) . (10.21)

Here the sum is over all the 2N assignments, and W (x, a) is a weight associated
with clause a. This weight must be such that W (x, a) = 0 when the assignment
x does not satisfy clause a, and W (x, a) > 0 otherwise. Let us choose a weight
which depends on the number r(x, a) of variables which satisfy clause a in the
assignment x:

W (x, a) =

{
ϕ(r(x, a)) if r(x, a) ≥ 1,
0 otherwise.

(10.22)

It is then easy to compute the first two moments of U(F ):

EU(F ) = 2N

[
2−K

K∑

r=1

(
K

r

)
ϕ(r)

]M

, (10.23)

E
[
U(F )2

]
= 2N

N∑

L=0

(
N

L

)
[gϕ(N,L)]

M
. (10.24)

Here gϕ(N,L) is the expectation value of the product W (x, a)W (y, a) when a
clause a is chosen uniformly at random, given that x and y are two assignments
of N variables which agree on exactly L of them.

In order to compute gϕ(N,L), it is convenient to introduce two binary vectors
~u,~v ∈ {0, 1}K . They encode the following information: Consider a clause a, fix
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us = 1 if in the assignment x the s-th variable of clause a satisfies the clause,
and us = 0 otherwise. The components of ~v are defined similarly but with the
assignment y. Furthermore, we denote by d(~u,~v) the Hamming distance between
these vectors, and by w(~u), w(~v) their Hamming weights (number of non zero
components). Then

gϕ(N,L) = 2−K
∑

~u,~v

′ ϕ (w(~u))ϕ (w(~v))

(
L

N

)d(~u,~v)(
1 − L

N

)K−d(~u,~v)

. (10.25)

Here the sum
∑′

runs over K-component vectors ~u, ~v with at least one non zero
component. A particularly simple case is ϕ(r) = λr. Denoting z = L/N , one
finds:

gw(N,L) = 2−K
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
.

(10.26)
The first two moments can be evaluated from Eqs. (10.23), (10.24):

EU(F )
.
= exp{Nh1(λ, α)} , E [U(F )2]

.
= exp{N max

z
h2(λ, α, z)} , (10.27)

where the maximum is taken over z ∈ [0, 1] and

h1(λ, α) ≡ log 2 − αK log 2 + α log
[
(1 + λ)K − 1

]
, (10.28)

h2(λ, α, z) ≡ log 2 − z log z − (1 − z) log(1 − z) − αK log 2 + (10.29)

+α log
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
.

Evaluating the above expression for z = 1/2 one finds h2(λ, α, 1/2) = 2h1(λ, α).
The interpretation is as follows. Setting z = 1/2 amounts to assuming that the
second moment of U(F ) is dominated by completely uncorrelated assignments
(two uniformly random assignments agree on about half of the variables). This
results in the factorization of the expectation E [U(F )2] ≈ [EU(F )]2.

Two cases are possible: either the maximum of h2(λ, α, z) over z ∈ [0, 1] is
achieved only at z = 1/2 or not.

(i) In the latter case maxz h2(λ, α, z) > 2h1(λ, α) strictly, and therefore the
ratio [EU(F )]2/E[U(F )2] is exponentially small in N , the second moment
inequality (10.20) is useless.

(ii) If on the other hand the maximum of h2(λ, α, z) is achieved only at z = 1/2,
then the ratio [EU(F )]2/E[U(F )2] is 1 to the leading exponential order.
It is not difficult to work out the precise asymptotic behavior (i.e. to com-
pute the prefactor of the exponential). One finds that [EU(F )]2/E[U(F )2]

remains finite when N → ∞. As a consequence α ≤ α
(N)
c (K) for N large

enough.
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Table 10.1 Satisfiability thresholds for random K-SAT. We report the lower
bound from Theorem (10.8) and the upper bounds from Eqs. (10.13) and (10.19).

K 3 4 5 6 7 8 9 10

αLB(K) 2.548 7.314 17.62 39.03 82.63 170.6 347.4 701.5
αUB,1(K) 5.191 10.74 21.83 44.01 88.38 177.1 354.5 709.4
αUB,2(K) 4.666 10.22 21.32 43.51 87.87 176.6 354.0 708.9

{tab:alphabounds}

A necessary condition for the second case to occur is that z = 1/2 is a local
maximum of h2(λ, α, z). This implies that λmust be the (unique) strictly positive
root of:

(1 + λ)K−1 =
1

1 − λ
. (10.30) {eq:lambdadef}

We have thus proved that:
{thm:KSAT_lowerbound}

Theorem 10.8 Let λ be the positive root of Eq. (10.30), and the function h2( · )
be defined as in Eq. (10.29). Assume that h2(λ, α, z) achieves its maximum, as a
function of z ∈ [0, 1] only at z = 1/2. Then a random SATN (K,α) is SAT with
probability approaching one as N → ∞.

Let αLB(K) be the largest value of α such that the hypotheses of this Theorem
are satisfied. The Theorem implies an explicit lower bound on the satisfiability

threshold: α
(N)
c (K) ≥ αLB(K) in the N → ∞ limit. Table 10.1 summarizes some

of the values of the upper and lower bounds found in this Section for a few values
of K. In the large K limit the following asymptotic behaviors can be shown to
hold:

αLB(K) = 2K log 2 − 2(K + 1) log 2 − 1 + o(1) , (10.31)

αUB,1(K) = 2K log 2 − 1

2
log 2 + o(1) . (10.32)

In other words, the simple methods exposed in this Chapter allow to determine
the satisfiability threshold with a relative error behaving as 2−K in the large
K limit. More sophisticated tools, to be discussed in the next Chapters, are
necessary for obtaining sharp results at finite K.

{ex:SecondMoment}
Exercise 10.11 [Research problem] Show that the choice of weight ϕ(r) = λr

is optimal: all other choices for ϕ(r) give a worse lower bound. What strategy
could be followed to improve the bound further?

Notes

The review paper (Gu, Purdom, Franco and Wah, 2000) is a rather comprehen-
sive source of information on the algorithmic aspects of satisfiability. The reader
interested in applications will also find there a detailed and referenced list.

Davis and Putnam first studied an algorithm for satisfiability in (Davis and
Putnam, 1960). This was based on a systematic application of the resolution
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rule. The backtracking algorithm discussed in the main text was introduced in
(Davis, Logemann and Loveland, 1962).

Other ensembles of random CNF formulas have been studied, but it turns
out it is not so easy to find hard formulas. For instance take N variables, and
generate M clauses independently according to the following rule. In a clause
a, each of the variables appears as xi or xi with the same probability p ≤ 1/2,
and does not appear with probability 1− 2p. The reader is invited to study this
ensemble; an introduction and guide to the corresponding literature can be found ⋆
in (Franco, 2000). Another useful ensemble is the “2 + p” SAT problem which
interpolates between K = 2 and K = 3 by picking pM 3-clauses and (1 − p)M
2-clauses, see (Monasson, Zecchina, Kirkpatrick, Selman and Troyansky, 1999)

The polynomial nature of 2-SAT is discussed in (Cook, 1971). MAX-2SAT
was shown to be NP-complete in (Garey, Johnson and Stockmeyer, 1976).

Schöning’s algorithm was introduced in (Schöning, 1999) and further dis-
cussed in (Schöning, 2002). More general random walk strategies for SAT are
treated in (Papadimitriou, 1991; Selman and Kautz, 1993; Selman, Kautz and
Cohen, 1994).

The threshold αc = 1 for random 2-SAT was proved in (Chvátal and Reed,
1992), (Goerdt, 1996) and (de la Vega, 1992), but see also (de la Vega, 2001).
The scaling behavior near to the threshold has been analyzed through graph
theoretical methods in (Bollobas, Borgs, Chayes, Kim and Wilson, 2001).

The numerical identification of the phase transition in random 3-SAT, and
the observation that difficult formulas are found near to the phase transition,
are due to Kikpatrick and Selman (Kirkpatrick and Selman, 1994; Selman and
Kirkpatrick, 1996). See also (Selman, Mitchell and Levesque, 1996).

Friedgut’s theorem is proved in (Friedgut, 1999).
Upper bounds on the threshold are discussed in (Dubois and Boufkhad, 1997;

Kirousis, Kranakis, Krizanc and Stamatiou, 1998). Lower bounds for the thresh-
old in random K-SAT based on the analysis of some algorithms were pioneered
by Chao and Franco. The paper (Chao and Franco, 1986) corresponds to Ex-
ercise 10.10, and a generalization can be found in (Chao and Franco, 1990).
A review of this type of methods is provided by (Achlioptas, 2001). (Cocco,
Monasson, Montanari and Semerjian, 2003) gives a survey of the analysis of al-
gorithms based on physical methods. The idea of deriving a lower bound with
the weighted second moment method was discussed in (Achlioptas and Moore,
2005). The lower bound which we discuss here is derived in (Achlioptas and
Peres, 2004); this paper also solves the first question of Exercise 10.11. A sim-
ple introduction to the second moment method in various constraint satisfaction
problems is (Achlioptas, Naor and Peres, 2005), see also (Gomes and Selman,
2005).



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

11

LOW-DENSITY PARITY-CHECK CODES

{ch:LDPC}

Low-density parity-check (LDPC) error correcting codes were introduced in 1963
by Robert Gallager in his Ph.D. thesis. The basic motivation came from the ob-
servation that random linear codes, cf. Section ??, had excellent theoretical per-
formances but were unpractical. In particular, no efficient algorithm was known
for decoding. In retrospect, this is not surprising, since it was later shown that
decoding for linear codes is an NP-hard problem.

The idea was then to restrict the RLC ensemble. If the resulting codes had
enough structure, one could exploit it for constructing some efficient decoding
algorithm. This came of course with a price: restricting the ensemble could spoil
its performances. Gallager’s proposal was simple and successful (but ahead of
times): LDPC codes are among the most efficient codes around.

In this Chapter we introduce one of the most important families of LDPC en-
sembles and derive some of their basic properties. As for any code, one can take
two quite different points of view. The first is to study the code performances27

under optimal decoding. In particular, no constraint is imposed on the computa-
tional complexity of decoding procedure (for instance decoding through a scan
of the whole, exponentially large, codebook is allowed). The second approach
consists in analyzing the code performance under some specific, efficient, decod-
ing algorithm. Depending on the specific application, one can be interested in
algorithms of polynomial complexity, or even require the complexity to be linear
in the block-length.

Here we will focus on performances under optimal decoding. We will derive
rigorous bounds, showing that appropriately chosen LDPC ensembles allow to
communicate reliably at rates close to Shannon’s capacity. However, the main
interest of LDPC codes is that they can be decoded efficiently, and we will discuss
a simple example of decoding algorithm running in linear time. The full-fledged
study of LDPC codes under optimal decoding is deferred to Chapters ??. A more
sophisticated decoding algorithm will be presented and analyzed in Chapter ??.

After defining LDPC codes and LDPC code ensembles in Section 11.1, we
discuss some geometric properties of their codebooks in Section 11.2. In Sec-
tion 11.3 we use these properties to a lower bound on the threshold for reliable
communication. An upper bound follows from information-theoretic considera-

27Several performance parameters (e.g. the bit or block error rates, the information capacity,
etc.) can be of interest. Correspondingly, the ‘optimal’ decoding strategy can vary (for instance
symbol MAP, word MAP, etc.). To a first approximation, the choice of the performance criterion
is not crucial, and we will keep the discussion general as far as possible.

216
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tions. Section 11.4 discusses a simple-minded decoding algorithm, which is shown
to correct a finite fraction of errors.

11.1 Definitions {se:DefLDPC}

11.1.1 Boolean linear algebra

Remember that a code is characterized by its codebook C, which is a subset of
{0, 1}N . LDPC codes are linear codes, which means that the codebook is a
linear subspace of {0, 1}N . In practice such a subspace can be specified through
an M×N matrix H, with binary entries Hij ∈ {0, 1}, and M < N . The codebook
is defined as the kernel of H:

C = {x ∈ {0, 1}N : Hx = 0 } . (11.1)

Here and in all this chapter, the multiplications and sums involved in Hx are
understood as being computed modulo 2. The matrix H is called the parity
check matrix of the code. The size of the codebook is 2N−rank(H), where rank(H)
denotes the rank of the matrix H (number of linearly independent rows). As
rank(H) ≤M , the size of the codebook is |C| ≥ 2N−M . With a slight modification
with respect to the notation of Chapter 1, we let L ≡ N −M . The rate R of the
code verifies therefore R ≥ L/N , equality being obtained when all the rows of H

are linearly independent.
Given such a code, encoding can always be implemented as a linear operation.

There exists a N × L binary matrix G (the generating matrix) such that the
codebook is the image of G: C = {x = Gz , where z ∈ {0, 1}L}. Encoding is
therefore realized as the mapping z 7→ x = Gz. (Notice that the product H G is
a M × L ‘null’ matrix with all entries equal to zero).

11.1.2 Factor graph

In Example 9.5 we described the factor graph associated with one particular
linear code (a Hamming code). The recipe to build the factor graph, knowing
H, is as follows. Let us denote by ia1 , . . . , i

a
k(a) ∈ {1, . . . , N} the column indices

such that H has a matrix element equal to 1 at row a and column iaj . Then the
a-th coordinate of the vector Hx is equal to xia

1
⊕ · · · ⊕ xia

k(a)
. Let PH(x) be the

uniform distribution over all codewords of the code H (hereafter we shall often
identify a code with its parity check matrix). It is given by:

PH(x) =
1

Z

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0) . (11.2)

Therefore, the factor graph associated with PH(x) (or with H) includesN variable
nodes, one for each column of H, and M function nodes (also called, in this
context, check nodes), one for each row. A factor node and a variable node are
joined by an edge if the corresponding entry in H is non-vanishing. Clearly this
procedure can be inverted: to any factor graph with N variable nodes and M
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function nodes, we can associate an M × N binary matrix H, the adjacency
matrix of the graph, whose non-zero entries correspond to the edges of the
graph.

11.1.3 Ensembles with given degree profiles
{se:LDPCegdp}

In Chapter 9 we introduced the ensembles of factor graphs DN (Λ, P ). These
have N variable nodes, and the two polynomials Λ(x) =

∑∞
n=0 Λnx

n, P (x) =∑∞
n=0 Pnx

n define the degree profiles: Λn is the probability that a randomly
chosen variable node has degree n, Pn is the probability that a randomly cho-
sen function node has degree n. We always assume that variable nodes have
degrees ≥ 1, and function nodes have degrees ≥ 2, in order to eliminate triv-
ial cases. The numbers of parity check and variable nodes satisfy the relation
M = NΛ′(1)/P ′(1).

We define the ensemble LDPCN (Λ, P ) to be the ensemble of LDPC codes
whose parity check matrix is the adjacency matrix of a random graph from the
DN (Λ, P ) ensemble. (We will be interested in the limit N → ∞ while keeping the
degree profiles fixed. Therefore each vertex typically connects to a vanishingly
small fraction of other vertices, hence the qualification ‘low density’). The ratio
L/N = (N −M)/N = 1−Λ′(1)/P ′(1), which is a lower bound to the actual rate
R, is called the design rate Rdes of the code (or, of the ensemble). The actual
rate of a code from the LDPCN (Λ, P ) ensemble is of course a random variable,
but we will see below that it is in general sharply concentrated ‘near’ Rdes.

A special case which is often considered is the one of ‘regular’ graphs with
fixed degrees: all variable nodes have degree l and all functions nodes have degree
k, (i.e. P (x) = xk and Λ(x) = xl). The corresponding code ensemble is usually
simply denoted as LDPCN (l, k), or, more synthetically as (l, k). It has design
rate Rdes = 1 − l

k .
Generating a uniformly random graph from the DN (Λ, P ) ensemble is not a

trivial task. The simplest way to by-pass such a problem consists in substituting
the uniformly random ensemble with a slightly different one which has a simple
algorithmic description. One can proceed for instance as follows. First separate
the set of variable nodes uniformly at random into subsets of sizes NΛ0, NΛ1,
. . . , NΛlmax

, and attribute 0 ‘sockets’ to the nodes in the first subset, one socket
to each of the nodes in the second, and so on. Analogously, separate the set of
check nodes into subsets of size MP0, MP1, . . . , MPkmax

and attribute to nodes
in each subset 0, 1, . . . , kmax socket. At this point the variable nodes have NΛ′(1)
sockets, and so have the check nodes. Draw a uniformly random permutation over
NΛ′(1) objects and connect the sockets on the two sides accordingly.

Exercise 11.1 In order to sample a graph as described above, one needs two
routines. The first one separates a set of N objects uniformly into subsets of
prescribed sizes. The second one samples a random permutation over a NΛ′(1).
Show that both of these tasks can be accomplished with O(N) operations
(having at our disposal a random number generator).



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

GEOMETRY OF THE CODEBOOK 219

This procedure has two flaws: (i) it does not sample uniformly DN (Λ, P ),
because two distinct factor graphs may correspond to a different number of
permutations. (ii) it may generate multiple edges joining the same couple of
nodes in the graph.

In order to cure the last problem, we shall agree that each time n edges join
any two nodes, they must be erased if n is even, and they must be replaced
by a single edge if n is odd. Of course the resulting graph does not necessarily
have the prescribed degree profile (Λ, P ), and even if we condition on this to be
the case, its distribution is not uniform. We shall nevertheless insist in denoting
the ensemble as LDPCN (Λ, P ). The intuition is that, for large N , the degree
profile is ‘close’ to the prescribed one and the distribution is ‘almost uniform’,
for all our purposes. Moreover, what is really important is the ensemble that is
implemented in practice.

Exercise 11.2 This exercise aims at proving that, for large N , the degree
profile produced by the explicit construction is close to the prescribed one.

(i) Let m be the number of multiple edges appearing in the graph and com-
pute its expectation. Show that Em = O(1) as N → ∞ with Λ and P
fixed.

(ii) Let (Λ′, P ′) be the degree profile produced by the above procedure. De-
note by

d ≡
∑

l

|Λl − Λ′
l| +

∑

k

|Pk − P ′
k| , (11.3)

the ‘distance’ between the prescribed and the actual degree profiles.
Derive an upper bound on d in terms of m and show that it implies
E d = O(1/N).

11.2 Geometry of the codebook
{se:WELDPC}

As we saw in Sec. 6.2, a classical approach to the analysis of error correcting codes
consists in studying the ‘geometric’ properties of the corresponding codebooks.
An important example of such properties is the distance enumerator Nx0

(d),
giving the number of codewords at Hamming distance d from x0. In the case
of linear codes, the distance enumerator does not depend upon the reference
codeword x0 (the reader is invited to prove this simple statement).It is therefore ⋆
customary to take the all-zeros codeword as the reference, and to use the denom-
ination weight enumerator: N (w) = Nx0

(d = w) is the number of codewords
having weight (the number of ones in the codeword) equal to w.

In this section we want to estimate the expected weight enumerator N (w) ≡
EN (w), for a random code in the LDPCN (Λ, P ) ensemble. In general one ex-
pects, as for the random code ensemble of Sec. 6.2, that N (w) grows exponen-
tially in the block-length N , and that most of the codewords have a weight
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w = Nω growing linearly with N . We will in fact compute the exponential
growth rate φ(ω) defined by

N (w = Nω)
.
= eNφ(ω) . (11.4) {eq:weightphidef}

Notice that this number is an ‘annealed average’, in the terminology of dis-
ordered systems: in other words, it can be dominated by rare instances in the
ensemble. On the other hand, one expects logN (w) to be tightly concentrated
around its typical value Nφq(ω). The typical exponent φq(ω) can be computed
through a quenched calculation, for instance considering limN→∞N−1E log [1 + N (w)].
Of course φq(ω) ≤ φ(ω) because of the concavity of the logarithm. In this Chap-
ter we keep to the annealed calculation, which is much easier and gives an upper
bound. Quenched calculations will be the object of Chapter ???.

Let x ∈ {0, 1}N be a binary word of length N and weight w. Notice that
Hx = 0 mod 2 if and only if the corresponding factor graph has the following
property. Consider all variable nodes i such that xi = 1, and color in red all
edges incident on these nodes. Color in blue all the other edges. Then all the
check nodes must have an even number of incident red edges. A little thought
shows that N (w) is the number of ‘colored’ factor graphs having this property,
divided by the total number of factor graphs in the ensemble. We shall compute
this number first for a graph with fixed degrees, associated with a code in the
LDPCN (l, k) ensemble, and then we shall generalize to arbitrary degree profiles.

