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LINEAR EQUATIONS WITH BOOLEAN VARIABLES

Solving a system of linear equations over a finite field F is arguably one of
the most fundamental operations in mathematics. Several algorithms have been
devised to accomplish such a task in polynomial time. The best known is Gauss
elimination, that has O(N3) complexity (here N is number of variables in the
linear system, and we assume the number of equations to be M = Θ(N)). As a
matter of fact, one can improve over Gaussian elimination, and the best existing
algorithm for general systems has complexity O(N2.376...). Faster methods do
also exist for special classes of instances.

The set of solutions of a linear system is an affine subspace of FN . Despite
this apparent simplicity, the geometry of affine or linear subspaces of FN can
be surprisingly rich. This observation is systematically exploited in coding the-
ory. Linear codes are just linear spaces over finite fields. Nevertheless, they are
known to achieve Shannon capacity on memoryless symmetric channels, and
their structure is far from trivial, as we already saw in Ch. 11.

From a different point of view, linear systems are a particular example of
constraint satisfaction problems. We can associate with a linear system a decision
problem (establishing whether it has a solution), a counting problem (counting
the number of solutions), an optimization problem (minimize the number of
violated equations). While the first two are polynomial, the latter is known to
be NP-hard.

In this chapter we consider a specific ensemble of random linear systems over
Z2 (the field of integers modulo 2), and discuss the structure of its set of solutions.
The ensemble definition is mainly motivated by its analogy with other random
constraint satisfaction problems, which also explains the name XOR-satisfiability
(XORSAT).

In the next section we provide the precise definition of the XORSAT ensemble
and recall a few elementary properties of linear algebra. We also introduce one
of the main objects of study of this chapter: the SAT-UNSAT threshold. Section
18.2 takes a detour into the properties of belief propagation for XORSAT. These
are shown to be related to the correlation structure of the uniform measure
over solutions and, in Sec. 18.3, to the appearance of a 2-core in the associated
factor graph. Sections 18.4 and 18.5 build on these results to compute the SAT-
UNSAT threshold and characterize the structure of the solution space. While
many results can be derived rigorously, XORSAT offers an ideal playground for
understanding the non-rigorous cavity method that will be further developed in
the next chapters. This is the object of Sec. 18.6.
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18.1 Definitions and general remarks

18.1.1 Linear systems

Let H be a M × N matrix with entries Hai ∈ {0, 1}, a ∈ {1, . . . , M}, i ∈
{1, . . . , N}, and let b be a M -component vector with binary entries ba ∈ {0, 1}.
An instance of the XORSAT problem is given by a couple (H, b). The decision
problem requires to find a N -component vector x with binary entries xi ∈ {0, 1}
which solves the linear system Hx = b mod 2, or to show that the system has
no solution. The name XORSAT comes from the fact that sum modulo 2 is
equivalent to the ‘exclusive OR’ operation: the problem is whether there exists
an assignment of the variables x which satisfies a set of XOR clauses. We shall
thus say that the instance is SAT (resp. UNSAT) whenever the linear system
has (resp. doesn’t have) a solution.

We shall furthermore be interested in the set of solutions, to be denoted by
S, in its size Z = |S|, and in the properties of the uniform measure over S. This
is defined by

µ(x) =
1

Z
I( Hx = b mod 2 ) =

1

Z

M∏

a=1

ψa(x∂a) , (18.1)

where ∂a = (ia(1), . . . , ia(K)) is the set of non-vanishing entries in the a-th row
of H, and ψa(x∂a) is the characteristic function for the a-th equation in the linear
system (explicitly ψa(x∂a) = I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba), where we denote as
usual by ⊕ the sum modulo 2). In the following we shall omit to specify that
operations are carried mod 2 when clear from the context.

When H has row weigth p (i.e. each row has p non-vanishing entries), the
problem is related to a p-spin glass model. Writing σi = 1−2xi and Ja = 1−2ba,
we can associate to the XORSAT instance the energy function

E(σ) =
M∑

a=1

(
1 − Ja

∏

j∈∂a

σj

)
, (18.2)

which counts (twice) the number of violated equations. This can be regarded
as a p-spin glass energy function with binary couplings. The decision XORSAT
problem asks whether there exists a spin configuration σ with zero energy or,
in physical jargon, whether the above energy function is ‘unfrustrated.’ If there
exists such a configuration, log Z is the ground state entropy of the model.

A natural generalization is the MAX-XORSAT problem. This requires to find
a configuration which maximizes the number of satisfied equations, i.e. minimizes
E(σ). In the following we shall use the language of XORSAT but of course all
statements have their direct counterpart in p-spin glasses.

Let us recall a few well known facts of linear algebra that will be useful in
the following:

(i) The image of H is a vector space of dimension rank(H) (rank(H) is the
number of independent lines in H); the kernel of H (the set S0 of x which
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solve the homogeneous system Hx = 0) is a vector space of dimension
N − rank(H).

(ii) As a consequence, if M ≤ N and H has rank M (all of its lines are inde-
pendent), then the linear system Hx = b has a solution for any choice of
b.

(iii) Conversely, if rank(H) < M , the linear system has a solution if and only if
b is in the image of H.

If the linear system has at least one solution x∗, then the set of solutions
S is an affine space of dimension N − rank(H): one has S = x∗ + S0, and
Z = 2N−rank(H). We shall denote by µ0( · ) the uniform measure over the set S0

of solutions of the homogeneous linear system:

µ0(x) =
1

Z0
I( Hx = 0 mod 2 ) =

1

Z0

M∏

a=1

ψ0
a(x∂a) (18.3)

where ψ0
a has the same expression as ψa but with ba = 0. Notice that µ0 is always

well defined as a probability distribution, because the homogeneous systems has
at least the solution x = 0, while µ is well defined only for SAT instances. The
linear structure has several important consequences.

• If y is a solution of the inhomogeneous system, and if x is a uniformly
random solution of the homogeneous linear system (with distribution µ0),
then x′ = x ⊕ y is a uniformly random solution of the inhomogeneous
system (its probability distribution is µ).

• Under the measure µ0, there exist only two sorts of variables xi, those
which are ‘frozen to 0,’ (i.e. take value 0 in all of the solutions) and those
which are ‘free’ (taking value 0 or 1 in one half of the solutions). Under
the measure µ (when it exists), a bit can be frozen to 0, frozen to 1, or
free. These facts are proved in the next exercise.

Exercise 18.1 Let f : {0, 1}N → {0, 1} be a linear function (explicitly, f(x)
is the sum of a subset xi(1), . . . , xi(n) of the bits, mod 2).

(a) If x is drawn from the distribution µ0, f(x) becomes a random variable
taking values in {0, 1}. Show that, if there exists a configuration x with
µ0(x) > 0 and f(x) = 1, then P{f(x) = 0} = P{f(x) = 1} = 1/2. In the
opposite case, P{f(x) = 0} = 1.

(b) Suppose that there exists at least one solution to the system Hx = b, so
that µ exists. Consider the random variable f(x) obtained by drawing x
from the distribution µ. Show that one of the following three cases occurs:
P{f(x) = 0} = 1, P{f(x) = 0} = 1/2, or P{f(x) = 0} = 0.

These results apply in particular to the marginal of bit i, using f(x) = xi.
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Fig. 18.1. Factor graph for a 3-XORSAT instance with N = 6, M = 6.

Exercise 18.2 Show that:

(a) If the number of solutions of the homogeneous system is Z0 = 2N−M , then
the inhomogeneous system is satisfiable (SAT), and has 2N−M solutions,
for any b.

(b) Conversely, if the number of solutions of the homogeneous system is Z0 >
2N−M , then the inhomogeneous one is SAT only for a fraction 2N−M/Z0

of the b’s.

The distribution µ admits a natural factor graph representation: variable
nodes are associated to variables and factor nodes to linear equations, cf. Fig. 18.1.
Given a XORSAT formula F (i.e. a pair H, b), we denote by G(F ) the associ-
ated factor graph. It is remarkable that one can identify sub-graphs of G(F )
that serve as witnesses of satisfiability or unsatisfiability of F . By this we mean
that the existence of such sub-graphs implies satisfiability/unsatisfiability of F .
The existence of a simple witness for unsatisfiability is intimately related to the
polynomial nature of XORSAT. Such a witness is obtained as follows. Given a
subset L of the clauses, draw the factor graph including all the clauses in L, all
the adjacent variable nodes, and the edges between them. If this subgraph has
even degree at each of the variable nodes, and if ⊕a∈Lba = 1, then L is a witness
for unsatisfiability. Such a subgraph is sometimes called a frustrated hyper-loop
(in analogy with frustrated loops appearing in spin glasses, where function nodes
have degree 2).
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Exercise 18.3 Consider a 3-XORSAT instance defined through the 6× 6 ma-
trix

H =





0 1 0 1 1 0
1 0 0 1 0 1
0 1 0 0 1 1
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 1 0




(18.4)

(a) Compute the rank(H) and list the solutions of the homogeneous linear
system.

(b) Show that the linear system Hb = 0 has a solution if and only if b1⊕ b4⊕
b5 ⊕ b6 = 0. How many solution does it have in this case?

(b) Consider the factor graph associated to this linear system, cf. Fig. 18.1.
Show that each solution of the homogeneous system must correspond to
a subset U of variable nodes with the following property. The sub-graph
induced by U and including all of the adjacent function nodes, has even
degree at the function nodes. Find one sub-graph with this property.

18.1.2 Random XORSAT

The random K-XORSAT ensemble is defined by taking b uniformly at random
in {0, 1}M , and H uniformly at random among the N ×M matrices with entries
in {0, 1} which have exactly K non-vanishing elements per row. Each equation
thus involves K distinct variables chosen uniformly among the

(N
K

)
K-uples, and

the resulting factor graph is distributed according to the GN (K, M) ensemble.
A slightly different ensemble is defined by including each of the

(N
K

)
possi-

ble lines with K non-zero entries independently with probability p = Nα/
(N
K

)
.

The corresponding factor graph is then distributed according to the GN (K,α)
ensemble.

Given the relation between homogeneous and inhomogeneous systems de-
scribed above, it is quite natural to introduce an ensemble of homogeneous linear
systems. This is defined by taking H distributed as above, but with b = 0. Since
an homogeneous linear system has always at least one solution, this ensemble
is sometimes referred to as SAT K-XORSAT or, in its spin interpretation, as
the ferromagnetic K-spin model. Given a K-XORSAT formula F , we shall
denote by F0 the formula corresponding to the homogeneous system.

We are interested in the limit of large systems N , M → ∞ with α = M/N
fixed. By applying Friedgut’s Theorem, cf. Sec. 10.5, it is possible to show
that, for K ≥ 3, the probability for a random formula F to be SAT has

a sharp threshold. More precisely, there exists α(N)
s (K) such that for α >

(1 + δ)α(N)
s (K) (respectively α < (1 − δ)α(N)

s (K)), P{F is SAT} → 0 (respec-
tively P{F is SAT} → 1) as N →∞.
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A moment of thought reveals that α(N)
s (K) = Θ(1). Let us give two simple

bounds to convince the reader of this statement.
Upper bound: The relation between the homogeneous and the original linear

system derived in Exercise 18.2 implies that P{F is SAT} = 2N−ME{1/Z0}. As

Z0 ≥ 1, we get P{F is SAT} ≤ 2−N(α−1) and therefore α(N)
s (K) ≤ 1.

Lower bound: For α < 1/K(K − 1) the factor graph associated with F is
formed, with high probability, by finite trees and uni-cyclic components. This
corresponds to the matrix H being decomposable into blocks, each one corre-
sponding to a connected component. The reader can show that, for K ≥ 3
both a tree formula and a uni-cyclic component correspond to a linear system
of full rank. Since each block has full rank, H has full rank as well. Therefore

α(N)
s (K) ≥ 1/K(K − 1).

Exercise 18.4 There is no sharp threshold for K = 2.

(a) Let c(G) be the cyclic number of the factor graph G (number of edges
minus vertices, plus number of connected components) of a random 2-
XORSAT formula. Show that P{F is SAT} = E 2−c(G).

(b) Argue that this implies that P{F is SAT} is bounded away from 1 for
any α > 0.

(c) Show that P{F is SAT} is bounded away from 0 for any α < 1/2.

[Hint: remember the geometrical properties of G discussed in Secs. 9.3.2, 9.4.]

In the next sections we shall show that α(N)
s (K) has a limit αc(K) and

compute it explicitly. Before dwelling into this, it is instructive to derive two
improved bounds.

Exercise 18.5 In order to obtain a better upper bound on α(N)
s (K) proceed

as follows:

(a) Assume that, for any α, Z0 ≥ 2NfK(α) with probability larger than some

ε > 0 at large N . Show that α(N)
s (K) ≤ α∗(K), where α∗(K) is the

smallest value of α such that 1 − α − fK(α) ≤ 0.
(b) Show that the above assumption holds with fK(α) = e−Kα, and that

this yields α∗(3) ≈ 0.941. What is the asymptotic behavior of α∗(K) for
large K? How can you improve the exponent fK(α)?
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Exercise 18.6 A better lower bound on α(N)
s (K) can be obtained through a

first moment calculation. In order to simplify the calculations we consider here
a modified ensemble in which the K variables entering in equation a are chosen
independently and uniformly at random (they do not need to be distinct). The
scrupulous reader can check at the end that returning to the original ensemble
brings only little changes.

(a) Show that for a positive random variable Z, (EZ)(E[1/Z]) ≥ 1. Deduce
that P{F is SAT} ≥ 2N−M/E ZF0 .

(b) Prove that

E ZF0 =
N∑

w=0

(
N

w

) [
1

2

(
1 +

(
1 − 2w

N

)K
)]M

. (18.5)

(c) Let gK(x) = H(x) + α log
[

1
2

(
1 + (1 − 2x)K

)]
and define α∗(K) to be

the largest value of α such that the maximum of gK(x) is achieved at

x = 1/2. Show that α(N)
s (K) ≥ α∗(K). One finds α∗(3) ≈ 0.889.

18.2 Belief propagation

18.2.1 BP messages and density evolution

Equation (18.1) provides a representation of the uniform measure over solutions
of a XORSAT instance as a graphical model. This suggests to apply message
passing techniques. We will describe here belief propagation and analyze its
behavior. While this may seem at first sight a detour from the objective of

computing α(N)
s (K), it will instead provide some important insight.

Let us assume that the linear system Hx = b admits at least one solution,
so that the model (18.1) is well defined. We shall first study the homogeneous
version Hx = 0, i.e. the measure µ0, and then pass to µ. Applying the general def-
initions of Ch. 14, the BP update equations (14.14), (14.15) for the homogeneous
problem read

ν(t+1)
i→a (xi) ∼=

∏

b∈∂i\a

ν̂(t)
b→i(xi) , ν̂(t)

a→i(xi) ∼=
∑

x∂a\i

ψ0
a(x∂a)

∏

j∈∂a\i

ν(t)
j→a(xj) .

(18.6)

These equations can be considerably simplified using the linear structure. We
have seen that under µ0,there are two types of variables, those ‘frozen to 0’ (i.e.
equal to 0 in all solutions), and those which are ‘free’ (equally likely to be 0
or 1). BP aims at determining whether any single bit belongs to one class or
the other. Consider now BP messages, which are also distributions over {0, 1}.
Suppose that at time t = 0 they also take one of the two possible values that
we denote as ∗ (corresponding to the uniform distribution) and 0 (distribution
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Fig. 18.2. Density evolution for the fraction of 0 messages for 3-XORSAT. On
the left: the mapping F (Q) = 1 − exp(−KαQK−1) below, at and above the
critical point αd(K = 3) ≈ 0.818468. On the right: evolution of Qt for (from
bottom to top) α = 0.75, 0.8, 0.81, 0.814, 0.818468.

entirely supported on 0). Then, it is not hard to show that this remains true
at all subsequent times. The BP update equations (18.6) simplify under this
initialization (they reduce to the erasure decoder of Sect. 15.3):

• At a variable node the outgoing message is 0 unless all the incoming are ∗.
• At a function node the outgoing message is ∗ unless all the incoming are
0.

(The message coming out of a degree-1 variable node is always ∗).
These rules preserve a natural partial ordering. Given two sets of messages

ν = {νi→a}, ν̃ = {ν̃i→a}, let us say that ν(t) , ν̃(t) if for each directed edge i → a

where the message ν̃(t)
i→a = 0, then ν(t)

i→a = 0 as well. It follows immediately from
the update rules that, if for some time t the messages are ordered as ν(t) , ν̃(t),
then this order is preserved at all later times: ν(s) , ν̃(s) for all s > t.

This partial ordering suggests to pay special attention to the two ‘extremal’

initial conditions, namely ν(0)
i→a = ∗ for all directed edges i → a, or ν(0)

i→a = 0
for all i → a. The fraction of edges Qt that carry a message 0 at time t is a
deterministic quantity in the N →∞ limit. It satisfies the recursion:

Qt+1 = 1 − exp{−KαQK−1
t } , (18.7)

with Q0 = 1 (respectively Q0 = 0) for the 0 initial condition (resp. the ∗ initial
condition). The density evolution recursion (18.7) is represented pictorially in
Fig. 18.2.

Under the ∗ initial condition, we have Qt = 0 at all times t. In fact the all
∗ message configuration is always a fixed point of BP. On the other hand, when
Q0 = 1, one finds two possible asymptotic behaviors: Qt → 0 for α < αd(K),
while Qt → Q > 0 for α > αd(K). Here Q > 0 is the largest positive solution of
Q = 1 − exp{−KαQK−1}. The critical value αd(K) of the density of equations
α = M/N separating these two regimes is:
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αd(K) = sup
{

α such that ∀x ∈]0, 1] : x < 1 − e−KαxK−1 }
. (18.8)

We get for instance αd(K) ≈ 0.818469, 0.772280, 0.701780 for, respectively,
K = 3, 4, 5 and αd(K) = log K/K[1 + o(1)] as K →∞.

We therefore found two regimes for the homogeneous random XORSAT prob-
lem in the large-N limit. For α < αd(K) there is a unique BP fixed point with
all messages25 equal to ∗. The BP prediction for single bit marginals that corre-
sponds to this fixed point is νi(xi = 0) = νi(xi = 1) = 1/2.

For α > αd(K) there exists more than one BP fixed points. We have found two
of them: the all-∗ one, and one with density of ∗’s equal to Q. Other fixed points of
the inhomogeneous problem can be constructed as follows for α ∈]αd(K), αs(K)[.
Let x(∗) be a solution of the inhomogeneous problem, and ν, ν̂ be a BP fixed point
in the homogeneous case. Then the messages ν(∗), ν̂(∗) defined by:

ν(∗)
j→a(xj = 0) = ν(∗)

j→a(xj = 1) = 1/2 if νj→a = ∗,

ν(∗)
j→a(xj) = I(xj = x(∗)

j ) if νj→a = 0, (18.9)

(and similarly for ν̂(∗)) are a BP fixed point for the inhomogeneous problem.
For α < αd(K), the inhomogeneous problem admits, with high probability,

a unique BP fixed point. This is a consequence of the exercise:

Exercise 18.7 Consider a BP fixed point ν(∗), ν̂(∗) for the inhomogeneous

problem, and assume all the messages to be of one of three types: ν(∗)
j→a(xj =

0) = 1, ν(∗)
j→a(xj = 0) = 1/2, ν(∗)

j→a(xj = 0) = 0. Assume furthermore that
messages are not ‘contradictory,’ i.e. that there exists no variable node i such

that ν̂(∗)
a→i(xi = 0) = 1 and ν̂(∗)

b→i(xi = 0) = 0.
Construct a non-trivial BP fixed point for the homogeneous problem.

18.2.2 Correlation decay

The BP prediction is that for α < αd(K) the marginal distribution of any bit xi

is uniform under either of the measures µ0, µ. The fact that the BP estimates do
not depend on the initialization is an indication that the prediction is correct. Let
us prove that this is indeed the case. To be definite we consider the homogeneous
problem (i.e. µ0). The inhomogeneous case follows, using the general remarks in
Sec. 18.1.1.

We start from an alternative interpretation of Qt. Let i ∈ {1, . . . , N} be a
uniformly random variable index and consider the ball of radius t around i in the
factor graph G: Bi,t(G). Set to xj = 0 all the variables xj outside this ball, and let

Q(N)
t be the probability that, under this condition, all the solutions of the linear

system Hx = 0 have xi = 0. Then the convergence of Bi,t(G) to the tree model

25While a vanishing fraction of messages νi→a = 0 is not excluded by our argument, it can
be ruled out by a slightly lenghtier calculation.
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Fig. 18.3. Factor graph for a 3-XORSAT instance with the depth t = 1 neigh-
borhood of vertex i, Bi,t(G) indicated. Fixing to 0 all the variables outside
Bi,t(G) does not imply that xi must be 0 in order to satisfy the homogeneous
linear system.

T(K,α) discussed in Sec. 9.5 implies that, for any given t, limN→∞ Q(N)
t = Qt.

It also determines the initial condition to Q0 = 1.
Consider now the marginal distribution µ0(xi). If xi = 0 in all the solutions

of Hx = 0, then, a fortiori xi = 0 in all the solutions that fulfill the additional

condition xj = 0 for j .∈ Bi,t(G). Therefore we have P {µ0(xi = 0) = 1} ≤ Q(N)
t .

By taking the N →∞ limit we get

lim
N→∞

P {µ0(xi = 0) = 1} ≤ lim
N→∞

Q(N)
t = Qt . (18.10)

Letting t →∞ and noticing that the left hand side does not depend on t we get
P {µ0(xi = 0) = 1} → 0 as N → ∞. In other words, all but a vanishing fraction
of the bits are free for α < αd(K).

The number Qt also has another interpretation, which generalizes to the in-
homogeneous problem. Choose a solution x(∗) of the homogeneous linear system
and, instead of fixing the variables outside the ball of radius t to 0, let’s fix them

to xj = x(∗)
j , j .∈ Bi,t(G). Then Q(N)

t is the probability that xi = x(∗)
i , under this

condition. The same argument holds in the inhomogeneous problem, with the
measure µ: if x(∗) is a solution of Hx = b and we fix the variables outside Bi,t(G)

to xj = x(∗)
j , the probability that xi = x(∗)

i under this condition is again Q(N)
t .

The fact that limt→∞ Qt = 0 when α < αd(K) thus means that a spin decorre-
lates from the whole set of variables at distance larger than t, when t is large.
This formulation of correlation decay is rather specific to XORSAT, because it
relies on the dichotomous nature of this problem: Either the ‘far away’ variables
completely determine xi, or they have no influence on it and it is uniformly ran-
dom. A more generic formulation of correlation decay, which generalizes to other
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x(1) x(2)

xi xi

t t

Fig. 18.4. A thought experiment: fix variables ‘far’ from i to two different as-
signments and check the influence on xi. For α < αd there is no influence

problems which don’t have this dichotomy property, consists in comparing two
different choices x(1), x(2) of the reference solution (cf. Fig. 18.4). For α < αd(K)
the correlations decay even in the worst case:

lim
N→∞

E

{
sup

x(1),x(2)

|µ(xi|x(1)
∼i,t)− µ(xi|x(2)

∼i,t)|
}

= Qt → 0 , (18.11)

as t → ∞. In Ch. 22 we will discuss weaker (non worst-case) definitions of
correlation decay, and their relation to phase transitions.

18.3 Core percolation and BP

18.3.1 2-core and peeling

What happens for α > αd(K)? A first hint is provided by the instance in

Fig. 18.1. In this case, the configuration of messages ν(t)
i→a = 0 on all directed

edges i → a is a fixed point of the BP update for the homogeneous system. A
moment of thought shows that this happens because G has the property that
each variable node has degree at least 2. We shall now see that, for α > αd(K),
G has with high probability a subgraph (called 2-core) with the same property.

We already encountered similar structures in Sec. 15.3, where we identified
them as responsible for errors in iterative decoding of LDPC codes over the
erasure channel. Let us recall the relevant points26 from that discussion. Given
a factor graph G, a stopping set is a subset of the function nodes such that all
the variables have degree larger or equal to 2 in the induced sub-graph. The
2-core is the largest stopping set. It is unique and can be found by the peeling
algorithm, which amounts to iterating the following procedure: find a variable
node of degree 0 or 1 (a “leaf”), erase it together with the factor node adjacent to
it, if there is one. The resulting subgraph, the 2-core, will be denoted as K2(G).

The peeling algorithm is of direct use for solving the linear system: if a
variable has degree 1, the unique equation where it appears allows to express it

26Notice that the structure causing decoding errors was the 2-core of the dual factor graph
that is obtained by exchanging variable and function nodes.
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in terms of other variables. It can thus be eliminated from the problem. The 2-
core of G is the factor graph associated to the linear system obtained by iterating
this procedure, which we shall refer to as the “core system”. The original system
has a solution if and only if the core does. We shall refer to solutions of the core
system as to core solutions.

18.3.2 Clusters

Core solutions play an important role as the set of solutions can be partitioned
according to their core values. Given an assignment x, denote by π∗(x) its pro-
jection onto the core, i.e. the vector of those entries in x that corresponds to
vertices in the core. Suppose that the factor graph has a non-trivial 2-core, and
let x(∗) be a core solution. We define the cluster associated with x(∗) as the set
of solutions to the linear system such that π∗(x) =
ux(∗) (the reason for the name cluster will become clear in Sec. 18.5). If the core
of G is empty, we shall adopt the convention that the entire set of solutions forms
a unique cluster.

Given a solution x(∗) of the core linear system, we shall denote the corre-
sponding cluster as S(x(∗)). One can obtain the solutions in S(x(∗)) by running
the peeling algorithm in the reverse direction, starting from x(∗). In this pro-
cess one finds variable which are uniquely determined by x(∗), they form what
is called the ‘backbone’ of the graph. More precisely, we define the backbone
B(G) as the sub-graph of G that is obtained augmenting K2(G) as follows. Set
B0(G) = K2(G). For any t ≥ 0, pick a function node a which is not in Bt(G)
and which has at least K − 1 of its neighboring variable nodes in Bt(G), and
build Bt+1(G) by adding a (and its neighborhing variables) to Bt(G). If no such
function node exists, set B(G) = Bt(G) and halt the procedure. This definition
of B(G) does not depend on the order in which function nodes are added. The
backbone contains the 2-core, and is such that any two solutions of the linear
system which belong to the same cluster, coincide on the backbone.