11.2.1 Weight enumerator: fixed degrees

In the fixed degree case we have N variables nodes of degree l, M function nodes
of degree k. We denote by F = Mk = Nl the total number of edges. A valid
colored graph must have E = wl red edges. It can be constructed as follows. First
choose w variable nodes, which can be done in

(
N
w

)
ways. Assign to each node in

this set l red sockets, and to each node outside the set l blue sockets. Then, for
each of the M function nodes, color in red an even subset of its sockets in such
a way that the total number of red sockets is E = wl. Let mr be the number of
function nodes with r red sockets. The numbers mr can be non-zero only when
r is even, and they are constrained by

∑k
r=0mr = M and

∑k
r=0 rmr = lw. The

number of ways one can color the sockets of the function nodes is thus:

C(k,M,w) =
∑

m0,...,mk

(e)
(

M

m0, . . . ,mk

) ∏

r

(
k

r

)mr

I

( k∑

r=0

mr = M
)

I

( k∑

r=0

rmr = lw
)
,

(11.5){eq:colsock}

where the sum
∑(e)

means that non-zero mr appear only for r even. Finally
we join the variable node and check node sockets in such a way that colors are
matched. There are (lw)!(F − lw)! such matchings out of the total number of F !
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corresponding to different element in the ensemble. Putting everything together,
we get the final formula:

N (w) =
(lw)!(F − lw)!

F !

(
N

w

)
C(k,M,w) . (11.6)

In order to compute the function φ(ω) in (11.4), one needs to work out
the asymptotic behavior of this formula when N → ∞ at fixed ω = w/N .
Assuming that mr = xrM = xrNl/k, one can expand the multinomial factors
using Stirling’s formula. This gives:

φ(ω) = max
{xr}

∗

[
(1 − l)H(ω) +

l

k

∑

r

(
−xr log xr + xr log

(
k

r

))]
, (11.7) {eq:weightphires1}

where the max∗ is taken over all choices of x0, x2, x4, . . . in [0, 1], subject to
the two constraints

∑
r xr = 1 and

∑
r rxr = kω. The maximization can be

done by imposing these constraints via two Lagrange multipliers. One gets xr =
Czr

(
k
r

)
I(r even), where C and z are two constants fixed by the constraints:

C =
2

(1 + z)k + (1 − z)k
(11.8)

ω = z
(1 + z)k−1 − (1 − z)k−1

(1 + z)k + (1 − z)k
(11.9)

Plugging back the resulting xr into the expression (11.10) of φ, this gives finally:

φ(ω) = (1 − l)H(ω) +
l

k
log

(1 + z)k + (1 − z)k

2
− ωl log z , (11.10) {eq:weightphires1}

where z is the function of ω defined in (11.9).
We shall see in the next sections how to use this result, but let us first explain

how it can be generalized.

11.2.2 Weight enumerator: general case

We shall compute the leading exponential behavior N (w)
.
= exp[Nφ(ω)] of the

expected weight enumerator for a general LDPCN (Λ, P ) code. The idea of the
approach is the same as the one we have just used for the case of regular en-
sembles, but the computation becomes somewhat heavier. It is therefore useful
to adopt more compact notations. Altogether this section is more technical than
the others: the reader who is not interested in the details can skip it and go to
the results.

We want to build a valid colored graph, let us denote by E its number of
red edges (which is no longer fixed by w). There are coeff[

∏
l(1+xyl)NΛl , xwyE ]

ways of choosing the w variable nodes in such a way that their degrees add up to
E 28. As before, for each of the M function nodes, we color in red an even subset

28We denote by coeff[f(x), xn] the coefficient of xn in the formal power series f(x).
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Fig. 11.1. Modulus of the function z−3ξ q4(z)
3/4 for ξ = 1/3.{fig:SaddleWE}

of its sockets in such a way that the total number of red sockets is E. This can
be done in coeff[

∏
k qk(z)MPk , zE ] ways, where qk(z) ≡ 1

2 (1 + z)k + 1
2 (1 − z)k.

The numbers of ways one can match the red sockets in variable and function
nodes is still E!(F − E)!, where F = NΛ′(1) = MP ′(1) is the total number of
edges in the graph. This gives the exact result

N (w) =

F∑

E=0

E!(F − E)!

F !

coeff

[
lmax∏

l=1

(1 + xyl)NΛl , xwyE

]
coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
. (11.11){eq:WELeading1}

In order to estimate the leading exponential behavior at large N , when w =
Nω, we set E = Fξ = NΛ′(1)ξ. The asymptotic behaviors of the coeff[. . . , . . . ]
terms can be estimated using the saddle point method. Here we sketch the idea
for the second of these terms. By Cauchy theorem

coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
=

∮
1

zNΛ′(1)ξ+1

kmax∏

k=2

qk(z)MPk
dz

2πi
≡
∮
f(z)N

z

dz

2πi
,

(11.12)

where the integral runs over any path encircling the origin in the complex z
plane, and

f(z) ≡ 1

zΛ′(1)ξ

kmax∏

k=2

qk(z)Λ
′(1)Pk/P ′(1) . (11.13)
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In Fig. 11.1 we plot the modulus of the function f(z) for degree distributions
Λ(x) = x3, P (x) = x4 and ξ = 1/3. The function has a saddle point, whose
location z∗ = z∗(ξ) ∈ R+ solves the equation f ′(z) = 0, which can also be
written as

ξ =

kmax∑

k=2

ρk z
(1 + z)k−1 − (1 − z)k−1

(1 + z)k + (1 − z)k
, (11.14)

where we used the notation ρk ≡ kPk/P
′(1) already introduced in Sec. 9.5

(analogously, we shall write λl ≡ lΛl/Λ
′(1)). This equation generalizes (11.9). If

we take the integration contour in Eq. (11.12) to be the circle of radius z∗, the
integral is dominated by the saddle point at z∗ (together with the symmetric
point −z∗). We get therefore

coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
.
= exp

{
N

[
−Λ′(1)ξ log z∗ +

Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z∗)

]}
.

Proceeding analogously with the second coeff[. . . , . . . ] term in Eq. (11.11),
we get N (w = Nω)

.
= exp{Nφ(ω)}. The function φ is given by

φ(ω) = sup
ξ

inf
x,y,z

{
−Λ′(1)H(ξ) − ω log x− Λ′(1)ξ log(yz) +

+

lmax∑

l=2

Λl log(1 + xyl) +
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z)

}
, (11.15)

where the minimization over x, y, z is understood to be taken over the positive
real axis while ξ ∈ [0, 1]. The stationarity condition with respect to variations of
z is given by Eq. (11.14). Stationarity with respect to ξ, x, y yields, respectively

ξ =
yz

1 + yz
, ω =

lmax∑

l=1

Λl
xyl

1 + xyl
, ξ =

lmax∑

l=1

λl
xyl

1 + xyl
. (11.16)

If we use the first of these equations to eliminate ξ, we obtain the final parametric
representation (in the parameter x ∈ [0,∞[) of φ(ω):

φ(ω) = −ω log x− Λ′(1) log(1 + yz) +

lmax∑

l=1

Λl log(1 + xyl) + (11.17)

+
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z) ,

ω =

lmax∑

l=1

Λl
xyl

1 + xyl
, (11.18)
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with y = y(x) and z = z(x) solutions of the coupled equations

y =

∑kmax

k=2 ρk p
−
k (z)

∑kmax

k=2 ρk p
+
k (z)

, z =

∑lmax

l=1 λlxy
l−1/(1 + xyl)

∑lmax

l=1 λl/(1 + xyl) ,
(11.19)

where we defined p±k (z) ≡ (1+z)k−1±(1−z)k−1

(1+z)k+(1−z)k .

Exercise 11.3 The numerical solution of Eqs. (11.18) and (11.19) can be quite
tricky. Here is a simple iterative procedure which seems to work reasonably well
(at least, in all the cases explored by the authors). The reader is invited to try
it with her favorite degree distributions Λ, P .

First, solve Eq. (11.18) for x at given y ∈ [0,∞[ and ω ∈ [0, 1], using a
bisection method. Next, substitute this value of x in Eq. (11.19), and write the
resulting equations as y = f(z) and z = g(y, ω). Define Fω(y) ≡ f(g(y, ω)).
Solve the equation y = Fω(y) by iteration of the map yn+1 = Fω(yn) Once the
fixed point y∗ is found, the other parameters are computed as z∗ = g(y∗, ω) and
x∗ is the solution of Eq. (11.18) for y = y∗. Finally x∗, y∗, z∗ are substituted in
Eq. (11.17) to obtain φ(ω).

Examples of functions φ(ω) are shown in Figures 11.2, 11.3, 11.4. We shall
discuss these results in the next section, paying special attention to the region
of small ω.

11.2.3 Short distance properties

In the low noise limit, the performance of a code depends a lot on the existence
of codewords at short distance from the transmitted one. For linear codes and
symmetric communication channels, we can assume without loss of generality
that the all zeros codeword has been transmitted. Here we will work out the
short distance (i.e. small weight ω) behavior of φ(ω) for several LDPC ensembles.
These properties will be used to characterize the code performances in Section
11.3.

As ω → 0, solving Eqs. (11.18) and (11.19) yields y, z → 0. By Taylor expan-
sion of these equations, we get

y ≃ ρ′(1)z , z ≃ λlmin
xylmin−1 , ω ≃ Λlmin

xylmin , (11.20)

where we neglected higher order terms in y, z. At this point we must distinguish
whether lmin = 1, lmin = 2 or lmin ≥ 3.

We start with the case lmin = 1. Then x, y, z all scale like
√
ω, and a short

computation shows that

φ(ω) = −1

2
ω log

(
ω/Λ2

1

)
+O(ω) . (11.21)

In particular φ(ω) is strictly positive for ω sufficiently small. The expected num-
ber of codewords within a small (but Θ(N)) Hamming distance from a given
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Fig. 11.2. Logarithm of the expected weight enumerator, φ(ω), plotted versus
the reduced weight ω = w/N , for the ensemble LDPCN ( 1

4x + 1
4x

2 + 1
2x

3, x6).
Inset: small weight region. φ(ω) is positive near to the origin, and in fact its
derivative diverges as ω → 0: each codeword is surrounded by a large number of
very close other codewords. This makes it a very bad error correcting code.{fig:WEIRR1}

codeword is exponential in N . Furthermore, Eq. (11.21) is reminiscent of the
behavior in absence of any parity check. In this case φ(ω) = H(ω) ≃ −ω logω.

Exercise 11.4 In order to check Eq. (11.21), compute the weight enumerator
for the regular LDPCN (l = 1, k) ensemble. Notice that, in this case the weight
enumerator does not depend on the code realization and admits the simple
representation N (w) = coeff[qk(z)N/k, zw].

An example of weight enumerator for an irregular code with lmin = 1 is shown
in Fig. 11.2. The behavior (11.21) is quite bad for an error correcting code. In
order to understand why, let us for a moment forget that this result was obtained
by taking ω → 0 after N → ∞, and apply it in the regime N → ∞ at w = Nω
fixed. We get

N (w) ∼
(
N

w

) 1
2 w

. (11.22)

It turns out that this result holds not only in average but for most codes in the
ensemble. In other words, already at Hamming distance 2 from any given code-
word there are Θ(N) other codewords. It is intuitively clear that discriminating
between two codewords at Θ(1) Hamming distance, given a noisy observation, is
in most of the cases impossible. Because of these remarks, one usually discards
lmin = 1 ensembles for error correcting purposes.

Consider now the case lmin = 2. From Eq. (11.20), we get

φ(ω) ≃ Aω , A ≡ log

[
P ′′(1)

P ′(1)

2Λ2

Λ′(1)

]
= log [ρ′(1)λ′(0)] . (11.23)
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Fig. 11.3. Logarithm of the expected weight enumerator for the LDPCN (2, 4)
ensemble: Λ(x) = x2, meaning that all variable nodes have degree 2, and
P (x) = 4, meaning that all function nodes have degree 4. Inset: small weight
region. The constant A is positive, so there exist codewords at short distances{fig:WE24}

The code ensemble has significantly different properties depending on the sign
of A. If A > 0, the expected number of codewords within a small (but Θ(N))
Hamming distance from any given codeword is exponential in the block-length.
The situation seems similar to the lmin = 1 case. Notice however that φ(ω) goes
much more quickly to 0 as ω → 0 in the present case. Assuming again that
(11.23) holds beyond the asymptotic regime in which it was derived, we get

N (w) ∼ eAw . (11.24)

In other words the number of codewords around any particular one is o(N)
until we reach a Hamming distance d∗ ≃ logN/A. For many purposes d∗ plays
the role of an ‘effective’ minimum distance. The example of the regular code
LDPCN (2, 4), for which A = log 3, is shown in Fig. 11.3

If on the other hand A < 0, then φ(ω) < 0 in some interval ω ∈]0, ω∗[. The
first moment method then shows that there are no codewords of weight ‘close
to’ Nω for any ω in this range.

A similar conclusion is reached if lmin ≥ 3, where one finds:

φ(ω) ≃
(
lmin − 2

2

)
ω log

(
ω

Λlmin

)
, (11.25)

An example of weight enumerator exponent for a code with good short distance
properties, the LDPCN (3, 6) code, is given in Fig. 11.4.

This discussion can be summarized as:

Proposition 11.1 Consider a random linear code from the LDPCN (Λ, P ) en-

semble with lmin ≥ 2 and assume P ′′(1)
P ′(1)

2Λ2

Λ′(1) < 1. Let ω∗ ∈]0, 1/2[ be the first

non-trivial zero of φ(ω), and consider any interval [ω1, ω2] ⊂]0, ω∗[. With high
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ensemble. Inset: small weight region. φ(ω) < 0 for ω < ω∗ ∼ .02. There are no
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probability, there does not exist any pair of codewords with distance belonging to
this interval.

Notice that our study only deals with weights w = ωN which grow linearly
with N . The proposition excludes the existence of codewords of arbitrarily small
ω, but it does not tell anything about possible codewords of sub-linear weight:
w = o(N) (for instance, with w finite as N → ∞). It turns out that, if lmin ≥ 3,
the code has with high probability no such codewords, and its minimum distance
is at least Nω∗. If on the other hand lmin = 2, the code has typically codewords
of finite weight. However (if A < 0), they can be eliminated without changing
the code rate by an ‘expurgation’ procedure.

11.2.4 Rate

The weight enumerator can also be used to obtain a precise characterization of
the rate of a LDPCN (Λ, P ) code. For ω = 1/2, x = y = z = 1 satisfy Eqs. (11.18)
and (11.19); this gives:

φ(ω = 1/2) =

(
1 − Λ′(1)

P ′(1)

)
log 2 = Rdes log 2 . (11.26)

It turns out that, in most29 of the cases of practical interest, the curve φ(ω) has
its maximum at ω = 1/2 (see for instance the figures 11.2, 11.3, 11.4). In such
cases the result (11.26) shows that the rate equals the design rate:

{prop:Rate}
Proposition 11.2 Let R be the rate of a code from the LDPCN (Λ, P )ensemble,
Rdes = 1 − Λ′(1)/P ′(1) the associated design rate and φ(ω) the function defined
in Eqs. (11.17) to (11.19). Assume that φ(ω) achieves its absolute maximum

29There exist exceptions though (see the Notes section for references).
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over the interval [0, 1] at ω = 1/2. Then, for any δ > 0, there exists a positive
N -independent constant C1(δ) such that

P{|R−Rdes| ≥ δ} ≤ C1(δ) 2−Nδ/2 . (11.27)

Proof: Since we already established that R ≥ Rdes, we only need to prove an
upper bound on R. The rate is defined as R ≡ (log2 N )/N , where N is the total
number of codewords. Markov’s inequality gives:

P{R ≥ Rdes + δ} = P{N ≥ 2N(Rdes+δ)} ≤ 2−N(Rdes+δ) EN . (11.28)

The expectation of the number of codewords is EN (w)
.
= exp{Nφ(w/N)}, and

there are only N + 1 possible values of the weight w, therefore:

EN .
= exp{N sup

ω∈[0,1]

φ(ω)} , (11.29)

As supφ(ω) = φ(1/2) = Rdes log 2 by hypothesis, there exists a constant C1(δ)
such that, for any N , EN ≤ C1(δ)2

N(Rdes+δ/2) for any N . Plugging this into
Eq. (11.28), we get

P{R ≥ Rdes + δ} ≤ C1(δ) 2Nδ/2 . (11.30)

�

11.3 Capacity of LDPC codes for the binary symmetric channel
{se:BoundsLDPC}

Our study of the weight enumerator has shown that codes from the LDPCN (Λ, P )
ensemble with lmin ≥ 3 have a good short distance behavior. The absence of
codewords within an extensive distance Nω∗ from the transmitted one, guar-
antees that any error (even introduced by an adversarial channel) changing a
fraction of the bits smaller than ω∗/2 can be corrected. Here we want to study
the performance of these codes in correcting typical errors introduced from a
given (probabilistic) channel. We will focus on the BSC(p) which flips each bit
independently with probability p < 1/2. Supposing as usual that the all-zero
codeword x(0) = 0 has been transmitted, let us call y = (y1 . . . yN ) the received
message. Its components are iid random variables taking value 0 with probability
1 − p, value 1 with probability p. The decoding strategy which minimizes the
block error rate is word MAP decoding30, which outputs the codeword closest to
the channel output y. As already mentioned, we don’t bother about the practical
implementation of this strategy and its computational complexity.

The block error probability for a code C, denoted by PB(C), is the probability
that there exists a ‘wrong’ codeword, distinct from 0, whose distance to y is
smaller than d(0, y). Its expectation value over the code ensemble, PB = E PB(C),

30Since all the codewords are a priori equiprobable, this coincides with maximum likelihood
decoding.
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is an important indicator of ensemble performances. We will show that in the
large N limit, codes with lmin ≥ 3 undergo a phase transition, separating a low
noise phase, p < pML, in which the limit of PB is zero, from a high noise phase,
p > pML, where it is not. While the computation of pML is deferred to Chapter
??, we derive here some rigorous bounds which indicate that some LDPC codes
have very good (i.e. close to Shannon’s bound) performances under ML decoding.

11.3.1 Lower bound {se:LBLDPC}

We start by deriving a general bound on the block error probability PB(C) on
the BSC(p) channel, valid for any linear code. Let N = 2NR be the size of the
codebook C. By union bound:

PB(C) = P

{
∃α 6= 0 s.t. d(x(α), y) ≤ d(0, y)

}

≤
N−1∑

α=1

P

{
d(x(α), y) ≤ d(0, y)

}
. (11.31)

As the components of y are iid Bernoulli variables, the probability P{d(x(α), y) ≤
d(0, y)} depends on x(α) only through its weight. Let x(w) be the vector formed
by w ones followed by N−w zeroes, and denote by N (w) the weight enumerator
of the code C. Then

PB(C) ≤
N∑

w=1

N (w) P
{
d(x(w), y) ≤ d(0, y)

}
. (11.32)

The probability P
{
d(x(w), y) ≤ d(0, y)

}
can be written as

∑
u

(
w
u

)
pu(1−p)w−uI(u ≥

w/2), where u is the number of yi = 1 in the first w components. A good bound
is provided by a standard Chernov estimate. For any λ > 0:

P
{
d(x(w), y) ≤ d(0, y)

}
≤ Eeλ[d(0,y)−d(x(w),y)] = [(1 − p) e−λ + p eλ]w .

The best bound is obtained for λ = 1
2 log(1−p

p ) > 0, and gives

PB(C) ≤
N∑

w=1

N (w) e−γw . (11.33)

where γ ≡ − log
√

4p(1 − p) ≥ 0. The quantity
√

4p(1 − p) is sometimes referred
to as Bhattacharya parameter.
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Exercise 11.5 Consider the case of a general binary memoryless symmetric
channel with transition probability Q(y|x), x ∈ {0, 1} y ∈ Y ⊆ R. First show
that Eq. (11.31) remains valid if the Hamming distance d(x, y) is replaced by
the log-likelihood

dQ(x|y) = −
N∑

i=1

logQ(yi|xi) . (11.34)

[Hint: remember the general expressions (6.3), (6.4) for the probability P (x|y)
that the transmitted codeword was x, given that the received message is y].
Then repeat the derivation from Eq. (11.31) to Eq. (11.33). The final expression
involves γ = − logBQ, where the Bhattacharya parameter is defined as BQ =∑

y

√
Q(y|1)Q(y|0).

Equation (11.33) shows that the block error probability depends on two fac-
tors: one is the weight enumerator, the second one, exp(−γw) is a channel-
dependent term: as the weight of the codewords increases, their contribution is
scaled down by an exponential factor because it is less likely that the received
message y will be closer to a codeword of large weight than to the all-zero code-
word.