We have thus found that the variables in a linear system naturally divide into
three possible types: The variables in the 2-core K2(G), those in B(G) \ K2(G)
which are not in the core but are fixed by the core solution, and the variables
which are not uniquely determined by x(∗). This distinction is based on the
geometry of the factor graph, i.e. it depends only the matrix H, and not on the
value of the right hand side b in the linear system. We shall now see how BP
finds these structures.

18.3.3 Core, backbone, and belief propagation

Consider the homogeneous linear system Hx = 0, and run BP with initial con-

dition ν(0)
i→a = 0. Denote by νi→a, ν̂a→i the fixed point reached by BP (with

measure µ0) under this initialization (the reader is invited to show that such a
fixed point is indeed reached after a number of iterations at most equal to the
number of messages).

The fixed point messages νi→a, ν̂a→i can be exploited to find the 2-core
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Fig. 18.5. The factor graph of a XORSAT problem, its core (central dash-dotted
part) and its backbone (adding one function node and one variable on the
right - dashed zone)

K2(G), using the following properties (which can be proved by induction over
t): (i) νi→a = ν̂a→i = 0 for each edge (i, a) in K2(G). (ii) A variable i belongs
to the core K2(G) if and only if it receives messages ν̂a→i = 0 from at least two
of the neighboring function nodes a ∈ ∂i. (iii) If a function node a ∈ {1, . . . , M}
has νi→a = 0 for all the neighboring variable nodes i ∈ ∂a, then a ∈ K2(G).

The fixed point BP messages also contain information on the backbone: a
variable i belongs to the backbone B(G) if and only if it receives at least one
message ν̂a→i = 0 from its neighboring function nodes a ∈ ∂i.

Exercise 18.8 Consider a XORSAT problem described by the factor graph of
Fig. 18.5.

(a) Using the peeling and backbone construction algorithms, check that the
core and backbone are those described in the caption.

(b) Compute the BP messages found for the homogeneous problem as a fixed
point of BP iteration starting from the all 0 configuration. Check the core
and backbone that you obtain from these messages.

(c) Consider the general inhomogeneous linear system with the same factor
graph. Show that there exist two solutions to the core system: x1 =
0, x2 = bb ⊕ bc, x3 = ba ⊕ bb ⊕ bc, x4 = ba ⊕ bb and x1 = 0, x2 = bb ⊕ bc ⊕
1, x3 = ba⊕bb⊕bc, x4 = ba⊕bb⊕1. Identify the two clusters of solutions.

18.4 The SAT-UNSAT threshold in random XORSAT

We shall now see how a sharp characterization of the core size in random linear
systems provides the clue to the determination of the satisfiability threshold.
Remarkably, this characterization can again be achieved through an analysis of
BP.
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18.4.1 The size of the core

Consider an homogeneous linear system over N variables drawn from the random

K-XORSAT ensemble, and let {ν(t)
i→a} denote the BP messages obtained from

the initialization ν(0)
i→a = 0. The density evolution analysis of Sec. 18.2.1 implies

that the fraction of edges carrying a message 0 at time t, (we called it Qt) satisfies
the recursion equation (18.7). This recursion holds for any given t asymptotically
as N →∞.

It follows from the same analysis that, in the large N limit, the messages

ν̂(t)
a→i entering a variable node i are i.i.d. with P{ν̂(t)

a→i = 0} = Q̂t ≡ QK−1
t . Let

us for a moment assume that the limits t → ∞ and N → ∞ can be exchanged
without much harm. This means that the fixed point messages ν̂a→i entering a
variable node i are asymptotically i.i.d. with P{ν̂a→i = 0} = Q̂ ≡ QK−1, where
Q is the largest solution of the fixed point equation:

Q = 1 − exp{−KαQ̂} , Q̂ = QK−1 . (18.12)

The number of incoming messages with ν̂a→i = 0 converges therefore to a Poisson
random variable with mean KαQ̂. The expected number of variable nodes in the
core will be E|K2(G)| = NV (α, K) + o(N), where V (α, K) is the probability
that such a Poisson random variable is larger or equal to 2, that is

V (α, K) = 1 − e−Kα bQ −KαQ̂ e−Kα bQ . (18.13)

In Fig. 18.6 we plot V (α) as a function of α. For α < αd(K) the peeling algorithm
erases the whole graph, there is no core. The size of the core jumps to some finite
value at αd(K) and when α →∞ the core is the full graph.

Is K2(G) a random factor graph or does it have any particular structure?
By construction it cannot contain variable nodes of degree zero or one. Its ex-
pected degree profile (expected fraction of nodes of any given degree) will be
asymptotically Λ̂ ≡ {Λ̂l}, where Λ̂l is the probability that a Poisson random
variable of parameter KαQ̂, conditioned to be at least 2, is equal to l. Explicitly
Λ̂0 = Λ̂1 = 0, and

Λ̂l =
1

eKα bQ − 1 −KαQ̂

1

l!
(KαQ̂)l for l ≥ 2. (18.14)

Somewhat surprisingly K2(G) does not have any more structure than the one
determined by its degree profile. This fact is stated more formally in the following
theorem.

Theorem 18.1 Consider a factor graph G from the GN(K, Nα) ensemble with
K ≥ 3. Then

(i) K2(G) = ∅ with high probability for α < αd(K).
(ii) For α > αd(K), |K2(G)| = NV (α, K) + o(N) with high probability.

(iii) The fraction of vertices of degree l in K2(G) is between Λ̂l − ε and Λ̂l + ε
with probability greater than 1 − e−Θ(N).
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Fig. 18.6. The core of random 3-XORSAT formulae contains NV (α) variables,
and NC(α) equations. These numbers are plotted versus the number of equa-
tions per variable of the original formula α. The number of solutions to the
XORSAT linear system is Σ(α) = V (α)−C(α). The core appears for α ≥ αd,
and the system becomes UNSAT for α > αs, where αs is determined by
Σ(αs) = 0.

(iv) Conditionally on the number of variable nodes n = |K2(G)|, the degree
profile being Λ̂, K2(G) is distributed according to the Dn(Λ̂, xK) ensemble.

We will not provide the proof of this theorem. The main ideas have already
been presented in the previous pages, except for one important mathematical
point: how to exchange the limits N → ∞ and t → ∞. The basic idea is to run
BP for a large but fixed number of steps t. At this point the resulting graph is
‘almost’ a 2-core, and one can show that a sequential peeling procedure stops in
less than Nε steps.

In Fig. 18.7 we compare the statement in this Theorem with numerical sim-
ulations. The probability that G contains a 2 core Pcore(α) increases from 0 to 1
as α ranges from 0 to ∞, with a threshold becoming sharper and sharper as the
size N increases. The threshold behavior can be accurately described using finite
size scaling. Setting α = αd(K) + β(K) z N−1/2 + δ(K)N−2/3 (with properly
chosen β(K) and δ(K)) one can show that Pcore(α) approaches a K-independent
non-trivial limit that depends smoothly on z.

18.4.2 The threshold

Knowing that the core is a random graph with degree distribution Λ̂l, we can
compute the expected number of equations in the core. This is given by the num-
ber of vertices times their average degree, divided by K, which yields NC(α, K)+
o(N) where
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Fig. 18.7. Probability that a random graph from the GN(K,α) ensemble with
K = 3 (equivalently, the factor graph of a random 3-XORSAT formula) con-
tains a 2 core. On the left, the outcome of numerical simulations is compared
with the asymptotic threshold αd(K). On the right, scaling plot (see text).

C(α, K) = αQ̂(1 − e−Kα bQ) . (18.15)

In Fig. 18.6 we plot C(α, K) versus α. If α < αd(K) there is no core. For
α ∈]αd, αs[ the number of equations in the core is smaller than the number of
variables V (α, K). Above αc there are more equations than variables.

A linear system has a solution if and only if the associated core problem
has a solution. In a large random XORSAT instance, the core system involves
approximately NC(α, K) equations between NV (α, K) variables. We shall show
that these equations are, with high probability, linearly independent as long as
C(α, K) < V (α, K), which implies the following result

Theorem 18.2. (XORSAT satisfiability threshold.) For K ≥ 3, let

Σ(K,α) = V (K,α) − C(K,α) = Q− αQ̂(1 + (K − 1)(1 −Q)) , (18.16)

where Q, Q̂ are the largest solution of Eq. (18.12). Let αs(K) = inf{α : Σ(K,α) <
0}. Consider a random K-XORSAT linear system with N variables and Nα
equations. The following results hold with a probability going to 1 in the large N
limit:

(i) The system has a solution when α < αs(K).
(ii) It has no solution when α > αs(K).
(iii) For α < αs(K) the number of solutions is 2N(1−α)+o(N), and the number

of clusters is 2NΣ(K,α)+o(N).

Notice that the the last expression in Eq. (18.16) is obtained from Eqs. (18.13)
and (18.15) using the fixed point condition (18.12).

The prediction of this theorem is compared with numerical simulations in
Fig. 18.8, while Fig. 18.9 summarizes the results on the thresholds for XORSAT.
Proof: We shall convey the basic ideas of the proof and refer to the literature
for technical details.
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K 3 4 5
αd 0.81847 0.77228 0.70178
αs 0.91794 0.97677 0.99244

0 αd αs

Fig. 18.9. Left: A pictorial view of the phase transitions in random XORSAT
systems. The satisfiability threshold is αs. In the ‘Easy-SAT’ phase α < αd

there is a single cluster of solutions. In the ‘Hard-SAT’ phase αd < α < αs

the solutions of the linear system are grouped in well separated clusters.
Right: The thresholds αd, αs for various values of K. At large K one has:
αd(K) 1 log K/K and αs(K) = 1 − e−K + O(e−2K).

Let us start by proving (ii), namely that for α > αs(K) random XORSAT
instances are with high probability UNSAT. This follows from a linear algebra
argument. Let H∗ denote the 0−1 matrix associated with the core, i.e. the matrix
including those rows/columns such that the associated function/variable nodes
belong to K2(G). Notice that if a given row is included in H∗ then all the columns
corresponding to non-zero entries of that row are also in H∗. As a consequence,
a necessary condition for the rows of H to be independent is that the rows of H∗
are independent. This is in turn impossible if the number of columns in H∗ is
smaller than its number of rows.

Quantitatively, one can show that M − rank(H) ≥ rows(H∗)− cols(H∗) (with
the obvious meanings of rows( · ) and cols( · )). In large random XORSAT sys-
tems, Theorem 18.1 implies that rows(H∗)−cols(H∗) = −NΣ(K,α)+o(N) with
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Fig. 18.10. Adding a function nodes involving a variable node of degree one.
The corresponding linear equation is independent from the other ones.

high probability. According to our discussion in Sec. 18.1.1, among the 2M pos-
sible choices of the right-hand side vector b, only 2rank(H) are in the image of H

and thus lead to a solvable system. In other words, conditional on H, the prob-
ability that random XORSAT is solvable is 2rank(H)−M . By the above argument
this is, with high probability, smaller than 2NΣ(K,α)+o(N). Since Σ(K,α) < 0 for
α > αs(K), it follows that the system is UNSAT with high probability.

In order to show that a random system is satisfiable with high probability
when α < αs(K), one has to prove the following facts: (i) if the core matrix H∗
has maximum rank, then H has maximum rank as well; (ii) if α < αs(K), then
H∗ has maximum rank with high probability. As a byproduct, the number of
solutions is 2N−rank(H) = 2N−M .

(i) The first step follows from the observation that G can be constructed from
K2(G) through an inverse peeling procedure. At each step one adds a function
node which involves at least a degree one variable (see Fig. 18.10). Obviously this
newly added equation is linearly independent of the previous ones, and therefore
rank(H) = rank(H∗) + M − rows(H∗).

(ii) Let n = cols(H∗) be the number of variable nodes and m = rows(H∗) the
number of function nodes in the core K2(G). Let us consider the homogeneous
system on the core, H∗x = 0, and denote by Z∗ the number of solutions to this
system. We will show that with high probability this number is equal to 2n−m.
This means that the dimension of the kernel of H∗ is n − m and therefore H∗
has full rank.

We know from linear algebra that Z∗ ≥ 2n−m. To prove the reverse inequal-
ity we use a first moment method. According to Theorem 18.1, the core is a
uniformly random factor graph with n = NV (K,α) + o(N) variables and de-
gree profile Λ = Λ̂ + o(1). Denote by E the expectation value with respect to
this ensemble. We shall use below a first moment analysis to show that, when
α < αc(K):

E {Z∗} = 2n−m[1 + oN (1)] . (18.17)
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Fig. 18.11. The exponential rate φ(ω) of the weight enumerator of the core of
a random 3-XORSAT formula. From top to bottom α = αd(3) ≈ 0.818469,
0.85, 0.88, 0.91, and 0.94 (recall that αs(3) ≈ 0.917935). Inset: blow up of
the small ω region.

Then Markov inequality P{Z∗ > 2n−m} ≤ 2−n+mE{Z∗} implies the bound.
The surprise is that Eq. (18.17) holds, and thus a simple first moment esti-

mate allows to establish that H∗ has full rank. We saw in Exercise 18.6 that the
same approach, when applied directly to the original linear system, fails above
some α∗(K) which is strictly smaller than αs(K). Reducing the original graph to
its two-core has drastically reduced the fluctuations of the number of solutions,
thus allowing for a successful application of the first moment method.

We now turn to the proof of Eq. (18.17), and we shall limit ourselves to the
computation of E{Z∗} to the leading exponential order, when the core size and
degree profiles take their typical values n = NV (K,α), Λ = Λ̂ and P (x) = xK .
This problem is equivalent to computing the expected number of codewords in
the LDPC code defined by the core system, which we already did in Sec. 11.2.
The result takes the typical form

E{Z∗}
.
= exp

{
N sup

ω∈[0,V (K,α)]
φ(ω)

}
. (18.18)

Here φ(ω) is the exponential rate for the number of solutions with weight Nω.
Adapting Eq. (11.18) to the present case, we obtain the parametric expression:

φ(ω) = −ω log x − η(1 − e−η) log(1 + yz) + (18.19)

+
∑

l≥2

e−η
ηl

l!
log(1 + xyl) +

η

K
(1 − e−η) log qK(z) ,

ω =
∑

l≥2

e−η
ηl

l!

xyl

1 + xyl
. (18.20)
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where η = KαQ̂∗, qK(z) = [(1 + z)K + (1 − z)K ]/2 and y = y(x), z = z(x) are
the solution of

z =

∑
l≥1[η

l/l!] [xyl−1/(1 + xyl)]
∑

l≥1[η
l/l!] [1/(1 + xyl)]

, y =
(1 + z)K−1 − (1 − z)K−1

(1 + z)K−1 + (1 − z)K−1
. (18.21)

With a little work one sees that ω∗ = V (K,α)/2 is a local maximum of φ(ω),
with φ(ω∗) = Σ(K,α) log 2. As long as ω∗ is a global maximum, E{Z∗|n,Λ} .

=
exp{Nφ(ω∗)}

.
= 2n−m. It turns out, cf. Fig. 18.11, that the only other local

maximum is at ω = 0 corresponding to φ(0) = 0. Therefore E{Z∗|n,Λ} .
= 2n−m

as long as φ(ω∗) = Σ(K,α) > 0, i.e. for any α < αs(K)
Notice that the actual proof of Eq. (18.17) is more complicate because it

requires estimating the sub-exponential factors. Nevertheless it can be carried
out successfully. !

18.5 The Hard-SAT phase: clusters of solutions

In random XORSAT, the whole regime α < αs(K) is SAT. This means that,
with high probability there exist solutions to the random linear system, and the
number of solutions is in fact Z

.
= eN(1−α). Notice that the number of solutions

does not present any precursor of the SAT-UNSAT transition at αs(K) (recall
that αs(K) < 1), nor does it carry any trace of the sudden appearence of a
non-empty two core at αd(K).

On the other hand the threshold αd(K) separates two phases, that we will call
‘Easy-SAT’ (for α < αd(K)) and ‘Hard-SAT’ phase (for α ∈]αd(K), αs(K)[).
These two phases differ in the structure of the solution space, as well as in the
behavior of some simple algorithms.

In the Easy-SAT phase there is no core, solutions can be found in (expected)
linear time using the peeling algorithm and they form a unique cluster. In the
Hard-SAT the factor graph has a large 2-core, and no algorithm is known that
finds a solution in linear time. Solutions are partitioned in 2NΣ(K,α)+o(N) clusters.
Until now the name ‘cluster’ has been pretty arbitrary, and only denoted a subset
of solutions that coincide in the core. The next result shows that distinct clusters
are ‘far apart’ in Hamming space.

Proposition 18.3 In the Hard-SAT phase there exists δ(K,α) > 0 such that,
with high probability, any two solutions in distinct clusters have Hamming dis-
tance larger than Nδ(K,α).

Proof: The proof follows from the computation of the weight enumerator expo-
nent φ(ω), cf. Eq. (18.20) and Fig. 18.11. One can see that for any α > αd(K),
φ′(0) < 0, and, as a consequence there exists δ(K,α) > 0 such that φ(ω) < 0
for 0 < ω < δ(K,α). This implies that if x∗, x′

∗ are two distinct solution of the
core linear system, then either d(x∗, x

′
∗) = o(N) or d(x, x′) > Nδ(K,α). It turns

out that the first case can be excluded along the lines of the minimal distance
calculation of Sec. 11.2. Therefore, if x, x′ are two solutions belonging to distinct
clusters d(x, x′) ≥ d(π∗(x), π∗(x′)) ≥ Nδ(K,α). !
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This result suggests to regard clusters as ‘lumps’ of solutions well separated
from each other. One aspect which is conjectured, but not proved, concerns the
fact that clusters form ‘well connected components.’ By this we mean that any
two solutions in the a cluster can be joined by a sequence of other solutions,
whereby two successive solutions in the sequence differ in at most sN variables,
with sN = o(N) (a reasonable expectation is sN = Θ(log N)).

18.6 An alternative approach: the cavity method

The analysis of random XORSAT in the previous sections relied heavily on the
linear structure of the problem, as well as on the very simple instance distribu-
tion. This section describes an alternative approach that is potentially generaliz-
able to more complex situations. The price to pay is that this second derivation
relies on some assumptions on the structure of the solution space. The observa-
tion that our final results coincide with the ones obtained in the previous section
gives some credibility to these assumptions.

The starting point is the remark that BP correctly computes the marginals of
µ( · ) (the uniform measure over the solution space) for α < αd(K), i.e. as long as
the set of solutions forms a single cluster. We want to extend its domain of validity
to α > αd(K). If we index by n ∈ {1, . . . ,N} the clusters, the uniform measure
µ( · ) can be decomposed into the convex combination of uniform measures over
each single cluster:

µ( · ) =
N∑

n=1

wn µn( · ) . (18.22)

Notice that in the present case wn = 1/N is independent of n and the measures
µn( · ) are obtained from each other via a translation, but this will not be true
in more general situations.

Consider an inhomogeneous XORSAT linear system and denote by x(∗) one
of its solutions in cluster n. The distribution µn has single variable marginals

µn(xi) = I(xi = x(∗)
i ) if node i belongs to the backbone, and µn(xi = 0) =

µn(xi = 1) = 1/2 on the other nodes.
In fact we can associate to each solution x(∗) a fixed point of the BP equation.

We already described this in Section 18.2.1, cf. Eq. (18.9). On this fixed point

messages take one of the following three values: ν(∗)
i→a(xi) = I(xi = 0) (that we

will denote as ν(∗)
i→a = 0), ν(∗)

i→a(xi) = I(xi = 1) (denoted ν(∗)
i→a = 1), ν(∗)

i→a(xi =

0) = ν(∗)
i→a(xi = 1) = 1/2 (denoted ν(∗)

i→a = ∗). Analogous notations hold for
function-to-variable node messages. The solution can be written most easily in
terms of the latter

ν̂(∗)
a→i =






1 if x(∗)
i = 1 and i, a ∈ B(G),

0 if x(∗)
i = 0 and i, a ∈ B(G),

∗ otherwise.

(18.23)
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Notice that these messages only depend on the value of x(∗)
i on the backbone of

G, hence they depend on x(∗) only through the cluster it belongs to. Reciprocally,
for any two distinct clusters, the above definition gives two distinct fixed points.

Because of this remark we shall denote these fixed points as {ν(n)
i→a, ν̂(n)

a→i}, where
n is a cluster index.

Let us recall the BP fixed point condition:

νi→a =

{
∗ if ν̂b→i = ∗ for all b ∈ ∂i\a,
any ‘non ∗’ ν̂b→i otherwise.

(18.24)

ν̂a→i =

{
∗ if ∃j ∈ ∂a\i s.t. ν̂j→a = ∗,
ba ⊕ νj1→a ⊕ · · · ⊕ νjl→a otherwise.

(18.25)

Below we shall denote symbolically these equations as

νi→a = f{ν̂b→i} , ν̂a→i = f̂{νj→a} . (18.26)

Let us summarize our findings.

Proposition 18.4 To each cluster n we can associate a distinct fixed point of

the BP equations (18.25) {ν(n)
i→a, ν̂(n)

a→i}, such that ν̂(n)
a→i ∈ {0, 1} if i, a are in the

backbone and ν̂(n)
a→i = ∗ otherwise.

Note that the converse of this proposition is false: there may exist solutions to
the BP equations which are not of the previous type. One of them is the all ∗
solution. Nontrivial solutions exist as well as shown in Fig. 18.12.

An introduction to the 1RSB cavity method in the general case will be pre-
sented in Ch. 19. Here we give a short informal preview in the special case of the
XORSAT: the reader will find a more formal presentation in the next chapter.
The first two assumptions of the 1RSB cavity method can be summarized as
follows (all statements are understood to hold with high probability).

Assumption 1 In a large random XORSAT instance, for each cluster ‘n’ of
solutions, the BP solution ν(n), ν̂(n) provides an accurate ‘local’ description of
the measure µn( · ).

This means that for instance the one point marginals are given by µn(xj) ∼=∏
a∈∂j ν̂(n)

a→j(xj) + o(1), but also that local marginals inside any finite cavity are
well approximated by formula (14.18).

Assumption 2 For a large random XORSAT instance in the Hard-SAT phase,
the number of clusters eNΣ is exponential in the number of variables. Further, the
number of solutions of the BP equations (18.25) is, to the leading exponential
order, the same as the number of clusters. In particular it is the same as the
number of solutions constructed in Proposition 18.4.

A priori one might have hoped to identify the set of messages {ν(n)
i→a} for

each cluster. The cavity method gives up this ambitious objective and aims to
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corefrozen

1

2

a

b

Fig. 18.12. Left: A set of BP messages associated with one cluster (cluster
number n) of solutions. An arrow along an edge means that the correspond-

ing message (either ν(n)
i→a or ν̂(n)

a→i) takes value in {0, 1}. The other messages
are equal to ∗. Right: A small XORSAT instance. The core is the whole
graph. In the homogeneous problem there are two solutions, which form
two clusters: x1 = x2 = 0 and x1 = x2 = 1. Beside the two correspond-
ing BP fixed points described in Proposition 18.4, and the all-∗ fixed point,
there exist other fixed points such as ν̂a→1 = ν1→b = ν̂b→2 = ν2→a = 0,
ν̂a→2 = ν2→b = ν̂b→1 = ν1→a = ∗.

compute the distribution of ν(n)
i→a for any fixed edge i → a, when n is a cluster

index drawn with distribution {wn}. We thus want to compute the quantities:

Qi→a(ν) = P
{
ν(n)

i→a = ν
}

, Q̂a→i(ν̂) = P
{
ν̂(n)

a→i = ν̂
}

. (18.27)

for ν, ν̂ ∈ {0, 1, ∗}. Computing these probabilities rigorously is still a challenging
task. In order to proceed, we make some assumption on the joint distribution of

the messages ν(n)
i→a when n is a random cluster index (chosen from the probability

wn).
The simplest idea would be to assume that messages on ‘distant’ edges are

independent. For instance let us consider the set of messages entering a given
variable node i. Their only correlations are induced through BP equations along
the loops to which i belongs. Since in random K-XORSAT formulae such loops
have, with high probability, length of order log N , one might think that mes-
sages incoming a given node are asymptotically independent. Unfortunately
this assumption is false. The reason is easily understood if we assume that
Q̂a→i(0), Q̂a→i(1) > 0 for at least two of the function nodes a adjacent to a
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given variable node i. This would imply that, with positive probability a ran-

domy sampled cluster has ν(n)
a→i = 0, and ν(n)

b→i = 1. But there does not exist any
such cluster, because in such a situation there is no consistent prescription for
the marginal distribution of xi under µn( · ).

Our assumption will be that the next simplest thing happens: messages are
independent conditional to the fact that they do not contradict each other.

Assumption 3 Consider the Hard-SAT phase of a random XORSAT problem.
Denote by i ∈ G a uniformly random node, by n a random cluster index with

distribution {wn}, and let - be an integer ≥ 1. Then the messages {ν(n)
j→b}, where

(j, b) are all the edges at distance - from i and directed towards i, are asymptot-
ically independent under the condition of being compatible.

Here ‘compatible’ means the following. Consider the linear system Hi,%xi,% =
0 for the neighborhood of radius - around node i. If this admits a solution under
the boundary condition xj = νj→b for all the boundary edges (j, b) on which
{νj→b} ∈ {0, 1}, then the messages {νj→b} are said to be compatible.

Given the messages νj→b at the boundary of a radius-- neighborhood, the
BP equations (18.24) and (18.25) allow to determine the messages inside this
neighborhood. Consider in particular two nested neighborhoods at distance -
and - + 1 from i. The inwards messages on the boundary of the largest neigh-
borhood completely determines the ones on the boundary of the smallest one. A
little thought shows that, if the messages on the outer boundary are distributed
according to Assumption 3, then the distribution of the resulting messages on the
inner boundary also satisfies the same assumption. Further, the distributions are
consistent if and only if the following ‘survey propagation’ equations are satisfied
by the one-message marginals:

Qi→a(ν) ∼=
∑

{bνb}

∏

b∈∂i\a

Q̂b→i(ν̂b) I(ν = f{ν̂b}) I({ν̂b}b∈∂i\a ∈ COMP) , (18.28)

Q̂a→i(ν̂) =
∑

{νj}

∏

j∈∂a\i

Qj→a(νj) I(ν̂ = f̂{νj}) . (18.29)

Here and {ν̂b} ∈ COMP only if the messages are compatible (i.e. they do not
contain both a 0 and a 1). Since Assumptions 1, 2, 3 above hold only with
high probability and asymptotically in the system size, the equalities in (18.28),
(18.29) must also be interpreted as approximate. The equations should be satis-
fied within any given accuracy ε, with high probability as N → ∞.
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Exercise 18.9 Show that Eqs. (18.28), (18.29) can be written explicitly as

Qi→a(0) ∼=
∏

b∈∂i\a

(Q̂b→i(0) + Q̂b→i(∗)) −
∏

b∈∂i\a

Q̂b→i(∗) , (18.30)

Qi→a(1) ∼=
∏

b∈∂i\a

(Q̂b→i(1) + Q̂b→i(∗)) −
∏

b∈∂i\a

Q̂b→i(∗) (18.31)

Qi→a(∗) ∼=
∏

b∈∂i\a

Q̂b→i(∗) , (18.32)

where the ∼= symbol hides a global normalization constant, and

Q̂a→i(0) =
1

2





∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) +
∏

j∈∂a\i

(Qj→a(0) −Qj→a(1))




 ,

(18.33)

Q̂a→i(1) =
1

2





∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) −
∏

j∈∂a\i

(Qj→a(0) −Qj→a(1))




 ,

(18.34)

Q̂a→i(∗) = 1 −
∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) . (18.35)

The final step of the 1RSB cavity method consists in looking for a solution of
Eqs. (18.28), (18.29). There are no rigorous results on the existence or number of
such solutions. Further, since these equations are only approximate, approximate
solutions should be considered as well. In the present case a very simple (and
somewhat degenerate) solution can be found that yields the correct predictions
for all the quantities of interest. In this solution, the message distributions take
one of two possible forms: on some edges one has Qi→a(0) = Qi→a(1) = 1/2
(with an abuse of notation we shall write Qi→a = 0 in this case), on some other
edges Qi→a(∗) = 1 (we will then write Qi→a = ∗). Analogous forms hold for
Q̂a→i. A little algebra shows that this is a solution if and only if the η’s satisfy

Qi→a =

{
∗ if Q̂b→i = ∗ for all b ∈ ∂i\a,
0 otherwise.

(18.36)

Q̂a→i =

{
∗ if ∃j ∈ ∂a\i s.t. Q̂j→a = ∗,
0 otherwise.

(18.37)

These equations are identical to the original BP equations for the homogeneous
problem (this feature is very specific to XORSAT and will not generalize to
more advanced applications of the method). However the interpretation is now
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completely different. On the edges where Qi→a = 0 the corresponding message

ν(n)
i→a depend on the cluster n and ν(n)

i→a = 0 (respectively = 1) in half of the
clusters. These edges are those inside the core, or in the backbone but directed
‘outward’ with respect to the core, as shown in Fig.18.12. On the other edges,

the message does not depend upon the cluster and ν(n)
i→a = ∗ for all n’s.

A concrete interpretation of these results is obtained if we consider the one
bit marginals µn(xi) under the single cluster measure. According to Assumption

1 above, we have µn(xi = 0) = µn(xi = 1) = 1/2 if ν̂(n)
a→i = ∗ for all a ∈ ∂i.

If on the other hand ν̂(n)
a→i = 0 (respectively = 1) for at least one a ∈ ∂i, then

µn(xi = 0) = 1 (respectively µn(xi = 0) = 0). We thus recover the full solution
discussed in the previous sections: inside a given cluster n, the variables in the
backbone are completely frozen, either to 0 or to 1. The other variables have
equal probability to be 0 or 1 under the measure µn.

The cavity approach allows to compute the complexity Σ(K,α) as well as
many other properties of the measure µ( · ). We will see this in the next chapter.

Notes

Random XORSAT formulae were first studied as a simple example of random
satisfiability in (Creignou and Daudé, 1999). This work considered the case of
‘dense formulae’ where each clause includes O(N) variables. In this case the SAT-
UNSAT threshold is at α = 1. In coding theory this model had been characterized
since the work of Elias in the fifties (Elias, 1955), cf. Ch. 6.

The case of sparse formulae was addressed using moment bounds in (Creignou,
Daudé and Dubois, 2003). The replica method was used in (Ricci-Tersenghi,
Weigt and Zecchina, 2001; Franz, Leone, Ricci-Tersenghi and Zecchina, 2001a;
Franz, Mézard, Ricci-Tersenghi, Weigt and Zecchina, 2001b) to derive the clus-
tering picture, determine the SAT-UNSAT threshold, and study the glassy prop-
erties of the clustered phase.

The fact that, after reducing the linear system to its core, the first moment
method provides a sharp characterization of the SAT-UNSAT threshold was dis-
covered independently by two groups: (Cocco, Dubois, Mandler and Monasson,
2003) and (Mézard, Ricci-Tersenghi and Zecchina, 2003). The latter also dis-
cusses the application of the cavity method to the problem. The full second
moment calculation that completes the proof can be found for the case K = 3
in (Dubois and Mandler, 2002).

The papers (Montanari and Semerjian, 2005; Montanari and Semerjian, 2006a;
Mora and Mézard, 2006) were devoted to finer geometrical properties of the set
of solutions of random K-XORSAT formulae. Despite these efforts, it remains
to be proved that clusters of solutions are indeed ‘well connected.’

Since the locations of various transitions are known rigorously, a natural
question is to study the critical window. Finite size scaling of the SAT-UNSAT
transition was investigated numerically in (Leone, Ricci-Tersenghi and Zecchina,
2001). A sharp characterization of finite-size scaling for the appearence of a 2-
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core, corresponding to the clustering transition, was achieved in (Dembo and
Montanari, 2008a).
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THE 1RSB CAVITY METHOD

The effectiveness of belief propagation depends on one basic assumption: when
a function node is pruned from the factor graph, the adjacent variables become
weakly correlated with respect to the resulting distribution. This hypothesis may
break down either because of the existence of small loops in the factor graph,
or because variables are correlated on large distances. In factor graphs with a
locally tree-like structure, the second scenario is responsible for the failure of
BP. The emergence of such long range correlations is a signature of a phase
transition separating a ‘weakly correlated’ and a ‘highly correlated’ phase. The
latter is often characterized by the decomposition of the (Boltzmann) probability
distribution into well separated ‘lumps’ (pure Gibbs states).

We considered a simple example of this phenomenon in our study of random
XORSAT. A similar scenario holds in a variety of problems from random graph
coloring to random satisfiability and spin glasses. The reader should be warned
that the structure and organization of pure states in such systems is far from
being fully understood. Furthermore, the connection between long range correla-
tions and pure states decomposition is more subtle than suggested by the above
remarks.

Despite these complications, physicists have developed a non-rigorous ap-
proach to deal with this phenomenon: the “one step replica symmetry breaking”
(1RSB) cavity method. The method postulates a few properties of the pure state
decomposition, and, on this basis, allows to derive a number of quantitative pre-
dictions (‘conjectures’ from a mathematics point of view). Examples include the
satisfiability threshold for random K-SAT and other random constraint satisfac-
tion problems.

The method is rich enough to allow for some self-consistency checks of such
assumptions. In several cases in which the 1RSB cavity method passed this test,
its predictions have been confirmed by rigorous arguments (and there is no case
in which they have been falsified so far). These successes encourage the quest for
a mathematical theory of Gibbs states on sparse random graphs.

This chapter explains the 1RSB cavity method. It alternates between a
general presentation and a concrete illustration on the XORSAT problem. We
strongly encourage the reader to read the previous chapter on XORSAT before
the present one. This should help her to gain some intuition of the whole scenario.

We start with a general description of the 1RSB glass phase, and the de-
composition in pure states, in Sec. 19.1. Section 19.2 introduces an auxiliary
constraint satisfaction problem to count the number of solutions of BP equa-
tions. The 1RSB analysis amounts to applying belief propagation to this auxil-

434
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iary problem. One can then apply the methods of Ch. 14 (for instance, density
evolution) to the auxiliary problem. Section 19.3 illustrates the approach on the
XORSAT problem and shows how the 1RSB cavity method recovers the rigorous
results of the previous chapter.

In Sec. 19.4 we show how the 1RSB formalism, which in general is rather
complicated, simplifies considerably when the temperature of the auxiliary con-
straint satisfaction problem takes the value x = 1. Section 19.5 explains how to
apply it to optimization problems (leveraging on the min-sum algorithm) lead-
ing to the Survey Propagation algorithm. The concluding section 19.6 describes
the physical intuition which underlies the whole method. The appendix 19.6.3
contains some technical aspects of the survey propagation equations applied to
XORSAT, and their statistical analysis.

19.1 Beyond BP: many states

19.1.1 Bethe measures

The main lesson of the previous chapters is that in many cases, the probability
distribution specified by graphical models with a locally tree-like structure takes
a relatively simple form, that we shall call a Bethe measure (or Bethe state). Let
us first define precisely what we mean by this, before we proceed to discuss what
kinds of other scenarios can be encountered.

As in Ch. 14, we consider a factor graph G = (V, F, E), with variable nodes
V = {1, · · · , N}, factor nodes F = {1, · · · , M} and edges E. The joint probabil-
ity distribution over the variables x = (x1, . . . , xN ) ∈ XN takes the form

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) . (19.1)

Given a subset of variable nodes U ⊆ V (which we shall call a ‘cavity’),
the induced subgraph GU = (U, FU , EU ) is defined as the factor graph that
includes all the factor nodes a such that ∂a ⊆ U , and the adjacent edges. We also
write (i, a) ∈ ∂U if i ∈ U and a ∈ F \ FU . Finally, a set of messages {ν̂a→i} is
a set of probability distributions over X , indexed by directed edges a → i in E
with a ∈ F , i ∈ V .

Definition 19.1. (Informal) The probability distribution µ is a Bethe mea-
sure (or Bethe state) if there exists a set of messages {ν̂a→i}, such that, for
‘almost all’ the ‘finite size’ cavities U , the distribution µU ( · ) of the variables in
U is approximated as

µU (xU ) ∼=
∏

a∈FU

ψa(x∂a)
∏

(ia)∈∂U

ν̂a→i(xi) + err(xU ) , (19.2)

where err(xU ) is a ‘small’ error term, and ∼= denotes as usual equality up to a
normalization.
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b

Fig. 19.1. Two examples of cavities. The right hand one is obtained by adding
the extra function node a. The consistency of the Bethe measure in these two
cavities implies the BP equation for ν̂a→i, see Exercise 19.1.

A formal definition should specify what is meant by ‘almost all’, ‘finite size’ and
‘small.’ This can be done by introducing a tolerance εN (with εN ↓ 0 as N →∞)
and a size LN (where LN is bounded as N →∞). One then requires that some
norm of err( · ) (e.g. an Lp norm) is smaller than εN for a fraction larger than
1 − εN of all possible cavities U of size |U | < LN . The underlying intuition is
that the measure µ( · ) is well approximated locally by the given set of messages.
In the following we shall follow physicists’ habit of leaving implicit the various
approximation errors.

Notice that the above definition does not make use of the fact that µ factorizes
as in Eq. (19.1). It thus apply to any distribution over x = {xi : i ∈ V }.

If µ( · ) is a Bethe measure with respect to the message set {ν̂a→i}, then
the consistency of Eq. (19.2) for different choices of U implies some non-trivial
constraints on the messages. In particular if the loops in the factor graph G are
not too small (and under some technical condition on the functions ψa( · )) then
the messages must be close to satisfying BP equations. More precisely, we define
a quasi-solution of BP equations as a set of messages which satisfy almost all
the equations within some accuracy. The reader is invited to prove this statement
in the exercise below.
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Exercise 19.1 Assume that G = (V, F, E) has girth larger than 2, and
that µ( · ) is a Bethe measure with respect to the message set {ν̂a→i} where
ν̂a→i(xi) > 0 for any (i, a) ∈ E, and ψa(x∂a) > 0 for any a ∈ F . For U ⊆ V ,
and (i, a) ∈ ∂U , define a new subset of variable nodes as W = U ∪ ∂a (see
Fig. 19.1).

Applying Eq. (19.2) to the subsets of variables U and W , show that the
message must satisfy (up to an error term of the same order as err( · )):

ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

{ ∏

b∈∂j\a

ν̂b→j(xj)
}

. (19.3)

Show that these are equivalent to the BP equations (14.14), (14.15).
[Hint: Define, for k ∈ V , c ∈ F , (k, c) ∈ E, νk→c(xk) ∼=

∏
d∈∂k\c ν̂d→k(xk)].

It would be pleasant if the converse was true, i.e. if each quasi-solution of BP
equations corresponded to a distinct Bethe measure. In fact such a relation will
be at the heart of the assumptions of the 1RSB method. However one should
keep in mind that this is not always true, as the following example shows:

Example 19.2 Let G be a factor graph with the same degree K ≥ 3 both at
factor and variable nodes. Consider binary variables, X = {0, 1}, and, for each
a ∈ F , let

ψa(xi1(a), . . . , xiK (a)) = I(xi1(a) ⊕ · · · ⊕ xiK (a) = 0) . (19.4)

Given a perfect matching M ⊆ E, a solution of BP equations can be constructed
as follows. If (i, a) ∈ M, then let ν̂a→i(xi) = I(xi = 0) and νi→a(0) = νi→a(1) =
1/2. If on the other hand (i, a) .∈ M, then let ν̂a→i(0) = ν̂a→i(1) = 1/2 and
νi→a(0) = I(xi = 0) (variable to factor node).

Check that this is a solution of BP equations and that all the resulting
local marginals coincide with the ones of the measure µ(x) ∼= I(x = 0), inde-
pendently of M. If one takes for instance G to be a random regular graph with
degree K ≥ 3, both at factor nodes and variable nodes, then the number of
perfect matchings of G is, with high probability, exponential in the number of
nodes. Therefore we have constructed an exponential number of solutions of
BP equations that describe the same Bethe measure.

19.1.2 A few generic scenarios

Bethe measures are a conceptual tool for describing distributions of the form
(19.1). Inspired by the study of glassy phases (see Sec. 12.3), statistical mechanics
studies have singled out a few generic scenarios in this respect, that we informally
describe below.

RS (replica symmetric). This is the simplest possible scenario: the distribution
µ( · ) is a Bethe measure.
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A slightly more complicated situation (that we still ascribe to the ‘replica
symmetric’ family) arises when µ( · ) decomposes into a finite set of Bethe
measures related by ‘global symmetries’, as in the Ising ferromagnet dis-
cussed in Sec. 17.3.

d1RSB (dynamic one-step replica symmetry breaking). There exists an exponen-
tially large (in the system size N) number of Bethe measures. The measure
µ decomposes into a convex combination of these Bethe measures:

µ(x) =
∑

n

wn µn(x) , (19.5)

with weights wn exponentially small in N . Furthermore µ( · ) is itself a
Bethe measure.

s1RSB (static one-step replica symmetry breaking). As in the d1RSB case, there
exists an exponential number of Bethe measures, and µ decomposes into a
convex combination of such states. However, a finite number of the weights
wn is of order 1 as N →∞, and (unlike in the previous case) µ is not itself
a Bethe measure.

In the following we shall focus on the d1RSB and s1RSB scenarios, that are
particularly interesting, and can be treated in a unified framework (we shall
sometimes refer to both of them as 1RSB). More complicate scenarios, such as
‘full RSB’, are also possible. We do not discuss such scenarios here because, so
far, one has a relatively poor control of them in sparse graphical models.

In order to proceed further, we shall make a series of assumptions on the
structure of Bethe states in the 1RSB case. While further research work is re-
quired to formalize completely these assumptions, they are precise enough for
deriving several interesting quantitative predictions.

To avoid technical complications, we assume that the compatibility functions
ψa( · ) are strictly positive. (The cases with ψa( · ) = 0 should be treated as limit
cases of such models). Let us index by n the various quasi-solutions {νn

i→a, ν̂n
a→i}

of the BP equations. To each of them we can associate a Bethe measure, and
we can compute the corresponding Bethe free-entropy Fn = F(νn). The three
postulates of the 1RSB scenario are listed below.

Assumption 1 There exist exponentially many quasi-solutions of BP equations.
The number of such solutions with free-entropy F(νn) ≈ Nφ is (to leading expo-
nential order) exp{NΣ(φ)}, where Σ( · ) is the complexity function27 .

This can be expressed more formally as follows. There exists a function Σ : R →
R+ (the complexity) such that, for any interval [φ1, φ2], the number of quasi-
solutions of BP equations with F(νn) ∈ [Nφ1, Nφ2] is exp{NΣ∗ + o(N)} where
Σ∗ = sup{Σ(φ) : φ1 ≤ φ ≤ φ2}. We shall also assume in the following that
Σ(φ) is ‘regular enough’ without entering details.

27As we are only interested in the leading exponential behavior, the details of the definitions
of quasi-solutions become irrelevant, as long as (for instance) the fraction of violated BP
equations vanishes in the large N limit.
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Among Bethe measures, a special role is played by the ones that have short
range correlations (are extremal). We already mentioned this point in Ch. 12,
and shall discuss the relevant notion of correlation decay in Ch. 22. We denote
the set of extremal measures as E.

Assumption 2 The ‘canonical’ measure µ defined as in Eq. (19.1) can be writ-
ten as a convex combination of extremal Bethe measures

µ(x) =
∑

n∈E

wn µn(x) , (19.6)

with weights related to the Bethe free-entropies wn = eFn/Ξ, Ξ ≡
∑

n∈E
eFn.

Note that Assumption 1 characterizes the number of (approximate) BP fixed
points, while Assumption 2 expresses the measure µ( · ) in terms of extremal
Bethe measures. While each such measure gives rise to a BP fixed point by the
arguments in the previous Section, it is not clear that the reciprocal holds. The
next assumption implies that this is the case, to the leading exponential order.

Assumption 3 To leading exponential order, the number of extremal Bethe
measures equals the number of quasi-solutions of BP equation: the number of
extremal Bethe measures with free-entropy ≈ Nφ is also given by exp{NΣ(φ)}.

19.2 The 1RSB cavity equations

Within the three assumptions described above, the complexity function Σ(φ)
provides basic information on how the measure µ decomposes into Bethe mea-
sures. Since the number of extremal Bethe measures with a given free entropy
density is exponential in the system size, it is natural to treat them within a
statistical physics formalism. BP messages of the original problem will be the
new variables and Bethe measures will be the new configurations. This is what
1RSB is about.

We introduce the auxiliary statistical physics problem through the definition
of a canonical distribution over extremal Bethe measures: we assign to measure
n ∈ E, the probability wn(x) = exFn/Ξ(x). Here x plays the role of an inverse
temperature (and is often called the Parisi 1RSB parameter) 28. The partition
function of this generalized problem is

Ξ(x) =
∑

n∈E

exFn
.
=

∫
eN [xφ+Σ(φ)] dφ . (19.7)

According to Assumption 2 above, extremal Bethe measures contribute to µ
through a weight wn = eFn/Ξ. Therefore the original problem is described by
the choice x = 1. But varying x will allow us to recover the full complexity
function Σ(φ).

28It turns out that the present approach is equivalent the cloning method discussed in Chap-
ter 12, where x is the number of clones.
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If Ξ(x)
.
= eNF(x), a saddle point evaluation of the integral in (19.7) gives Σ

as the Legendre transform of F:

F(x) = xφ + Σ(φ) ,
∂Σ

∂φ
= −x . (19.8)

19.2.1 Counting BP fixed points

In order to actually estimate Ξ(x), we need to consider the distribution induced
by wn(x) on the messages ν = {νi→a, ν̂a→i}, that we shall denote by Px(ν). The
fundamental observation is that this distribution can be written as a graphical
model, whose variables are BP messages. A first family of function nodes enforces
the BP equations, and a second one implements the weight exF(ν). Furthermore,
it turns out that the topology of the factor graph in this auxiliary graphical
model is very close to that of the original factor graph. This suggests to use the
BP approximation in this auxiliary model in order to estimate Σ(φ).

The 1RSB approach can be therefore summarized in one sentence:

Introduce a Boltzmann distribution over Bethe measures, write it in the form of
a graphical model, and use BP to study this model.

This program is straightforward, but one must be careful not to confuse the
two models (the original one and the auxiliary one), and their messages. Let us
first simplify the notations of the original messages. The two types of messages
entering the BP equations of the original problem will be denoted by ν̂a→i = m̂ai

and νi→a = mia; we will denote by m the set of all the mia and by m̂ the set of
all the m̂ai. Each of these 2|E| messages is a normalized probability distribution
over the alphabet X . With these notations, the original BP equations read:

mia(xi) ∼=
∏

b∈∂i\a

m̂bi(xi) , m̂ai(xi) ∼=
∑

{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.9)

Hereafter we shall write them in the compact form:

mia = fi
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂a

(
{mja}j∈∂a\i

)
. (19.10)

Each message set (m, m̂) is given a weight proportional to exF(m,bm), where the free-
entropy F(m, m̂) is written in terms of BP messages

F(m, m̂) =
∑

a∈F

Fa ({mja}j∈∂a) +
∑

i∈V

Fi ({m̂bi}b∈∂i)−
∑

(ia)∈E

Fia (mia, m̂ai) .(19.11)

The functions Fa, Fi, Fia have been obtained in (14.28). Let us copy them here
for convenience:
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a i
ia

ai

Fig. 19.2. A part of the original factor graph (left) and the corresponding aux-
iliary factor graph (right)

Fa({mja}j∈∂a) = log




∑

x∂a

ψa(x∂a)
∏

j∈∂a

mja(xj)



 ,

Fi({m̂bi}b∈∂i) = log

[
∑

xi

∏

b∈∂i

m̂bi(xi)

]
, (19.12)

Fia(mia, m̂ai) = log

[
∑

xi

mia(xi)m̂ai(xi)

]
. (19.13)

We now consider the 2|E| messages m and m̂ as variables in our auxiliary
graphical model. The distribution induced my wn(x) on such messages takes the
form

Px(m, m̂) =
1

Ξ(x)

∏

a∈F

Ψa({mja, m̂ja}j∈∂a)
∏

i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.14)
where we introduced the compatibility functions:

Ψa =
∏

i∈∂a

I
(
m̂ai = f̂a

(
{mja}j∈∂a\i

))
exFa({mja}j∈∂a) , (19.15)

Ψi =
∏

a∈∂i

I
(
mia = fi

(
{m̂bi}b∈∂i\a

))
exFi({bmbi}b∈∂i) , (19.16)

Ψia = e−xFia(mia,bmai) . (19.17)

The corresponding factor graph is depicted in Fig. 19.2 and can described as
follows:

• For each edge (i, a) of the original factor graph, introduce a variable node
in the auxiliary factor graph. The associated variable is the pair (mia, m̂ai).
Furthermore, introduce a function node connected to this variable, con-
tributing to the weight through a factor Ψia = e−xFai.

• For each function node a of the original graph introduce a function node in
the auxiliary graph and connect it to all the variable nodes corresponding



442 THE 1RSB CAVITY METHOD

to edges (i, a), i ∈ ∂a. The compatibility function Ψa associated to this
function node has two roles: (i) It enforces the |∂a| BP equations expressing
the variables {m̂ai}i∈∂a in terms of the {mia}i∈∂a, cf. Eq. (19.9); (ii) It
contributes to the weight through a factor exFa .

• For each variable node i of the original graph, introduce a function node
in the auxiliary graph, and connect it to all variable nodes corresponding
to edges (i, a), a ∈ ∂i. The compatibility function Ψi has two roles: (i) It
enforces the |∂i| BP equations expressing the variables {mib}b∈∂i in terms
of {m̂bi}b∈∂i, cf. Eq. (19.9); (ii) It contributes to the weight through a factor
exFi .

Note that we were a bit sloppy in Eqs. (19.15) to (19.17). The messages
mia, m̂ai are in general continuous, and indicator functions should therefore be
replaced by delta functions. This might pose in turn some definition problem
(what is the reference measure on the messages? can we hope for exact solutions
of BP equations?). One should consider the above as a shorthand for the following
procedure. First discretize the messages (and BP equations) in such a way that
they can take a finite number q of values. Compute the complexity by letting
N → ∞ at fixed q, and take the limit q → ∞ at the end. It is easy to define
several alternative, and equally reasonable, limiting procedures. We expect all
of them to yield the same result. In practice, the ambiguities in Eqs. (19.15) to
(19.17) are solved on a case by case basis.

19.2.2 Message passing on the auxiliary model

The problem of counting the number of Bethe measures (more precisely, com-
puting the complexity function Σ(φ)) has been reduced to the one of estimating
the partition function Ξ(x) of the auxiliary graphical model (19.14). Since we
are interested in the case of locally tree-like factor graphs G, the auxiliary fac-
tor graph is locally tree-like as well. We can therefore apply BP to estimate its
free-entropy density F(x) = limN N−1 log Ξ(x). This will give us the complexity
through the Legendre transform of Eq. (19.8).

i

(ia)

aν(ia)→a

ν(ia)→i

νa→(ia)

νi→(ia)

e−xFai(mia,bmai)

Fig. 19.3. Messages in the auxiliary graphical model.

In the following we denote by i ∈ V and a ∈ F a generic variable and function
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node in the graph G, and by (ia) ∈ E an edge in G. By extension, we denote
in the same way the corresponding nodes in the auxiliary graph. The messages
appearing in the BP analysis of the auxiliary model can be classified as follows,
cf. Fig. 19.3:

→ From the variable node (ia) are issued two messages: ν(ia)→a(mia, m̂ai) and
ν(ia)→i(mia, m̂ai)

→ From the function node a are issued |∂a| messages to nodes i ∈ ∂a,
ν̂a→(ai)(mia, m̂ai)

→ From the function node i are issued |∂i| messages to nodes a ∈ ∂i,
ν̂i→(ai)(mia, m̂ai)

→ From the degree-one function node connected to the variable node (ia) is is-
sued a message towards this variable. This message is simply e−xFia(mia,bmai).