So far the discussion is valid for any given code. Let us now consider the
average over LDPCN (Λ, P ) code ensembles. A direct averaging gives the bound:

PB ≡ ECPB(C) ≤
N∑

w=1

N (w) e−γw .
= exp

{
N sup

ω∈]0,1]

[φ(ω) − γω]

}
. (11.35)

As such, this expression is useless, because the supω[φ(ω) − γω], being larger or
equal than the value at ω = 0, is positive. However, if we restrict to codes with
lmin ≥ 3, we know that, with probability going to one in the large N limit, there
exists no wrong codeword in the ω interval ]0, ω∗[. In such cases, the maximization
over ω in (11.35) can be performed in the interval [ω∗, 1] instead of ]0, 1]. (By

Markov inequality, this can be proved whenever N
∑Nω∗−1

w=1 N (w) → 0 as N →
∞). The bound becomes useful whenever the supremum supω∈[ω∗,1][φ(ω)−γω] <
0: then PB vanishes in the large N limit. We have thus obtained:

{propo:LDPCUnionBound}
Proposition 11.3 Consider the average block error rate PB for a random code
in the LDPCN (Λ, P ) ensemble, with lmin ≥ 3, used over a BSC(p) channel, with
p < 1/2. Let γ ≡ − log

√
4p(1 − p) and let φ(ω) be the the weight enumerator

exponent, defined in (11.4) [φ(ω) can be computed using Eqs. (11.17), (11.18),
and (11.19)]. If φ(ω) < γω for any ω ∈ (0, 1] such that φ(ω) ≥ 0, then PB → 0
in the large block-length limit.

This result has a pleasing geometric interpretation which is illustrated in
Fig. 11.5 for the (3, 6) regular ensemble. As p increases from 0 to 1/2, γ decreases
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Fig. 11.5. Geometric construction yielding the lower bound on the threshold
for reliable communication for the LDPCN (3, 6) ensemble used over the binary
symmetric channel. In this case pLB ≈ 0.0438737. The other two lines refer to
p = 0.01 < pLB and p = 0.10 > pLB.{fig:UnionBound36}

from +∞ to 0. The condition φ(ω) < γω can be rephrased by saying that the
weight enumerator exponent φ(ω) must lie below the straight line of slope γ
through the origin. Let us call pLB the smallest value of p such that the line γω
touches φ(ω).

The geometric construction implies pLB > 0. Furthermore, for p large enough
Shannon’s Theorem implies that PB is bounded away from 0 for any non-
vanishing rate R > 0. The ML threshold pML for the ensemble LDPCN (Λ, P )
can be defined as the largest (or, more precisely, the supremum) value of p such
that limN→∞ PB = 0. This definition has a very concrete practical meaning: for
any p < pML one can communicate with an arbitrarily small error probability,
by using a code from the LDPCN (Λ, P ) ensemble provided N is large enough.
Proposition 11.3 then implies:

pML ≥ pLB . (11.36)

In general one expects limN→∞ PB to exist (and to be strictly positive) for
p > pML. However, there exists no proof of this statement.

It is interesting to notice that, at p = pLB, our upper bound on PB is domi-
nated by codewords of weight w ≈ Nω̃, where ω̃ > 0 is the value where φ(ω)−γω
is maximum (which is larger than ω∗). This suggests that, each time an error
occurs, a finite fraction of the bits are decoded incorrectly and this fraction fluc-
tuates little from transmission to transmission (or, from code to code in the
ensemble). The geometric construction also suggests the less obvious (but essen-
tially correct) guess that this fraction jumps discontinuously from 0 to a finite
value when p crosses the critical value pML.
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Exercise 11.6 Let us study the case lmin = 2. Proposition 11.3 is no longer
valid, but we can still apply Eq. (11.35). (i) Consider the (2, 4) ensemble whose
weight enumerator exponent is plotted in Fig. 11.3, the small weight behavior
being given by Eq. (11.24). At small enough p, it is reasonable to assume that
the block error rate is dominated by small weight codewords. Estimate PB

using Eq. (11.35) under this assumption. (ii) Show that the assumption breaks
down for p ≥ ploc, where ploc ≤ 1/2 solves the equation 3

√
4p(1 − p) = 1. (iii)

Discuss the case of a general code ensemble with lmin = 2, and φ(ω) concave
for ω ∈ [0, 1]. (iv) Draw a weight enumerator exponent φ(ω) such that the
assumption of low-weight codewords dominance breaks down before ploc. (v)
What do you expect of the average bit error rate Pb for p < ploc? And for
p > ploc?

Exercise 11.7 Discuss the qualitative behavior of the block error rate for the
cases where lmin = 1.

11.3.2 Upper bound
{se:UBLDPC}

Let us consider as before the communication over a BSC(p), but restrict for
simplicity to regular codes LDPCN (l, k). Gallager has proved the following upper
bound:{thm:GallUB}

Theorem 11.4 Let pML be the threshold for reliable communication over the
binary symmetric channel using codes from the LDPCN (l, k), with design rate
Rdes = 1 − k/l. Then pML ≤ pUB, where pUB ≤ 1/2 is the solution of

H(p) = (1 −Rdes)H
(

1 − (1 − 2p)k

2

)
, (11.37)

We shall not give a full proof of this result, but we show in this section a sequence
of heuristic arguments which can be turned into a proof. The details can be found
in the original literature.

Assume that the all-zero codeword 0 has been transmitted and that a noisy
vector y has been received. The receiver will look for a vector x at Hamming
distance about Np from y, and satisfying all the parity check equations. In other

words, let us denote by z = Hx, z ∈ {0, 1}M , (here H is the parity check matrix
and multiplication is performed modulo 2), the syndrome. This is a vector
with M components. If x is a codeword, all parity checks are satisfied, and we
have z = 0. There is at least one vector x fulfilling these conditions (namely
d(x, y) ≈ Np, and z = 0): the transmitted codeword 0. Decoding is successful
only if it is the unique such vector.

The number of vectors x whose Hamming distance from y is close to Np is

approximatively 2NH(p). Let us now estimate the number of distinct syndromes
z = Hx, when x is on the sphere d(x, y) ≈ Np. Writing x = y ⊕ x′, this is
equivalent to counting the number of distinct vectors z′ = Hx′ when the weight
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Table 11.1 Bounds on the threshold for reliable communication over the BSC(p)
channel using LDPCN (l, k) ensembles. The third column is the rate of the code,
the fourth and fifth columns are, respectively, the lower bound of Proposition 11.3
and the upper bound of Theorem 11.4. The sixth column is an improved lower
bound by Gallager, and the last one is the Shannon limit.

l k Rdes LB of Sec. 11.3.1 Gallager UB Gallager LB Shannon limit
3 4 1/4 0.1333161 0.2109164 0.2050273 0.2145018
3 5 2/5 0.0704762 0.1397479 0.1298318 0.1461024
3 6 1/2 0.0438737 0.1024544 0.0914755 0.1100279
4 6 1/3 0.1642459 0.1726268 0.1709876 0.1739524
5 10 1/2 0.0448857 0.1091612 0.1081884 0.1100279 {TableLDPCBSC}

of x′ is about Np. It is convenient to think of x′ as a vector of N iid Bernoulli
variables of mean p: we are then interested in the number of distinct typical
vectors z′. Notice that, since the code is regular, each entry z′i is a Bernoulli
variable of parameter

pk =

k∑

n odd

(
k

n

)
pn(1 − p)k−n =

1 − (1 − 2p)k

2
. (11.38)

If the bits of z′ were independent, the number of typical vectors z′ would be
2N(1−Rdes)H(pk) (the dimension of z′ being M = N(1 −Rdes)). It turns out that
correlations between the bits decrease this number, so we can use the iid estimate
to get an upper bound.

Let us now assume that for each z in this set, the number of reciprocal
images (i.e. of vectors x such that z = Hx) is approximatively the same. If
2NH(p) ≫ 2N(1−Rdes)H(pk), for each z there is an exponential number of vectors
x, such that z = Hx. This will be true, in particular, for z = 0: the received
message is therefore not uniquely decodable. In the alternative situation most of
the vectors z correspond to (at most) a single x. This will be the case for z = 0:
decoding can be successful.

11.3.3 Summary of the bounds

In Table 11.1 we consider a few regular LDPCN (Λ, P ) ensembles over the BSC(p)
channel. We show the window of possible values of the noise threshold pML, using
the lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. In
most cases, the comparison is not satisfactory (the gap from capacity is close to a
factor 2). A much smaller uncertainty is achieved using an improved lower bound
again derived by Gallager, based on a refinement of the arguments in the previous
Section. However, as we shall see in next Chapters, neither of the bounds is tight.
Note that these codes get rather close to Shannon’s limit, especially when k, l
increase.
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Fig. 11.6. Performances of the bit-flipping decoding algorithm on random codes
from the (5, 10) regular LDPC ensemble, used over the BCS(p) channel. On the
left: block error rate. On the right residual number of unsatisfied parity checks
after the algorithm halted. Statistical error bars are smaller than symbols.{fig:Flip510}

Exercise 11.8 Let pSh be the upper bound on pML provided by Shannon
channel coding Theorem. Explicitly pSh ≤ 1/2 is the solution of H(p) = 1−R.
Prove that, if R = Rdes (as is the case with high probability for LDPCN (l, k)
ensembles) pUB < pSh.

11.4 A simple decoder: bit flipping
{se:BitFlippingLDPC}

So far we have analyzed the behavior of LDPC ensembles under the optimal
(ML) decoding strategy. However there is no known way of implementing this
decoding with a fast algorithm. The naive algorithm goes through each codeword
x(α), α = 0, . . . 2NR − 1 and finds the one of greatest likelihood Q(y|x(α)) (since
all the codeword are a priori equiprobable, this is in fact the same as word
MAP decoding). However this approach takes a time which grows exponentially
with the block-length N . For large N (which is the regime where the error rate
becomes close to optimal), this is unpractical.

LDPC codes are interesting because there exist fast sub-optimal decoding
algorithms with performances close to the theoretical optimal performance, and
therefore close to Shannon’s limit. Here we show one example of a very sim-
ple decoding method, called the bit flipping algorithm. We have received the
message y and try to find the sent codeword x by:

Bit-flipping decoder

0. Set x(0) = y.

1. Find a bit belonging to more unsatisfied than satisfied parity checks.

2. If such a bit exists, flip it: xi(t+1) = xi(t)⊕1. Keep the other bits:

xj(t+1) = xj(t) for all j 6= i. If there is no such bit, return x(t) and

halt.
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3. Repeat steps 2 and 3.

The bit to be flipped is usually chosen uniformly at random among the ones
satisfying the condition at step 1. However this is irrelevant in the analysis below.

Exercise 11.9 Consider a code from the (l, k) regular LDPC ensemble (with
l ≥ 3). Assume that the received message differs from the transmitted one only
in one position. Show that the bit-flipping algorithm always corrects such an
error.

Exercise 11.10 Assume now that the channel has introduced two errors.
Draw the factor graph of a regular (l, k) code for which the bit-flipping al-
gorithm is unable to recover such an error event. What can you say of the
probability of this type of graphs in the ensemble?

In order to monitor the bit-flipping algorithm, it is useful to introduce the
‘energy’:

E(t) ≡ Number of parity check equations not satisfied by x(t) . (11.39)

This is a non-negative integer, and if E(t) = 0 the algorithm is halted and its
output is x(t). Furthermore E(t) cannot be larger than the number of parity
checks M and decreases (by at least one) at each cycle. Therefore, the algorithm
complexity is O(N) (this is a commonly regarded as the ultimate goal for many
communication problems).

It remains to be seen if the output of the bit-flipping algorithm is related
to the transmitted codeword. In Fig. 11.6 we present the results of a numerical
experiment. We considered the (5, 10) regular ensemble and generated about 1000
random code and channel realizations for each value of the noise in some mesh.
Then, we applied the above algorithm and traced the fraction of successfully
decoded blocks, as well as the residual energy E∗ = E(t∗), where t∗ is the
total number of iterations of the algorithm. The data suggests that bit-flipping
is able to overcome a finite noise level: it recovers the original message with
high probability when less than about 2.5% of the bits are corrupted by the
channel. Furthermore, the curves for Pbf

B under bit-flipping decoding become
steeper and steeper as the system size is increased. It is natural to conjecture
that asymptotically, a phase transition takes place at a well defined noise level
pbf : Pbf

B → 0 for p < pbf and Pbf
B → 1 for p > pbf . Numerically pbf = 0.025±0.005.

This threshold can be compared with the one for ML decoding: The re-
sults in Table 11.1 imply 0.108188 ≤ pML ≤ 0.109161 for the (5, 10) ensemble.
Bit-flipping is significantly sub-optimal, but is still surprisingly good, given the
extreme simplicity of the algorithm.

Can we provide any guarantee on the performances of the bit-flipping de-
coder? One possible approach consists in using the expansion properties of the
underlying factor graph. Consider a graph from the (l, k) ensemble. We say that
it is an (ε, δ)-expander if, for any set U of variable nodes such that |U | ≤ Nε,
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the set |D| of neighboring check nodes has size |D| ≥ δ|U |. Roughly speaking, if
the factor graph is an expander with a large expansion constant δ, any small
set of corrupted bits induces a large number of unsatisfied parity checks. The
bit-flipping algorithm can exploit these checks to successfully correct the errors.

It turns out that random graphs are very good expanders. This can be under-
stood as follows. Consider a fixed subset U . As long as U is small, the subgraph
induced by U and the neighboring factor nodes D is a tree with high probability.
If this is the case, elementary counting shows that |D| = (l − 1)|U | + 1. This
would suggest that one can achieve an expansion factor (close to) l−1, for small
enough ε. Of course this argument have several flaws. First of all, the subgraph
induced by U is a tree only if U has sub-linear size, but we are interested in all
subsets U with |U | ≤ εN for some fixed N . Then, while most of the small subsets
U are trees, we need to be sure that all subsets expand well. Nevertheless, one
can prove that the heuristic expansion factor is essentially correct:

Proposition 11.5 Consider a random factor graph F from the (l, k) ensemble.
Then, for any δ < l− 1, there exists a constant ε = ε(δ; l, k) > 0, such that F is
a (ε, δ) expander with probability approaching 1 as N → ∞.

In particular, this implies that, for l ≥ 5, a random (l, k) regular factor graph
is, with high probability a (ε, 3

4 l) expander. In fact, this is enough to assure that
the code will perform well at low noise level:

Theorem 11.6 Consider a regular (l, k) LDPC code C, and assume that the cor-
responding factor graph is an (ε, 3

4 l) expander. Then, the bit-flipping algorithm
is able to correct any pattern of less then Nε/2 errors produced by a binary sym-
metric channel. In particular PB(C) → 0 for communication over a BSC(p) with
p < ε/2.

Proof: As usual, we assume the channel input to be the all-zeros codeword 0.
We denote by w = w(t) the weight of x(t) (the current configuration of the bit-
flipping algorithm), and by E = E(t) the number of unsatisfied parity checks, as
in Eq. (11.39). Finally, we call F the number of satisfied parity checks among the
ones which are neighbors of at least one corrupted bit in x(t) (a bit is ‘corrupted’
if it takes value 1).

Assume first that 0 < w(t) ≤ Nε at some time t. Because of the expansion
property of the factor graph, we have E + F > 3

4 l w. On the other hand, every
unsatisfied parity check is the neighbor of at least one corrupted bit, and every
satisfied check which is the neighbor of some corrupted bit must involve at least
two of them. Therefore E+2F ≤ l w. Eliminating F from the above inequalities,
we deduce that E(t) > 1

2 l w(t). Let Ei(t) be the number of unsatisfied checks
involving bit xi. Then:

∑

i:xi(t)=1

Ei(t) ≥ E(t) >
1

2
l w(t) . (11.40)

Therefore, there must be at least one bit having more unsatisfied than satisfied
neighbors, and the algorithm does not halt.
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Let us now start the algorithm with w(0) ≤ Nε/2. It must halt at some
time t∗, either with E(t∗) = w(t∗) = 0 (and therefore decoding is successful),
or with w(t∗) ≥ Nε. In this second case, as the weight of x(t) changes by one
at each step, we have w(t∗) = Nε. The above inequalities imply E(t∗) > Nlε/2
and E(0) ≤ lw(0) ≤ Nlε/2. This contradicts the fact that E(t) is a strictly
decreasing function of t. Therefore the algorithm, started with w(0) ≤ Nε/2
ends up in the w = 0, E = 0 state. �

The approach based on expansion of the graph has the virtue of pointing
out one important mechanism for the good performance of LDPC codes, namely
the local tree-like structure of the factor graph. It also provides explicit lower
bounds on the critical noise level pbf for bit-flipping. However, these bounds turn
out to be quite pessimistic. For instance, in the case of the (5, 10) ensemble, it
has been proved that a typical factor graph is an (ε, 3

4 l) = (ε, 15
4 ) expander for

ε < ε∗ ≈ 10−12. On the other hand, numerical simulations, cf. Fig. 11.6, show
that the bit flipping algorithm performs well up noise levels much larger than
ε∗/2.

Notes

Modern (post-Cook Theorem) complexity theory was first applied to coding
by (Berlekamp, McEliecee and van Tilborg, 1978) who showed that maximum
likelihood decoding of linear codes is NP-hard.

LDPC codes were first introduced by Gallager in his Ph.D. thesis (Gallager,
1963; Gallager, 1962), which is indeed older than these complexity results. See
also (Gallager, 1968) for an extensive account of earlier results. An excellent de-
tailed account of modern developments is provided by (Richardson and Urbanke,
2006).

Gallager proposal did not receive enough consideration at the time. One
possible explanation is the lack of computational power for simulating large
codes in the sixties. The rediscovery of LDPC codes in the nineties (MacKay,
1999), was (at least in part) a consequence of the invention of Turbo codes by
(Berrou and Glavieux, 1996). Both these classes of codes were soon recognized
to be prototypes of a larger family: codes on graphs.

The major technical advance after this rediscovery has been the introduc-
tion of irregular ensembles (Luby, Mitzenmacher, Shokrollahi, Spielman and
Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spielman, 1998). There
exist no formal proof of the ‘equivalence’ (whatever this means) of the various
ensembles in the large block-length limit. But as we will see in Chapter ??, the
main property that enters in the analysis of LDPC ensembles is the local tree-
like structure of the factor graph as described in Sec. 9.5.1; and this property is
rather robust with respect to a change of the ensemble.

Gallager (Gallager, 1963) was the first to compute the expected weight enu-
merator for regular ensembles, and to use it in order to bound the threshold for
reliable communication. The general case ensembles was considered in (Litsyn
and Shevelev, 2003; Burshtein and Miller, 2004; Di, Richardson and Urbanke,
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2004). It turns out that the expected weight enumerator coincides with the typ-
ical one to leading exponential order for regular ensembles (in statistical physics
jargon: the annealed computation coincides with the quenched one). This is not
the case for irregular ensembles, as pointed out in (Di, Montanari and Urbanke,
2004).

Proposition 11.2 is essentially known since (Gallager, 1963). The formulation
quoted here is from (Méasson, Montanari and Urbanke, 2005a). This paper con-
tains some examples of ‘exotic’ LDPC ensembles such that the maximum of the
expected weight enumerator is at weight w = Nω∗, with ω∗ 6= 1/2.

A proof of the upper bound 11.4 can be found in (Gallager, 1963). For some
recent refinements, see (Burshtein, Krivelevich, Litsyn and Miller, 2002).

Bit-flipping algorithms played an important role in the revival of LDPC codes,
especially following the work of Sipser and Spielman (Sipser and Spielman, 1996).
These authors focused on explicit code construction based on expander graph.
They also provide bounds on the expansion of random LDPCN (l, k) codes. The
lower bound on the expansion mentioned in Sec. 11.4 is taken from (Richardson
and Urbanke, 2006).
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SPIN GLASSES

{chap:MagneticSystems}

We have already encountered several examples of spin glasses in Chapters 2 and
8. Like most problems in equilibrium statistical physics, they can be formulated
in the general framework of factor graphs. Spin glasses are disordered systems,
whose magnetic properties are dominated by randomly placed impurities. The
theory aims at describing the behavior of a typical sample of such materials.
This motivates the definition and study of spin glass ensembles.

In this chapter we shall explore the glass phase of these models. It is not easy
to define this phase and its distinctive properties, especially in terms of purely
static quantities. We provide here some criteria which have proved effective so
far. We also present a classification of the two types of spin glass transitions
that have been encountered in exactly soluble ‘mean field models’. In contrast to
these soluble cases, it must be stressed that very little is known (let alone proven)
for realistic models. Even the existence of a spin glass phase is not established
rigorously in the last case.

We first discuss in Section 12.1 how Ising models and their generalizations can
be formulated in terms of factor graphs, and introduce several ensembles of these
models. Frustration is a crucial feature of spin glasses. In Section 12.2 we discuss
it in conjunction with gauge transformations. This section also explains how to
derive some exact results with the sole use of gauge transformations. Section 12.3
describes the spin glass phase and the main approaches to its characterization.
Finally, the phase diagram of a spin glass model with several glassy phases is
traced in Section 12.4.

12.1 Spin glasses and factor graphs
{se:magFG}

12.1.1 Generalized Ising models

Let us recall the main ingredients of magnetic systems with interacting Ising
spins. The variables areN Ising spins σ = {σ1, . . . , σN} taking values in {+1,−1}.
These are jointly distributed according to Boltzmann law for the energy function:

E(σ) = −
pmax∑

p=1

∑

i1<···<ip

Ji1...ip
σi1 · · ·σip

. (12.1) {eq:GeneralMagnetic}

The index p gives the order of the interaction. One body terms (p = 1) are also
referred to as external field interactions, and will be sometimes written as −Biσi.
If Ji1...ip

≥ 0, for any i1 . . . ip, and p ≥ 2, the model is said to be a ferromagnet.
If Ji1...ip

≤ 0, it is an anti-ferromagnet. Finally, if both positive and negative
couplings are present for p ≥ 2, the model is a spin glass.

239
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Fig. 12.1. Factor graph representation of the SK model with N = 4 (left), and
the fully-connected 3-spin model with N = 4 (right). The squares denote the
interactions between the spins.

{Fig:ising_fg}

The energy function can be rewritten asE(σ) =
∑

aEa(σ∂a), where Ea(σ∂a) ≡
−Jaσia

1
· · ·σia

pa
. Each interaction term a involves the spins contained in a subset

σ∂a = {σia
1
, . . . , σia

pa
}, of size pa. We then introduce a factor graph in which each

interaction term is represented by a square vertex and each spin is represented
by a circular vertex. Edges are drawn between the interaction vertex a and the
variable vertex i whenever the spin σi appears in σ∂a. We have already seen in
Fig. 9.7 the factor graph of a ‘usual’ two-dimensional spin glass, where the en-
ergy contains terms with p = 1 and p = 2. Figure 12.1.1 shows the factor graphs
of some small samples of the SK model in zero magnetic field (p = 2 only) and
the 3-spin model.

The energy function (12.1) can be straightforwardly interpreted as a model
for a magnetic system. We used so far the language inherited from this appli-
cation: the spins {σi} are ‘rotational’ degrees of freedom associated to magnetic
particle, their average is the magnetization etc. In this context, the most relevant
interaction between distinct degrees of freedom is pairwise: −Jijσiσj .

Higher order terms naturally arise in other applications, one of the simplest
one being lattice particle systems. These are used to model the liquid-to-gas,
liquid-to-solid, and similar phase transitions. One normally starts by considering
some base graph G over N vertices, which is often taken to be a portion of Zd

(to model a real physical system the dimension of choice is of course d = 3).
Each vertex in the graph can be either occupied by a particle, which we shall
assume indistinguishable from the others, or empty. The particles are assumed
indistinguishable from each other, and a configuration is characterized by occu-
pation variables ni = {0, 1}. The energy is a function E(n) of the occupancies
n = {n1, . . . , nN}, which takes into account local interaction among neighboring
particles. Usually it can be rewritten in the form (12.1), with an N independent
pmax using the mapping σi = 1 − 2ni. We give a few examples in the exercises
below.
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Exercise 12.1 Consider an empty box which is free to exchange particles with
a reservoir, and assume that particles do not interact with each other (except
for the fact that they cannot superimpose). This can be modeled by taking G
to be a cube of side L in Zd, and establishing that each particle in the system
contributes by a constant amount −µ to the energy: E(n) = −µ∑i ni. This is
a model for what is usually called an ideal gas.

Compute the partition function. Rewrite the energy function in terms of
spin variables and draw the corresponding factor graph.

Exercise 12.2 In the same problem, imagine that particles attract each other
at short distance: whenever two neighboring vertices i and j are occupied, the
system gains an energy −ǫ. This is a model for the liquid-gas phase transition.

Write the corresponding energy function both in terms of occupancy vari-
ables {ni} and spin variables {σi}. Draw the corresponding factor graph. Based
on the phase diagram of the Ising model, cf. Sec. 2.5, discuss the behavior of
this particle system. What physical quantity corresponds to the magnetization
of the Ising model?

Exercise 12.3 In some system molecules cannot be packed in a regular lattice
at high density, and this may result in amorphous solid materials. In order to
model this phenomenon, one may modify the energy function of the previous
Exercises as follows. Each time that a particle (i.e. an occupied vertex) is
surrounded by more than k other particles in the neighboring vertices, a penalty
+δ is added to the energy.

Write the corresponding energy function (both in terms of {ni} and {σi})
and draw the factor graph associated with it.

12.1.2 Spin glass ensembles
{se:SGensembles}

A sample (or an instance) of a spin glass is defined by:

• Its factor graph, which specifies the subsets of spins which interact;

• The value of the coupling constant Ja ∈ R for each function node in the
factor graph.

An ensemble is defined by a probability distribution over the space of samples.
In all cases which we shall consider here, the couplings are assumed to be iid
random variables, independent of the factor graph. The most studied cases are
Gaussian Ja’s, or Ja taking values {+1,−1} with equal probability (in jargon
this is called the ±J model). More generally, we shall denote by P(J) the pdf of
Ja.

One can distinguish two large families of spin glass ensembles which have
attracted the attention of physicists: ‘realistic’ and ‘mean field’ ones. While in
the first case the focus is on modeling actual physical systems, one hopes that



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

242 SPIN GLASSES

mean field models can be treated analytically, and that this understanding offers
some clues of the physical behavior of real materials.

Physical spin glasses are real three-dimensional (or, in some cases, two-
dimensional) systems. The main feature of realistic ensembles is that they retain
this geometric structure: a position x in d dimensions can be associated with
each spin. The interaction strength (the absolute value of the coupling J) de-
cays rapidly with the distance among the positions of the associated spins. The
Edwards-Anderson model is a prototype (and arguably the most studied ex-
ample) of this family. The spins are located on the vertices of a d-dimensional
hyper-cubic lattice. Neighboring spins interact, through two-body interactions
(i.e. pmax = 2 in Eq. (12.1)). The corresponding factor graph is therefore non-
random: we refer to Fig. 9.7 for an example with d = 2. The only source of
disorder are the random couplings Jij distributed according to P(J). It is cus-
tomary to add a uniform magnetic field (i.e. a p = 1 term with Ji non-random).
Very little is known about these models when d ≥ 2, and most of our knowledge
comes from numerical simulations. They suggest the existence of a glass phase
when d ≥ 3 but this is not proven yet.

There exists no general mathematical definition of mean field models. Fun-
damentally, they are models in which one expects to be able obtain exact ex-
pressions for the asymptotic (N → ∞) free energy density, by optimizing some
sort of large deviation rate function (in N). The distinctive feature allowing for a
solution in this form, is the lack of any finite-dimensional geometrical structure.

The p-spin glass model discussed in Sec. 8.2 (and in particular the p = 2 case,
which is the SK model) is a mean field model. Also in this case the factor graph
is non-random, and the disorder enters only in the random couplings. The factor
graph is a regular bipartite graph. It contains

(
N
p

)
function nodes, one for each

p-uple of spins; for this reason it is called fully connected. Each function node
has degree p, each variable node has degree

(
N−1
p−1

)
. Since the degree diverges

with N , the coupling distribution P(J) must be scaled appropriately with N , cf.
Eq. (8.25).

Fully connected models are among the best understood in the mean field
family. They can be studied either via the replica method, as in Chapter 8, or
via the cavity method that we shall develop in the next Chapters. Some of the
predictions from these two heuristic approaches have been confirmed rigorously.

One unrealistic feature of fully connected models is that each spin interacts
with a diverging number of other spins (the degree of a spin variable in the
factor graph diverges in the thermodynamic limit). In order to eliminate this
feature, one can study spin glass models on Erdös-Rényi random graphs with
finite average degree. Spins are associated with vertices in the graph and p = 2
interactions (with couplings that are iid random variables drawn from P(J)) are
associated with edges in the graph. The generalization to p-spin interactions is
immediate. The corresponding spin glass models will be named diluted spin
glasses (DSG). We define the ensemble DSGN (p,M,P) as follows:

• Generate a factor graph from the GN (p,M) ensemble;
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• For every function node a in the graph, connecting spins ia1 , . . . , i
a
p, draw

a random coupling Jia
1 ,...,ia

p
from the distribution P(J), and introduce an

energy term;
Ea(σ∂a) = −Jia

1 ,...,ia
p
σia

1
· · ·σia

p
; (12.2)

• The final energy is E(σ) =
∑M

a=1Ea(σ∂a).

The thermodynamic limit is taken by letting N → ∞ at fixed α = M/N .
As in the case of random graphs, one can introduce some variants of this def-

inition. In the ensemble DSG(p, α,P), the factor graph is drawn from GN (p, α):
each p-uple of variable nodes is connected by a function node independently
with probability α/

(
N
p

)
. As we shall see, the ensembles DSGN (p,M,P) and

DSGN (p, α, P ) have the same free energy per spin in the thermodynamic limit (as
well as several other thermodynamic properties in common). One basic reason
of this phenomenon is that any finite neighborhood (in the sense of Sec. 9.5.1)
of a random site i has the same asymptotic distribution in the two ensembles.

Obviously, any ensemble of random graphs can be turned into an ensem-
ble of spin glasses by the same procedure. Some of these ensembles have been
considered in the literature. Mimicking the notation defined in Section 9.2, we
shall introduce general diluted spin glasses with constrained degree profiles, to
be denoted by DSGN (Λ, P,P), as the ensemble derived from the random graphs
in DN (Λ, P ).

Diluted spin glasses are a very interesting class of systems, which are in-
timately related to sparse graph codes and to random satisfiability problems,
among others. Our understanding of DSGs is intermediate between fully con-
nected models and realistic ones. It is believed that both the replica and cavity
methods allow to compute exactly many thermodynamic properties for most of
these models. However the number of these exact results is still rather small, and
only a fraction of these have been proved rigorously.

12.2 Spin glasses: Constraints and frustration
{se:SGgauge}

Spin glasses at zero temperature can be seen as constraint satisfaction problems.
Consider for instance a model with two-body interactions

E(σ) = −
∑

(i,j)∈E

Jijσiσj , (12.3) {eq:ESGdef}

where the sum is over the edge set E of a graph G (the corresponding factor
graph is obtained by associating a function node a to each edge (ij) ∈ E). At
zero temperature the Boltzmann distribution is concentrated on those configura-
tions which minimize the energy. Each edge (i, j) induces therefore a constraint
between the spins σi and σj : they should be aligned if Jij > 0, or anti-aligned
if Jij < 0. If there exists a spin configuration which satisfies all the constraint,
the ground state energy is Egs = −∑(i,j)∈E |Jij | and the sample is said to be

unfrustrated (see Chapter 2.6). Otherwise it is frustrated: a ground state is a
spin configuration which violates the minimum possible number of constraints.
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As shown in the Exercise below, there are several methods to check whether
an energy function of the form (12.3) is frustrated.

Exercise 12.4 Define a ‘plaquette’ of the graph as a circuit i1, i2, . . . , iL, i1
such that no shortcut exists: ∀r, s ∈ {1, . . . , L}, the edge (ir, is) is absent from
the graph whenever r 6= s ± 1 (mod L). Show that a spin glass sample is
unfrustrated if and only if the product of the couplings along every plaquette
of the graph is positive.

Exercise 12.5 Consider a spin glass of the form (12.3), and define the Boolean
variables xi = (1 − σi)/2. Show that the spin glass constraint satisfaction
problem can be transformed into an instance of the 2-satisfiability problem.
[Hint: Write the constraint Jijσiσj > 0 in Boolean form using xi and xj .]

Since 2-SAT is in P, and because of the equivalence explained in the last
exercise, one can check in polynomial time whether the energy function (12.3)
is frustrated or not. This approach becomes inefficient to p ≥ 3 because K-SAT
is NP-complete for K ≥ 3. However, as we shall see in Chapter ??, checking
whether a spin glass energy function is frustrated remains a polynomial problem
for any p.

12.2.1 Gauge transformation
{se:gauge_sg}

When a spin glass sample has some negative couplings but is unfrustrated, one
is in fact dealing with a ‘disguised ferromagnet’. By this we mean that, through
a change of variables, the problem of computing the partition function for such
a system can be reduced to the one of computing the partition function of a
ferromagnet. Indeed, by assumption, there exists a ground state spin configu-
ration σ∗

i such that ∀(i, j) ∈ E Jijσ
∗
i σ

∗
j > 0. Given a configuration σ, define

τi = σiσ
∗
i , and notice that τi ∈ {+1,−1}. Then the energy of the configuration

is E(σ) = E∗(τ) ≡ −∑(i,j)∈E |Jij |τiτj . Obviously the partition function for the

system with energy function E∗( · ) (which is a ferromagnet since |Jij | > 0) is
the same as for the original system.

Such a change of variables is an example of a gauge transformation. In
general, such a transformation amounts to changing all spins and simultaneously
all couplings according to:

σi 7→ σ
(s)
i = σisi , Jij 7→ J

(s)
ij = Jijsisj , (12.4){eq:gauge_sg}

where s = {s1, . . . , sN} is an arbitrary configuration in {−1, 1}N . If we regard the
partition function as a function of the coupling constants J = {Jij : (ij) ∈ E}:

Z[J ] =
∑

{σi}

exp



β
∑

(ij)∈E

Jijσiσj



 , (12.5){eq:gaugeZdef}
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then we have

Z[J ] = Z[J (s)] . (12.6)

The system with coupling constants J (s) is sometimes called the ‘gauge trans-
formed system’.

Exercise 12.6 Consider adding a uniform magnetic field (i.e. a linear term of
the form −B∑i σi) to the energy function (12.3), and apply a generic gauge
transformation to such a system. How must the uniform magnetic field be
changed in order to keep the partition function unchanged? Is the new magnetic
field term still uniform?

Exercise 12.7 Generalize the above discussion of frustration and gauge trans-
formations to the ±J 3-spin glass (i.e. a model of the type (12.1) involving only
terms with p = 3).

12.2.2 The Nishimori temperature. . .
{se:Nishimori}

In many spin glass ensembles, there exists a special temperature (called the
Nishimori temperature) at which some thermodynamic quantities, such as
the internal energy, can be computed exactly. This nice property is particularly
useful in the study of inference problems (a particular instance being symbol
MAP decoding of error correcting codes), since the Nishimori temperature natu-
rally arises in these context. There are in fact two ways of deriving it: either as an
application of gauge transformations (this is how it was discovered in physics),
or by mapping the system onto an inference problem.

Let us begin by taking the first point of view. Consider, for the sake of
simplicity, the model (12.3). The underlying graph G = (V, E) can be arbitrary,
but we assume that the couplings Jij on all the edges (ij) ∈ E are iid random
variables taking values Jij = +1 with probability 1 − p and Jij = −1 with
probability p. We denote by E the expectation with respect to this distribution.

The Nishimori temperature for this system is given by TN = 1/βN, where

βN = 1
2 log (1−p)

p . It is chosen in such a way that the coupling constant distribu-

tion P(J) satisfies the condition:

P(J) = e−2βN J P(−J) . (12.7) {eq:NishimoriCondition}

An equivalent way of stating the same condition consists in writing

P(J) =
eβN J

2 cosh(βNJ)
Q(|J |) . (12.8) {eq:gasgsym}

where Q(|J |) denotes the distribution of the absolute values of the couplings (in
the present example, this is a Dirac’s delta on |J | = 1).
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Let us now turn to the computation of the average internal energy31 U ≡
E〈E(σ)〉. More explicitly

U = E





1

Z[J ]

∑

σ

(
−
∑

(kl)

Jklσkσl

)
eβ

P

(ij) Jijσiσj




 , (12.9) {eq:gasgU}

In general, it is very difficult to compute U . It turns out that at the Nishimori
temperature, the gauge invariance allows for an easy computation. The average
internal energy U can be expressed as U = E{ZU [J ]/Z[J ]}, where ZU [J ] =
−∑σ

∑
(kl) Jklσkσl

∏
(ij) e

βNJijσiσj .

Let s ∈ {−1, 1}N . By an obvious generalization of the principle (12.6), we

have ZU [J (s)] = ZU [J ], and therefore

U = 2−N
∑

s

E{ZU [J (s)]/Z[J (s)]} . (12.10)eq:InternalEnergyAvGauge}

If the coupling constants Jij are iid with distribution (12.8), then the gauge

transformed constants J ′
ij = J

(s)
ij are equally independent but with distribution

Ps(Jij) =
eβNJijsisj

2 coshβN
. (12.11){eq:ChangeOfMeasure}

Equation (12.10) can therefore be written as U = 2−N
∑

s Es{ZU [J ]/Z[J ]},
where Es denotes expectation with respect to the modified measure Ps(Jij).
Using Eq. (12.11), and denoting by E0 the expectation with respect to the uni-
form measure over Jij ∈ {±1}, we get

U = 2−N
∑

s

E0





∏

(ij)

eβNJijsisj

coshβN

ZU [J ]

Z[J ]




 = (12.12)

= 2−N (coshβN)−|E|E0





∑

s

eβN

P

(ij) Jijsisj
ZU [J ]

Z[J ]




 = (12.13)

= 2−N (coshβN)−|E|E0 {ZU [J ]} . (12.14)

It is easy to compute E0ZU [J ] = −2N (coshβN)|E|−1 sinhβN. This implies our
final result for the average energy at the Nishimori temperature:

U = −|E| tanh(βN) . (12.15)

Notice that this simple result holds for any choice of the underlying graph. Fur-
thermore, it is easy to generalize it to other choices of the coupling distribution
satisfying Eq. (12.8) and to models with multi-spin interactions of the form
(12.1). An even wider generalization is treated below.

31The same symbol U was used in Chapter 2 to denote the internal energy 〈E(σ)〉 (instead
of its average). There should be no confusion with the present use.
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12.2.3 . . . and its relation with probability

The calculation of the internal energy in the previous Section is straightforward
but somehow mysterious. It is hard to grasp what is the fundamental reason
that make things simpler at the Nishimori temperature. Here we discuss a more
general derivation, in a slightly more abstract setting, which is related to the
connection with inference mentioned above.

Consider the following process. A configuration σ ∈ {±1} is chosen uniformly
at random, we call P0(σ) the corresponding distribution. Next a set of coupling
constants J = {Ja} is chosen according to the conditional distribution

P(J |σ) = e−βEJ (σ) Q0(J) . (12.16)

Here EJ(σ) is an energy function with coupling constants J , and Q0(J) is some
reference measure (that can be chosen in such a way that the resulting P(J |σ)
is normalized). This can be interpreted as a communication process. The infor-
mation source produces the message σ uniformly at random, and the receiver
observes the couplings J .

The joint distribution of J and σ is P(J, σ) = e−βEJ (σ) Q0(J)P0(σ) We shall
denote expectation with respect to the joint distribution by Av in order to dis-
tinguish it from the thermal and quenched averages.

We assume that this process enjoys a gauge symmetry (this defines the
Nishimori temperature in general). By this we mean that, given s ∈ {±1}N ,

there exists an invertible mapping J → J (s) such that Q0(J
(s)) = Q0(J) and

EJ(s)(σ(s)) = EJ (σ). Then it is clear that the joint probability distribution of
the coupling and the spins, and the conditional one, enjoy the same symmetry

P(σ(s), J (s)) = P(σ, J) ; P(J (s)|σ(s)) = P(J |σ) . (12.17)

Let us introduce the quantity

U(J) = Av(EJ (σ)|J) =
∑

σ

P(σ|J)EJ (σ) . (12.18)

and denote by U(σ0) =
∑

J P(J |σ0)U(J). This is nothing but the average in-

ternal energy for a disordered system with energy function EJ(σ) and coupling
distribution P(J |σ0). For instance, if we take σ0 as the ‘all-plus’ configuration,
Q0(J) proportional to the uniform measure over {±1}E , and EJ (σ) as given
by Eq. (12.3), then U(σ0) is exactly the quantity U that we computed in the
previous Section.