The BP equations on the variable node (ia) take a simple form:

ν(ia)→a(mia, m̂ai) ∼= ν̂i→(ia)(mia, m̂ai) e−xFia(mia,bmai) ,

ν(ia)→i(mia, m̂ai) ∼= ν̂a→(ia)(mia, m̂ai) e−xFia(mia,bmai) . (19.18)

We can use these equations to eliminate messages ν̂i→(ia), ν̂a→(ia) in favor of
ν(ia)→a, ν(ia)→i. In order to emphasize this choice (and to simplify notations) we
define:

Qia(mia, m̂ai) ≡ ν(ia)→a(mia, m̂ai) , Q̂ai(mia, m̂ai) ≡ ν(ia)→i(mia, m̂ai) .(19.19)

We can now write the remaining BP equations of the auxiliary graphical
model in terms of Qia( · , · ), Q̂ai( · , · ). The BP equation associated to the func-
tion node corresponding to i ∈ V reads:

Qia(mia, m̂ai) ∼=
∑

{mib,bmbi}b∈∂i\a

[
∏

c∈∂i

I
(
mic = fi({m̂di}d∈∂i\c)

)
]

exp
{
x [Fi ({m̂bi}b∈∂i) − Fai (mia, m̂ai)]

} ∏

b∈∂i\a

Q̂bi(mib, m̂bi) , (19.20)

and the one associated to the function node corresponding to a ∈ F is:

Q̂ ai(mia, m̂ai) ∼=
∑

{mja,bmaj}j∈∂a\i




∏

j∈∂a

I
(
m̂aj = f̂a({mka}k∈∂a\j)

)


 (19.21)

exp
{
x
[
Fa

(
{mja}j∈∂a

}
− Fai (mia, m̂ai)

]) ∏

j∈∂a\i

Qja(mja, m̂aj) . (19.22)

Equations (19.20), (19.22) can be further simplified, using the following lemma.
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Lemma 19.3 Assume
∑

xi
mia(xi)m̂ai(xi) > 0. Under the condition mia = fi({m̂di}d∈∂i\a)

(in particular if the indicator functions in Eq. (19.20) evaluate to 1), the dif-
ference Fi ({m̂bi}b∈∂i) − Fai (mia, m̂ai) can be expressed in terms of {m̂bi}b∈∂i\a.
Explicitly, we have

eFi−Fia = zia({m̂bi}b∈∂i\a) ≡
∑

xi

∏

b∈∂i\a

m̂bi(xi) . (19.23)

Analogously, under the condition m̂ai = f̂a({mka}k∈∂a\i) (in particular if the
indicator functions in Eq. (19.22) evaluate to 1) the difference Fa ({mja}j∈∂a)−
Fai (mia, m̂ai) depends only on {mja}j∈∂a\i. Explicitly:

eFa−Fia = ẑai({mja}j∈∂a\i) ≡
∑

x∂a

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.24)

Proof: Let us first consider Eq. (19.23). From the definition (14.28), it follows
that

eFi−Fia =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi
mia(xi)m̂ai(xi)

. (19.25)

Substituting mia = fi({m̂ci}c∈∂i\a) in the denominator, and keeping track of the
normalization constant, we get

∑

xi

mia(xi)m̂ai(xi) =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi

∏
b∈∂i\a m̂ai(xi)

, (19.26)

which implies Eq. (19.23).
The derivation of Eq. (19.24) is completely analogous and left as an exercise

for the reader. !
Notice that the functions zia( · ), ẑai( · ) appearing in Eqs. (19.23), (19.24) are

in fact the normalization constants hidden by the ∼= notation in Eqs. (19.9).
Because of this lemma, we can seek a solution of Eqs. (19.20), (19.22) with

Qia depending only on mia, and Q̂ai depends only on m̂ai. Hereafter we shall focus
on this case, and, with an abuse of notation, we shall write:

Qia(mia, m̂ai) = Qia(mia) , Q̂ia(mia, m̂ai) = Q̂ai(m̂ai) . (19.27)

The BP equations for the auxiliary graphical model (19.20), (19.22) then become:

Qia(mia) ∼=
∑

{bmbi}

I (mia = gi({m̂bi})) [zia({m̂bi})]x
∏

b∈∂i\a

Q̂bi(m̂bi) , (19.28)

Q̂ai(m̂ai) ∼=
∑

{mja}

I (m̂ai = fa({mja})) [ẑai({mja})]x
∏

j∈∂a\i

Qja(mja) , (19.29)

where {m̂bi} is a shorthand for {m̂bi}b∈∂i\a and {mja} a shorthand for {mja}j∈∂a\i.
The expressions for zia({m̂bi}) and ẑai({mja}) are given in Eqs. (19.23), (19.24).
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Equations (19.28), (19.29) are the 1RSB cavity equations. As we did in
the ordinary BP equations, we can consider them as an update rule for a message
passing algorithm. This will be further discussed in the next sections. One some-
times uses the notation Qi→a( · ), Q̂a→i( · ), to emphasize the fact that 1RSB
messages are associated to directed edges.

Notice that our derivation was based on the assumption that
∑

xi
mia(xi)m̂ai(xi) >

0. This condition holds if, for instance, the compatibility functions of the original
model are bounded away from 0. Under this condition, we have shown that:

Proposition 19.4 If the 1RSB cavity equations (19.28), (19.29) have a solution
Q̂, Q, this corresponds to a solution to the BP equations of the auxiliary graphical
model. Reciprocally, if the BP equations of the auxiliary graphical model admit a
solution satisfying the condition (19.27), then the resulting messages must be a
solution of the 1RSB cavity equations.

Assumption (19.27) -which is suggestive of a form of “causality”- cannot be
further justified within the present approach, but alternative derivations of the
1RSB equations confirm its validity.

19.2.3 Computing the complexity

We now compute the free-entropy of the auxiliary graphical model within the BP
approximation. We expect the result of this procedure to be asymptotically exact
for a wide class of locally tree like graphs, thus yielding the correct free-entropy
density F(x) = limN N−1 log Ξ(x).

Assume {Qia, Q̂ai} to be a solution (or a quasi-solution) of the 1RSB cavity
equations (19.28), (19.29). We use the general form (14.27) of Bethe free-entropy,
but take into account the degree one factor nodes using the simplified expression
derived in Exercise 14.6. The various contributions to the free-entropy are:

→ Contribution from the function node a (here {mia} is a shorthand for
{mia}i∈∂a):

FRSB
a = log





∑

{mia}

exFa({mia})
∏

i∈∂a

Qia(mia)




 . (19.30)

→ Contribution from the function node i ({m̂ai} is a shorthand for {m̂ai}a∈∂i):

FRSB
i = log





∑

{bmai}

exFi({bmai})
∏

a∈∂i

Q̂ai(m̂ai)




 . (19.31)

→ Contribution from the variable node (ia):

FRSB
ia = log





∑

mia,bmai

exFia(mia,bmai)Qia(mia)Q̂ai(m̂ai)




 . (19.32)
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→ The contributions from the two edges a− (ai) and i− (ai) are both equal
to −FRSB

ia

The Bethe free-entropy of the auxiliary graphical model is equal to:

FRSB({Q, Q̂}) =
∑

a∈F

FRSB
a +

∑

i∈V

FRSB
i −

∑

(ia)∈E

FRSB
ia . (19.33)

19.2.4 Summary

The 1RSB cavity equations (19.28), (19.29) are BP equations for the auxiliary
graphical model defined in (19.14). They relate 2|E| messages {Qia(mia), Q̂ai(m̂ai)}.
Each such message is a probability distribution of ordinary BP messages, respec-
tively mia(xi) and m̂ai(xi). These elementary messages are in turn probability
distributions on variables xi ∈ X .

Given a solution (or an approximate solution) {Qia, Q̂ai}, one can estimate
the free-entropy density of the auxiliary model as

log Ξ(x) = FRSB({Q, Q̂}) + errN . (19.34)

where FRSB({Q, Q̂}) is given by Eq. (19.33). For a large class of locally tree-
like models we expect the BP approximation to be asymptotically exact on the
auxiliary model. This means that the error term errN is o(N).

For such models, the free-entropy density is given by its 1RSB cavity expres-
sion F(x) = fRSB(x) ≡ limN→∞ FRSB({Q, Q̂})/N . The complexity Σ(φ) is then
computed through the Legendre transform (19.8).

19.2.5 Random graphical models and density evolution

Let us consider the case where G is a random graphical model as defined in
Sec. 14.6.1. The factor graph is distributed according to one of the ensembles
GN(K,α) or DN (Λ, P ). Function nodes are taken from a finite list {ψ(k)(x1, . . . , xk; Ĵ)}
indexed by a label Ĵ with distribution P (k)

bJ
. Each factor ψa( · ) is taken equal

to ψ(k)( · · · ; Ĵa) independently with the same distribution. We also introduce
explicitly a degree-one factor ψi(xi) connected to each variable node i ∈ V . This
are also drawn independently from a list of possible factors {ψ(x; J)}, indexed
by a label J with distribution PJ .

For a random graphical model, the measure µ( · ) becomes random, and so
does its decomposition in extremal Bethe states, in particular the probabili-
ties {wn}, and the message sets {νn

i→a, ν̂n
a→i}. In particular, the 1RSB messages

{Qia, Q̂ai} become random. It is important to keep in mind the ‘two levels’ of
randomness. Given an edge (ia), the message νn

i→a is random if the Bethe state
n is drawn from the distribution wn. The resulting distribution Qia(m) becomes
a random variable when the graphical model is itself random.

The distributions of Qia(m), Q̂ai(m̂) can then be studied through the density

evolution method of Sec. 14.6.2. Let us assume an i.i.d. initialization Q(0)
ia ( · ) d

=
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Q(0)( · ) (respectively Q̂(0)
ai ( · ) d

= Q̂(0)( · )), and denote by Q(t)
ia ( · ), Q̂(t)

ai ( · ) the
1RSB messages along edge (ia) after t parallel updates using the 1RSB equa-
tions (19.28), (19.29). If (ia) is a uniformly random edge then, as N → ∞,

Q(t)
ia ( · ) converges in distribution29 to Q(t)( · ) (respectively Q̂(t)

ia ( · ) converges in

distribution to Q̂(t)( · )). The distributions Q(t)( · ) and Q̂(t)( · ) are themselves
random variables that satisfy the equations:

Q(t+1)(m)
d∼=
∑

{bmb}

I (m = f({m̂b}; J)) z({m̂b}; J)x
l−1∏

b=1

Q̂(t)
b (m̂b) , (19.35)

Q̂(t)(m̂)
d∼=
∑

{mj}

I
(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)x

k−1∏

j=1

Q(t)
j (mj) , (19.36)

where k and l are distributed according to the edge perspective degree profiles

ρk and λl, the
{
Q̂(t)

b

}
are k − 1 independent copies of Q̂(t)( · ), and

{
Q(t)

j

}
are

l − 1 independent copies of Q(t)( · ). The functions z and ẑ are given by:

z({m̂b}; J) =
∑

x

ψ(x, J)
l−1∏

b=1

m̂b(x)

ẑ({mj}; Ĵ) =
∑

x1,··· ,xk

ψ(k)(x1, · · · , xk; Ĵ)
k−1∏

j=1

mj(xj) (19.37)

Within the 1RSB cavity method, the actual distribution of Qi→a is assumed
to coincide with one of the fixed points of the above density evolution equations.
As for the RS case, one hopes that, on large enough instances, the message
passing algorithm will converge to messages distributed according to this fixed
point equation (meaning that there is no problem in exchanging the limits t →∞
and N →∞). This can be checked numerically.

For random graphical models, the 1RSB free-entropy density converges to a
finite limit fRSB(x). This can be expressed in terms of the distributions of Q,
Q̂. by taking expectation of Eqs. (19.30) to (19.32), and assuming that 1RSB
messages incoming at the same node are i.i.d.. As in (14.77) the result takes the
form:

fRSB = fRSB
v + nf f

RSB
f − nef

RSB
e . (19.38)

Here nf is the average number of function nodes per variable (equal to Λ′(1)/P ′(1)
for a graphical model in the DN (Λ, P ) ensemble, and to α for a graphical model
in the GN(K,α) ensemble) and ne is the number of edges per variable (equal to

29We shall not discuss the measure-theoretic subtleties related to this statement. Let us just
mention that weak topology is understood on the space of messages Q(t).
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Λ′(1) and to Kα in these two ensembles). The contribution from variable nodes
fRSB
v , function nodes fRSB

f , and edges fRSB
e are:

fRSB
v = El,J,{ bQ} log





∑

{bm1,...,bml}

Q̂1(m̂1) . . . Q̂l(m̂l)

[
∑

x∈X
m̂1(x) . . . m̂l(x)ψ(x; J)

]x

 ,

fRSB
f = Ek, bJ,{Q} log





∑

{m1,...,mk}

Q1(m1) . . . Qk(mk)




∑

x1,...,xk∈X
m1(x1) . . . mk(xk)ψ(k)(x1, . . . , xk; Ĵ)




x

 ,

fRSB
e = E bQ,Q log





∑

bm,m

Q̂(m̂)Q(m)

[
∑

x∈X
m̂(x)m(x)

]x

 . (19.39)

19.2.6 Numerical implementation

Needless to say, it is extremely challenging to find a fixed point of the density evo-
lution equations (19.35), (19.36), and thus determine the distributions of Q, Q̂.
A simple numerical approach consists in generalizing the population dynamics
algorithm described in the context of the RS cavity method, cf. Sec. 14.6.3.

There are two important issues related to such a generalization:

(i) We seek the distribution of Q( · ) (and Q̂( · )), which is itself a distribution
of messages. If we approximate Q( · ) by a sample (a ‘population’), we will
thus need two level of populations. In other words we will seek a popula-
tion {ms

r} with NM items. For each r ∈ {1, . . . , N}, the set of messages
{ms

r}, s ∈ {1, . . . , M} represents a distribution Qr( · ) (ideally, it would be
an i.i.d. sample from this distribution). At the next level, the population
{Qr( · )} , r ∈ {1, · · · , N} represents the distribution of Q( · ) (ideally, an
i.i.d. sample).

Analogously, for function-to-variable messages, we will use a population
{m̂s

r}, with r ∈ {1, . . . , N} and s ∈ {1, . . . , M}.

(ii) The re-weighting factors z({m̂b}; J)x and ẑ({mj}; Ĵ)x appearing in Eqs. (19.35)
and (19.36) do not have any analog in the RS context. How can one take
such factors into account when Q( · ), Q̂( · ) are represented as populations?
One possibility is to generate an intermediate weighted population, and
than sample from it with a probability proportional to the weight.

This procedure is summarized in the following pseudocode.
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1RSB Population dynamics (Model ensemble, Sizes N, M , Iterations T )
1: Initialize {ms

r};
2: for t = 1, . . . , T :
3: for r = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P (k)

bJ
;

7: for s = 1, . . . , M :
8: Draw s(1), . . . , s(k− 1) uniformly in {1, . . . , M};
9: Compute m̂s

temp = f̂(ms(1)
i(1) , · · · , ms(k−1)

i(k−1) ; Ĵ)

10: Compute W s = ẑ(ms(1)
i(1) , · · · , ms(k−1)

i(k−1) ; Ĵ)x

11: end;
12: Generate the new population

{m̂s
r}s∈[M ] = Reweight({m̂s

temp, W
s}s∈[M ])

13: end;
14: for r = 1, . . . , N :
15: Draw an integer l with distribution λ;
16: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
17: Draw J with distribution P ;
18: for s = 1, . . . , M :
19: Draw s(1), . . . , s(l− 1) uniformly in {1, . . . , M};
20: Compute ms

temp = f(m̂s(1)
i(1) , · · · , m̂s(k−1)

i(l−1) ; J)

21: Compute W s = z(m̂s(1)
i(1) , · · · , m̂s(l−1)

i(l−1) ; J)x

22: end;
23: Generate the new population

{ms
r}s∈[M ] = Reweight({ms

temp, W
s}s∈[M ])

24: end;
25: return {m̂s

r} and {ms
r}.

The re-weighting procedure is given by:

Reweight (Population of messages/weights {(ms
temp, W

s)}s∈[M ])

1: for s = 1, . . . , M , set ps ≡ W s/
∑

s′ W s′
;

2: for s = 1, . . . , M :
3: Draw i ∈ {1, . . . , M} with distribution ps;
4: Set ms

new = mi
temp;

5: end;
6: return {ms

new}s∈[M ].

In the large N, M limit, the populations generated by this algorithm should
converge to i.i.d. samples distributed as Q(T )( · ), Q̂(T )( · ), cf. Eq. (19.35), (19.36).
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By letting T grow they should represent accurately the fixed points of density
evolution, although the caveats expressed in the RS case should be repeated here.

Among the other quantities, the populations generated by this algorithm
allow to estimate the 1RSB free-entropy density (19.38). Suppose we have gen-
erated a population of messages {m̂s

r( · )}, whereby each message is a probability
distribution on X . The corresponding estimate of fRSB

v is:

f̂RSB
v = El,J

1

N l

N∑

r(1)...r(l)=1

log





1

M l

M∑

s(1),...,s(l)=1

[
∑

x∈X
m̂

s(1)
r(1)(x) · · · m̂s(l)

r(l)(x) ψ(x; J)

]x

 .

Similar expressions are easily written for fRSB
f and fRSB

e . Their (approximate)
evaluation can be accelerated considerably by summing over a random subset
of the l-uples r(1), . . . , r(l) and s(1), . . . , s(l). Further, as in the RS case, it is
beneficial to average over iterations (equivalently, over T ) in order to reduce
statistical errors at small computational cost.

19.3 A first application: XORSAT

Let us apply the 1RSB cavity method to XORSAT. This approach was already
introduced in Sec. 18.6, but we want to show how it follows as a special case of
the formalism developed in the previous sections. Our objective is to exemplify
the general ideas on a well understood problem, and to build basic intuition that
will be useful in more complicated applications.

As in Ch. 18 we consider the distribution over x = (x1, . . . , xN ) ∈ {0, 1}N

specified by

µ(x) =
1

Z

M∏

a=1

I
(
xi1(a) ⊕ · · · ⊕ xik(a) = ba

)
. (19.40)

As usual⊕ denotes sum modulo 2 and, for each a ∈ {1, · · · , M}, ∂a = {i1(a), . . . , iK(a)}
is a subset of {1, ·, N}, and ba ∈ {0, 1}. Random K-XORSAT formulae are gen-
erated by choosing both the index set {i1(a), . . . , iK(a)} and the right hand side
ba uniformly at random.

19.3.1 BP equations

The BP equations read:

mia(xi) =
1

zia

∏

b∈∂i\a

m̂bi(xi) , (19.41)

m̂ai(xi) =
1

ẑai

∑

x∂a\i

I
(
xi1(a) ⊕ · · · ⊕ xiK(a) = ba

) ∏

j∈∂a\i

mja(xj) . (19.42)

As in Sec. 18.6, we shall assume that messages can take only three values, which
we denote by the shorthands: mia = 0 if (mia(0) = 1, mia(1) = 0); mia = 1 if
(mia(0) = 0, mia(1) = 1); mia = ∗ if (mia(0) = mia(1) = 1/2).
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Consider the first BP equation (19.41), and denote by n0, n1, n∗ the number
of messages of type 0, 1, ∗ in the set of incoming messages {m̂bi}, b ∈ ∂i\a. Then
Eq. (19.41) can be rewritten as:

mia =






0 if n0 > 0, n1 = 0,
1 if n0 = 0, n1 > 0,
∗ if n0 = 0, n1 = 0,
? if n0 > 0, n1 > 0,

zia =






2−n∗ if n0 > 0, n1 = 0,
2−n∗ if n0 = 0, n1 > 0,
21−n∗ if n0 = 0, n1 = 0,
0 if n0 > 0, n1 > 0.

(19.43)

The computation of the normalization constant zia will be useful in the 1RSB
analysis. Notice that, if n0 > 0 and n1 > 0, a contradiction arises at node i
and therefore mia is not defined. However we will see that, because in this case
zia = 0, this situation does not create any problem within 1RSB.

In the second BP equation (19.42) denote by n̂0 (respectively, n̂1, n̂∗) the
number of messages of type 0 (resp. 1, ∗) among {mja}, j ∈ ∂a\i. Then we get

m̂ai =






0 if n∗ = 0, and n1 has the same parity as ba,
1 if n∗ = 0, and n1 has not the same parity as ba,
∗ if n∗ > 0.

(19.44)

In all three cases ẑai = 1.
In Sec. 18.6 we studied the equations (19.41), (19.42) above and deduced

that, for typical random instances with α = M/N < αd(K), they have a unique
solution, with mia = m̂ai = ∗ on each edge.

Exercise 19.2 Evaluate the Bethe free-entropy on this solution, and show
that it yields the free-entropy density fRS = (1 − α) log 2.

19.3.2 The 1RSB cavity equations

We now assume that the BP equations (19.43), (19.44) have many solutions, and
apply the 1RSB cavity method to study their statistics.

The 1RSB messages Qia, Q̂ai are distributions over {0, 1, ∗}. A little effort
shows that Eq. (19.28) yields

Qia(0) =
1

Zia





∏

b∈∂i\a

(
Q̂bi(0) + 2−xQ̂bi(∗)

)
−

∏

b∈∂i\a

(
2−xQ̂bi(∗)

)



 ,(19.45)

Qia(1) =
1

Zia





∏

b∈∂i\a

(
Q̂bi(1) + 2−xQ̂bi(∗)

)
−

∏

b∈∂i\a

(
2−xQ̂bi(∗)

)



 ,(19.46)

Qia(∗) =
1

Zia
2x

∏

b∈∂i\a

2−xQ̂bi(∗) . (19.47)

For instance, Eq. (19.45) follows from the first line of Eq. (19.43): mia = 0 if
all the incoming messages are m̂bi ∈ {∗, 0} (first term), unless they are all equal
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to ∗ (subtracted term). The re-weighting zxia = 2−xn∗ decomposes into factors
associated to the incoming ∗ messages.

The second group of 1RSB equations, Eq. (19.29), takes the form:

Q̂ai(0) =
1

2





∏

j∈∂a\i

(Qja(0) + Qja(1)) + s(ba)
∏

j∈∂a\i

(Qja(0) −Qja(1))




 ,

(19.48)

Q̂ai(1) =
1

2





∏

j∈∂a\i

(Qja(0) + Qja(1)) − s(ba)
∏

j∈∂a\i

(Qja(0) −Qja(1))




 ,

(19.49)

Q̂ai(∗) = 1 −
∏

j∈∂a\i

(Qja(0) + Qja(1)) , (19.50)

where s(ba) = +1 if ba = 0, and s(ba) = −1 otherwise.
Notice that, if one takes x = 0, the two sets of equations coincide with those

obtained in Sec. 18.6, see Eq. (18.35) (the homogeneous linear system, ba = 0, was
considered there). As in that section, we look for solutions such that the messages
Qia( · ) (respectively Q̂ai( · )) take two possible values: either Qia(0) = Qia(1) =
1/2, or Qia(∗) = 1. This assumption is consistent with the 1RSB cavity equations
(19.45) and (19.50). Under this assumption, the x dependency drops from these
equations and we recover the analysis in Sec. 18.6. In particular, we can repeat
the density evolution analysis discussed there. If we denote by Q∗ the probability
that a randomly chosen edge carries the 1RSB message Qia(0) = Qia(1) = 1/2,
then the fixed point equation of density evolution reads:

Q∗ = 1 − exp{−kαQk−1
∗ } . (19.51)

For α < αd(K) this equation admits the only solution Q∗ = 0, implying Qia(∗) =
1 with high probability. This indicates (once more) that the only solution of the
BP equations in this regime is mia = ∗ for all (i, a) ∈ E.

For α > αd a couple of non-trivial solutions (with Q∗ > 0) appear, indicating
the existence of a large number of BP fixed points (and hence, Bethe measures).
Stability under density evolution suggest to select the largest one. It will also be
useful in the following to introduce the probability

Q̂∗ = Qk−1
∗ (19.52)

that a uniformly random edge carries a message Q̂ai(0) = Q̂ai(1) = 1/2.

19.3.3 Complexity

We can now compute the Bethe free-entropy (19.33) of the auxiliary graphical
model. The complexity will be computed through the Legendre transform of the
1RSB free-entropy, see Eq. (19.8).
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Let us start by computing the contribution FRSB
a defined in Eq. (19.30). Con-

sider the weight

eFa({mia}) =
∑

x∂a

I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba)
∏

i∈∂a

mia(xi) . (19.53)

Let n̂0 (respectively, n̂1, n̂∗) denote the number of variable nodes i ∈ ∂a such
that mia = 0 (resp. 1, ∗) for i ∈ ∂a. Then we get

eFa({mia}) =






1/2 if n̂∗ > 0,
1 if n̂∗ = 0 and n̂1 has the same parity as ba,
0 if n̂∗ = 0 and n̂1 has not the same parity as ba,

(19.54)

Taking the expectation of exFa({mia}) with respect to {mia} distributed indepen-
dently according to Qia( · ), and assuming Qia(0) = Qia(1) (which is the case in
our solution), we get

FRSB
a = log

{
1

2

∏

i∈∂a

(1 −Qia(∗)) +
1

2x

[
1 −

∏

i∈∂a

(1 −Qia(∗))
]}

. (19.55)

The first term corresponds to the case n̂∗ = 0 (the factor 1/2 being the proba-
bility that the parity of n̂1 is ba), and the second to n̂∗ > 0. Within our solution
either Qia(∗) = 0 or Qia(∗) = 1. Therefore only one of the above terms survives:
either Qia(∗) = 0 for all i ∈ ∂a, yielding FRSB

a = − log 2, or Qia(∗) = 1 for some
i ∈ ∂a, implying FRSB

a = −x log 2.
Until now we considered a generic K-XORSAT instance. For random in-

stances, we can take the expectation with respect to Qia(∗) independently dis-
tributed as in the density evolution fixed point. The first case, namely Qia(∗) = 0
for all i ∈ ∂a (and thus FRSB

a = − log 2), occurs with probability Qk
∗. The second,

i.e. Qia(∗) = 1 for some i ∈ ∂a (and FRSB
a = −x log 2), occurs with probability

1 −Qk
∗ . Altogether we obtain:

E{FRSB
a } = −

[
Qk

∗ + x(1 −Qk
∗)
]

log 2 + oN (1) . (19.56)

Assuming the messages Qia( · ) to be short-range correlated,
∑

a∈F FRSB
a will

concentrate around its expectation. We then have, with high probability,

1

N

∑

a∈F

FRSB
a = −α

[
Qk

∗ + x(1 −Qk
∗)
]

log 2 + oN (1) . (19.57)

The contributions from variable node and edge terms can be computed along
similar lines. We will just sketch these computations, and invite the reader to
work out the details.

Consider the contribution FRSB
i , i ∈ V , defined in (19.31). Assume that

Q̂ai(∗) = 1 (respectively, Q̂ai(0) = Q̂ai(1) = 1/2) for n∗ (resp. n0) of the neigh-
boring function nodes a ∈ ∂i. Then FRSB

i = −(n∗x + n0 − 1) log 2 if n0 ≥ 1, and
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FRSB
i = −(n∗ − 1)x log 2 otherwise. Averaging these expressions over n0 (a Pois-

son distributed random variable with mean kαQ̂∗) and n∗ (Poisson with mean
kα(1 − Q̂∗)) we obtain:

1

N

∑

i∈V

FRSB
i = −

{[
kαQ̂∗ − 1 + e−kα bQ∗

]
+
[
kα(1 − Q̂∗) − e−kα bQ∗

]
x
}

log 2+oN(1) .

(19.58)
Let us finally consider the edge contribution FRSB

(ia) defined in (19.32). If

Qia(0) = Qia(1) = 1/2 and Q̂ai(0) = Q̂ai(1) = 1/2, then either eFai = 1 or
eFia = 0, each with probability 1/2. As a consequence FRSB

(ia) = − log 2. If ei-

ther Qia(∗) = 1 or Q̂ai(∗) = 1 (or both), eF
RSB
ia = 1/2 with probability 1, and

therefore FRSB
(ia) = −x log 2. Altogether we obtain, with high probability

1

N

∑

(ia)∈E

FRSB
(ia) = −kα

{
Q∗Q̂∗ + (1 −Q∗Q̂∗)x

}
log 2 + oN (1). (19.59)

The free-entropy (19.33) of the auxiliary graphical model is obtained by
collecting the various terms. We obtain FRSB(x) = N fRSB(x) + o(N) where
fRSB(x) = [Σtot + xφtyp] log 2 and

Σtot = kαQ∗Q̂∗ − kαQ̂∗ − αQk
∗ + 1 − e−kα bQ∗ , (19.60)

φtyp = −kαQ∗Q̂∗ + kαQ̂∗ + αQk
∗ − α + e−kα bQ∗ . (19.61)

Here Q∗ is the largest solution of Eq. (19.51) and Q̂∗ = Qk−1
∗ , a condition that

has a pleasing interpretation as shown in the exercise below.

Exercise 19.3 Consider the function Σtot(Q∗, Q̂∗) defined in Eq. (19.60).
Show that the stationary points of this function coincide with the solutions
of Eq. (19.51) and Q̂∗ = Qk−1

∗ .

Because of the linear dependence on x, the Legendre transform (19.8) is
straightforward

Σ(φ) =

{
Σtot if φ = φtyp,
−∞ otherwise.

(19.62)

This means that there are 2NΣtot Bethe measures which all have the same entropy
Nφtyp log 2. Furthermore, Σtot + φtyp = 1−α, confirming that the total entropy
is (1 − α) log 2. This identity can be also written in the form

1

2N(1−α)
=

1

2NΣtot
× 1

2Nφtyp
, (19.63)

which is nothing but the decomposition (19.6) in extremal Bethe measures. In-
deed, if x is a solution of the linear system, µ(x) = 1/2N(1−α), wn ≈ 1/2NΣtot ,
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and (assuming the µn to have disjoint supports) µn(x) ≈ 1/2Nφtyp for the state
n which contains x.

Note that the value of Σ that we find here coincides with the result that
we obtained in Sec. 18.5 for the logarithm of the number of clusters in random
XORSAT formulae. This provides an independent check of our assumptions, and
in particular it shows that the number of clusters is, to leading order, the same as
the number of Bethe measures. In particular, the SAT-UNSAT transition occurs
at the value of α where the complexity Σtot vanishes. At this value each cluster
still contains a large number, 2N(1−αs), of configurations.

Exercise 19.4 Repeat this 1RSB cavity analysis for a linear Boolean system
described by a factor graph from the ensemble DN (Λ, P ) (This means a random
system of linear equations, whereby the fraction of equations involving k vari-
ables is Pk, and the fraction of variables which appear in exactly - equations
is Λ%):

(a) Show that Q∗ and Q̂∗ satisfy:

Q̂∗ = ρ(Q∗) ; Q∗ = 1 − λ(1 − Q̂∗) , (19.64)

where λ and ρ are the edge perspective degree profiles.
(b) Show that the complexity is given by

Σtot = 1 − Λ′(1)

P ′(1)
P (Q∗)− Λ(1 − Q̂∗) − Λ′(1)(1 −Q∗)Q̂∗ (19.65)

and the internal entropy of the clusters is φtyp = 1− Λ′(1)/P ′(1)−Σtot.
(c) In the case where all variables have degree strictly larger than 1 (so that

λ(0) = 0), argue that the relevant solution is Q∗ = Q̂∗ = 1, Σtot =
1 − Λ′(1)/P ′(1), φtyp = 0. What is the interpretation of this result in
terms of the core structure discussed in Sec. 18.3?

19.4 The special value x = 1

Let us return to the general formalism. The x = 1 case plays a special role,
in that the weights {wn(x)} of various Bethe measures in the auxiliary model,
coincide with the ones appearing in the decomposition (19.6). This fact manifests
itself in some remarkable properties of the 1RSB formalism.

19.4.1 Back to BP

Consider the general 1RSB cavity equations (19.28), (19.29). Using the explicit
form of the re-weighting factors eFi−Fia and eFa−Fia provided in Eqs. (19.23),
(19.24), they can be written, for x = 1, as:
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Qia(mia) ∼=
∑

xi

∑

{bmbi}

I (mia = gi({m̂bi}))
∏

b∈∂i\a

Q̂bi(m̂bi) m̂bi(xi) , (19.66)

Q̂ai(m̂ai) ∼=
∑

x∂a

ψa(x∂a)
∑

{mja}

I (m̂ai = fa({mja}))
∏

j∈∂a\i

Qja(mja) mja(xj) .(19.67)

Let us introduce the messages obtained by taking the averages of the 1RSB ones
{Qia, Q̂ai}:

νav
i→a(xi) ≡

∑

mia

Qia(mia) mia(xi) , ν̂av
a→i(xi) ≡

∑

bmai

Q̂ai(m̂ai) m̂ai(xi) .

The interpretation of these quantities is straightforward. Given an extremal
Bethe measure sampled according to the distribution wn, let νn

i→a( · ) (respec-
tively ν̂n

a→i( · )) be the corresponding message along the directed edge i → a
(resp. a → i). Its expectation, with respect to the random choice of the measure,
is νav

i→a( · ) (respectively ν̂av
a→i( · )).

Using the expressions (19.9), one finds that Eqs. (19.66), (19.67) imply

νav
i→a(xi) ∼=

∏

b∈∂i\a

ν̂av
b→i(xi) , (19.68)

ν̂av
a→i(xi) ∼=

∑

{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

νav
j→a(xj) , (19.69)

which are nothing but the ordinary BP equations. This suggests that, even if µ( · )
decomposes into an exponential number of extremal Bethe measures µn( · ), it is
itself a (non-extremal) Bethe measure. In particular, there exists a quasi-solution
of BP equations associated with it, that allows to compute its marginals.

The reader might be disappointed by these remarks. Why insisting on the
1RSB cavity approach if, when the ‘correct’ weights are used, one recovers the
much simpler BP equations? There are at least two answers:

1. The 1RSB approach provides a much more refined picture: decomposition
in extremal Bethe states, long range correlations, complexity. This is useful
and interesting per se.

2. In the cases of a static (s1RSB) phase, it turns out that the region x = 1
corresponds to an ‘unphysical’ solution of the 1RSB cavity equations, and
that (asymptotically) correct marginals are instead obtained by letting
x = x∗, for some x∗ ∈ [0, 1). In such cases it is mandatory to resort to the
full 1RSB formalism (see Sec. 19.6 below).

19.4.2 A simpler recursion

As we stressed above, controlling (either numerically or analytically) the 1RSB
distributional recursions (19.35), (19.36) is a difficult task. In the case x = 1, they
simplify considerably and lend themselves to a much more accurate numerical
study. This remark can be very useful in practice.
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As in Sec. 19.2.5, we consider a random graphical model. We shall also assume
a ‘local uniformity condition.’ More precisely, the original model µ( · ) is a Bethe
measure for the message set νav

i→a(xi) = 1/q and ν̂av
a→i(xi) = 1/q, where q = |X | is

the size of the alphabet. While such a local uniformity condition is not necessary,
it considerably simplify the derivation below. The reader can find a more general
treatment in the literature.

Consider Eqs. (19.35) and (19.36) at x = 1. The normalization constants can
be easily computed using the uniformity condition. We can then average over
the structure of the graph, and the function node distribution: let us denote by
Qav and Q̂av the averaged distributions. They satisfy the following equations:

Q(t+1)
av (m) = E




ql−2
∑

{bmb}

I (m = f({m̂b}; J)) z({m̂b})
l−1∏

b=1

Q̂(t)
av (m̂b)




 , (19.70)

Q̂(t)
av (m̂) = E





qk−2

ψk

∑

{mj}

I
(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)

k−1∏

j=1

Q(t)
av (mj)




 , (19.71)

where expectations are taken over l, k, J, Ĵ , distributed according to the random
graphical model. Here ψk =

∑
x1,...,xk−1

ψ(x1, . . . , xk−1, x; Ĵ) can be shown to be

independent of x (this is necessary for the uniformity condition to hold).
Equations (19.70) and (19.71) are considerably simpler that the original dis-

tributional equations (19.35), (19.36) in that Q(t)
av ( · ), Q̂(t)

av ( · ) are non-random.
On the other hand, they still involve a reweighting factor that is difficult to han-
dle. It turns out that this reweighting can be eliminated by introducing a new
couple of distributions for each x ∈ X :

R̂(t)
x (m) ≡ q m(x) Q̂(t)

av (m) , R(t)
x (m) = q m(x) Q(t)

av (m) . (19.72)

One can show that Eqs. (19.70), (19.71) imply the following recursions for R(t)
x ,

R̂(t)
x ,

R(t+1)
x (m) = E





∑

{bmb}

I (m = g({m̂b}; J))
l−1∏

b=1

R̂(t)
x (m̂b)




 , (19.73)

R̂(t)
x (m̂) = E





∑

{xj}

π({xj}|x; Ĵ)
∑

{mj}

I
(
m̂ = f({mj}; Ĵ)

) k−1∏

j=1

R(t)
xj

(mj)




 .(19.74)

Here E denotes expectation with respect to l, Ĵ, k, J and, for any x, Ĵ , the dis-
tribution π({xj}|x; Ĵ) is defined by

π(x1, . . . , xk−1|x; Ĵ) =
ψ(x1, . . . , xk−1, x; Ĵ)

∑
y1,...,yk−1

ψ(y1, . . . , yk−1, x; Ĵ)
. (19.75)
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Exercise 19.5 Prove formulas (19.73) and (19.74). It might be useful to recall
the following explicit expressions for the reweighting factors z and ẑ:

z({m̂b}) m(x) =
l−1∏

b=1

m̂b(x) , (19.76)

ẑ({mj}; Ĵ) m̂(x) =
∑

{xi},x

ψ(x1, . . . , xk−1, x; Ĵ)
k−1∏

j=1

mj(xj) . (19.77)

The equations (19.73), (19.74) have a simple operational description. Let Ĵ
and k be drawn according to their distribution, and, given x, generate x1, . . . , xk−1

according to the kernel π(x1, . . . , xk|x; Ĵ). Then draw independent messages

m1, . . . , mk−1 with distribution (respectively) R(t)
x1 , . . . , R(t)

xk−1 . According to Eq. (19.74),

m̂ = f({mj}; Ĵ) has then distribution R̂(t)
x . For Eq. (19.73), draw J and l accord-

ing to their distribution. Given x, draw l − 1 i.i.d. messages m̂1, . . . , m̂l−1 with

distribution R̂(t)
x . Them m = g({m̂b}; J) has distribution R(t+1)

x .
We will see in Ch. 22 that this procedure does indeed coincide with the one

for computing ‘point-to-set correlations’ with respect to the measure µ( · ).
To summarize, for x = 1 we have succeeded in simplifying the 1RSB density

evolution equations in two directions: (i) The resulting equations do not involve
‘distributions of distributions;’ (ii) We got rid of the reweighting factor. A third
crucial simplification is the following:

Theorem 19.5 The 1RSB equations have a non trivial solution (meaning a
solution different from the RS one) if and only if Eqs. (19.73), (19.74), when

initialized with R(0)
x being a singleton distribution on m(y) = I(y = x), converge

as t →∞, to a non-trivial distribution.

This theorem resolves (in the case x = 1) the ambiguity on the initial condition
of the 1RSB iteration. In other words, if the 1RSB equations admit a non-trivial
solution, it can be reached if we iterate the equations starting from the initial
condition mentioned in the theorem. We refer the reader to the literature for the
proof.

Exercise 19.6 Show that the free-entropy of the auxiliary model FRSB(x),
evaluated at x = 1, coincides with the RS Bethe free-entropy.

Further, its derivative with respect to x at x = 1 can be expressed in terms of

the fixed point distributions R(∞)
x and R̂(∞)

x . In particular the complexity and
internal free-entropy can be computed from the fixed points of the simplified
equations (19.73), (19.74).

The conclusion of this section is that 1RSB calculations at x = 1 are not
technically harder that RS ones. In view of the special role played by the value
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x = 1 this observation can be exploited in a number of contexts.

19.5 Survey propagation

The 1RSB cavity method can be applied to other message passing algorithms
whenever these have many fixed points. A particularly important case is the min-
sum algorithm of Sec. 14.3. This approach (both in its RS and 1RSB versions)
is sometimes referred to as the energetic cavity method because, in physics
terms, the min-sum algorithm aims at computing the ground state configuration
and its energy. We will call the corresponding 1RSB message passing algorithm
SP(y) (survey propagation at finite y).

19.5.1 The SP(y) equations

The formalism follows closely the one used with BP solutions. To emphasize the
similarities, let us adopt the same notation for the min-sum messages as for the
BP ones. We define

mja(xj) ≡ Ei→a(xi) , m̂ai(xi) ≡ Êa→i(xi) , (19.78)

and write the min-sum equations (14.40), (14.41) as:

mia = fei
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂ea

(
{mja}j∈∂a\i

)
. (19.79)

The functions fei , f̂ea are defined by Eqs. (14.40), (14.41), that we reproduce here:

mia(xi) =
∑

b∈∂i\a

m̂bi(xi)− uia , (19.80)

m̂ai(xi) = min
x∂a\i



Ea(x∂a) +
∑

j∈∂a\i

mja(xj)



− ûai , (19.81)

where uia, ûai are normalization constants (independent of xi) which ensure that
minxi m̂ai(xi) = 0 and minxi mia(xi) = 0.

To any set of messages {mia, m̂ai}, we associate the Bethe energy

Fe(m, m̂) =
∑

a∈F

Fe
a({mia}i∈∂a) +

∑

i∈V

Fe
i ({m̂ai}a∈∂i) −

∑

(ia)∈E

Fe
ia(mia, m̂ai) , (19.82)

where the various terms are (see Eq. (14.45)):

Fe
a = min

x∂a

[
Ea(x∂a) +

∑

j∈∂a

mia(xi)
]
, Fe

i = min
xi

[ ∑

a∈∂i

m̂ai(xi)
]
,

Fe
ia = min

xi

[
mia(xi) + m̂ai(xi)

]
. (19.83)

Having set up the message passing algorithm and the associated energy func-
tional, we can repeat the program developed in the previous Sections. In partic-
ular, in analogy with Assumption 1, we have the following
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Assumption 4 There exist exponentially many quasi-solutions {mn} of min-
sum equations. The number of such solutions with Bethe energy Fe(mn) ≈ Nε
is (to leading exponential order) exp{NΣe(ε)}, where Σe(ε) is the energetic
complexity function.

In order to estimate Σe(ε), we introduce an auxiliary graphical model, whose
variables are the min-sum messages {mia, m̂ai}. These are forced to satisfy (within
some accuracy) the min-sum equations (19.80), (19.81). Each solution is given a
weight e−yF

e(m,bm), with y ∈ R. The corresponding distribution is:

Py(m, m̂) =
1

Ξ(y)

∏

a∈F

Ψa({mja, m̂ja}j∈∂a)
∏

i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.84)
where:

Ψa =
∏

i∈∂a

I
(
m̂ai = f̂ea

(
{mja}j∈∂a\i

))
e−yF

e
a({mja}j∈∂a) , (19.85)

Ψi =
∏

a∈∂i

I
(
mia = fei

(
{m̂bi}b∈∂i\a

))
e−yF

e
i({bmbi}b∈∂i) , (19.86)

Ψia = eyF
e
ia(mia,bmai) . (19.87)

Since the auxiliary graphical model is again locally tree-like, we can hope
to derive asymptotically exact results through belief propagation. Messages of
the auxiliary problem, to be denoted as Qia( · ), Q̂ai( · ), are distributions over
the min-sum messages. The SP(y) equations are obtained by further making the
independence assumption (19.27).

The reader has certainly noticed that the whole procedure is extremely close
to our study in Sec. 19.2.2. We can apply our previous analysis verbatim to
derive the SP(y) update equations. The only step that requires some care is the
formulation of the proper analog of Lemma 19.3. This becomes:

Lemma 19.6 Assume that mia(xi) + m̂ai(xi) < ∞ for at least one value of
xi ∈ X . If mia = fei ({m̂bi}b∈∂i\a), then

Fe
i − Fe

ia = uia({m̂bi}b∈∂i\a) ≡ min
xi

{ ∑

b∈∂i\a

m̂bi(xi)
}

. (19.88)

Analogously, if m̂ai = f e
a({mja}j∈∂a\i), then

Fe
a − Fe

ia = ûai({mja}j∈∂a\i) ≡ min
x∂a

{
Ea(x∂a) +

∑

k∈∂a\i

mka(xk)
}

. (19.89)

Using this lemma, the same derivation as in Sec. 19.2.2 leads to

Proposition 19.7 The SP(y) equations are (with the shorthands {m̂bi} for {m̂bi}b∈∂i\a

and {mja} for {mja}j∈∂a\i):
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Qia(mia) ∼=
∑

{bmbi}

I (mia = ge
i ({m̂bi})) e−yuia({bmbi})

∏

b∈∂i\a

Q̂bi(m̂bi) , (19.90)

Q̂ai(m̂ai) ∼=
∑

{mja}

I (m̂ai = f e
a({mja})) e−yûai({mja})

∏

j∈∂a\i

Qja(mja) . (19.91)

In the following we shall reserve the name survey propagation (SP) for the
y = ∞ case of these equations.

19.5.2 Energetic complexity

The Bethe free-entropy for the auxiliary graphical model is given by

FRSB,e({Q, Q̂}) =
∑

a∈F

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(ia)∈E

FRSB,e
ia , (19.92)

and allows to count the number of min-sum fixed points. The various terms
are formally identical to the ones in Eqs. (19.30), (19.31) and (19.32), provided
F·( · ) is replaced everywhere by −Fe

· ( · ) and x by y. We reproduce them here for
convenience:

FRSB,e
a = log





∑

{mia}

e−yF
e
a({mia})

∏

i∈∂a

Qia(mia)




 , (19.93)

FRSB,e
i = log





∑

{bmai}

e−yF
e
i({bmai})

∏

a∈∂i

Q̂ai(m̂ai)




 , (19.94)

FRSB,e
ia = log





∑

mia,bmai

e−yF
e
ia(mia,bmai)Qia(mia)Q̂ai(m̂ai)




 . (19.95)

Assuming that the Bethe free-entropy gives the correct free-entropy of the
auxiliary model, the energetic complexity function Σe(ε) can be computed from
FRSB,e(y) through the Legendre transform: in the large N limit we expect FRSB,e({Q, Q̂}) =
NFe(y) + o(N) where

Fe({Q, Q̂}) = Σe(ε)− yε ,
∂Σe

∂ε
= y . (19.96)

Finally, the 1RSB population dynamics algorithm can be used to sample
-approximately- the SP(y)messages in random graphical models.

19.5.3 Constraint satisfaction and binary variables

In Sec. 14.3.3 we noticed that the min-sum messages simplify significantly when
one deals with constraint satisfaction problems. In such problems, the energy
function takes the form E(x) =

∑
a Ea(x∂a), where Ea(x∂a) = 0 if constraint

a is satisfied by the assignment x, and Ea(x∂a) = 1 otherwise. As discussed in
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Sec. 14.3.3 the min-sum equations then admit solutions with m̂ai(xi) ∈ {0, 1}.
Furthermore, one does not need to keep track of the variable-to-function node
messages mia(xi), but only of their ‘projection’ on {0, 1}.

In other words, in constraint satisfaction problems the min-sum messages take
2|X |−1 possible values (the all-1 message cannot appear). As a consequence, the
SP(y)messages Q̂ai( · ) and Qia( · ) simplify considerably: they are points in the
(2|X | − 1)-dimensional simplex.

If the min-sum messages are interpreted in terms of warnings, as we did
in Sec. 14.3.3, then SP(y)messages keep track of the warnings’ statistics (over
pure states). One can use this interpretation to derive directly the SP(y) update
equations without going through the whole 1RSB formalism. Let us illustrate
this approach on the important case of binary variables |X | = 2.

The min-sum messages m̂ and m (once projected) can take three values:
(m̂(0), m̂(1)) ∈ {(0, 1), (1, 0), (0, 0)}. We shall denote them respectively as 0 (inter-
preted as a warning: “take value 0”), 1 (interpreted as a warning: “take value 1”)
and ∗ (interpreted as a warning:“you can take any value”). Warning propagation
(WP) can be described in words as follows.

Consider the message from variable node i to function node a. This depends
on all the messages to i from function nodes b ∈ ∂i \ a. Suppose that n̂0 (respec-
tively, n̂1, n̂∗) of these messages are of type 0 (resp. 1, ∗) for i ∈ ∂a. If n̂0 > n̂1,
i sends to a a 0 message. If n̂1 > n̂0, it sends to a a 1 message. If n̂1 = n̂0, it
send to a a ∗ message. The ‘number of contradictions’ among the messages that
it receives is: Fe

i − Fe
ia = uia = min(n̂1, n̂0).

Now consider the message from function node a to variable node i. It depends
on the ones coming from neighboring variables j ∈ ∂a\ i. Partition the neighbors
into subsets P∗,P0,P1, whereby Pm is the set of indices j such that mja = m. For
each value of xi ∈ {0, 1}, the algorithm computes the minimal value of Ea(x∂a)
such that the variables in P0 (respectively, P1) are fixed to 0 (resp. to 1). More
explicitly, let us define a function ∆P(xi) as follows:

∆P(xi) = min
{xj}j∈P∗

Ea(xi, {xj}j∈P∗ , {xk = 0}k∈P0
, {xl = 1}l∈P1

) . (19.97)

The following table then gives the outgoing message m̂ai and the number of
contradictions at a, Fe

a−Fe
ai = ûai as a function of the values ∆P(0) and ∆P (1):

∆P(0) ∆P(1) m̂ai ûai

0 0 ∗ 0
0 1 0 0
1 0 1 0
1 1 ∗ 1

Having established the WP update rules, it is immediate to write the SP(y) equations.
Consider a node, and one of its neighbors to which it sends messages. For each
possible configuration of incoming warnings on the node, denoted by input, we
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found the rules to compute the outgoing warning output = ÔUT(input) and
the number of contradictions δFe(input). SP(y)messages are distributions over
(0, 1, ∗): (Qia(0), Qia(1), Qia(∗)) and (Q̂ai(0), Q̂ai(1), Q̂ai(∗)). Notice that these
messages are only marginally more complicated than ordinary BP messages. Let
P(input) denote the probability of a given input assuming independent warnings
with distribution Qia( · ) (respectively, Q̂ai( · )). The probability of an outgoing
message output ∈ {0, 1, ∗} is then:

P(output) ∼=
∑

input

P(input)I(ÔUT(input) = output)e−yδF
e(input) . (19.98)

Depending whether the node we are considering is a variable or function node,
this probability distribution corresponds to the outgoing message Qia( · ) or
Q̂ai( · ).

It can be shown that the Bethe energy (19.83) associated with a given fixed
point of the WP equations coincides with the total number of contradictions.
This is expressed as the number of contradictions at function nodes, plus those
at variable nodes, minus the number of edges (i, a) such that the warning in
direction a → i contradicts the one in direction i → a (the last term avoids double
counting). It follows that the Bethe free-entropy of the auxiliary graphical model
FRSB,e(y) weights each WP fixed point depending on its number of contradictions,
as it should.

19.5.4 XORSAT again

Let us know apply the SP(y) formalism to random K-XORSAT instances. We
let the energy function E(x) count the number of unsatisfied linear equations:

Ea(x∂a) =

{
0 if xi1(a) ⊕ · · · ⊕ xiK(a) = ba,
1 otherwise.

(19.99)

The simplifications discussed in the previous subsection apply to this case. The
1RSB population dynamics algorithm can be used to compute the free-entropy
density Fe(y). Here we limit ourselves to describing the results of this calculation
for the case K = 3.

Let us stress that the problem we are considering here is different from the
one investigated in Section 19.3. While there we were interested in the uniform
measure over solutions (thus focusing on the satisfiable regime α < αs(K)), here
we are estimating the minimum number of unsatisfied constraints (which is most
interesting in the unsatisfiable regime α > αs(K)).

It is easy to show that the SP(y) equations always admit a solution in which
Qia(∗) = 1 for all (i, a), indicating that the min-sum equations have a unique
solution. This corresponds to a density evolution fixed point whereby Q(∗) = 1
with probability 1, yielding Fe(y) independent of y. For y smaller than an α-
dependent threshold y∗(α), this is the only solution we find. For larger values of
y, the SP(y) equations have a non-trivial solution. Fig. 19.4 shows the result for
the free-entropy density Fe(y), for three values of α.
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Fig. 19.4. Random 3-XORSAT at α = 0.87, 0.97 and 1.07. Recall that, for
K = 3, αd(K) ≈ 0.818 and αs(K) ≈ 0.918. Left frame: Free-entropy density
Fe(y) as a function of y, obtained using the population dynamics algorithm,
with N = 2 · 104 and t = 5 · 103 (α increases from bottom to top). Right
frame: Complexity Σe(ε) as a function of energy density (equal to the number
of violated constraints per variable). α increases from left to right.