Gauge invariance implies that U(J) = U(J (s)) for any s, and U(σ0) does not
depend upon σ0. We can therefore compute U = U(σ0) by averaging over σ0.
We obtain

U =
∑

σ0

P0(σ0)
∑

J

P(J |σ0)
∑

σ

P(σ|J)EJ (σ)

=
∑

σ,J

P(σ, J)EJ (σ) =
∑

J

P(J |σ0)EJ (σ) , (12.19)
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where we used gauge invariance, once more, in the last step. The final expression
is generally easy to evaluate since the coublings Ja are generically independent
under P(J |σ0) In particular, it is straightforward to recover Eq. (12.15) for the
case treated in the last Section.

{ex:Nishimori_gen}
Exercise 12.8 Consider a spin glass model on an arbitrary graph, with en-
ergy given by (12.3), and iid random couplings on the edges, drawn from
the distribution P(J) = P0(|J |)eaJ . Show that the Nishimori inverse tem-
perature is βN = a, and that the internal energy at this point is given by:
U = −|E|∑J P0(|J |) J sinh(βNJ). In the case where P is a Gaussian distri-
bution of mean J0, show that U = −|E|J0.

12.3 What is a glass phase?
{se:SGphasedef}

12.3.1 Spontaneous local magnetizations
{sec:LocalMagnetization}

In physics, a ‘glass’ is defined through its dynamical properties. For classical spin
models such as the ones we are considering here, one can define several types
of physically meaningful dynamics. For definiteness we use the single spin flip
Glauber dynamics defined in Section 4.5, but the main features of our discussion
should be robust with respect to this choice. Consider a system at equilibrium
at time 0 (i.e., assume σ(0) to be distributed according to the Boltzmann distri-
bution) and denote by 〈 · 〉σ(0) the expectation with respect to Glauber dynamics
conditional to the initial configuration. Within a ‘solid’ 32 phase, spins are cor-
related with their initial value on long time scales:

lim
t→∞

lim
N→∞

〈σi(t)〉σ(0) ≡ mi,σ(0) 6= 〈σi〉 . (12.20)

In other words, on arbitrary long but finite (in the system size) time scales, the
system converges to a ‘quasi-equilibrium’ state (for brevity ‘quasi-state’) with
local magnetizations mi,σ(0) depending on the initial condition.

The condition (12.20) is for instance satisfied by a d ≥ 2 Ising ferromagnet
in zero external field, at temperatures below the ferromagnetic phase transition.
In this case we have either mi,σ(0) = M(β), or mi,σ(0) = −M(β) depending
on the initial condition (here M(β) is the spontaneous magnetization of the
system). There are two quasi-states, invariant by translation and related by a
simple symmetry transformation. If the different quasi-states are not periodic,
nor related by any such transformation, one may speak of a glass phase.

We shall discuss in greater detail the dynamical definition of quasi-states
in Chapter ??. It is however very important to characterize the glass phase
at the level of equilibrium statistical mechanics, without introducing a specific
dynamics. For the case of ferromagnets we have already seen the solution of
this problem in Chapter 2. Let 〈 . 〉B denote expectation with respect to the

32The name comes from the fact that in a solid the preferred position of the atoms are time
independent, for instance in a crystal they are the vertices of a periodic lattice
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Boltzmann measure for the energy function (12.1), after a uniform magnetic
field has been added. One then defines the two quasi-states by:

mi,± ≡ lim
B→0±

lim
N→∞

〈σi〉B . (12.21)

A natural generalization to glasses consists in adding a small magnetic field
which is not uniform. Let us add to the energy function (12.1) a term of the form
−ǫ∑i siσi where s ∈ {±1}N is an arbitrary configuration. Denote by 〈 · 〉ǫ,s the
expectation with respect to the corresponding Boltzmann distribution and let

mi,s ≡ lim
ǫ→0±

lim
N→∞

〈σi〉ǫ,s . (12.22)

The Edwards-Anderson order parameter, defined as

qEA ≡ lim
ǫ→0±

lim
N→∞

1

N

∑

i

〈σi〉2ǫ,s , (12.23)

where s is an equilibrium configuration, then signals the onset of the spin glass
phase.

The careful reader will notice that the Eq. (12.20) is not really completely
defined: How should we take the N → ∞ limit? Do the limits exist, how does
the result depend on σ? These are subtle questions. They underly the problem of
defining properly the pure states (extremal Gibbs states) in disordered systems.
In spite of many interesting efforts, there is no completely satisfactory definition
of pure states in spin glasses.

Instead, all the operational definitions of the glass phase rely on the idea
of comparing several equilibrated (i.e. drawn from the Boltzmann distribution)
configurations of the system: one can then use one configuration as defining the
direction of the polarizing field. This is probably the main idea underlying the
success of the replica method. We shall explain below two distinct criteria, based
on this idea, which can be used to define a glass phase. But we will first discuss
a criterion of stability of the high temperature phase.

12.3.2 Spin glass susceptibility
{se:SGsusceptibility}

Take a spin glass sample, with energy (12.1), and add to it a local magnetic field
on site i, Bi. The magnetic susceptibility of spin j with respect to the field Bi

is defined as the rate of change of mj = 〈σj〉Bi
with respect to Bi:

χji ≡
dmj

dBi

∣∣∣∣
Bi=0

= β(〈σiσj〉 − 〈σi〉〈σj〉) , (12.24)

where we used the fluctuation dissipation relation (2.44).
The uniform (ferromagnetic) susceptibility defined in Sec. 2.5.1 gives the

rate of change of the average magnetization with respect to an infinitesimal
global uniform field: χ = 1

N

∑
i,j χji. Consider a ferromagnetic Ising model as
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introduced in Sec. 2.5. Within the ferromagnetic phase (i.e. at zero external field
and below the critical temperature) χ diverges with the system size N . One way
to understand this divergence is the following. If we denote by m(B) the infinite
volume magnetization in a magnetic field B, then

χ = lim
B→0

1

2B
[m(B) −m(−B)] = lim

B→0+
M/B = ∞ , (12.25)

within the ferromagnetic phase.
The above argument relates the susceptibility divergence with the existence

of two distinct pure states of the system (‘plus’ and ‘minus’). What is the ap-
propriate susceptibility to detect a spin glass ordering? Following our previous
discussion, we should consider the addition of a small non-uniform field Bi = siǫ.
The local magnetizations are given by

〈σi〉ǫ,s = 〈σi〉0 + ǫ
∑

j

χijsj +O(ǫ2) . (12.26)

As suggested by Eq. (12.25) we compare the local magnetization obtained by
perturbing the system in two different directions s and s′

〈σi〉ǫ,s − 〈σi〉ǫ,s′ = ǫ
∑

j

χij(sj − s′j) +O(ǫ2) . (12.27)

How should we choose s and s′? A simple choice takes them independent and
uniformly random in {±1}N ; let us denote by Es the expectation with respect
to this distribution. The above difference becomes therefore a random variable
with zero mean. Its second moment allows to define spin glass susceptibility
(sometimes called non-linear susceptibility):

χSG ≡ lim
ǫ→0

1

2Nǫ2

∑

i

Es

(
〈σi〉ǫ,s − 〈σi〉ǫ,s′

)2
(12.28)

This is somehow the equivalent of Eq. (12.25) for the spin glass case. Using
Eq. (12.27) one gets the expression χSG = 1

N

∑
ij(χij)

2, that is, thanks to the
fluctuation dissipation relation

χSG =
β2

N

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2 . (12.29){eq:chiSGdef}

A necessary condition for the system to be in a ‘normal’ paramagnetic phase 33

is that χSG remain finite when N → ∞. We shall see below that this necessary
condition of local stability is not always sufficient.

33One could construct models with ‘exotic’ paramagnetic phases, and a divergent spin glass
susceptibility if (for instance) coupling distribution has infinite second moment. We disregard
such situations.
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Exercise 12.9 Another natural choice would consist in choosing s and s′ as
independent configurations drawn from Boltzmann’s distribution. Show that
with such a choice one would get χSG = (1/N)

∑
i,j,k χijχjkχki. This suscep-

tibility has not been studied in the literature, but it is reasonable to expect
that it will lead generically to the same criterion of stability as the usual one
(12.29).

12.3.3 The overlap distribution function P (q)

One of the main indicators of a glass phase is the overlap distribution, which we
defined in Section 8.2.2, and discussed on some specific examples. Given a general
magnetic model of the type (12.1), one generates two independent configurations
σ and σ′ from the associated Boltzmann distribution and consider their overlap
q(σ, σ′) = N−1

∑
i σiσ

′
i. The overlap distribution P (q) is the distribution of

q(σ, σ′) when the couplings and the underlying factor graph are taken randomly
from their ensemble. Its moments are given by34:

∫
P (q)qr dq = E

{ 1

Nr

∑

i1,...,ir

〈σi1 . . . σir
〉2
}
. (12.30)

In particular, the first moment
∫
P (q) q dq = N−1

∑
im

2
i is the expected overlap

and the variance Var(q) ≡
∫
P (q) q2 dq−

[∫
P (q) q dq

]2
is related to the spin glass

susceptibility:

Var(q) = E

{ 1

N2

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2
}

=
1

N
χSG . (12.31) {eq:Pdeq2ndmom}

How is a glass phase detected through the behavior of the overlap distribution
P (q)? We will discuss here some of the features emerging from the solution of
mean field models. In the next Section we will see that the overlap distribution is
in fact related to the idea, discussed in Section 12.3.1, of perturbing the system
in order to explore its quasi-states.

Generically35, at small β, a system of the type (12.1) is found in a ‘para-
magnetic’ or ‘liquid’ phase. In this regime P (q) concentrates as N → ∞ on a
single (deterministic) value q(β). With high probability, two independent config-
urations σ and σ′ have overlap q(β). In fact, in such a phase, the spin glass χSG

susceptibility is finite, and the variance of P (q) vanishes therefore as 1/N .
For β larger than a critical value βc, the distribution P (q) may acquire some

structure, in the sense that several values of the overlap have non-zero probability

34Notice that, unlike in Section 8.2.2, we denote here by P (q) the overlap distribution for a
finite system of size N , instead of its N → ∞ limit.

35This expression should be interpreted as ‘in most model of interest studied until now’ and
subsumes a series of hypotheses. We assume, for instance, that the coupling distribution P(J)
has finite second moment.
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P

Fig. 12.2. Typical behavior of the order parameter P (q) (overlap distribution
at a continuous-FRSB glass transition. Vertical arrows denote Dirac’s delta func-
tion. {fig:pdeq_continu}

in the N → ∞ limit. The temperature Tc = 1/βc is called the static (or
equilibrium) glass transition temperature. For β > βc the system is in an
equilibrium glass phase.

How does P (q) look like at β > βc? Let us focus here on its asymptotic
(N → ∞) limit. Generically, the transition falls into one of the following two
categories, the names of which come from the corresponding replica symmetry
breaking pattern found in the replica approach:

(i) Continuous (“Full replica symmetry breaking -FRSB”) glass transition.
In Fig. 12.2 we sketch the behavior of the thermodynamic limit of P (q)
in this case. The delta function present at β < βc ‘broadens’ for β > βc,
giving rise to a distribution with support in some interval [q0(β), q1(β)]. The
width q1(β) − q0(β) vanishes continuously when β ↓ βc. Furthermore, the
asymptotic distribution has a continuous density which is strictly positive
in (q0(β), q1(β)) and two discrete (delta) contributions at q0(β) and q1(β).

This type of transition has a ‘precursor’. If we consider the N → ∞ limit
of the spin glass susceptibility, this diverges as β ↑ βc. This phenomenon
is quite important for identifying the critical temperature experimentally,
numerically and analytically.

(ii) Discontinuous (“1RSB”) glass transition. Again, the asymptotic limit of
P (q) acquires a non trivial structure in the glass phase, but the scenario
is different. When β increases above βc, the δ-peak at q(β), which had
unit mass at β ≤ βc, becomes a peak at q0(β), with a mass 1 − x(β) < 1.
Simultaneously, a second δ-peak appears at a value of the overlap q1(β) >
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T0 Tc
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Glass phase
Trivial P(q)

Fig. 12.3. Typical behavior of the order parameter P (q) (overlap distribution)
in a discontinuous-1RSB glass transition. Vertical arrows denote Dirac’s delta
function. {fig:pdeq_1step}

q0(β) with mass x(β). As β ↓ βc, q0(β) → q(βc) and x(β) → 0. Unlike
in a continuous transition, the width q1(β) − q0(β) does not vanish as
β ↓ βc and the open interval ]q0(β), q1(β)[ has vanishing probability in the
N → ∞ limit. Furthermore, the thermodynamic limit of the spin glass
susceptibility, χSG has a finite limit as β ↑ βc. This type of transition has
no ‘simple’ precursor (but we shall describe below a more subtle indicator).

The two-peaks structure of P (q) in a discontinuous transition has a partic-
ularly simple geometrical interpretation. When two configurations σ and σ′ are
chosen independently with the Boltzmann measure, their overlap is (with high
probability) either approximately equal to q0 or to q1. In other words, their
Hamming distance is either N(1 − q1)/2 or N(1 − q0)/2. This means that the
Boltzmann measure p(σ) is concentrated in some regions of the Hamming space
(clusters). With high probability, two independent random configurations in
the same cluster have distance (close to) N(1− q1)/2, and two configurations in
distinct clusters have distance (close to) N(1 − q0)/2. In other words, while the
overlap does not concentrate in probability when σ and σ′ are drawn from the
Boltzmann measure, it does when this measure is restricted to one cluster. In a
more formal (but still imprecise) way, we might write

p(σ) ≈
∑

α

Wαpα(σ) , (12.32)
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where the pα( · ) are probability distributions concentrated onto a single cluster,
and Wα are the weights attributed by the Boltzmann distribution to each cluster.

According to this interpretation, x(β) = E
∑

αW
2
α. Notice that, since x(β) >

0 for β > βc, the weights are sizeable only for a finite number of clusters (if
there were R clusters, all with the same weight Wα = 1/R, one would have
x(β) = 1/R). This is what we found already in the REM, as well as in the
replica solution of the completely connected p-spin model, cf. Sec. 8.2.

Generically, clusters exist already in some region of temperatures above Tc,
but the measure is not yet condensed on a finite number of them. In order to
detect the existence of clusters in this intermediate temperature region, one needs
some of the other tools described below.

There is no clear criterion that allows to distinguish a priori between systems
undergoing one or the other type of transition. The experience gained on models
solved via the replica or cavity methods indicated that a continuous transition
typically occurs in standard spin glasses with p = 2-body interactions, but also,
for instance, in the vertex-cover problem. A discontinuous transition is instead
found in structural glasses, generalized spin glasses with p ≥ 3, random satisfia-
bility and coloring. To complicate things, both types of transitions may occur in
the same system at different temperatures (or varying some other parameter).
This may lead to a rich phase diagram with several glass phases of different
nature.

It is natural to wonder whether gauge transformations may give some in-
formation on P (q). Unfortunately, it turns out that the Nishimori temperature
never enters a spin glass phase: the overlap distribution at TN is concentrated
on a single value, as suggested in the next exercise.

{ex:pdeqNishim}
Exercise 12.10 Using the gauge transformation of Sec. 12.2.1, show that,
at the Nishimori temperature, the overlap distribution P (q) is equal to the
distribution of the magnetization per spin m(σ) ≡ N−1

∑
i σi. (In many spin

glass models one expects that this distribution of magnetization per spin obeys
a large deviation principle, and that it concentrates onto a single value as
N → ∞.)

12.3.4 From the overlap distribution to the ǫ-coupling method

The overlap distribution is in fact related to the idea of quasi-states introduced in
Sec. 12.3.1. Let us again use a perturbation of the Boltzmann distribution which
adds to the energy a magnetic field term −ǫ∑i siσi, where s = (s1, . . . , sN ) is a
generic configuration. We introduce the ǫ-perturbed energy of a configuration σ
as

Eǫ,s(σ) = E(σ) − ǫ
N∑

i=1

siσi . (12.33){eq:PerturbedEnergy}

Is is important to realize that both the original energy E(σ) and the new term
−ǫ∑i siσi are extensive, i.e. they grow proportionally toN asN → ∞. Therefore
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in this limit the presence of the perturbation can be relevant. The ǫ-perturbed
Boltzmann measure is

pǫ,s(σ) =
1

Zǫ,s
e−βEǫ,s(σ) . (12.34)

In order to quantify the effect of the perturbation, let us measure the expected
distance between σ and s

d(s, ǫ) ≡ 1

N

N∑

i=1

1

2
(1 − si〈σi〉s,ǫ) (12.35)

(notice that
∑

i(1 − siσi)/2 is just the number of positions in which σ and s
differ). For ǫ > 0 the coupling between σ and s is attractive, for ǫ < 0 it is
repulsive. In fact it is easy to show that d(s, ǫ) is a decreasing function of ǫ. ⋆

In the ǫ-coupling method, s is taken as a random variable, drawn from the
(unperturbed) Boltzmann distribution. The rationale for this choice is that in
this way s will point in the directions corresponding to quasi-states. The average
distance induced by the ǫ-perturbation is then obtained, after averaging over s
and over the choice of sample:

d(ǫ) ≡ E

{∑

s

1

Z
e−βE(s) d(s, ǫ)

}
. (12.36)

There are two important differences between the ǫ-coupling method computation
of the overlap distribution P (q): (i) When computing P (q), the two copies of
the system are treated on equal footing: they are independent and distributed
according to the Boltzmann law. In the ǫ-coupling method, one of the copies
is distributed according to Boltzmann law, while the other follows a perturbed
distribution depending on the first one. (ii) In the ǫ-coupling method the N → ∞
limit is taken at fixed ǫ. Therefore, the sum in Eq. (12.36) can be dominaded by
values of the overlap q(s, σ) which would have been exponentially unlikely for the
original (unperturbed) measure. In the N → ∞ limit of P (q), such values of the
overlap are given a vanishing weight. The two approaches provide complementary
informations.

Within a paramagnetic phase d(ǫ) remains a smooth function of ǫ in the
N → ∞ limit: perturbing the system does not have any dramatic effect. But in
a glass phase d(ǫ) becomes singular. Of particular interest are discontinuities at
ǫ = 0, that can be detected by defining

∆ = lim
ǫ→0+

lim
N→∞

d(ǫ) − lim
ǫ→0−

lim
N→∞

d(ǫ) . (12.37)

Notice that the limit N → ∞ is taken first: for finite N there cannot be any
discontinuity.

One expects ∆ to be non-zero if and only if the system is in a ‘solid’ phase.
One can think the process of adding a positive ǫ coupling and then letting it to
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0 as a physical process. The system is first forced in an energetically favorable
configuration (given by s). The forcing is then gradually removed and one checks
whether any memory of the preparation is retained (∆ > 0), or, vice-versa, the
system ‘liquefies’ (∆ = 0).

The advantage of the ǫ-coupling method with respect to the overlap distri-
bution P (q) is twofold:

• In some cases the dominant contribution to the Boltzmann measure comes
from several distinct clusters, but a single one dominates over the others.
More precisely, it may happen that the weights for sub-dominant clusters
scales as Wα = exp[−Θ(Nθ)], with θ ∈]0, 1[. In this case, the thermody-
namic limit of P (q) is a delta function and does not allow to distinguish
from a purely paramagnetic phase. However, the ǫ-coupling method iden-
tifies the phase transition through a singularity of d(ǫ) at ǫ = 0.

• One can use it to analyze a system undergoing a discontinuous transition,
when it is in a glass phase but in the T > Tc regime. In this case, the
existence of clusters cannot be detected from P (q) because the Boltzmann
measure is spread among an exponential number of them. This situation
will be the object of the next Section.

12.3.5 Clustered phase of 1RSB systems and the potential
{se:1rsbqualit}

The 1RSB equilibrium glass phase corresponds to a condensation of the mea-
sure on a small number of clusters of configurations. However, the most striking
phenomenon is the appearance of clusters themselves. In the next Chapters we
will argue that this has important consequences on Monte Carlo dynamics as
well as on other algorithmic approaches to these systems. It turns out that the
Boltzmann measure splits into clusters at a distinct temperature Td > Tc. In
the region of temperatures [Tc, Td] we will say that the system is in a clustered
phase (or, sometimes, dynamical glass phase). The phase transition at Td

will be referred to as clustering or dynamical transition. In this regime, an
exponential number of clusters N .

= eNΣ carry a roughly equal weight. The rate
of growth Σ is called complexity36 or configurational entropy.