Above this threshold density evolution converges to a ‘non-trivial’ 1RSB fixed
point. The complexity functions Σe(ε) can be deduced by Legendre transform,
cf. Eq. (19.96), which requires differentiating Fe(y) and plotting (ε,Σe) in para-
metric form. The derivative can be computed numerically in a number of ways:

1. Compute analytically the derivative of FRSB,e(y) with respect to y. This
turns out to be a functional of the fixed point distributions of Q, Q̂, and
can therefore be easily evaluated.

2. Fit the numerical results for the function Fe(y) and differentiate the fitting
function

3. Approximate the derivative as difference at nearby values of y.

In the present case we followed the second approach using the parametric form
Ffit(y) = a+b e−y+c e−2y+d e−3y. As shown in Fig. 19.4 the resulting parametric
curve (ε,Σe) is multiple valued (this is a consequence of the fact that Fe(y) is not
concave). Only the concave part of Fe(y) is retained as physically meaningful.
Indeed the convex branch is ‘unstable’ (in the sense that further RSB would be
needed) and it is not yet understood whether it has any meaning.

For α ∈ [αd(K), αs(K)[, Σe(ε) remains positive down to ε = 0. The intercept
Σe(ε = 0) coincides with the complexity of clusters of SAT configurations, as
computed in Ch. 18 (see Theorem 18.2). For α > αs(K) (UNSAT phase) Σe(ε)
vanishes at εgs(K,α) > 0. The energy density εgs(K,α) is the minimal fraction
of violated equations, in a random XORSAT linear system. Notice that Σe(ε)
is not defined above a second energy density εd(K,α). This indicates that we
should take Σe(ε) = −∞ there: above εd(K,α) one recovers a simple problem
with a unique Bethe measure.

Figure 19.5 shows the values of εgs(K,α) and εd(K,α) as functions of α for
K = 3 (random 3-XORSAT).
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Fig. 19.5. Asymptotic ground state energy (= minimal number of violated
constraints) per variable εgs(K,α) for random K = 3-XORSAT formulae.
εgs(K,α) vanishes for α < αs(K). The dashed line εd(K,α) is the highest
energy density e such that configurations with E(x) < Ne are clustered. It
vanishes for α < αd(K).

19.6 The nature of 1RSB phases

In the last sections we discussed how to compute the complexity function Σ(φ)
(or its ‘zero temperature’ version, the energetic complexity Σe(ε)). Here we want
to come back to the problem of determining some qualitative properties of the
measure µ( · ) for random graphical models, on the basis of its decomposition
into extremal Bethe measures:

µ(x) =
∑

n∈E

wnµn(x) . (19.100)

Assumptions 2 and 3 imply that, in this decomposition, we introduce a neg-
ligible error if we drop all the states n but the ones with free-entropy φn ≈ φ∗,
where

φ∗ = argmax{φ + Σ(φ) : Σ(φ) ≥ 0} . (19.101)

In general, Σ(φ) is strictly positive and continuous in an interval [φmin, φmax]
with Σ(φmax) = 0, and

Σ(φ) = x∗(φmax − φ) + O((φmax − φ)2) , (19.102)

for φ close to φmax.
It turns out that the decomposition (19.100) has different properties depend-

ing on the result of the optimization (19.101). One can distinguish two phases
(see Fig. 19.6): d1RSB (dynamic one-step replica symmetry breaking) when the
max is achieved in the interior of [φmin, φmax] and, as a consequence Σ(φ∗) > 0;
s1RSB (static one-step replica symmetry breaking) when the max is achieved at
φ∗ = φmax and therefore Σ(φ∗) = 0 (this case occurs iff x∗ ≤ 1).
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Fig. 19.6. A sketch of the complexity Σ versus free-entropy-density φ in a
finite-temperature problem with 1RSB phase transition, at three tempera-
tures T1 < T2 < T3. A random configuration x with distribution µ(x) is
found with high probability in a cluster of free-entropy-density φ1, φ2, φ3 re-
spectively. T2 and T3 are above the condensation transition: φ2, φ3 are the
points where ∂Σ/∂φ = −1. T1 is below the condensation transition: φ1 is the
largest value of φ where Σ is positive.

19.6.1 Dynamical 1RSB

Assume Σ∗ = Σ(φ∗) > 0. Then we can restrict the sum (19.100) to those states
n such that φn ∈ [φ∗ − ε, φ∗ + ε], if we allow for an exponentially small error.
To the leading exponential order there are eNΣ∗ such states whose weights are
wn ∈ [e−N(Σ∗+ε′), e−N(Σ∗−ε′)].

Different states are expected to have essentially disjoint support. By this we
mean that there exists subsets {Ωn}n∈E of the configuration space XN such that,
for any m ∈ E

µm(Ωm) ≈ 1 ,
∑

n∈E\m

wnµn(Ωm) ≈ 0 . (19.103)

Further, different states are separated by ‘large free-energy barriers.’ This means
that one can choose the above partition in such a way that only an exponentially
small (in N) fraction of the probability measure is on its boundaries.

This structure has two important consequences:

Glassy dynamics. Let us consider a local Markov Chain dynamics that sat-
isfies detailed balance with respect to the measure µ( · ). As an example we can
consider the Glauber dynamics introduced in Ch. 4 (in order to avoid trivial
reducibility effects, we can assume in this discussion that the compatibility func-
tions ψa(x∂a) are bounded away from 0).

Imagine initiating the dynamics at time 0 with an equilibrated configuration
x(0) distributed according to µ( · ). This is essentially equivalent to picking a
state n uniformly at random among the typical ones, and then sampling x(0)
from µn( · ). Because of the exponentially large barriers, the dynamics will stay
confined in Ωn for an exponentially large time, and equilibrate among states only
on larger time scales.
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This can be formalized as follows. Denote by D(x, x′) the Hamming distance
in XN . Take two i.i.d. configuration with distribution µ and let Nd0 be the expec-
tation value of their Hamming distance. Analogously take two i.i.d. configuration
with distribution µn, and let Nd1 be the expectation value of their Hamming
distance. When the state n is chosen randomly with distribution wn, we ex-
pect d1 not to depend on the state n asymptoticaly for large sizes. Furthermore:
d1 < d0. Then we can consider the (normalized) expected Hamming distance
between configurations at time t in Glauber dynamics d(t) = 〈D(x(0), x(t))〉/N .
For any ε < d0−d1, the correlation time τ(ε) ≡ inf{t : d(t) ≥ d0−ε} is expected
to be exponentially large in N

Short-range correlations in finite-dimensional projections. We motivated the
1RSB cavity method with the emergence of long-range correlations due to de-
composition of µ( · ) into many extremal Bethe measures. Surprisingly, such cor-
relations cannot be detected by probing a bounded (when N → ∞) number of
variables. More precisely, if i(1), . . . , i(k) ∈ {1, · · · , N} are uniformly random
variable indices, then, in the d1RSB phase:

E|〈f1(xi(1))f2(xi(2)) · · · fk(xi(k))〉 − 〈f1(xi(1))〉〈f2(xi(2))〉 · · · 〈fk(xi(k))〉|
N→∞→ 0 .

(Here 〈 · 〉 denote the expectation with respect to the measure µ, and E the
expectation with respect to the graphical model in a random ensemble). This
finding can be understood intuitively as follows. If there are long range corre-
lations among subsets of k variables, then it must be true that conditioning on
the values of k − 1 of them changes the marginal distribution of the k-th one.
On the other hand, we think that long range correlations arise because far apart
variables ‘know’ that the whole system is in the same state n. But conditioning
on a bounded number (k − 1) of variables cannot select in any significant way
among the eNΣ∗ relevant states, and thus cannot change the marginal of the k-th
one.

An alternative argument makes use of the observation that, if x(1) and x(2) are
two i.i.d. configurations with distribution µ( · ), then their distance D(x(1), x(2))
concentrates in probability. This is due to the fact that the two configurations
will be, with high probability, in different states n1 .= n2 (the probability of
n1 = n2 being e−NΣ∗), whose distance depends weakly on the states couple.

Let us finally notice that the absence of long range correlations among bounded
subset of variables is related to the observation that µ( · ) is itself a Bethe mea-
sure (although a non-extremal one) in a d1RSB phase, cf. Sec. 19.4.1. Indeed,
each BP equation involves a bounded subset of the variables and can be violated
only because of correlations among them.

As we shall discuss in Sec. 22.1.2, long range correlations in a d1RSB phase
can be probed through more sophisticated “point-to-set” correlation functions.

19.6.2 Static 1RSB

In this case the decomposition (19.100) is dominated by a few states of near-to-
maximal free-entropy φn ≈ φmax. If we ‘zoom’ near the edge by letting φn =
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φmax + sn/N , then the ‘free-entropy shifts’ sn form a point process with density
exp(−x∗s).

The situation is analogous to the one we found in the random energy model
for T < Tc. Indeed it is expected that the weights {wn} converge to the same
universal Poisson-Dirichlet process found there, and to depend on the model de-
tails only through the parameter x∗ (we have already discussed this universality
using replicas in Ch. 8). In particular, if x(1) and x(2) are two i.i.d. replicas with
distribution µ, and n1, n2 are the states they belong to, then the probability for
them to belong to the same state is

E {Pµ(n1 = n2)} = E

{
∑

n∈E

w2
n

}
= 1 − x∗ . (19.104)

Here E denote expectation with respect to the graphical model distribution.
As a consequence, the distance D(x(1), x(2)) between two i.i.d. replicas does

not concentrate (the overlap distribution is non-trivial). This in turn can only
be true if the two-point correlation function does not vanish at large distances.
Long-range correlations of this type make BP break down. The original graphical
model µ( · ) is no longer a Bethe measure: its local marginals cannot be described
in terms of a set of messages. The 1RSB description, according to which µ( · ) is
a convex combination of Bethe measures, is unavoidable.

At this point we are left with a puzzle. How to circumvent the argument given
in Section 19.4.1 that, if the ‘correct’ weight x = 1 is used, then the marginals
as computed within 1RSB still satisfy BP equations? The conundrum is that,
within a s1RSB phase, the parameter x = 1 is not the correct one to be used in the
1RSB cavity equations (although it is the correct one to weight states). In order
to explain this, let us first notice that, if the complexity is convex and behaves
as in Eq. (19.102) near its edge, with a slope −x∗ > −1, then the optimization
problem (19.101) has the same result as

φ∗ = argmax{xφ + Σ(φ) : Σ(φ) ≥ 0} . (19.105)

for any x ≥ x∗. Therefore, in the 1RSB cavity equations we could in principle use
any value of x larger or equal to x∗ (this would select the same states). However,
the constraint Σ(φ) ≥ 0 cannot be enforced locally and does not show up in
the cavity equations. If one performs the computation of Σ within the cavity
method using a value x > x∗, then one finds a negative value of Σ which must
be rejected (it is believed to be related to the contribution of some exponentially
rare instances). Therefore, in order to ensure that one studies the interval of φ
such that Σ(φ) ≥ 0, one must impose x ≤ x∗ in the cavity method. In order to
select the states with free-entropy density φmax, we must thus choose the Parisi
parameter that corresponds to φmax, namely x = x∗.

19.6.3 When does 1RSB fail?

The 1RSB cavity method is a powerful tool, but does not always provide cor-
rect answers, even for locally tree-like models, in the large system limit. The
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main assumption of the 1RSB approach is that, once we pass to the auxiliary
graphical model (which ‘enumerates’ BP fixed points) a simple BP procedure is
asymptotically exact. In other words, the auxiliary problem has a simple ‘replica
symmetric’ structure and no glassy phase. This is correct in some cases, such as
random XORSAT or SAT close to their SAT-UNSAT threshold, but it may fail
in others.

A mechanism leading to a failure of the 1RSB approach is that the auxil-
iary graphical model is incorrectly described by BP. This may happen because
the auxiliary model measure decomposes in many Bethe states. In such a case,
one should introduce a second auxiliary model, dealing with the multiplicity of
BP fixed points of the first one. This is usually referred to as ‘two-step replica
symmetry breaking’ (2RSB). Obviously one can find situations in which it is
necessary to iterate this construction, leading to a R-th level auxiliary graphical
model (R-RSB). Continuous (or full) RSB corresponds to the large-R limit.

While such developments are conceptually clear (at least from an heuristic
point of view), they are technically challenging. So far limited results have been
obtained beyond 1RSB. For a brief survey, we refer to Ch. 22.

Appendix: SP(y) equations for XORSAT

This appendix provides technical details on the 1RSB treatment of random K-
XORSAT, within the ‘energetic’ formalism. The results of this approach were
discussed in Sec. 19.5.4. In particular we will derive the behavior of the auxil-
iary free-entropy Fe(y) at large y, and deduce the behavior of the complexity
Σe(ε) at small ε. This section can be regarded as an exercise in applying the
SP(y) formalism. We shall skip many details and just give the main intermediate
results of the computation.

XORSAT is a constraint satisfaction problems with binary variables. We can
thus apply the simplified method of Sec. 19.5.3. The projected min-sum messages
can take three values: 0, 1, ∗. Exploiting the symmetry of XORSAT between 0
and 1, SP(y)messages can be parametrized by a single number, e.g. by the sum
of their weights on 0 and 1. We will therefore write: Qia(0) = Qia(1) = ζia/2
(thus implying Qia(∗) = 1−ζia), and Q̂ai(0) = Q̂ai(1) = ηai/2 (whence Q̂ai(∗) =
1 − ηai).

In terms of these variables, the SP(y) equation at function node a reads:

ηai =
∏

j∈∂a\i

ζja . (19.106)

The SP(y) equation at variable node i is a bit more complicated. Let us
consider all the |∂i| − 1 incoming messages Q̂bi, b ∈ ∂i \ a. Each of them is
parameterized by a number ηbi. We let η = {ηbi, b ∈ ∂i \ a} and define the
function Bq(η) as follows:

Bq(η) =
∑

S⊂{∂i\a}

I(|S| = q)
∏

b∈∂i\{S∪{a}}

(1 − ηbi)
∏

c∈S

ηcj . (19.107)
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Let Aq,r(η) = Bq+r(η)
(
q+r

q

)
2−(q+r). After some thought one obtains the update

equation:

ζia =
2
∑|∂i|−2

q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq

∑+(|∂i|−1)/2,
q=0 Aq,q(η)e−yq + 2

∑|∂i|−2
q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq

(19.108)

The auxiliary free-entropy FRSB,e(y) has the general form (19.92), with the
various contributions expressed as follows in terms of the parameters {ζia, ηai}:

eF
RSB,e
a = 1 − 1

2
(1 − e−y)

∏

i∈∂a

ζia , eF
RSB,e
ai = 1 − 1

2
ηaiζia(1 − e−y) ,

eF
RSB,e
i =

di∑

q=0

di−q∑

r=0

Aq,r ({ηai}a∈∂i) e−ymin(q,r) . (19.109)

Let us consider random K-XORSAT instances with constraint density α.
Equations (19.106), (19.108) get promoted to distributional relations that deter-
mine the asymptotic distribution of η and ζ on a randomly chosen edge (i, a).
The 1RSB population dynamics algorithm can be used to approximate these
distributions. We encourage the reader to implement it, and obtain a numerical
estimate of the auxiliary free-entropy density Fe(y).

It turns out that, at large y, one can control the distributions of η, ζ ana-
lytically, provided their qualitative behavior satisfies the following assumptions
(that can be checked numerically):

• With probability t one has η = 0, and with probability 1− t, η = 1− e−yη̂,
where t has a limit in ]0, 1[, and η̂ converges to a random variable with
support on [0,∞[, as y →∞.

• With probability s one has ζ = 0, and with probability 1−s, ζ = 1−e−yζ̂,
where s has a limit in ]0, 1[, and ζ̂ converges to a random variable with
support on [0,∞[, as y →∞.

Under these assumptions, we shall expand the distributional version of Eqs. (19.106),
(19.108) keeping terms up to first order in e−y. We shall use t, s, η̂, ζ̂ to denote
the limit quantities mentioned above.

It is easy to see that t, s must satisfy the equations (1 − t) = (1 − s)k−1 and
s = e−Kα(1−t). These are identical to Eqs. (19.51) and (19.52), whence t = 1−Q̂∗
and s = 1 −Q∗.

Equation (19.106) leads to the distributional equation:

η̂
d
= ζ̂1 + · · · + ζ̂K−1 , (19.110)

where ζ̂1, . . . , ζ̂K−1 are K − 1 i.i.d. copies of the random variable ζ̂.
The update equation (19.108) is more complicated. There are in general l

inputs to a variable node, where l is Poisson with mean Kα. Let us denote by
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m the number of incoming messages with η = 0. The case m = 0 yields ζ = 0
and is taken care of in the relation between t and s. If we condition on m ≥ 1,
the distribution of m is

P(m) =
λm

m!
e−λ

1

1 − e−λ
I(m ≥ 1) , (19.111)

where λ = Kα(1 − t). Conditional on m, Eq. (19.108) simplifies as follows:

• If m = 1: ζ̂
d
= η̂.

• If m = 2: ζ̂ = 1 identically.
• If m ≥ 3: ζ̂ = 0 identically.

The various contributions to the free-entropy (19.38) are given by:

fRSB,e
f = (1 − s)k

[
− log 2 + e−y(1 + K〈ζ̂〉)

]
+ o(e−y) , (19.112)

fRSB,e
v =

λ2

2
e−λ

[
− log 2 + e−y(1 + 2〈η̂〉)

]

+
∞∑

m=3

λm

m!
e−λ

[
(1 −m) log 2 + e−ym(1 + 〈η̂〉)

]
+ o(e−y) , (19.113)

fRSB,e
e = (1 − t)(1 − s)

[
− log 2 + e−y(1 + 〈η̂〉+ 〈ζ̂〉)

]
+ o(e−y) , (19.114)

where 〈η̂〉 and 〈ζ̂〉 are the expectation values of η̂ and ζ̂. This gives for the free-
entropy density Fe(y) = fRSB,e

f + αfRSB,e
v − Kα fRSB,e

e = Σ0 + e−yε0 + o(e−y),
with:

Σ0 =

[
1 − λ

k
− e−λ

(
1 +

k − 1

k
λ

)]
log 2 , (19.115)

ε0 =
λ

k

[
1 − e−λ

(
1 +

k

2
λ

)]
. (19.116)

Taking the Legendre transform, cf. Eq. (19.96), we obtain the following behavior
of the energetic complexity as ε → 0:

Σe(ε) = Σ0 + ε log
ε0e

ε
+ o(ε) , (19.117)

This shows in particular that the ground state energy density is proportional to
(α−αs)/| log(α−αs)| close to the SAT-UNSAT transition (when 0 < α−αs 8 1).

Exercise 19.7 In the other extreme, show that at large α one gets εgs(K,α) =
α/2 +

√
2αε∗(K) + o(

√
α), where the positive constant ε∗(K) is the absolute

value of the ground state energy of the fully connected K-spin model studied
in Sec. 8.2. This indicates that there is no interesting intermediate asymptotic
regime between the M = Θ(N) (discussed in the present chapter) and M =
Θ(NK−1) (discussed with the replica method in Ch. 8)
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Notes

The cavity method originated as an alternative to the replica approach in the
study of the Sherrington-Kirkatrick model (Mézard, Parisi and Virasoro, 1985b).
The 1RSB cavity method for locally tree-like factor graphs was developed in
the context of spin glasses in (Mézard and Parisi, 2001). Its application to zero
temperature problems (counting solutions of the min-sum equations), was also
first described in the spin glass context in (Mézard and Parisi, 2003). The pre-
sentation in this chapter differs in its scope from those work, which were more
focused in computing averages over random instances. For a rigorous treatment
of the notion of Bethe measure, we refer to (Dembo and Montanari, 2008b).

The idea that the 1RSB cavity method is in fact equivalent to applying BP on
an auxiliary model appeared in several paper treating the cases of coloring and
satisfiability with y = 0 (Parisi, 2002; Braunstein and Zecchina, 2004; Maneva,
Mossel and Wainwright, 2005). The treatment presented here generalizes these
works, with the important difference that the variables of our auxiliary model
are messages rather than node quantities.

The analysis of the x = 1 case is strictly related to the problem of recon-
struction on a tree. This has been studied in (Mézard and Montanari, 2006),
where the reader will find the proof of Theorem 19.5 and the expression of the
free-entropy of exercise 19.6.

The SP(y) equations for one single instance have been written first in the
context of the K-satisfiability problem in (Mézard and Zecchina, 2002), see also
(Mézard, Parisi and Zecchina, 2003). The direct derivation of SP(y) equations
in binary variable problems, shown in Sec. 19.5.3, was done originally for satis-
fiability in (Braunstein, Mézard and Zecchina, 2005), see also (Braunstein and
Zecchina, 2004) and (Maneva, Mossel and Wainwright, 2005). The application of
the 1RSB cavity method to the random XORSAT problem, and its comparison
to the exact results, was done in (Mézard, Ricci-Tersenghi and Zecchina, 2003).

An alternative to the cavity approach followed throughout this book is pro-
vided by the replica method of Ch. 8. As we saw, it was first invented in order
to treat fully connected models (i.e. models on complete graphs), cf. (Mézard,
Parisi and Virasoro, 1987), and subsequently developed in the context of sparse
random graphs (Mézard and Parisi, 1985; Dominicis and Mottishaw, 1987; Mot-
tishaw and Dominicis, 1987; Wong and Sherrington, 1988; Goldschmidt and Lai,
1990). The technique was further improved in the paper (Monasson, 1998), that
offers a very lucid presentation of the method.
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RANDOM K-SATISFIABILITY

This chapter applies the cavity method to the random K-satisfiability problem.
We will study both the phase diagram (in particular, we will determine the SAT-
UNSAT threshold αs(K)) and the algorithmic applications of message passing.
The whole chapter is based on heuristic derivations: it turns out that the rig-
orization of the whole approach is still in its infancy. Neither the conjectured
phase diagram, nor the efficiency of message passing algorithms have been yet
confirmed rigorously. But the computed value of αs(K) is conjectured to be ex-
act, and the low-complexity message passing algorithms that we will describe
turn out to be particularly efficient in finding solutions.

We will start in Sec. 20.1 by writing the BP equations, following the ap-
proach exposed in Ch. 14. The statistical analysis of such equations provides
a first (replica symmetric) estimate of αs(K). This however turns out to be
incorrect. The reason of this failure is traced back to the incorrectness of the
replica symmetric assumption close to the SAT-UNSAT transition. The system
undergoes a ‘structural’ phase transition at a clause density smaller than αs(K).
Nevertheless, BP empirically converges in a wide range of clause densities, and
it can be used to find SAT assignments on large instances provided the clause
density α is not too close to αs(K). The key idea is to use BP as a heuristic
guide in a sequential decimation procedure.

In Sec. 20.2 we apply the 1RSB cavity method developed in Ch. 19. The
statistical analysis of the 1RSB equations gives the values for αs(K) summarized
in Table 20.2.4. From the algorithmic point of view, one can use SP instead of BP
as a guide in the decimation procedure. We shall explain and study numerically
the corresponding ‘survey-guided decimation’ algorithm, which is presently the
most efficient algorithm to find SAT assignments in large random satisfiable
instances with a clause density close to the threshold αs(K).

This chapter focuses on K-SAT with K ≥ 3. The K = 2 problem is quite
different: satisfiability can be proved in polynomial time, the SAT-UNSAT phase
transition is driven by a very different mechanism, and the threshold is known
to be αs(2) = 1. It turns out that a (more subtle) qualitative difference also
distinguishes K = 3 from K ≥ 4. In order to illustrate this point, we will use
both 3-SAT and 4-SAT as running examples.

Coloring random graphs turns out to be very similar to random K-satisfiability.
Section 20.4 presents a few highlights in the study of random graph colorings.
In particular, we emphasize how the techniques used for K-satisfiability are suc-
cessful in this case as well.

473
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20.1 Belief Propagation and the replica symmetric analysis

We already studied some aspects of random K-SAT in Ch. 10, where we derived
in particular some rigorous bounds on the SAT/UNSAT threshold αs(K). Here
we will study the problem using message passing approaches. Let us start by
summarizing our notations.

An instance of the K-satisfiability problem is defined by M clauses (indexed
by a, b · · · ∈ {1, . . . , M}) over N Boolean variables x1, . . . , xN taking values in
{0, 1}. We denote by ∂a the set of variables in clause a, and by ∂i the set of
clauses in which variable xi appears. Further, for each i ∈ ∂a, we introduce the
number Jai which takes value 1 if xi appears negated in clause a, and takes value
0 if the variable appears unnegated.

It will be convenient to distinguish elements of ∂a according to the values of
Jai. We let ∂0a ≡ {i ∈ ∂a s.t. Jai = 0} and ∂1a = {i ∈ ∂a s.t. Jai = 1}. Similarly
we denote by ∂0i and ∂1i the neighborhoods of i: ∂0i = {a ∈ ∂i s.t. Jai = 0} and
∂1i = {a ∈ ∂i s.t. Jai = 1}.

As usual, the indicator function over clause a being satisfied is denoted by
ψa( · ): ψa(x∂a) = 1 if clause a is satisfied by the assignment x and ψa(x∂a) = 0
if it is not. Given a SAT instance, we begin by studying the uniform measure
over SAT assignments:

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) . (20.1)

We will represent this distribution with a factor graph, as in Fig. 10.1, and in
this graph we draw dashed edges when Jai = 1, and full edges when Jai = 0.

20.1.1 The BP equations

The BP equations for a general model of the form (20.1) have already been
written in Chapter 14. Here we want to rewrite them in a more compact form,
that is convenient both for analysis and implementation. They are best expressed
using the following notation. Consider a variable node i connected to factor node
a and partition its neighborhood as ∂i = {a} ∪ Sia ∪ Uia, where (see Fig. 20.1):

if Jai = 0 then Sia = ∂0i \ {a}, Uia = ∂1i ,

if Jai = 1 then Sia = ∂1i \ {a}, Uai = ∂0i . (20.2)

Since the variables xi’s are binary, the BP messages at any time νi→a( · ),
ν̂a→i( · ), can be parameterized by a single real number. We fix the parameteri-
zation by letting ζia ≡ νi→a(xi = Jai) (which obviously implies νi→a(xi = 1 −
Jai) = 1− ζia), and ζ̂ai ≡ ν̂a→i(xi = Jai) (yielding ν̂a→i(xi = 1−Jai) = 1− ζ̂ai).