The thermodynamic limit of the overlap distribution P (q) does not show
any signature of the clustered phase. In order to understand this point, it is
useful to work out an toy example. Assume that the Boltzmann measure is
entirely supported onto exactly eNΣ sets of configurations in {±1}N (each set is a
clusters), denoted by α = 1, . . . , eNΣ and that the Boltzmann probability of each
of these sets is w = e−NΣ. Assume furthermore that, for any two configurations
belonging to the same cluster σ, σ′ ∈ α, their overlap is q(σ, σ′) = q1, while if they
belong to different clusters σ ∈ α, σ′ ∈ α′, α 6= α′ their overlap is q(σ, σ′) = q0 <
q1. Although it might be actually difficult to construct such a measure, we shall
neglect this for a moment, and compute the overlap distribution. The probability

36This use of the term ‘complexity’, which is customary in statistical physics, should not be
confused with its use in theoretical computer science.
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that two independent configurations fall in the same cluster is eNΣw2 = e−NΣ.
Therefore, we have

P (q) = (1 − e−NΣ) δ(q − q0) + e−NΣ δ(q − q1) , (12.38)

which converges to δ(q − q0) as N → ∞: a single delta function as in the para-
magnetic phase.

A first signature of the clustered phase is provided by the ǫ-coupling method
described in the previous Section. The reason is very clear if we look at Eq. (12.33):
the epsilon coupling ‘tilts’ the Boltzmann distribution in such a way that un-
likely values of the overlap acquire a finite probability. It is easy to compute the
thermodynamic limit d∗(ǫ) ≡ limN→∞ d(ǫ). We get

d∗(ǫ) =

{
(1 − q0)/2 for ǫ < ǫc,
(1 − q1)/2 for ǫ > ǫc,

(12.39)

where ǫc = Σ/β(q1−q0). As T ↓ Tc, clusters becomes less and less numerous and
Σ → 0. Correspondingly, ǫc ↓ 0 as the equilibrium glass transition is approached.

The picture provided by this toy example is essentially correct, with the
caveats that the properties of clusters will hold only within some accuracy and
with high probability. Nevertheless, one expects d∗(ǫ) to have a discontinuity at
some ǫc > 0 for all temperatures in an interval ]Tc, T

′
d]. Furthermore ǫc ↓ 0 as

T ↓ Tc.
In general, the temperature T ′

d computed through the ǫ-coupling method
does not coincide with the clustering transition. The reason is easily understood.
As illustrated by the above example, we are estimating the exponentially small
probability P(q|s, J) that an equilibrated configuration σ has overlap q with the
reference configuration s, in a sample J . In order to do this we compute the
distance d(ǫ) which can be expressed by taking the expectation with respect
to s and J of a rational function of P(q|s, J). As shown several times since
Chapter 5, exponentially small (or large) quantities, usually do not concentrate
in probability, and d(ǫ) may be dominated by exponentially rare samples. We
also learnt the cure for this problem: take logarithms! We therefore define37 the
potential

V (q) = − lim
N→∞

1

Nβ
Es,J {log P(q|s, J)} . (12.40)

Here (as in the ǫ-coupling method) the reference configuration is drawn from the
Boltzmann distribution. In other words

Es,J( · · · ) = EJ

{ 1

ZJ

∑

s

e−βEJ (s)( · · · )
}
. (12.41)

If, as expected, log P(q|s, J) concentrates in probability, one has P(q|s, J)
.
=

e−NV (q)

37One should introduce a resolution, so that the overlap is actually constrained in some
window around q. The width of this window can be let to 0 after N → ∞.
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Fig. 12.4. Qualitative shapes of the potential V (q) at various temperatures.
When the temperature is very high (not shown) V (q) is convex. Below T = Td,
it develops a secondary minimum. The height difference between the two minima
is V (q1) − V (q0) = TΣ. In the case shown here q0 = 0 is independent of the
temperature.{fig:pot_qualit}

{exercise:RandomSigma}
Exercise 12.11 Consider the following refined version of the
toy model (12.38): P(q|s, J) = (1 − e−NΣ(s,J))Gq0(s,J);b0/Nβ(q) +

e−NΣ(s,J))Gq1(s,J);b1/Nβ(q), where Ga,b is a Gaussian distribution of
mean a and variance b. We suppose that b0, b1 are constants, but
Σ(s, J), q0(s, J), q1(s, J) fluctuate as follows: when J and s are distributed ac-
cording to the correct joint distribution (12.41), then Σ(s, J), q0(s, J), q1(s, J)
are independent Gaussian random variable of means respectively Σ, q0, q1 and
variances δΣ2/N, δq20/N, δq

2
1/N .

Assuming for simplicity that δΣ2 < 2Σ, compute P (q) and d(ǫ) for this
model. Show that the potential V (q) is given by two arcs of parabolas:

V (q) = min

{
(q − q0)

2

2b0
,

(q − q1)
2

2b1
+

1

β
Σ

}
(12.42)

The potential V (q) has been computed exactly, using the replica method,
only in a small number of cases, mainly fully connected p-spin glasses. Here
we shall just mention the qualitative behavior that is expected on the basis of
these computations. The result is summarized in Fig. 12.4. At small enough β
the potential is convex. Increasing β one first encounters a value β∗ where V (q)
stops to be convex. When β > βd = 1/Td, V (q) develops a secondary minimum,
at q = q1(β) > q0(β). This secondary minimum is in fact an indication of the
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existence of an exponential number of clusters, such that two configurations in
the same cluster typically have overlap q1, while two configurations in distinct
clusters have overlap q0. A little thought shows that the difference between the
value of the potential at the two minima gives the complexity: V (q1) − V (q0) =
TΣ.

In models in which the potential has been computed exactly, the temperature
Td computed in this way has been shown to coincide with a dramatic slowing
down of the dynamics. More precisely, a properly defined relaxation time for
Glauber-type dynamics is finite for T > Td and diverges exponentially in the
system size for T < Td.

12.3.6 Cloning and the complexity function

When the various clusters don’t have all the same weight, the system is most
appropriately described through a complexity function. Consider a cluster of
configurations, called α. Its free energy Fα can be defined by restricting the parti-
tion function to configurations in cluster α. One way of imposing this restriction
is to chose a reference configuration σ0 ∈ α, and restricting the Boltzmann sum
to those configurations σ whose distance from σ0 is smaller than Nδ. In order
to correctly identify clusters, one has to take (1 − q1)/2 < δ < (1 − q0)/2.

Let Nβ(f) be the number of clusters such that Fα = Nf (more precisely, this
is an un-normalized measure attributing unit weight to the points Fα/N). We
expect it to satisfy a large deviations principle of the form

Nβ(f)
.
= exp{NΣ(β, f)} . (12.43)

The rate function Σ(β, f) is the complexity function. If clusters are defined as
above, with the cut-off δ in the appropriate interval, they are expected to be
disjoint up to a subset of configurations of exponentially small Boltzmann weight.
Therefore the total partition function is given by:

Z =
∑

α

e−βFα
.
=

∫
eN [Σ(β,f)−βf ] df

.
= eN [Σ(β,f∗)−βf∗] , (12.44)

where we applied the saddle point method as in standard statistical mechan-
ics calculations, cf. Sec. 2.4. Here f∗ = f∗(β) solves the saddle point equation
∂Σ/∂f = β.

For several reasons, it is interesting to determine the full complexity func-
tion Σ(β, f), as a function of f for a given inverse temperature β. The cloning
method is a particularly efficient (although non-rigorous) way to do this com-
putation. Here we sketch the basic idea: several applications will be discussed in
the next Chapters. One begins by introducing m identical ‘clones’ of the initial
system. These are non-interacting except for the fact that they are constrained
to be in the same cluster. In practice one can constrain all their pairwise Ham-
ming distances to be smaller than Nδ, where (1 − q1)/2 < δ < (1 − q0)/2. The
partition function for the m clones systems is therefore
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Zm =
∑

σ(1),...,σ(m)

′ exp
{
− βE(σ(1)) · · · − βE(σ(m))

}
. (12.45)

where the prime reminds us that σ(1), . . .σ(m) stay in the same cluster. By
splitting the sum over the various clusters we have

Zm =
∑

α

∑

σ(1)...σ(m)∈α

e−βE(σ(1))···−βE(σ(m)) =
∑

α

(∑

σ∈α

e−βE(σ)
)m

. (12.46)

At this point we can proceed as for the calculation of the usual partition function
and obtain

Zm =
∑

α

e−βmFα
.
=

∫
eN [Σ(β,f)−βmf ] df

.
= eN [Σ(β,f̂)−βmf̂ ] , (12.47){eq:SaddlePointCloned}

where f̂ = f̂(β,m) solves the saddle point equation ∂Σ/∂f = βm.
The free energy density per clone of the cloned system is defined as

Φ(β,m) = − lim
N→∞

1

βmN
logZm . (12.48)

The saddle point estimate (12.47) implies that Φ(β,m) is related to Σ(β, f)
through a Legendre transform:

Φ(β,m) = f − 1

βm
Σ(β, f) ;

∂Σ

∂f
= βm . (12.49)

If we forget that m is an integer, and admit that Φ(β,m) can be ‘continued’
to non-integer m, the complexity Σ(β, f) can be computed from Φ(β,m) by
inverting this Legendre transform38.

38The similarity to the procedure used in the replica method is not fortuitous. Notice however
that replicas are introduced to deal with quenched disorder, while cloning is more general
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Exercise 12.12 In the REM, the natural definition of overlap between two
configurations i, j ∈ {1, . . . , 2N} is Q(i, j) = δij . Taking a configuration j0 as
reference, the ǫ-perturbed energy of a configuration j is E′(ǫ, j) = Ej −Nǫδj,j0 .
(Note the extra N multiplying ǫ, introduced in order to ensure that the new
ǫ-coupling term is typically extensive).

(i) Consider the high temperature phase where β < βc = 2
√

log 2. Show that
the ǫ-perturbed system has a phase transition at ǫ = log 2

β − β
4 .

(ii) In the low temperature phase β > βc, show that the phase transition
takes place at ǫ = 0.

Therefore in the REM the clusters exist at any β, and every cluster is reduced to
one single configuration: one must have Σ(β, f) = log 2−f2 independently of β.
Show that this is compatible with the cloning approach, through a computation
of the potential Φ(β,m):

Φ(β,m) =

{
− log 2

βm − βm
4 for m < βc

β

−√
log 2 for m > βc

β

(12.50)

12.4 An example: the phase diagram of the SK model
{sec:PhaseDiag}

Several mean field models have been solved using the replica method. Some-
times a model may present two or more glass phases with different properties.
Determining the phase diagram can be particularly challenging in these cases.

A classical example is provided by the SK model with ferromagnetically bi-
ased couplings. As in the other examples of this Chapter, this is a model for N
Ising spins σ = (σ1, . . . , σN ). The energy function is

E(σ) = −
∑

(i,j)

Jijσiσj , (12.51)

where (i, j) are un-ordered couples, and the couplings Jij are iid Gaussian ran-
dom variables with mean J0/N and variance 1/N . The model somehow inter-
polates between the Curie-Weiss model treated in Sec. 2.5.2, corresponding to
J0 → ∞, and the unbiased Sherrington-Kirkpatrick model, considered in Chap-
ter 8, for J0 = 0.

The phase diagram is plotted in terms of two parameters: the ferromagnetic
bias J0, and the temperature T . Depending on their values, the system is found in
one of four phases, cf. Fig. 12.5: paramagnetic (P), ferromagnetic (F), symmetric
spin glass (SG) and mixed ferromagnetic spin glass (F-SG). A simple character-
ization of these four phases is obtained in terms of two quantities: the average
magnetization and overlap. In order to define them, we must first observe that,
since E(σ) = E(−σ), in the present model 〈σi〉 = 0 identically for all values of
J0, and T . In order to break this symmetry, we may add a magnetic field term
−B∑i σi and let B → 0 after the thermodynamic limit. We then define
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Fig. 12.5. Phase diagram of the SK model in zero magnetic field. When the
temperature T and the ferromagnetic bias J0 are varied, there exist four possible
phases: paramagnetic (P), ferromagnetic (F), spin glass (SG) and mixed ferro-
magnetic-spin glass (F-SG). The full lines separate these various phases. The
dashed line is the location of the Nishimori temperature. {fig:sk_phasediag}

m = lim
B→0+

lim
N→∞

E〈σi〉B , q = lim
B→0+

lim
N→∞

E(〈σi〉2B) , (12.52)

(which don’t depend on i because the coupling distribution is invariant under a
permutation of the sites). In the P phase one has m = 0, q = 0; in the SG phase
m = 0, q > 0, and in the F and F-SG phases one has m > 0, q > 0.

A more complete description is obtained in terms of the overlap distribu-
tion P (q). Because of the symmetry under spin inversion mentioned above,
P (q) = P (−q) identically. The qualitative shape of P (q) in the thermodynamic
limit is shown in Fig. 12.6. In the P phase it consists of a single δ function with
unit weight at q = 0: two independent configurations drawn from the Boltzmann
distribution have, with high probability, overlap close to 0. In the F phase, it
is concentrated on two symmetric values q(J0, T ) > 0 and −q(J0, T ) < 0, each
carrying weight one half. We can summarize this behavior by saying that a ran-
dom configuration drawn from the Boltzmann distribution is found, with equal
probability, in one of two different states. In the first one the local magnetiza-
tions are {mi}, in the second one they are {−mi}. If one draws two independent
configurations, they fall in the same state (corresponding to the overlap value
q(J0, T ) = N−1

∑
im

2
i ) or in opposite states (overlap −q(J0, T )) with probability

1/2. In the SG phase the support of P (q) is a symmetric interval [−qmax, qmax],
with qmax = qmax(J0, T ). Finally, in the F-SG phase the support is the union of
two intervals [−qmax,−qmin] and [qmin, qmax]. Both in the SG and F-SG phases,
the presence of a whole range of overlap values carrying non-vanishing probabil-
ity, suggests the existence of a multitude of quasi-states (in the sense discussed
in the previous Section).

In order to remove the degeneracy due to the symmetry under spin inversion,
one sometimes define an asymmetric overlap distribution by adding a magnetic
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Fig. 12.6. The typical shape of the P (q) function in each of the four phases of
the SK model ferromagnetically biased couplings.{fig:pdeq_SK}

field terms, and taking the thermodynamic limit as in Eq. (12.52):

P+(q) = lim
B→0+

lim
N→∞

PB(q) . (12.53)

Somewhat surprisingly, it turns out that P+(q) = 0 for q < 0, while P+(q) =
2P (q) for q > 0. In other words P+(q) is equal to the distribution of the absolute
value of the overlap.

Exercise 12.13 Consider the Curie-Weiss model in a magnetic field, cf.
Sec. 2.5.2. Draw the phase diagram and compute the asymptotic overlap distri-
bution. Discuss its qualitative features for different values of the temperature
and magnetic field.

A few words for the reader interested in how one derives this diagram: Some
of the phase boundaries were already derived using the replica method in Exer-
cise 8.12. The boundary P-F is obtained by solving the RS equation (8.68) for
q, µ, m. The P-SG and F-M lines are obtained by the AT stability condition
(8.69). Deriving the phase boundary between the SG and F-SG phases is much
more challenging, because it separates glassy phases, therefore it cannot be de-
rived within the RS solution. It is known to be approximately vertical, but there
is no simple expression for it. The Nishimori temperature is deduced from the
condition (12.7): TN = 1/J0, and the line T = 1/J0 is usually called ‘Nishimori
line’. The internal energy per spin on this line is U/N = −J0/2. Notice that the
line does not enter any of the glass phases, as we know from general arguments.

An important aspect of the SK model is that the appearance of the glass
phase on the lines separating P from SG on the one hand, and F from F-SG
on the other hand is a continuous transition. Therefore it is associated with the
divergence of the non-linear susceptibility χSG. The following exercise, reserved
to the replica aficionados, sketches the main lines of the argument showing this.
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Exercise 12.14 Let us see how to compute the non-linear susceptibility of the

SK model, χSG = β2

N

∑
i6=j (〈σiσj〉 − 〈σi〉〈σj〉)2, with the replica method Show

that:

χSG = lim
n→0

β2

N

∑

i6=j




(
n

2

)−1∑

(ab)

〈σa
i σ

b
iσ

a
j σ

b
j〉 −

(
n

3

)−1 ∑

(abc)

〈σa
i σ

b
iσ

a
j σ

c
j〉

+

(
n

4

)−1 ∑

(abcd)

〈σa
i σ

b
iσ

c
jσ

d
j 〉





= N lim
n→0

∫ ∏

(ab)

(dQabdλab)e
−NG(Q,λ)A(Q) , (12.54)

where we follow the notations of (8.30), the sum over (a1a2 . . . ak) is understood
to run over all the k-uples of distinct replica indices, and

A(Q) ≡
(
n

2

)−1∑

(ab)

Q2
ab −

(
n

3

)−1 ∑

(abc)

QabQac +

(
n

4

)−1 ∑

(abcd)

QabQcd .(12.55)

Analyze the divergence of χSG along the following lines: The leading contribu-
tion to (12.54) should come from the saddle point and be given, in the high
temperature phase, by A(Qab = q) where Qab = q is the RS saddle point. How-
ever this contribution clearly vanishes when one takes the n → 0 limit. One
must thus consider the fluctuations around the saddle point. Each of the term
like QabQcd in A(Q) gives a factor 1

N time the appropriate matrix element of
the inverse of the Hessian matrix. When this Hessian matrix is non-singular,
these elements are all finite and one obtains a finite result (The 1/N cancels
the factor N in (12.54)). But when one reaches the AT instability line, the
elements of the inverse of the Hessian matrix diverge, and therefore χSG also
diverges.

Notes

A review on the simulations of the Edwards Anderson model can be found in
(Marinari, Parisi and Ruiz-Lorenzo, 1997).

Mathematical results on mean field spin glasses are found in the book (Tala-
grand, 2003). A short recent survey is provided by (Guerra, 2005).

Diluted spin glasses were introduced in (Viana and Bray, 1988).
The implications of the gauge transformation were derived by Hidetoshi

Nishimori and his coworkers, and are explained in details in his book (Nishi-
mori, 2001).

The notion of pure states in phase transitions, and the decomposition of Gibbs
measures into superposition of pure states, is discussed in the book (Georgii,
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1988).
The divergence of the spin glass susceptibility is specially relevant because

this susceptibility can be measured in zero field. The experiments of (Monod and
Bouchiat, 1982) present evidence of a divergence, which support the existence
of a finite spin glass transition in real (three dimensional) spin glasses in zero
magnetic field.

The existence of two transition temperatures Tc < Td was first discussed
by Kirkpatrick, Thirumalai and Wolynes (Kirkpatrick and Wolynes, 1987; Kirk-
patrick and Thirumalai, 1987), who pointed out the relevance to the theory
of structural glasses. In particular, (Kirkpatrick and Thirumalai, 1987) discusses
the case of the p-spin glass. A review of this line of approach to structural glasses,
and particularly its relevance to dynamical effects, is (Bouchaud, Cugliandolo,
Kurchan and Mézard, 1997).

The ǫ-coupling method was introduced in (Caracciolo, Parisi, Patarnello and
Sourlas, 1990). The idea of cloning in order to study the complexity function
is due to Monasson (Monasson, 1995). The potential method was introduced in
(Franz and Parisi, 1995).
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{ch:inference}

We have seen in the last three Chapters how some problems with very different
origins can be cast into the unifying framework of factor graph representations.
The underlying mathematical structure, namely the locality of probabilistic de-
pendencies between variables, is also present in many problems of probabilistic
inference, which provides another unifying view of the field. On the other hand,
locality is an important ingredient that allows sampling from complex distribu-
tions using the Monte Carlo technique.

In Section 13.1 we present some basic terminology and simple examples of
statistical inference problems. Statistical inference is an interesting field in it-
self with many important applications (ranging from artificial intelligence, to
modeling and statistics). Here we emphasize the possibility of considering cod-
ing theory, statistical mechanics and combinatorial optimization, as inference
problems.

Section 13.2 develops a very general tool in all these problems, the Monte
Carlo Markov Chain (MCMC) technique, already introduced in Sec. 4.5. This
is often a very powerful approach. Furthermore, Monte Carlo sampling can be
regarded as a statistical inference method, and the Monte Carlo dynamics is a
simple prototype of the local search strategies introduced in Secs. 10.2.3 and
11.4. Many of the difficulties encountered in decoding, in constraint satisfaction
problems, or in glassy phases, are connected to a dramatic slowing down of the
MCMC dynamics. We present the results of simple numerical experiments on
some examples, and identify regions in the phase diagram where the MCMC
slowdown implies poor performances as a sampling/inference algorithm. Finally,
in Section 13.3 we explain a rather general argument to estimate the amount
of time MCMC has to be run in order to produce roughly independent samples
with the desired distribution.

13.1 Statistical inference{sec:Inference}

13.1.1 Bayesian networks

It is common practice in artificial intelligence and statistics, to formulate infer-
ence problems in terms of Bayesian networks. Although any such problem can
also be represented in terms of a factor graph, it is worth to briefly introduce
this alternative language. A famous toy example is the ‘rain–sprinkler’ network.