A straightforward calculation allows to express the BP equations (here in
fixed point form) in terms of these variables:
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i
j

a

Sia

Uia

Uja

Sja

Fig. 20.1. The set Sia contains all checks b in ∂i \ a such that Jbi = Jai, the
set Uia contains all checks b in ∂i \ a such that Jbi = 1 − Jai

ζia =

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

+
[∏

b∈Uia
ζ̂bi

] [∏
b∈Sia

(1 − ζ̂bi)
] ,

ζ̂ai =
1 −

∏
j∈∂a\i ζja

2 −
∏

j∈∂a\i ζja
, (20.3)

with the convention that a product over zero term is equal to 1. Notice that eval-
uating the right hand side takes (respectively) O(|∂i|) and O(|∂a|) operations.
This should be contrasted with the general implementation of the BP equations,
cf. Ch. 14 , that requires O(|∂i|) operations at variable nodes but O(2|∂a|) at
function nodes.

The Bethe free-entropy takes the usual form, cf. Eq. (14.27), F =
∑

a∈F Fa +∑
i∈V Fi −

∑
(ia)∈E Fia. The various contributions can be expressed in terms of

the parameters ζia, ζ̂ai as follows

Fa = log

[
1 −

∏

i∈∂a

ζia

]
; Fi = log

[
∏

a∈∂0i

ζ̂ai

∏

b∈∂1i

(1 − ζ̂bi) +
∏

a∈∂0i

(1 − ζ̂ai)
∏

b∈∂1i

ζ̂bi

]
;

Fai = log
[
(1 − ζia)(1 − ζ̂ai) + ζiaζ̂ai

]
. (20.4)

Given the messages, the BP estimate for the marginal on site i is:

νi(xi) ∼=
∏

a∈∂i

ν̂a→i(xi) . (20.5)

20.1.2 Statistical analysis

Let us now consider a random K-sat formula, i.e. a uniformly random formula
with N variables and M = Nα clauses. The resulting factor graph will be dis-
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tributed according to the GN (K, M) ensemble. Given a variable index i, the
numbers |∂0i|, |∂1i| of variables in which xi appears directed or negated, con-
verge to independent Poisson random variables of mean Kα/2.

If (i, a) is a uniformly random edge in the graph, the corresponding fixed point
messages ζia, ζ̂ai are random variables (we assume here that an ‘approximate’
fixed point exists). Within the RS assumption, they converge in distribution, as
N →∞, to random variables ζ, ζ̂ whose distribution satisfy the RS distributional
equations

ζ̂
d
=

1 − ζ1 . . . ζK−1

2 − ζ1 . . . ζK−1
, (20.6)

ζ
d
=

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q)

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q) + (1 − ζ̂1) . . . (1 − ζ̂p)ζ̂p+1 . . . ζ̂p+q

. (20.7)

Here p and q are two i.i.d. Poisson random variables with mean Kα/2 (cor-
responding to the sizes of S and U), ζ1, . . . , ζK−1 are i.i.d. copies of ζ, and
ζ̂1, . . . , ζ̂p+q are i.i.d. copies ζ̂.

The distributions of ζ and ζ̂ can be approximated using the population dy-
namics algorithm. The resulting samples can then be used to estimate the free-
entropy density, as outlined in the exercise below.

Exercise 20.1 Argue that, within the RS assumptions, the large N limit of
the Bethe free-entropy density is given by limN→∞ F/N = fRS = fRS

v + αfRS
c −

KαfRS
e , where:

fRS
v = E log

[
p∏

a=1

ζ̂a

p+q∏

a=p+1

(1 − ζ̂a) +
p∏

a=1

(1 − ζ̂a)
p+q∏

a=p+1

ζ̂a

]
,

fRS
c = E log [1 − ζ1 · · · ζK−1] ,

fRS
e = E log

[
(1 − ζ1)(1 − ζ̂1) + ζ1ζ̂1

]
. (20.8)

Here E denotes the expectation with respect to: ζ1, . . . , ζK which are i.i.d.
copies of ζ; ζ̂1, . . . , ζ̂p+q which are i.i.d. copies of ζ̂; p and q which are i.i.d.
Poisson random variables with mean Kα/2.

Fig. 20.2 shows an example of the entropy density found within this approach
for 3-SAT. For each value of α in a mesh, we used a population of size 104, and
ran the algorithm for 3·103 iterations. Messages are initialized uniformly in ]0, 1[,
and the first 103 iterations are not used for computing the free-entropy.

The predicted entropy density is strictly positive and decreasing in α for
α ≤ α∗(K), with α∗(3) ≈ 4.6773. Above α∗(K) the RS distributional equations
do not seem to admit any solution with ζ, ζ̂ ∈ [0, 1]. This is revealed numerically
by the fact that the denominator of Eq. (20.7) vanishes during the population
updates. Since one finds a RS entropy density which is positive for all α < α∗(K),
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Fig. 20.2. RS prediction for the asymptotic entropy density of random 3-SAT
formulae, plotted versus the clause density α for 3-SAT. The result is expected
to be correct for α ≤ αc(3) = αd(3) ≈ 3.86.

the value α∗(K) is the RS prediction for the SAT-UNSAT threshold. It turns
out that α∗(K) can be computed without population dynamics, as outlined by
the exercise below.

Exercise 20.2 How to compute α∗(K)? The idea is that above this value of
the clause density any solution of the RS distributional equations has ζ̂ = 0
with positive probability. In this case the denominator of Eq. (20.7) vanishes
with positive probability, leading to a contradiction.

We start by regularizing Eq. (20.7) with a small parameter ε: Each ζ̂i is
replaced by max(ζ̂i, ε). Let us denote by x the probability that ζ̂ is of order ε,
and by y the probability that ζ is of order 1− ε. Consider the limit ε → 0.

(a) Show that x = yK−1

(b) Show that 1 − 2y = e−KαxI0(Kαx), where I0(z) is the Bessel function

with Taylor expansion I0(t) =
∑∞

p=0
1

p!2

(
t
2

)2p
.

[Hint: Suppose that there are p′ variables among ζ̂1 . . . ζ̂p, and q′ among

ζ̂p+1 . . . ζ̂p+q, that are of order ε. Show that this update equation gives
ζ = O(ε) if p′ > q′, ζ = 1 −O(ε) if p′ < q′, and ζ = O(1) when p′ = q′.

(c) Let α∗(K) the largest clause density such that the two equations derived
in (a) and (b) admit the unique solution x = y = 0. Show that, for
α ≥ α∗(K) a new solution appears with x, y > 0.

(d) By solving numerically the above equations show that α∗(3) ≈ 4.6673
and α∗(4) ≈ 11.83.

Unhappily this RS computation is incorrect at α large enough, and, as a
consequence, the prediction for the SAT-UNSAT phase transition is wrong as



478 RANDOM K-SATISFIABILITY

0.0

0.2

0.4

0.6

0.8

1.0

3.6 3.8 4.0 4.2 4.4
α

0.0

0.2

0.4

0.6

0.8

1.0

 8.5  9  9.5  10  10.5  11
α

Fig. 20.3. Empirical probability that BP converges to a fixed point, plotted
versus the clause density α, for 3-SAT (left plot) and 4-SAT (right plot). The
statistics is over 100 instances, with N = 5 ·103 variables (dashed curve) and
N = 104 variables (full curve). There is an indication of a phase transition
occurring for αBP ≈ 3.85 (K = 3) and αBP ≈ 10.3 (K = 4.)

Data points show the empirical probability that BP-guided decimation
finds a SAT assignment, computed over 100 instances with N = 5 · 103. The
vertical lines correspond to the SAT-UNSAT threshold.

well. In particular, it contradicts the upper bound αUB,2(K), found in Ch. 10
(for instance, in the two cases K = 3, 4, one has αUB,2(3) ≈ 4.66603 < α∗(3), and
αUB,2(4) ≈ 10.2246 < α∗(4)). The largest α such that the RS entropy density is
correct is nothing but the condensation transition αc(K). We will further discuss
this phase transition below and in Ch. 22.

There is another way to realize that something is wrong with the RS assump-
tion close to the SAT-UNSAT phase transition. The idea is to look at the BP
iteration.

20.1.3 BP-Guided Decimation

The simplest experiment consists in iterating the BP equations (20.3) on a ran-
domly generated K-SAT instance. We start from uniformly random messages,
and choose the following convergence criterion defined in terms of a small num-
ber δ: The iteration is halted at the first time t∗(δ) such that no message has
changed by more than δ over the last iteration.

Fixing a large time tmax, one can estimate the probability of convergence
within tmax iterations by repeating the same experiment many times. Fig.20.3
shows this probability for δ = 10−2 and tmax = 103, plotted versus α. The
probability curves show a sharp decrease around a critical value of α, αBP which
is robust to variations of tmax and δ. This numerical result is indicative of a
threshold behavior: The typical convergence time t∗(δ) stays finite (or grows
moderately) with N when α < αBP. Above αBP, BP fails to converge in a time
tmax on a typical random instance.

When it converges, BP can be used in order to find a SAT assignment, using
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it as an heuristic guide for a sequential decimation procedure. Each time the
value of a new variable has to be fixed, BP is iterated until the convergence
criterion, with parameter δ, is met (alternatively, one may be more bold and use
the BP messages after a time tmax even when they have not converged). Then
one uses the BP messages in order to decide: (i) Which variable to fix; (ii) Which
value should the variable take.

In the present implementation these decisions are taken on the basis of a
simple statistics: the variables bias. Given the BP estimate νi( · ) of the marginal
of xi, we define the bias as πi ≡ νi(0) − νi(1).

BP-Guided Decimation (SAT formula F , Accuracy ε, Iterations tmax)
1: For all n ∈ {1, . . . , N}:
2: Call BP(F ,ε, tmax);
3: If BP does not converge, return ‘NOT found’ and exit;
4: For each variable node j, compute the bias πj ;
5: Find a variable i(n) with the largest absolute bias |πi(n)|;
6: If πi(n) ≥ 0, fix xi(n) to x∗

i(n) = 0;

7: Otherwise, fix xi(n) to x∗
i(n) = 1;

8: Replace F by the formula obtained after this reduction
8: End-For;
10: Return the assignment x∗

A pseudocode for BP was given in Sec. 14.2. Let us emphasize that the same
decimation procedure could be used not only with BP, but with other types of
guidance, as soon as we have some way to estimate the marginals.

The empirical success probability of the BP-Guided decimation on random
formulae are shown in Fig. 20.3 (estimated from 100 instances of size N = 5 ·104)
for several values of α. The qualitative difference between 3-SAT and 4-SAT
emerges clearly from this data. In 3-SAT, the decimation procedure returns a
SAT assignment about every time it converges, i.e. with probability close to one
for α " 3.85. In 4-SAT, BP converges most of the times if α " 10.3. This value
is larger than the conjectured SAT-UNSAT threshold αs(4) ≈ 9.931 (and also
larger than the best rigorous upper bound αUB,2(4) ≈ 10.2246.) On the other
hand, the BP guided decimation finds SAT assignments only when α " 9.25. It
is believed that the cases K ≥ 5 behave as K = 4.

20.1.4 On the validity of the RS analysis

These experiments suggest that something is not correct in the RS assumptions
for α large enough. The precise mechanism by which they are incorrect depends
however on the value of K. For K = 3, the BP fixed point become unstable,
and this leads to errors in decimations. In fact, the local stability of the BP fixed
point can be computed along the lines of Sec. 17.4.2. The result is that it become
unstable at αst(3) ≈ 3.86. On the contrary, for K ≥ 4 the fixed point remains
stable but does not correspond to the correct marginals. Local stability is not a
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good enough test in this case.
Correspondingly, one can define two type of thresholds:

(i) A stability threshold αst(K) beyond which BP does not have a locally
stable fixed point.

(ii) A 1RSB condensation threshold αc(K) beyond which there is no BP fixed
point giving a correct estimate of the local marginals and free-entropy.

One should clearly have αc(K) ≤ αst(K). Our study suggests that αc(3) =
αst(3) 1 3.86 while, for K ≥ 4, one has a strict inequality αc(K) < αst(K).

The reason for the failure of BP is the decomposition of the measure (20.1) in
many pure states. This happens at a third critical value αd(K) ≤ αc(K), referred
to as the dynamical transition, in accordance with our discussion of spin glasses
in Sec. 12.3: αd(K) is the critical clause density above which Glauber dynamics
will become inefficient. If αd(K) < α < αc(K), one expects, as we discussed in
Sec. 19.4.1, that there exist many pure states, and many quasi-solutions to BP
equations among which one will give the correct marginals.

At this point the reader might well be discouraged. This is understandable:
we started seeking one threshold (the SAT-UNSAT transition αs(K)) and rapidly
ended up defining a number of other thresholds, αd(K) ≤ αc(K) ≤ αst(K) ≤
αs(K) to describe a zoology of exotic phenomena. It turns out that, while the
understanding of the proliferation of pure states is necessary to get the correct
value of αs(K), one does not need a detailed description of the clusters, which is a
challenging task. Luckily, there exists a shortcut, through the use of the energetic
cavity method. It turns out that the sketchy description of clusters that we get
from this method, as if looking at them from far, is enough to determine αs.
Even more than that. The sketch will be a pretty useful and interesting one.
In Sec. 20.3, we will discuss a more detailed picture obtained through the full-
fledged 1RSB cavity method applied to the model (20.1).

20.2 Survey propagation and the 1RSB phase

The use of the energetic 1RSB cavity method can be motivated in two ways. From
a first point of view, we are changing problem. Instead of computing marginals
of the distribution (20.1), we consider the problem of minimizing the energy
function

E(x) =
M∑

a=1

Ea(x∂a) . (20.9)

Here Ea(x∂a) = 0 if clause a is satisfied by the assignment x, and Ea(x∂a) = 1
otherwise. The SAT-UNSAT threshold αs(K) is thus identified as the critical
value above which the ground state energy minE(x) vanishes.

With the cavity method we shall estimate the ground state energy density,
and find that it vanishes below some threshold. This is then identified as αs(K).
This identification amounts to assuming that, for generic large random K-SAT
problems, there is no interval of α where the ground state energy is positive but
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sub-linear in N . This assumption is reasonable, but of course it does not hold in
more general situations. If, for instance, we added to a random K-SAT formula a
small unsatisfiable sub-formula (including o(N) variables), our approach would
not detect the change, while the formula would be always unsatisfiable.

For α < αs(K) the cavity method provides a rough picture of zero energy pure
states. This brings us to the second way of motivating this ‘sketch.’ We saw that
describing a pure (Bethe) state in a locally tree-like graph amounts to assigning
a set of cavity messages, i.e. of marginal distributions for the variables. The
simplified description of the energetic 1RSB method only distinguishes between
marginals that are concentrated on a single value, and marginals that are not.
The concentrated marginals are described exactly, while the other ones are just
summarized by a single statement, “not concentrated”.

20.2.1 The SP(y) equations

The satisfiability problem involves only hard constraints and binary variables.
We can thus use the simplified SP(y) equations of Sec. 19.5.3. The messages are
triples: (Qia(0), Qia(1), Qia(∗)) for variable-to-function messages, and (Q̂ai(0), Q̂ai(1), Q̂ai(∗))
for function-to-variable messages.

In the case of K-satisfiability, these can be further simplified. The basic ob-
servation is that, if Jai = 0 then Q̂ai(1) = 0, and if Jai = 1 then Q̂ai(0) = 0.
This can be shown either starting from the general formalism in Sec. 19.5.3, or
reconsidering the interpretation of warning propagation messages. Recall that a
“0” message means that the constraint a ‘forces’ variable xi to take value 0 in
order to minimize the system’s energy. In K-SAT this can happen only if Jai = 0,
because xi = 0 is then the value that satisfies the clause a. With this remark in
mind, the function-to-variable node message can be parameterized by a single
real number. We will choose it to be Q̂ai(0) if Jai = 0, and Q̂ai(1) if Jai = 1 ,
and we shall denote it as Q̂ai. This number Q̂ai is the probability that there is
a warning sent from a to i which forces the value of variable xi.

Analogously, it is convenient to adopt a parameterization of the variable-to-
function message Qia(m) which takes into account the value of Jai. Precisely,
recall that Qia is supported on three types of messages: m(0) = 0, m(1) > 0, or
m(0) = m(1) = 0, or m(0) > 0, m(1) = 0. Let us denote the corresponding weights
as Qia(0), Qia(∗), Qia(1). If Jai = 0, we then define QS

ia ≡ Qia(0), Q∗
ia ≡ Qia(∗)

and QU
ia ≡ Qia(1). Vice-versa, if Jai = 1, we let QS

ia ≡ Qia(1), Q∗
ia ≡ Qia(∗) and

QU
ia ≡ Qia(0).

Below we summarize these notations with the corresponding interpretations.
We emphasize that ‘probability’ refers here to the random choice of a pure state,
cf. Sec. 19.1.
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QS
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to satisfy a,

QU
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to violate a,

Q∗
ia: probability that xi is not forced by the clauses b ∈ ∂i \ a.

Q̂ai: probability that xi is forced by clause a to satisfy it.

The 1RSB cavity equations have been written in Sec. 19.5.3.

Exercise 20.3 Write explicitly the 1RSB equations in terms of the messages
QS, QU, Q∗, Q̂ applying the procedure of Sec. 19.5.3.

Alternatively, they can be guessed having in mind the above interpretation.
Clause a forces variable xi to satisfy it if and only if all the other variables
entering clause a are forced (by some other clause) not to satisfy a. This means:

Q̂ai =
∏

j∈∂a\i

QU
ja . (20.10)

Consider on the other hand variable node i, and assume for definiteness that
Jia = 0 (the opposite case gives rise to identical equations). Remember that, in
this case, Sia denotes the subset of clauses b .= a in which Jib = 0, and Uia the
subset in which Jib = 1. Assume that the clauses in ΩS ⊆ Sia, and ΩU ⊆ Uia force
xi to satisfy them. Then xi is forced to satisfy or violate a depending whether
|ΩS| > |ΩU| or |ΩS| < |ΩU|. Finally, xi is not forced if |ΩS| = |ΩU|. The energy
shift is equal to the number of ‘forcing’ clauses in ∂i \ a that are violated when
xi is chosen to satisfy the largest number of them, namely min(|ΩU|, |ΩS|). We
thus get the equations

QU
ia
∼=

∑

|ΩU|>|ΩS|

e−y|ΩS|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) , (20.11)

QS
ia
∼=

∑

|ΩS|>|ΩU|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) , (20.12)

Q∗
ia
∼=

∑

|ΩU|=|ΩS|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) . (20.13)

The overall normalization is fixed by the condition QU
ia + Q∗

ia + QS
ia = 1.

As usual, Eqs (20.10-20.13) can be understood either as defining a map-
ping from the space of messages {Q̂ai, Qia} onto itself or as a set of fixed point
conditions. In both cases they are referred to as the SP(y) equations for the
satisfiability problem. From the computational point of view, these equations
involve a sum over 2|∂i|−1 terms. This is often too much if we want to iterate
the SP(y) equations on large K-SAT formulae: the average degree of a variable
node in a random K-SAT formula with clause density α is Kα. Further, in the
most interesting regime –close to the SAT-UNSAT threshold– α = Θ(2K), and
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the sum is over 2Θ(K2K) terms, which becomes rapidly unpractical. It is thus
important to notice that the sums can be computed efficiently by interpreting
them as convolutions.

Exercise 20.4 Consider a sequence of independent Bernoulli random variables
X1, . . . , Xn, . . . , with means (respectively) η1, . . . , ηn, . . . . Let Wn(m) be the
probability that the sum

∑n
b=1 Xb is equal to m.

(a) Show that these probabilities satisfy the recursion

Wn(m) = ηnWn−1(m − 1) + (1 − ηn)Wn−1(m) ,

for m ∈ {0, . . . , n}. Argue that these identities can be used together with
the initial condition W0(m) = I(m = 0), to compute Wn(m) in O(n2)
operations.

(b) How can one compute the right hand sides of Eqs. (20.11-20.13) in
O(|∂i|2) operations?

20.2.2 The free-entropy FRSB,e

Within the 1RSB energetic cavity method, the free-entropy FRSB,e({Q, Q̂}) pro-
vides detailed information on the minimal energy of (Bethe) pure states. These
pure states are nothing but metastable minima of the energy function (i.e. min-
ima whose energy cannot be decreased with a bounded number of spin flips).

The 1RSB free-entropy is expressed in terms of a set of messages {Qia, Q̂ai}
that provide a (quasi-)solution of the SP(y) equations (20.10-20.13). Following
the general theory in Sec. 19.5.2, it can be written in the form

FRSB,e({Q, Q̂}) =
∑

a∈C

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(i,a)∈E

FRSB,e
ia . (20.14)

Equation (19.95) yields

eF
RSB,e
ia = 1 − (1 − e−y)Q̂aiQ

U
ia . (20.15)

The contribution FRSB,e
a defined in (19.93) can be computed as follows. The

reweighting Fe
a({mia}) is always equal to 0, except for the case where all the

variables in clause a receive a warning requesting that they point in the “wrong
direction”, namely the direction which does not satisfy the clause. Therefore:

eF
RSB,e
a = 1 − (1 − e−y)

∏

i∈∂a

QU
ia .

Finally, the contribution FRSB,e
i defined in (19.94) depends on the messages sent

from check nodes b ∈ ∂i. Let us denote by ΩS ⊆ ∂0i the subset of check nodes
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b ∈ ∂0i such that clause b forces xi to satisfy it. Similarly, defined as ΩU ⊆ ∂1i
the subset of ∂1i such that clause b forces xi to satisfy it. We then have:

eF
RSB,e
i =

∑

ΩU,ΩS

e−ymin(ΩS,ΩU)

[
∏

b∈ΩU∪ΩS

Q̂bi

] 


∏

b-∈ΩU∪ΩS

(1 − Q̂bi)



 . (20.16)

Exercise 20.5 Show that, for any i ∈ ∂a, FRSB,e
ia = FRSB,e

a .

20.2.3 Large y limit: the SP equations

Consider now the case of satisfiable instances. A crucial problem is then to
characterize satisfying assignments and to find them efficiently. This amounts
to focusing on zero energy assignments, which are selected by taking the y →∞
limit within the energetic cavity method.

We can take the limit y → ∞ in the SP(y) equations (20.11-20.13). This
yields

Q̂ai =
∏

j∈∂a\i

QU
ja , (20.17)

QU
ja

∼=
∏

b∈Sja

(1 − Q̂bj)



1 −
∏

b∈Uja

(1 − Q̂bj)



 , (20.18)

QS
ja

∼=
∏

b∈Uja

(1 − Q̂bj)



1 −
∏

b∈Sja

(1 − Q̂bj)



 , (20.19)

Q∗
ja

∼=
∏

b∈∂j\a

(1 − Q̂bj) , (20.20)

where the normalization is always fixed by the condition QU
ja + QS

ja + Q∗
ja = 1.

The y = ∞ equations have a simple interpretation. Consider a variable xj

appearing in clause a, and assume it receives a warning from clause b .= a in-
dependently with probability Q̂bj . Then

∏
b∈Sja

(1− Q̂bj) is the probability that
variable j receives no warning forcing it in the direction which satisfies clause
a. The product

∏
b∈Uja

(1 − Q̂bj) is the probability that variable j receives no

warning forcing it in the direction which violates clause a. Therefore QU
ja is the

probability that variable j receives at least one warning forcing it in the direction
which violates clause a, conditional to the fact that there are no contradictions in
the warnings received by j from clauses b .= a. Analogous interpretations hold for
QS

ja and Q∗
ja. Finally, Q̂ai is the probability that all variables in ∂a\ i are forced

in the direction violating clause a, under the same condition of no contradiction.
Notice that the y = ∞ equations are a relatively simple modification of

the BP equations in (20.3). However, the interpretation of the messages is very
different in the two cases.
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Finally the free-entropy in the y = ∞ limit is obtained as

FRSB,e =
∑

a∈C

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(i,a)∈E

FRSB,e
ia , (20.21)

where

FRSB,e
ia = log

{
1 −QU

iaQ̂ai

}
, (20.22)

FRSB,e
i = log

{
∏

b∈∂0i

(1 − Q̂bi) +
∏

b∈∂1i

(1 − Q̂bi) −
∏

b∈∂i

(1 − Q̂bi)

}
, (20.23)

FRSB,e
a = log




1 −
∏

j∈∂a

QU
ja




 . (20.24)

Exercise 20.6 Show that, if the SP messages satisfy the fixed point equations
(20.17) to (20.20), the free-entropy can be rewritten as FRSB,e =

∑
i FRSB,e

i +∑
a(1 − |∂a|)FRSB,e

a .

20.2.4 The SAT-UNSAT threshold

The SP(y) equations (20.10-20.13) always admit a ‘no warning’ fixed point corre-
sponding to Q̂ai = 0, and QS

ia = QU
ia = 0, Q∗

ia = 1 for each (i, a) ∈ E. Other fixed
points can be explored numerically by iterating the equations on large random
formulae.

Within the cavity approach, the distribution of the message associated to a
uniformly random edge (i, a) satisfies a distributional equation. As explained in
Sec. 19.2.5, this distributional equation is obtained by promoting Q̂ai, (QU

ia, QS
ia, Q∗

ia)
to random variables and reading Eqs. (20.10-20.13) as equalities in distribution.
The distribution can then be studied by the population dynamics of Sec. 19.2.6. It
obviously admits a no-warning (or ‘replica symmetric’) fixed point, with Q̂ = 0,
(QU, QS, Q∗) = (0, 0, 1) identically, but (as we will see) in some cases one also
finds a different, ‘non-trivial’ fixed point distribution.

Given a fixed point, the 1RSB free-entropy density Fe(y) is estimated by tak-
ing the expectation of Eq. (20.14) (both with respect to degrees and fields) and
dividing by N . When evaluated on the no-warning fixed point, the free-entropy
density Fe(y) vanishes. This means that the number of clusters of SAT assign-
ments is sub-exponential, so that the corresponding complexity density vanishes.
To a first approximation, this solution corresponds to low-energy assignments
forming a single cluster. Note that the energetic cavity method counts the num-
ber of clusters of SAT assignments, and not the number of SAT assignments
itself (which is actually exponentially large).