266
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cloudy

rain sprinkler

wet

 

p(r|c) \ c 0 1
r = 0 0.8 0.3
r = 1 0.2 0.7

p(s|c) \ c 0 1
s = 0 0.1 0.7
s = 1 0.9 0.3

p(w|r, s) \ r, s 0, 0 0, 1 1, 0 1, 1
w = 0 0.1 0.2 0.2 0.1
w = 1 0.9 0.8 0.8 0.9

Fig. 13.1. The rain-sprinkler Bayesian network.{fig:SprinklerRain}

Example 13.1 During a walk to the park, a statistician notices that the grass
is wet. There are two possible reasons for that: either it rained during the night,
or the sprinkler was activated in the morning to irrigate the lawn. Both events
are in turn correlated with the weather condition in the last 24 hours.

After a little thought, the statistician formalizes these considerations as
the probabilistic model depicted in Fig. 13.1. The model includes four random
variables: cloudy, rain, sprinkler, wet, taking values in {0, 1} (respectively, false
or true). The variables are organized as the vertices of an oriented graph.
A directed edge corresponds intuitively to a relation of causality. The joint
probability distribution of the four variables is given in terms of conditional
probabilities associated to the edges. Explicitly (variables are indicated by their
initials):

p(c, s, r,w) = p(c) p(s|c) p(r|c) p(w|s, r) . (13.1)

The three conditional probabilities in this formula are given by the Tables in
Fig. 13.1. A ‘uniform prior’ is assumed on the event that the day was cloudy:
p(c = 0) = p(c = 1) = 1/2.

Assuming that wet grass was observed, we may want to know whether the
most likely cause was the rain or the sprinkler. This amount to computing the
marginal probabilities

p(s|w = 1) =

∑
c,r p(c, s, r,w = 1)

∑
c,r,s′ p(c, s

′, r,w = 1)
, (13.2)

p(r|w = 1) =

∑
c,s p(c, s, r,w = 1)

∑
c,r,s′ p(c, s

′, r,w = 1)
. (13.3)

Using the numbers in Fig. 13.1, we get p(s = 1|w = 1) ≈ 0.40 and p(r = 1|w =
1) ≈ 0.54: the most likely cause of the wet grass is rain.

In Fig. 13.2 we show the factor graph representation of (13.1), and the one
corresponding to the conditional distribution p(c, s, r|w = 1). As is clear from
the factor graph representation, the observation w = 1 induces some further
dependency among the variables s and r, beyond the one induced by their
relation with c. The reader is invited to draw the factor graph associated to
the marginal distribution p(c, s, r).
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cloudy

sprinklerrain

wet

cloudy

sprinklerrain

Fig. 13.2. Left: Factor graph corresponding to the sprinkler-rain Bayesian net-
work, represented in Fig. 13.1. Right: factor graph for the same network under
the observation of the variable w.{fig:FactorSprinklerRain}

d1 d2 d3 d4 d5

f1 f2 f3 f4 f5 f6 f7 f8

Fig. 13.3. Left: toy example of QMR-DT Bayesian network. Right: factor graph
representation of the conditional distribution of the diseases d1, . . . d5, given the
findings f1, . . . f8.{fig:BayesFactor}

In general, a Bayesian network is an acyclic directed graph G = (V,E)
defining a probability distribution for variables at the vertices of the graph. A
directed graph is an ordinary graph with a direction (i.e. an ordering of the
adjacent vertices) chosen on each of its edges, and no cycle. In such a graph,
we say that a vertex u ∈ V is a parent of v, and write u ∈ π(v), if (u, v) is
a (directed) edge of G. A random variable Xv is associated with each vertex v
of the graph (for simplicity we assume all the variables to take values in the
same finite set X ). The joint distribution of {Xv, v ∈ V } is determined by the
conditional probability distributions {p(xv|xπ(v))}, where π(v) denotes the set
of parents of vertex v, and xπ(v) = {xu : u ∈ π(v)}:

p(x) =
∏

v∈π(G)

p(xv)
∏

v∈G\π(G)

p(xv|xπ(v)) , (13.4)

where π(G) denotes the set of vertices that have no parent in G.
A general class of statistical inference problems is formulated as follows. One

is given a Bayesian network, i.e. a directed graph G plus the associated condi-
tional probability distributions, {p(xv|xπ(v))}. A subset O ⊆ V of the variables
is observed and takes values xO. The problem is to compute marginals of the
conditional distribution p(xV \O|xO).
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Given a Bayesian network G and a set of observed variable O, it is easy to
obtain a factor graph representation of the conditional distribution p(xV \O|xO),
by a generalization of the procedure that we applied in Fig. 13.2. The general
rule is as follows: (i) associate a variable node with each non-observed variable
(i.e. each variable in xV \O); (ii) for each variable in π(G)\O, add a degree 1
function node connected uniquely to that variable; (iii) for each non observed
vertex v which is not in π(G), add a function node and connect it to v and to all
the parents of v; (iv) finally, for each observed variable u, add a function node
and connect it to all the parents of u.

Here is an example showing the practical utility of Bayesian networks.

Example 13.2 The Quick Medical Reference–Decision Theoretic (QMR-DT)
network is a two level Bayesian network developed for automatic medical diag-
nostic. A schematic example is shown in Fig. 13.3. Variables in the top level,
denoted by d1, . . . , dN , are associated with diseases. Variables in the bottom
level, denoted by f1, . . . , fM , are associated with symptoms or findings. Both
diseases and findings are described by binary variables. An edge connects the
disease di to the finding fa whenever such a disease may be a cause for that
finding. Such networks of implications are constructed on the basis of accumu-
lated medical experience.

The network is completed with two types of probability distributions. For
each disease di we are given an a priori occurrence probability P (di). Fur-
thermore, for each finding we have a conditional probability distribution for
that finding given a certain disease pattern. This usually takes the so called
‘noisy-OR’ form:

P (fa = 0|d) =
1

za
exp

{
−

N∑

i=1

θiadi

}
. (13.5)

This network is to be used for diagnostic purposes. The findings are set to values
determined by the observation of a patient. Given this pattern of symptoms,
one would like to compute the marginal probability that any given disease is
indeed present.

13.1.2 Inference in coding, statistical physics and combinatorial optimization

Several of the problems encountered so far in this book can be recast in an
inference language.

Let us start with the decoding of error correcting codes. As discussed in
Chapter 6, in order to implement symbol-MAP decoding, one has to compute
the marginal distribution of input symbols, given the channel output. In the
case of LDPC (and related) code ensembles, dependencies between input sym-
bols are induced by the parity check constraints. The joint probability distri-
bution to be marginalized has a natural graphical representation (although we
used factor graphs rather than Bayesian networks). Also, the introduction of
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finite–temperature decoding, allows to view word MAP decoding as the zero
temperature limit case of a one-parameter family of inference problems.

In statistical mechanics models one is mainly interested in the expectations
and covariances of local observables with respect to the Boltzmann measure.
For instance, the paramagnetic to ferromagnetic transition in an Ising ferromag-
net, cf. Sec. 2.5, can be located using the magnetization MN (β,B) = 〈σi〉β,B .
The computation of covariances, such as the correlation function Cij(β,B) =
〈σi;σj〉β,B , is a natural generalization of the simple inference problem discussed
so far.

Let us finally consider the case of combinatorial optimization. Assume, for
the sake of definiteness, that a feasible solution is an assignment of the variables
x = (x1, x2, . . . , xN ) ∈ XN and that its cost E(x) can be written as the sum of
‘local’ terms:

E(x) =
∑

a

Ea(xa) . (13.6)

Here xa denotes a subset of the variables (x1, x2, . . . , xN ). Let p∗(x) denote
the uniform distribution over optimal solutions. The minimum energy can be
computed as a sum of expectation with respect to this distribution: E∗ =∑

a[
∑

x p∗(x)Ea(xa)]. Of course the distribution p∗(x) does not necessarily have
a simple representation, and therefore the computation of E∗ can be significantly
harder than simple inference39.

This problem can be overcome by ‘softening’ the distribution p∗(x). One pos-
sibility is to introduce a finite temperature and define pβ(x) = exp[−βE(x)]/Z
as already done in Sec. 4.6: if β is large enough, this distribution concentrates
on optimal solutions. At the same time it has an explicit representation (apart
from the value of the normalization constant Z) at any value of β.

How large should β be in order to get a good estimate of E∗? The Exercise
below, gives the answer under some rather general assumptions.

Exercise 13.1 Assume that the cost function E(x) takes integer values and
let U(β) = 〈E(x)〉β . Due to the form (13.6) the computation of U(β) is es-
sentially equivalent to statistical inference. Assume, furthermore that ∆max =
max[E(x) − E∗] is bounded by a polynomial in N . Show that

0 ≤ ∂U

∂T
≤ 1

T 2
∆2

max |X |Ne−1/T . (13.7)

where T = 1/β. Deduce that, by taking T = Θ(1/N), one can obtain |U(β) −
E∗| ≤ ε for any fixed ε > 0.

39Consider, for instance, the MAX-SAT problem, and let E(x) be the number of unsatisfied
clauses under the assignment x. If the formula under study is satisfiable, then p∗(x) is propor-
tional to the product of characteristic functions associated to the clauses, cf. Example 9.7. In
the opposite case, no explicit representation is known.
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In fact a much larger temperature (smaller β) can be used in many important
cases. We refer to Chapter 2 for examples in which U(β) = E∗ + E1(N) e−β +
O(e−2β) with E1(N) growing polynomially in N . In such cases one expects β =
Θ(logN) to be large enough.

13.2 Monte Carlo method: inference via sampling
{sec:MonteCarloInference}

Consider the statistical inference problem of computing the marginal probability
p(xi = x) from a joint distribution p(x), x = (x1, x2, . . . , xN ) ∈ XN . Given
L i.i.d. samples {x(1), . . . , x(L)} drawn from the distribution p(x), the desired
marginal p(xi = x) can be estimated as the the fraction of such samples for
which xi = x.

‘Almost i.i.d.’ samples from p(x) can be produced, in principle, using the
Monte Carlo Markov Chain (MCMC) method of Sec. 4.5. Therefore MCMC can
be viewed as a general-purpose inference strategy which can be applied in a
variety of contexts.

Notice that the locality of the interactions, expressed by the factor graph, is
very useful since it allows to generate easily ‘local’ changes in x (e.g. changing
only one xi, or a small number of them). This will40 in fact typically change
the value of just a few compatibility functions and hence produce only a small
change in p(x) (i.e., in physical terms, in the energy of x). The possibility of
generating, given x, a new configuration close in energy is in fact important for
MCMC to work. In fact, moves increasing the system energy by a large amount
are typically rejected within MCMC rules .

One should also be aware that sampling, for instance by MCMC, only allows
to estimate marginals or expectations which involve a small subset of variables.
It would be very hard for instance to estimate the probability of a particular
configuration x through the number L(x) of its occurrences in the samples. The
reason is that at least 1/p(x) samples would be required to have any accuracy,
and this is typically a number exponentially large in N .

13.2.1 LDPC codes

Consider a code C from one of the LDPC ensembles introduced in Chapter 11,
and assume it has been used to communicate over a binary input memoryless
symmetric channel with transition probability Q(y|x). As shown in Chapter 6,
cf. Eq. (6.3), the conditional distribution of the channel input x, given the output
y, reads

P (x|y) =
1

Z(y)
I(x ∈ C)

N∏

i=1

Q(yi|xi) . (13.8)

We can use the explicit representation of the code membership function to write

40We do not claim here that this is the case always, but just in many examples of interest.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

272 BRIDGES

P (x|y) =
1

Z(y)

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0)

N∏

i=1

Q(yi|xi) . (13.9)

in order to implement symbol MAP decoding, we must compute the marginals
P (i)(xi|y) of this distribution. Let us see how this can be done in an approximate
way via MCMC sampling.

Unfortunately, the simple MCMC algorithms introduced in Sec. 4.5 (single
bit flip with acceptance test satisfying detailed balance) cannot be applied in
the present case. In any reasonable LDPC code, each variable xi is involved
into at least one parity check constraint. Suppose that we start the MCMC
algorithm from a random configuration x distributed according to Eq. (13.9).
Since x has non-vanishing probability, it satisfies all the parity check constraints.
If we propose a new configuration where bit xi is flipped, this configuration will
violate all the parity check constraints involving xi. As a consequence, such a
move will be rejected by any rule satisfying detailed balance. The Markov chain
is therefore reducible (each codeword forms a separate ergodic component), and
useless for sampling purposes.

In good codes, this problem is not easily cured by allowing for moves that
flip more than a single bit. As we saw in Sec. 11.2, if C is drawn from an LDPC
ensemble with minimum variable degree equal to 2 (respectively, at least 3),
its minimum distance diverges logarithmically (respectively, linearly) with the
block-length. In order to avoid the problem described above, a number of bits
equal or larger than the minimum distance must be flipped simultaneously. On
the other hand, large moves of this type are likely to be rejected, because they
imply a large and uncontrolled variation in the likelihood

∏N
i=1Q(yi|xi).

A way out of this dilemma consists in ‘softening’ the parity check constraint
by introducing a ‘parity check temperature’ γ and the associated distribution

Pγ(x|y) =
1

Z(y, γ)

M∏

a=1

e
−γEa(xia

1
...xia

k
)

N∏

i=1

Q(yi|xi) . (13.10)

Here the energy term Ea(xia
1
. . . xia

k
) takes values 0 if xia

1
⊕ · · · ⊕ xia

k
= 0 and 2

otherwise. In the limit γ → ∞, the distribution (13.10) reduces to (13.9). The

idea is now to estimate the marginals of (13.10), P
(i)
γ (xi|y) via MCMC sampling

and then to use the decoding rule

x
(γ)
i ≡ arg max

xi

P (i)
γ (xi|y) . (13.11)

For any finite γ, this prescription is surely sub-optimal with respect to symbol
MAP decoding. In particular, the distribution (13.10) gives non-zero weight to
words x which do not belong to the codebook C. On the other hand, one may
hope that for γ large enough, the above prescription achieves a close-to-optimal
bit error rate.
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Fig. 13.4. Decoding LDPC codes from the (3, 6) ensemble, used over the BSC
channel with flip probability p, using MCMC sampling. The bit error rate is
plotted versus p. The block-length is fixed to N = 2000, the number of sweeps
is 2L. Left: For L = 100, several values of the effective inverse temperature γ.
Right: improvement of the performance as the number of sweeps increases at
fixed γ = 1.5.{fig:LDPCMC}

We can simplify further the above strategy by giving up the objective of

approximating the marginal P
(i)
γ (xi|y) within any prescribed accuracy. We shall

rather run the Glauber single bit flip MCMC algorithm for a fixed computer time

and extract an estimate of P
(i)
γ (xi|y) from this run. Fig 13.4 shows the results

of Glauber dynamics executed for 2LN steps starting from a uniformly random
configuration. At each step a bit is chosen uniformly at random and flipped with
probability (here x(i) is the configuration obtained from x, by flipping the i-th
bit)

wi(x) =
Pγ(x(i)|y)

Pγ(x(i)|y) + Pγ(x|y) . (13.12)

The reader is invited to derive an explicit expression for wi(x), and to show that ⋆
this probability can be computed with a number of operations independent of
the block-length. In this context, one often refer to a sequence of N successive
updates, as a sweep (on average, one flip is proposed at each bit in a sweep).
The value of xi is recorded at each of the last L sweeps, and the decoder output
is xi = 0 or xi = 1 depending on which value occurs more often in this record.

The data in Fig. 13.4 refers to communication over a binary symmetric chan-
nel (BSC) with flip probability p. In the left frame, we fix L = 100 and use several
values of γ. At small γ, the resulting bit error rate is almost indistinguishable
from the one in absence of coding, namely Pb = p. As γ increases, parity checks
are enforced more and more strictly and the error correcting capabilities im-
prove at low noise. The behavior is qualitatively different for larger noise levels:
for p & 0.05, the bit error rate increases with γ. The reason of this change is
essentially dynamical. The Markov chain used for sampling from the distribution
(13.10) decorrelates more and more slowly from its initial condition. Since the
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initial condition is uniformly random, thus yielding Pb = 1/2, the bit error rate
obtained through our algorithm approaches 1/2 at large γ (and above a certain
threshold in p). This interpretation is confirmed by the data in the right frame
of the same figure.

We shall see in Chapter ?? that in the large blocklength limit, the threshold
for error-less bit MAP decoding in this case is predicted to be pc ≈ 0.101.
Unfortunately, because of its slow dynamics, our MCMC decoder cannot be
used in practice if the channel noise is close to this threshold.

The sluggish dynamics of our single spin-flip MCMC for the distribution
(13.10) is partially related to its reducibility for the model with hard constraints
(13.9). A first intuitive picture is as follows. At large γ, codewords correspond
to isolated ‘lumps’ of probability with Pγ(x|y) = Θ(1), separated by unprobable

regions such that Pγ(x|y) = Θ(e−2γ) or smaller. In order to decorrelate, the
Markov chain must spend a long time (at least of the order of the code minimum
distance) in an unprobable region, and this happens only very rarely. This rough
explanation is neither complete nor entirely correct, but we shall refine it in the
next Chapters.

13.2.2 Ising model

Some of the basic mechanisms responsible for the slowing down of Glauber dy-
namics can be understood on simple statistical mechanics models. In this Section
we consider the ferromagnetic Ising model with energy function

E(σ) = −
∑

(ij)∈G

σiσj . (13.13)

Here G is an ordinary graph on N vertices, whose precise structure will depend
on the particular example. The Monte Carlo method is applied to the problem
of sampling from the Boltzmann distribution pβ(σ) at inverse temperature β.

As in the previous Section, we focus on Glauber (or heath bath) dynamics,
but rescale time: in an infinitesimal interval dt a flip is proposed with probability
Ndt at a uniformly random site i. The flip is accepted with the usual heath bath
probability (here σ is the current configuration and σ(i) is the configuration
obtained by flipping the spin σi):

wi(σ) =
pβ(σ(i))

pβ(σ) + pβ(σ(i))
. (13.14)

Let us consider first equilibrium dynamics. We assume therefore that the
initial configuration σ(0) is sampled from the equilibrium distribution pβ( · )
and ask how many Monte Carlo steps must be performed (in other words, how
much time must be waited) in order to obtain an effectively independent random
configuration. A convenient way of monitoring the equilibrium dynamics, consists
in computing the time correlation function
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Fig. 13.5. Equilibrium correlation function for the Ising model on the two di-
mensional grid of side L. Left: high temperature, T = 3. Right: low temperature,
T = 2. {fig:2dMC}

CN (t) ≡ 1

N

N∑

i=1

〈σi(0)σi(t)〉 . (13.15)

Here the average 〈 · 〉 is taken with respect to the realization of the Monte Carlo
dynamics, as well as the initial state σ(0). Notice that (1−C(t))/2 is the average
fraction of spins with differ in the configurations σ(0) and σ(t). One expects
therefore C(t) to decrease with t, asymptotically reaching 0 when σ(0) and σ(t)
are well decorrelated41.

The reader may wonder how can one sample σ(0) from the equilibrium (Boltz-
mann) distribution? As already suggested in Sec. 4.5, within the Monte Carlo
approach one can obtain an ‘almost’ equilibrium configuration by starting from
an arbitrary one and running the Markov chain for sufficiently many steps. In
practice we initialize our chain from a uniformly random configuration (i.e. an
infinite temperature equilibrium configuration) and run the dynamics for tw
sweeps. We call σ(0) the configuration obtained after this process and run for t
more sweeps in order to measure C(t). The choice of tw is of course crucial: in
general the above procedure will produce a configuration σ(0), whose distribu-
tion is not the equilibrium one, and depends on tw. The measured correlation
function will also depend on tw. Determining how large tw should be in order to
obtain a good enough approximation of C(t) is a subject of intense theoretical
work. A simple empirical rule consists in measuring C(t) for a given large tw,
then double it and check that nothing has changed. With these instructions, the
reader is invited to write a code of MCMC for the Ising model on a general graph ⋆
and reproduce the following data.

41Notice that each spin is equally likely to take values +1 or −1 under the Boltzmann
distribution with energy function (13.13.)
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Fig. 13.6. Equilibrium correlation function for the Ising model on random
graphs from the GN (2,M) ensemble, with M = 2N . Left: high temperature,
T = 5. Right: low temperature, T = 2.{fig:RGraphMC}

{ex:2dSimul}
Example 13.3 We begin by considering the Ising model on a two-dimensional
grid of side L, with periodic boundary conditions. The vertex set is {(x1, x2) :
1 ≤ xa ≤ L}. Edges join any two vertices at (Euclidean) distance one, plus
the vertices (L, x2) to (1, x2), and (x1, L) to (x1, 1). We denote by CL(t) the
correlation function for such a graph.

In Chapter 2 we saw that this model undergoes a phase transition at the
critical temperature Tc = 2/ log(1+

√
2) ≈ 2.269185. The correlation functions

plotted in Fig. 13.5 are representative of the qualitative behavior in the high
temperature (left) and low temperature (right) phases. At high temperature
CL(t) depends only mildly on the linear size of the system L. As L increases,
the correlation functions approaches rapidly a limit curve C(t) which decreases
from 1 to 0 in a finite time scale42.

At low temperature, there exists no limiting curve C(t) decreasing from 1
to 0, such that CL(t) → C(t) as L→ ∞. The time required for the correlation
function CL(t) to get close to 0 is much larger than in the high-temperature
phase. More importantly, it depends strongly on the system size. This suggests
that strong cooperative effects are responsible for the slowing down of the
dynamics.

{ex:RGraphSimul}
Example 13.4 Take G as a random graph from the GN (2,M) ensemble, with
M = Nα. As we shall see in Chapter ???, this model undergoes a phase
transition when N → ∞ at a critical temperature βc, satisfying the equa-
tion 2α tanhβ = 1. In Fig. 13.6 we present numerical data for a few values of
N , and α = 2 (corresponding to a critical temperature Tc ≈ 3.915230).

The curves presented here are representative of the high temperature and
low temperature phases. As in the previous example, the relaxation time scale
strongly depends on the system size at low temperature.
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Fig. 13.7. A rooted ternary tree with n = 4 generations and N = 40 vertices.{fig:TernaryTree}
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Fig. 13.8. Equilibrium correlation function for the ferromagnetic Ising model
on a regular ternary tree. Left: high temperature, T = 2. Right: low temperature,
T = 1.25.{fig:TreeMC}

{ex:TreeSimul}
Example 13.5 Take G as a rooted ternary tree, with n generations, cf.
Fig. 13.7. Of course G contains N = (3n − 1)/(3 − 1) vertices and N − 1
edges. As we will see in Chapter ???, this model undergoes a phase transition
at a critical temperature βc, which satisfies the equation 3(tanhβ)2 = 1. We
get therefore Tc ≈ 1.528651. In this case the dynamics of spin depends strongly
upon its distance to the root. In particular leaf spins are much less constrained
than the others. In order to single out the ‘bulk’ behavior, we modify the def-
inition of the correlation function (13.15) by averaging only over the spins σi

in the first n = 3 generations. We keep n fixed as n→ ∞.
As in the previous examples, CN (t) has a well defined n → ∞ limit in the

high temperature phase, and is strongly size-dependent at low temperature.

We summarize the last three examples by comparing the size dependence of
the relaxation time scale in the respective low temperature phases. A simple way
to define such a time scale consists in looking for the smallest time such that
C(t) decreases below some given threshold:

τ(δ;N) = min{ t > 0 s.t. CN (t) ≤ δ} . (13.16)

In Fig. 13.9 we plot the estimates obtained from the data presented in the pre-
vious examples, using δ = 0.2, and keeping to the data in the low-temperature
(ferromagnetic) phase. The size dependence of τ(δ;N) is very clear. However,
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Fig. 13.9. Size dependence of the relaxation time in the ferromagnetic Ising
model in its low temperature phase. Different symbols refer to the different fam-
ilies of graphs considered in Examples 13.3 to 13.5. {fig:Time}
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Fig. 13.10. Minimization of the number of unsatisfied clauses in random 3-SAT
formulae via Glauber dynamics. Here the number of variables N = 1000 is kept
fixed. Left: T = 0.25 and, from top to bottom L = 2.5 · 103, 5 · 103, 104, 2 · 104,
4 · 104, 8 · 104 iterations. Right: L = 4 · 104 and (from top to bottom at large α)
T = 0.15, 0.20, 0.25, 0.30, 0.35. The insets show the small α regime in greater
detail.{fig:MCKSAT}

it is much stronger for the random graph and square grid cases (and, in par-
ticular, in the former) than on the tree. In fact, it can be shown that, in the
ferromagnetic phase:

τ(δ;N) =






exp{Θ(N)} random graph,

exp{Θ(
√
N)} square lattice,

exp{Θ(logN)} tree.
(13.17)

Section 13.3 will explain the origins of these different behaviors.
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13.2.3 MAX-SAT

Given a satisfiability formula over N boolean variables (x1, . . . , xN ) = x, xi ∈
{0, 1}, the MAX-SAT optimization problem requires to find a truth assignment
which satisfies the largest number of clauses. We denote by xa the set of variables
involved in the a-th clause and by Ea(xa) a function of the truth assignment
taking value 0, if the clause is satisfied, and 2 otherwise. With this definitions,
the MAX-SAT problem can be rephrased as the problem of minimizing an energy
function of the form E(x) =

∑
aEa(xa), and we can therefore apply the general

approach discussed after Eq. (13.6).
We thus consider the Boltzmann distribution pβ(x) = exp[−βE(x)]/Z and

try to sample a configuration from pβ(x) at large enough β using MCMC. The
assignment x ∈ {0, 1}N is initialized uniformly at random. At each time step a
variable index i is chosen uniformly at random and the corresponding variable
is flipped according to the heath bath rule

wi(x) =
pβ(x(i))

pβ(x) + pβ(x(i))
. (13.18)

As above x(i) denotes the assignment obtained from x by flipping the i-th vari-
able. The algorithm is stopped after LN steps (i.e. L sweeps), and one puts in
memory the current assignment x∗ (and the corresponding cost E∗ = E(x∗)).

In Fig. 13.10 we present the outcomes of such an algorithm, when applied to
random 3-SAT formulae from the ensemble SATN (3,M) with α = M/N . Here
we focus on the mean cost 〈E∗〉 of the returned assignment. One expects that, as
N → ∞ with fixed L, the cost scales as 〈E∗〉 = Θ(N), and orderN fluctuations of
E∗ away from the mean are exponentially unlikely. At low enough temperature,
the behavior depends dramatically on the value of α. For small α, E∗/N is small
and grows rather slowly with α. Furthermore, it seems to decrease to 0 ad β
increases. Our strategy is essentially successful and finds an (almost) satisfying
assignment. Above α ≈ 2 ÷ 3, E∗/N starts to grow more rapidly with α, and
doesn’t show signs of vanishing as β → ∞. Even more striking is the behavior as
the number of sweeps L increases. In the small α regime, E∗/N rapidly decreases
to some, roughly L independent saturation value, already reached after about
103 sweeps. At large α there seems also to be an asymptotic value but this is
reached much more slowly, and even after 105 sweeps there is still space from
improvement.

13.3 Free energy barriers
{se:arrhenius}

These examples show that the time scale required for a Monte Carlo algorithm
to produce (approximately) statistically independent configurations may vary
wildly depending on the particular problem at hand. The same is true if we
consider the time required to generating a configuration (approximately) dis-
tributed according to the equilibrium distribution, starting from an arbitrary
initial condition.
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E
gs

∆E

Fig. 13.11. Random walk in a double-well energy landscape. After how many
steps the walker is (approximatively) distributed according to the equilibrium
distribution? {fig:WellWalk}

There exist various sophisticated techniques for estimating these time scales
analytically, at least in the case of unfrustrated problems. In this Section we
discuss a simple argument which is widely used in statistical physics as well as
in probability theory, that of free-energy barriers. The basic intuition can be
conveyed by simple examples.
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Fig. 13.12. How much time does a random walk need to explore this graph? {fig:DoubleGraph}

{ex:WalkWell}
Example 13.6 Consider a particle moving on the integer line, and denote its
position as x ∈ Z. Each point x on the line has an energy E(x) ≥ Egs associated
to it, as depicted in Fig. 13.11. At each time step, the particle attempts to
move to one of the adjacent positions (either to the right or to the left) with
probability 1/2. If we denote by x′ the position the particle is trying to move
to, the move is accepted according to Metropolis rule

w(x→ x′) = min
{
e−β[E(x′)−E(x)], 1

}
. (13.19)

The equilibrium distribution is of course given by Boltzmann law Pβ(x) =
exp[−βE(x)]/Z(β).

Suppose we start with, say x = 10. How many steps should we wait for x
to be distributed according to Pβ(x)? It is intuitively clear that, in order to
equilibrate, the particle must spend some amount of time both in the right and
in the left well, and therefore it must visit the x = 0 site. At equilibrium this
is visited on average a fraction Pβ(0) of the times. Therefore, in order to see a
jump, we must wait about

τ ≈ 1

Pβ(0)
, (13.20)

steps.
One is often interested in the low temperature limit of τ . Assuming E(x)

diverges fast enough as |x| → ∞, the leading exponential behavior of Z is
Z(β)

.
= e−βEgs , and therefore τ

.
= exp{β∆E}, where ∆E = E(0) − Egs is

the energy barrier to be crossed in order to pass from one well to the others.
A low temperature asymptotics of the type τ

.
= exp{β∆E} is referred to as

Arrhenius law.
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{ex:WalkGraph}
Exercise 13.2 Consider a random walk on the graph of Fig. 13.12 (two cliques
with n + 1 vertices, joined by a k-fold degenerate edge). At each time step,
the walker chooses one of the adjacent edges uniformly at random and moves
through it to the next node. What is the stationary distribution Peq(x), x ∈
{1, . . . 2n}? Show that the probability to be at node 1 is 1

2
k+n−1

n2+k−n .
Suppose we start with a walker distributed according to Peq(x). Using an

argument similar to that in the previous example, estimate the number of time
steps τ that one should wait in order to obtain an approximatively independent
value of x. Show that τ ≃ 2n when n ≫ k and interpret this result. In this
case the k-fold degenerate edge joining the two cliques is called a bottleneck,
and one speaks of an entropy barrier.

In order to obtain a precise mathematical formulation of the intuition gained
in the last examples, we must define what we mean by ‘relaxation time’. We will
focus here on ergodic continuous-time Markov chains on a finite state space X .
Such a chain is described by its transition rates w(x→ y). If at time t, the chain
is in state x(t) = x ∈ X , then, for any y 6= x, the probability that the chain is in
state y, ‘just after’ time t is

P {x(t+ dt) = y | x(t) = x} = w(x→ y)dt . (13.21)

Exercise 13.3 Consider a discrete time Markov chain and modify it as fol-
lows. Instead of waiting a unit time ∆t between successive steps, wait an ex-
ponentially distributed random time (i.e. ∆t is a random variable with pdf
p(∆t) = exp(−∆t)). Show that the resulting process is a continuous time
Markov chain. What are the corresponding transition rates?

Let x 7→ O(x) an observable (a function of the state), define the shorthand
O(t) = O(x(t)), and assume x(0) to be drawn from the stationary distribution. If
the chain satisfies the detailed balance43 condition, one can show that the correla-⋆
tion function CO(t) = 〈O(0)O(t)〉− 〈O(0)〉〈O(t)〉 is non negative, monotonously
decreasing and that CO(t) → 0 as t→ ∞. The exponential autocorrelation time
for the observable O, τO,exp, is defined by

1

τO,exp
= − lim

t→∞

1

t
logCO(t) . (13.22)

The time τO,exp depends on the observable and tells how fast its autocor-
relation function decays to 0: CO(t) ∼ exp(−t/τO,exp). It is meaningful to look
for the ‘slowest’ observable and define the exponential autocorrelation time

43A continuous time Markov chains satisfies the detailed balance condition (is ‘reversible’)
with respect to the stationary distribution P (x), if, for any x 6= y, P (x)w(x → y) = P (y)w(y →
x).
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(also called inverse spectral gap, or, for brevity relaxation time) of the
Markov chain as

τexp = sup
O

{ τO,exp } . (13.23)

The idea of a bottleneck, and its relationship to the relaxation time, is clarified
by the following theorem:

{thm:Cut}
Theorem 13.7 Consider an ergodic continuous time Markov chain with state
space X , and transition rates {w(x→ y)} satisfying detailed balance with respect
to the stationary distribution P (x). Given any two disjoint sets of states A,B ⊂
X , define the probability flux between them as W (A → B) =

∑
x∈A, y∈B P (x)w(x→

y). Then

τexp ≥ P (x ∈ A)P (x 6∈ A)

W (A → X\A)
. (13.24)

In other words, a lower bound on the correlation time can be constructed by
looking for ‘bottlenecks’ in the Markov chain, i.e. partitions of the configuration
space into two subsets. The lower bound will be good (and the Markov chain
will be slow) if each of the subsets carries a reasonably large probability at
equilibrium, but jumping from one to the other is unlikely.

Example 13.8 Consider the random walk in the double well energy landscape
of Fig. 13.11, where we confine the random walk to some big interval [−M : M ]
in order to have a finite state space. Let us apply Theorem 13.7, by taking
A = {x ≥ 0}. We have W (A → X\A) = Pβ(0)/2 and, by symmetry Pβ(x ∈
A) = 1

2 (1 + Pβ(0)). The inequality (13.24) yields

τexp ≥ 1 − Pβ(0)2

2Pβ(0)
. (13.25)

Expanding the right hand side in the low temperature limit, we get τexp ≥
2 eβ∆E (1 + Θ(e−cβ)).

Exercise 13.4 Apply Theorem 13.7 to a random walk in the asymmetric dou-
ble well energy landscape of Fig. 13.13. Does Arrhenius law τexp ∼ exp(β∆E)
apply to this case? What is the relevant energy barrier ∆E?

Exercise 13.5 Apply Theorem 13.7 to estimate the relaxation time of the
random walk on the graph in Exercise (13.2).
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Fig. 13.13. Random walk in an asymmetric double well. {fig:AsWell}

Example 13.9 Consider Glauber dynamics for the Ising model on a two di-
mensional L×L grid, with periodic boundary conditions, already discussed in
Example 13.3. In the ferromagnetic phase, the distribution of the total magne-
tization M(σ) ≡∑i σi, N = L2 is concentrated around the values ±N M+(β),
where M+(β) is the spontaneous magnetization. It is natural to expect that
the bottleneck will correspond to the global magnetization changing sign. As-
suming for instance that L is odd, let us define

A = {σ : M(σ) ≥ 1} ; Ā = X\A = {σ : M(σ) ≤ −1} (13.26)

Using the symmetry under spin reversal, Theorem 13.7 yields

τexp ≥ 4
∑

σ :M(σ)=1

∑

i :σi=1

Pβ(σ) w(σ → σ(i)) . (13.27)

A good estimate of this sum can be obtained by noticing that, for any σ,
w(σ → σ(i)) ≥ w(β) ≡ 1

2 (1 − tanh 4β). Moreover, for any σ entering the
sum, there are exactly (L2 + 1)/2 sites i such that σi = +1. We get therefore
τexp ≥ 2L2w(β)

∑
σ :M(σ)=1 Pβ(σ) One suggestive way of writing this lower

bound, consists in defining a constrained free energy as follows

FL(m;β) ≡ − 1

β
log





∑

σ : M(σ)=m

exp[−βE(σ)]




 , (13.28)

If we denote by FL(β) the usual (unconstrained) free energy, our lower bound
can be written as

τexp ≥ 2L2w(β) exp{β[FL(1;β) − FL(β)]} . (13.29)

Apart from the pre-exponential factors, this expression has the same form as
Arrhenius law, the energy barrier ∆E, being replaced by a ‘free energy barrier’
∆FL(β) ≡ FL(1;β) − FL(β).
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Fig. 13.14. Ferromagnetic Ising model on a 9 × 9 grid with periodic boundary
conditions. Open circles correspond to σi = +1, and filled circles to σi = −1.
The configuration shown here has energy E(σ) = −122 and magnetization
M(σ) = +1. {fig:IsingZeroMagn}

We are left with the task of estimating ∆FL(β). Let us start by considering
the β → ∞ limit. In this regime, FL(β) is dominated by the all plus and all
minus configurations, with energy Egs = −2L2. Analogously, FL(1;β) is domi-
nated by the lowest energy configurations satisfying the constraint M(σ) = 1.
An example of such configurations is the one in Fig. 13.14, whose energy is
E(σ) = −2L2 + 2(2L+ 2). Of course, all configurations obtained from the one
in Fig. 13.14, through a translation, rotation or spin inversion have the same
energy. We find therefore ∆FL(β) = 2(2L+ 2) + Θ(1/β)

It is reasonable to guess (and it can be proved rigorously) that the size
dependence of ∆FL(β) remains unchanged through the whole low temperature
phase:

∆FL(β) ≃ 2γ(β)L , (13.30)

where the surface tension γ(β) is strictly positive at any β > βc, and vanishes
as β ↓ βc. This in turns implies the following lower bound on the correlation
time

τexp ≥ exp{2βγ(β)L+ o(L)} . (13.31)

This bound matches the numerical simulations in the previous Section and can
be proved to give the correct asymptotic size-dependence.
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Exercise 13.6 Consider the ferromagnetic Ising model on a random graph
from GN (2,M) that we studied in Example 13.4, and assume, for definiteness,
N even. Arguing as above, show that

τexp ≥ CN (β) exp{β[FN (0;β) − FN (β)]} . (13.32)

Here CN (β) is a constants which grows (with high probability) slower than
exponentially with N ; FN (m;β) is the free energy of the model constrained to
M(σ) = m, and FN (β) is the unconstrained partition function.

For a graph G, let δ(G) be the minimum number of bicolored edges if we
color half of the vertices red, and half blue. Show that

FN (0;β) − FN (β) = 2δ(GN ) + Θ(1/β) . (13.33)

The problem of computing δ(G) for a given graph G is referred to as balanced
minimum cut (or graph partitioning) problem, and is known to be NP-
complete. For a random graph in GN (2,M), it is known that δ(GN ) = Θ(N)
with high probability in the limit N → ∞,M → ∞, with α = M/N fixed and
α > 1/2 (Notice that, if α < 1/2 the graph does not contain a giant component
and obviously δ(G) = o(N)).

This claim can be substantiated through the following calculation. Given a
spin configuration σ = (σ1, . . . , σN ) with

∑
i σi = 0 let ∆G(σ) be the number

of edges in (i, j) in G such that σi 6= σj . Then

P {δ(G) ≤ n} = P {∃σ such that ∆G(σ) ≤ n} ≤
n∑

m=0

ENG,m , (13.34)

where NG,m denotes the number of spin configurations with ∆G(σ) = m. Show
that

ENG,m =

(
N

N/2

)(
N

2

)−M (
M

m

)(
N2

4

)m [(
N/2

2

)
− N2

4

]M−m

.(13.35)

Estimate this expression for large N , M with α = M/N fixed and show that
it implies δ(G) ≥ c(α)N+ with high probability, where c(α) > 0 for α > 1/2.

In Chapter ???, we will argue that the FN (0;β)−FN (β) = Θ(N) for all β’s
large enough.
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{ex:TreeBarrier}
Exercise 13.7 Repeat the same arguments as above for the case of a reg-
ular ternary tree described in example 13.5, and derive a bound of the
form (13.32). Show that, at low temperature, the Arrhenius law holds, i.e.
τexp ≥ exp{β∆EN + o(β)}. How does ∆EN behave for large N?

[Hint: an upper bound can be obtained by constructing a sequence of con-
figurations from the all plus to the all minus ground state, such that any two
consecutive configurations differ in a single spin flip.]

Notes

For introductions to Bayesian networks, see (Jordan, 1998; Jensen, 1996). Bayesian
inference was proved to be NP-hard by Cooper. Dagun and Luby showed that
approximate Bayesian inference remains NP-hard. On the other hand, it becomes
polynomial if the number of observed variables is fixed.

Decoding of LDPC codes via Glauber dynamics was considered in (Franz,
Leone, Montanari and Ricci-Tersenghi, 2002). Satisfiability problems were con-
sidered in (Svenson and Nordahl, 1999).

Arrhenius law and the concept of energy barrier (or ‘activation energy’) were
discovered by the Swedish chemist Svante Arrhenius in 1889, in his study of
chemical kinetics. An introduction to the analysis of Monte Carlo Markov Chain
methods (with special emphasis on enumeration problems), and their equilibra-
tion/convergence rate can be found in (Jerrum and Sinclair, 1996; Sinclair, 1997).
The book in preparation by Aldous and Fill (Aldous and Fill, 2005) provides a
complete exposition of the subject from a probabilistic point of view. For a math-
ematical physics perspective, we refer to the lectures of Martinelli (Martinelli,
1999).

For an early treatment of the Glauber dynamics of the Ising model on a tree,
see (Henley, 1986). This paper contains a partial answer to Exercise 13.7.