Figure 20.4 shows the outcome of a population dynamics computation. We
plot the free-entropy density Fe(y) as a function of y for random 3-SAT, at
a few values of the clause density α. These plots are obtained initializing the
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Fig. 20.4. 1RSB free-entropy density for 3-SAT, computed from the population
dynamics analysis of the SP equation, at α = 4.1, 4.2, 4.3 (from top to
bottom). For each α, y, a population of size 12000 has been iterated 12 · 106

times. The resulting Fe has been computed by averaging over the last 8 · 106

iterations.

population dynamics recursion with i.i.d. messages {Q̂i} uniformly random in
[0, 1]. For α < αd,SP 1 3.93, the iteration converges to the ‘no-warning’ fixed

point where all the messages Q̂ are equal to 0.
For α > αd,SP , and when y is larger than a critical value yd(α) the iteration

converges to a non-trivial fixed point. This second solution has a non-vanishing
value of the free-entropy density Fe(y). The energetic complexity Σe(ε) is ob-
tained from Fe(y) via the Legendre transform (19.96).

In practice, the Legendre transform is computed by fitting the population dy-
namics data, and then transforming the fitting curve. Good results are obtained
with a fit of the form Fe

fit(y) =
∑r∗

r=0 ψr e−ry with r∗ between 2 and 4. The
resulting curves Σe(ε) (or more precisely their concave branches30) are shown in
Fig. 20.5.

Exercise 20.7 Show that Σe(ε = 0) = limy→∞ Fe(y)

The energetic complexity Σe(ε) is the exponential growth rate number of
(quasi-)solutions of the min-sum equations with energy density u. As can be
seen in Fig. 20.5, for α = 4.1 or 4.2 (and in general, in an interval above αd(3))
one finds Σe(ε = 0) > 0. The interpretation is that there exist exponentially
many solutions of the min-sum equations with zero energy density.

On the contrary when α = 4.3 the curve starts at a positive ε or, equivalently
the 1RSB complexity curve has Σe(ε = 0) < 0. Of course, the typical number

30Σe(ε) has a second, convex branch which joins the concave part at the maximal value of
ε; the precise meaning of this second branch is not known.
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Fig. 20.5. Energetic complexity density Σe plotted versus energy density ε,
for the 3-SAT problem at α = 4.1, 4.2, 4.3 (from top to bottom). These
curves have been obtained as the Legendre transform of the free-entropy fits
of Fig. 20.4.

of min-sum solutions cannot decrease exponentially. The result Σe(ε = 0) < 0 is
interpreted as a consequence of the fact that a typical random formula does not
admit any (approximate) solution of the min-sum equations with energy density
ε = 0. Given the correspondence between min-sum fixed points and clusters of
low-energy assignments, this in turns implies that a typical random formula does
not have any SAT assignment.

From Fig. 20.5 one expects that the SAT-UNSAT transition lies between α =
4.2 and α = 4.3. A more precise estimate can be obtained by plotting Fe(y →∞)
versus α, and locating the value of α where it vanishes. For 3-SAT one obtains
the SAT-UNSAT threshold estimate αs(3) = 4.26675± 0.00015. The predictions
of this method for αs(K) are shown in the Table 20.2.4. In practice, reliable
estimates can be obtained with population dynamics only for K ≤ 7. The reason
is that αs(K) increases exponentially with K, and the size of the population
needed in order to achieve a given precision should increase accordingly (the
average number of independent messages entering the distributional equations is
Kα).

For large K, one can formally expand the distributional equations, which
yields a series for αs(K) in powers of 2−K . The first two terms (seven terms have
been computed) of this expansion are:

αs(K) = 2K log 2 − 1

2
(1 + log 2) + O(2−KK2) (20.25)

20.2.5 SP-Guided Decimation

The analysis in the last few pages provides a refined description of the set of
solutions of random formulae. This knowledge can be exploited to efficiently
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K 3 4 5 6 7 8 9 10
αs(K) 4.2667 9.931 21.117 43.37 87.79 176.5 354.0 708.9

Table 20.1 Predictions of the 1RSB cavity method for the SAT-UNSAT thresh-
old of random K satisfiability

find some solutions, much in the same way as we used belief propagation in
Sec. 20.1.3. The basic strategy is again to use the information provided by the
SP messages as a clever heuristic in a decimation procedure.

The first step consists in finding an approximate solution of the SP(y) equations
(20.10-20.13), or of their simplified y = ∞ version (20.17-20.20), on a given in-
stance of the problem. To be definite, we shall focus on the latter case, since
y = ∞ selects zero energy states. We can seek solutions of the SP equations by
iteration, exactly as we would do with BP. We initialize SP messages, generally
as i.i.d. random variable with some common distribution, and then update them
according to Eqs. (20.17-20.20). Updates can be implemented, for instance, in
parallel, until a convergence criterion has been met.

Figure 20.6 shows the empirical probability that the iteration converges before
tmax = 1000 iterations on random formulae as a function of the clause density
α. As a convergence criterion we required that the maximal difference between
any two subsequent values of a message is smaller than δ = 10−2. Messages were
initialized by drawing, for each edge, Q̂ai ∈ [0, 1] independently and uniformly at
random. It is clear that SP has better convergence properties than BP for K = 3,
and indeed it converges even for α larger than the SAT-UNSAT threshold.

The numerics suggests the existence of two thresholds αd,SP(K), αu,SP(K)
characterizing the convergence behavior as follows (all the statements below
should be interpreted as holding with high probability in the large N limit):

For α < αd,SP: the iteration converges to the trivial fixed point defined by

Q̂ai = 0 for all edges (i, a) ∈ G.

For αd,SP < α < αu,SP: the iteration converges to a ‘non-trivial’ fixed
point.

For αu,SP < α: the iteration does not converge.

In the interval αd,SP(K) < α < αU,SP(K) it is expected that an exponential
number of fixed points exist but most of them will be degenerate and correspond
to ‘disguised’ WP fixed points. In particular Q̂ai = 0 or 1 for all the edges (i, a).
On the other hand, the fixed point actually reached by iteration is stable with
respect to changes in the initialization. This suggest the existence of a unique
non-degenerate fixed point. The threshold αd,SP(K) is conjectured to be the
same as defined for the distributional equation in the previous section, this is
why we used the same name. In particular αd,SP(K = 3) ≈ 3.93 and αd,SP(K =
4) ≈ 8.30. One further obtains αu,SP(K = 3) ≈ 4.36 and αu,SP(K = 4) ≈ 9.7.

SP can be used in a decimation procedure . After iterating the SP equations
until convergence, one computes the following SP marginal for each variable
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Fig. 20.6. Empirical convergence probability of SP (initialized from uniformly
random messages) plotted versus the clause density α for 3-SAT (left), and
4-SAT (right). The average is over 100 instances, with N = 5 · 103 (solid
line) and N = 104 variables (dashed line). Data points show the empirical
probability that SP-guided decimation finds a SAT assignment, computed
over 100 instances with N = 5 · 103. The vertical lines are the predicted
SAT-UNSAT thresholds.

i ∈ {1, . . . , N}

wi(1) ∼=
∏

a∈∂0i

(1 − Q̂ai)

[
1 −

∏

a∈∂1i

(1 − Q̂ai)

]
,

wi(0) ∼=
∏

a∈∂1i

(1 − Q̂ai)

[
1 −

∏

a∈∂0i

(1 − Q̂ai)

]
,

wi(∗) ∼=
∏

a∈∂i

(1 − Q̂ai) , (20.26)

with the normalization condition wi(1)+wi(0)+wi(∗) = 1. The interpretations of
these SP marginals is the following: wi(1) (resp. wi(0)) is the probability that the
variable i receives a warning forcing it to take the value xi = 1 (resp. xi = 0),
conditioned to the fact that it does not receive contradictory warnings. The
variable bias is then defined as πi ≡ wi(0)−wi(1). The variable with the largest
absolute bias is selected and fixed according to the bias sign. This procedure is
then iterated as with BP-guided decimation.

It typically happens that, after fixing some fraction of the variables with this
method, the SP iteration on the reduced instance converges to the trivial fixed
point Q̂ai = 0. According to our interpretation, this means that the resulting
problem is described by a unique Bethe measure, and SAT assignments are no
longer clustered. In fact, in agreement with this interpretation, one finds that,
typically, simple algorithms are able to solve the reduced problem. A possible
approach is to run BP guided decimation. An even simpler alternative is to apply
a simple local search algorithms, like Walksat or simulated annealing.
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The pseudocode for this algorithm is as follows.

SP-Guided Decimation (Formula F , SP parameter ε, tmax,
WalkSAT parameters f , p)

1 : Set U = ∅;
2 : Repeat until FAIL or U = V :
3 : Call SP(F , ε, tmax). If it does not converge, FAIL;
4 : For each i ∈ V \ U compute the bias πi;
5 : Let j ∈ V \ U have the largest value of |πi|;
6 : If |πj | ≤ 2Kε call WalkSAT(F , f, p);
7 : Else fix xj according to the sign of πj ,

and define F as the new formula obtained after fixing xj ;
8 : End-Repeat;
9 : Return the current assignment;

SP (Formula F , Accuracy ε, Iterations tmax )
1 : Initialize SP messages to i.i.d. random variables;
2 : For t ∈ {0, . . . , tmax}
3 : For each (i, a) ∈ E

4 : Compute the new value of Q̂ai using Eq. (20.10)
5 : For each (i, a) ∈ E
6 : Compute the new value of Qai using Eqs. (20.11-20.13)
7 : Let ∆ be the maximum difference with previous iteration;
8 : If ∆ < ε return current messages;
9 : End-For;
10 : Return ‘Not Converged’;

The WalkSAT pseudocode was given in Sec. 10.2.3.
In Fig. 20.6 we plot the empirical success probability of SP-Guided Decima-

tion for random 3-SAT and 4-SAT formulae as a function of the clause density
α. A careful study suggests that the algorithm finds a satisfying assignment with
high probability when α " 4.252 (for K = 3) and α " 9.6 (for K = 4). These
values are slightly smaller than the conjectured locations of the SAT-UNSAT
threshold αs(3) ≈ 4.2667 and αs(4) ≈ 9.931.

Apart from the SP routine (that builds upon the statistical mechanics in-
sight) the above algorithm is quite naive and could be improved in a number of
directions. One possibility is to allow the algorithm to backtrack, i.e. to release
some variables that had been fixed at a previous stage of the decimation. Fur-
ther, we did not use at any step the information provided by the free-entropy
Fe(y = ∞) that can be computed at little extra cost. Since this gives an estimate
of the logarithm of the number solutions clusters, it can also be reasonable to
make choices that maximize the value of Fe in the resulting formula.
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Fig. 20.7. Performance of BP-inspired decimation and SP-inspired decimation
on 3-SAT (left plot) and 4-SAT (right plot) problems. Probability of finding
a SAT assignment versus clause density, averaged over 100 instances with
N = 5 · 103 variables. The SP based algorithm (dotted line) performs better
than the BP based one (full line). The vertical lines are the SAT-UNSAT
thresholds.

As can be deduced from Fig. 20.7, SP-Guided Decimation outperforms BP-
Guided Decimation. Empirically this algorithm, or small variations of it, provide
the most efficient procedure for solving large random K-SAT formulae close to
the SAT-UNSAT threshold. Furthermore, it has extremely low complexity. Each
SP iteration requires O(N) operations, which yields O(Ntmax) operations per SP
call. In the implementation outlined above this implies a O(N2tmax) complexity.
This can however be reduced to O(Ntmax) by noticing that fixing a single variable
does not affect the SP messages significantly. As a consequence, SP can be called
every Nδ decimation steps for some small δ. Finally, the number of iterations
required for convergence seem to grow very slowly with N , if it does at all. One
should probably think of tmax as a big constant or tmax = O(log N)

In order to get a better understanding of how SP-guided decimation works, it
is useful to monitor the evolution of the energetic complexity curve Σe(ε) while
decimating. When SP iteration has converged on a given instance, one can use
(20.21) to compute the free-entropy, and by a Legendre transform the curve
Σe(ε).

In Fig. 20.8 we consider a run of SP-Guided Decimation on one random 3-
SAT formula with N = 104 at α = 4.2. the complexity curve of the residual
formula (NΣe(ε) versus the number of violated clauses Nε) is plotted every 1000
decimation steps. One notices two main effects: (1) The zero-energy complexity
NΣe(0) decreases, showing that some clusters of solutions are lost along the
decimation; (2) The number of violated clauses in the most numerous metastable
clusters, the so-called ‘threshold energy’, decreases as well31, implying that the

31Because of the instability of the 1RSB solution at large energies (see Chapter 22), the
threshold energies obtained within the 1RSB approach are not exact. However one expects the
actual behavior to be quantitatively close to the 1RSB description.
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Fig. 20.8. Decimation process: The complexity versus energy density (1/N
times the number of violated clauses) measured on a single instance of ran-
dom 3-SAT with N = 10000 and α = 4.2 (top curve), and on the decimated
instances obtained after fixing 1000, 2000, 3000 variables with the survey in-
spired decimation procedure (from top to bottom). For comparison, the inset
shows the same complexity versus total energy after fixing to arbitrary values
1000, 2000, 3000 randomly chosen variables

problem becomes simpler: the true solutions are less and less hidden among
metastable minima.

The important point is that the effect (2) is much more pronounced than
(1). After fixing about half of the variables, the threshold energy vanishes. SP
converges to the trivial fixed point, the resulting instance becomes ‘simple,’ and
is solved easily by Walksat.

20.3 Some ideas on the full phase diagram

20.3.1 Entropy of clusters

The energetic 1RSB cavity method has given two important results: on one
hand, a method to locate the SAT-UNSAT transition threshold αs, which is
conjectured to be exact, on the other, a powerful message passing algorithm: SP.
These results were obtained at a cost: we completely forgot about the size of the
clusters of SAT assignments, their ‘internal entropy’.

In order to get a finer understanding of geometry of the set of solutions in
the SAT phase, we need to get back to the uniform measure over SAT assign-
ments of (20.1), and use the 1RSB method of Sec. 19.2. Our task is in principle
straightforward: we need to estimate the 1RSB free entropy F(x), and perform
the Legendre transform (19.8) in order to get the complexity function Σ(φ).
Recall that Σ(φ) is the exponential growth rate of the number of clusters with
free-entropy Nφ (in the present case, since we restrict to SAT configurations,
the free-entropy of a cluster is equal to its entropy).
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Fig. 20.9. 1RSB analysis of random 4-SAT. Left: Complexity versus internal
entropy density of clusters, for α = 9.3, 9.45, 9.6, 9.7, 9.8, 9.9 (from top to
bottom). When sampling uniformly SAT configurations, one finds either con-
figurations in an exponentially large number of clusters (dot on the curve
α = 9.45, which is the point where dΣ/dφ = −1), or a condensed phase
where the measure is dominated by a few clusters (squares on the curves
with α ≥ 9.6). Right: Complexity Σ(x) and free-entropy density F(x) at a
few key values of x: x = 0 corresponds to the maximum of Σ(φ), x = 1 to
the point with dΣ/dφ = −1, and x = x∗ to Σ(φ) = 0. The dynamical tran-
sition is at αd ≈ 9.38, the condensation transition at αc ≈ 9.547, and the
SAT-UNSAT transition at αs ≈ 9.931.

This is a rather demanding task from the numerical point of view. Let us un-
derstand why: each BP message is parameterized by one real number in [0, 1], as
we saw in (20.3). A 1RSB message characterizes the distribution of this number,
so it is a pdf on [0, 1]. One such distribution is associated to each directed edge
of the factor graph. For the study of the phase diagram, one needs to perform
a statistical analysis of the 1RSB messages. Within the population dynamics
approach this means that we must use a (large) population of distribution func-
tions. For each value of x, the algorithm must be run for a large enough number
of iterations to estimate F(x). This is at the limit of what can be done numeri-
cally. Fortunately it can be complemented by two simpler computations: the SP
approach which gives the results corresponding to x = 0, and the study of the
x = 1 case using the simplification described in Sec. 19.4.

20.3.2 The condensation transition for K ≥ 4

We shall not provide any technical detail of these computations, but focus on
the main results using K = 4-SAT as a running example. As shown by Fig. 20.9,
this system displays the full scenario of phase transitions explained in Sec. 19.6.
Upon increasing the clause density α, one finds first a RS phase for α < αd, then
a d1RSB phase with exponentially many relevant states for αd < α < αc, then a
s1RSB phase with condensation of the measure on a few states, for αc < α < αs.
The system becomes UNSAT for α > αs.

Fig. 20.9 shows the evolution of the complexity versus internal entropy density
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of the clusters when α increases (note that increasing α plays the same role as
decreasing the temperature in the general scenario sketched in Fig. 19.6). For a
given α, almost all clusters have an internal entropy density φ0 corresponding to
the maximum of Σ(φ). The complexity at the maximum, Σ(φ0) = F(x = 0), is
equal to the complexity at zero energy density that we found with the energetic
1RSB cavity method. When sampling SAT configurations uniformly, almost all
of them are found in clusters of internal entropy density φ1 such that Σ(φ) + φ
is maximum, conditioned to the fact that Σ(φ) ≥ 0. In the d1RSB phase one
has Σ(φ1) > 0, in the s1RSB one has Σ(φ1) = 0. The condensation point αc can
therefore be found through a direct (and more precise) study at x = 1. Indeed it
is identified as the value of clause density such that the two equations: Σ(φ) = 0,
dΣ/dφ = −1 admit a solution.

Exercise 20.8 Using the Legendre transform 19.8, show that this condensa-
tion point αc is the one where the 1RSB free-entropy function F(x) satisfies
F(1) − F′(1) = 0 (where ′ means derivative with respect to x). As we saw in
Sec. 19.4, the value of F(1) is equal to the RS free-entropy. As for the value
of the internal entropy F′(1), it can also be obtained explicitly from the x = 1
formalism. Writing down the full x = 1 formalism for random satisfiability,
including this computation of F′(1), is an interesting (non-trivial) exercise.

The dynamical transition point αd is defined as the smallest value of α such
that there exists a non-trivial solution to the 1RSB equation at x = 1 (in practice
it is best studied using the point-to-set correlation which will be described in
Ch. 22). Notice from Fig. 20.9 that there can exist clusters of SAT assignments
even at α < αd: for α = 4.3, there exists a branch of Σ(φ), around the point φ0

where it is maximum, but this branch disappears, if one increases φ, before one
can find a point where dΣ/dφ = −1. The interpretation of this regime is that
an exponentially small fraction of the solutions are grouped in well separated
clusters. The vast majority of the solutions belongs instead to a single, well
connected ‘replica symmetric’ cluster. As we saw in the energetic cavity method,
the first occurrence of the clusters around φ0 occurs at the value αd,SP which is
around 8.3 for 4-SAT.

The same scenario has been found in the studies of random K-SAT with
K = 5, 6, and it is expected to hold for all K ≥ 4. The situation is somewhat
different at K = 3, as the condensation point αc coincides with αd: the 1RSB
phase is always condensed. Table 20.3.2 summarizes the values of the thresholds.

20.4 An exercise: coloring random graphs

Recall that a proper q-coloring of a graph G = (V , E) is an assignment of colors
{1, . . . , q} to the vertices of q in such a way that no edge has the two adjacent
vertices of the same color. Hereafter we shall refer to a proper q-coloring as
to a ‘coloring’ of G. Colorings of a random graph can be studied following the
approach just described for satisfiability, and reveal a strikingly similar behavior.
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K αd αc αs

3 3.86 3.86 4.2667
4 9.38 9.547 9.931
5 19.16 20.80 21.117
6 36.53 43.08 43.37

Table 20.2 Predictions of the 1RSB cavity method for the non-trivial SP, dy-
namical, condensation, and SAT-UNSAT threshold of random K-satisfiability

Here we shall just present some key steps of this analysis: this section can be
seen as a long exercise in applying the cavity method. We shall focus on the
case of random regular graphs, which is technically simpler. In particular, many
results can be derived without resorting to a numerical resolution of the cavity
equations. The reader is encouraged to work out the many details which are left
aside.

We shall adopt the following description of the problem: to each vertex i ∈ V
of a graph G = (V , E), associate a variable xi ∈ {1, · · · , q}. The energy of a color
assignment x = {x1, · · · , xN} is given by the number of edges whose vertices
have the same color:

E(x) =
∑

(ij)∈E

I(xi = xj) . (20.27)

If the graph is colorable, one is also interested in the uniform measure over proper
colorings:

µ(x) =
1

Z
I(E(x) = 0) =

1

Z

∏

(ij)∈E

I(xi .= xj) , (20.28)

where Z is the number of proper colorings of G. The factor graph associated
with µ( · ) is easily constructed. Associate one variable node to each vertex of
i ∈ G, one function node to each edge (ij) ∈ C, and connect this function it to
the variable nodes corresponding to i and j. The probability distribution µ(x) is
therefore a pairwise graphical model.

We will assume that G is a random regular graphs of degree c. Equivalently,
the corresponding factor graph is distributed according to the DN (Λ, P ) ensem-
ble, with Λ(x) = xc and P (x) = x2. The important technical simplification is
that, for any fixed r, the radius-r neighborhood around a random a vertex i is
with high probability a tree of degree c, i.e. it is non-random. In other words,
the neighborhood of most of the nodes is the same.

Let us start with the RS analysis of the graphical model (20.28). As we saw
in Sec. 14.2.5, we can get rid of function-to-variable node messages, and work
with variable-to-function messages νi→j(xi). The BP equations read

νi→j(x) ∼=
∏

k∈∂i\j

(1 − νk→i(x)) . (20.29)
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Because of the graph regularity, there exists solutions of these equations such that
messages take the same value on all edges. In particular, Eq. (20.29) admits the
solution νi→j( · ) = νunif( · ), where νunif( · ) is the uniform messages: νunif(x) =
1/q for x ∈ {1, . . . , q}. The corresponding free-entropy density (equal here to the
entropy density) is

fRS = log q +
c

2
log

(
1 − 1

q

)
. (20.30)

It can be shown that this coincides with the ‘annealed’ estimate N−1 log EZ. It
decreases with the degree c of the graph and becomes negative for c larger than
cUB(q) ≡ 2 log q/ log(q/(q − 1)), similarly to what we saw in Fig. 20.2. Markov
inequality implies that, with high probability, a random c-regular graph does
not admit a proper q-coloring for c > cUB(q). Further, the RS solution is surely
incorrect for c > cUB(q).

The stability analysis of this solution shows that the spin glass susceptibility
diverges as c ↑ cst(q), with cst(q) = q2 − 2q + 2. For q ≥ 4, cst(q) > cUB(q).

In order to correct the above inconsistencies, one has to resort to the energetic
1RSB approach. Let us focus onto y →∞ limit (equivalently, on the zero energy
limit). In this limit one obtains the SPequations. This can be written in terms
of messages Qi→j( · ) that have the following interpretation

Qi→j(x) = probability that, in absence of (i, j), xi is forced to value x,

Qi→j(∗) = probability that, in absence of (i, j), xi is not forced.

Recall that ‘probability’ is interpreted here with respect to a random Bethe state.
An SP equation express the message Qi→j( · ) in terms of the c− 1 incoming

messages Qk→i( · ) with k ∈ ∂i \ j. To keep notations simple, we fix an edge
i → j and denote it by 0, while we use 1 . . . , c− 1 to label the edges k → i with
k ∈ ∂i \ j. Then, for any x in {1, · · · , q}, one has:

Q0(x) =

∑
(x1...xc−1)∈N (x) Q1(r1)Q2(x2) · · ·Qc−1(xc−1)∑

(x1...xc−1)∈D Q1(r1)Q2(x2) · · ·Qc−1(xc−1)
. (20.31)

where:

• D is the set of tuples (x1, · · · , xc−1) ∈ {∗, 1, · · · , q}n such that there ex-
ist z ∈ {1, · · · , q} with z .= x1, . . . , xc−1. According to the interpretation
above, this means that there is no contradiction among the warmings to i.

• N (x) is the set of tuples (x1, · · · , xc−1) ∈ D such that, for any z .= x there
exists k ∈ {1, . . . , c − 1} such that xk = z. In other words, x is the only
color for vertex i that is compatible with the warnings.

Q0(∗) is determined by the normalization condition Q0(∗) +
∑

x Q0(x) = 1.
On a random regular graph of degree c, these equations admit a solution

with Qi→j( · ) = Q( · ) independent of the edge (i, j). Furthermore, if we assume
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Fig. 20.10. Results of the 1RSB analysis of proper q-colorings of random regular
graphs. The table gives the thresholds: appearance of non-trivial SP solutions
cd,SP, dynamical cd, condensation cc, colorable/uncolorable cs. The figure
shows the clusters complexity as a function of their internal entropy density.
Here q = 6 and the graph degrees are c = 17 (RS), c = 18 (d1RSB), c = 19
(s1RSB) and c = 20 (uncolorable). The circles denote the points of slope −1
on the complexity curves.

this solution to be symmetric under permutation of colors, the corresponding
message can by parameterized by a single number a ∈ [0, 1/q]:

Q(x) = a for x ∈ {1, · · · , q} ,

Q(∗) = 1 − qa . (20.32)

Plugging this Ansatz in Eq. (20.31), we get:

a =

∑q−1
r=0 (−1)r

(
q−1

r

)
(1 − (r + 1)a)c−1

∑q−1
r=0 (−1)r

( q
r+1

)
(1 − (r + 1)a)c−1

. (20.33)

The complexity Σe(ε = 0) yielding the exponential growth rate of the number of
clusters of proper colorings, is given by Σe(e = 0) = limy→∞ Fe(y). One finds:

Σe(ε = 0; c, q) = log

(
q−1∑

r=0

(−1)r

(
q

r + 1

)
(1 − (r + 1)a)c

)
− c

2
log(1 − qa2) .

(20.34)

Given the number of colors q, one can study what happens when the degree c
grows (which amounts to increasing the density of constraints). The situation is
very similar to the one found in satisfiability. For c ≥ cd,SP(q), there exists a pair
of non-trivial solution to Eq.(20.33) with a > 0. The complexity Σe(e = 0) can
be computed from (20.34) (evaluated on the largest solution a of Eq. (20.33)),
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and is decrasing in c. It becomes negative for c ≥ cs(q). The degree cs(q) is thus
the 1RSB prediction for the SAT-UNSAT threshold.

When c < cs(q), the uniform measure over valid colorings can be studied,
and in particular one can characterize the distribution of entropy of clusters.
Fig. 20.10 shows the complexity as function of internal entropy density of clusters.
The similarity to Fig. 20.9 is obvious. One can define two particularly relevant
thresholds: cd is the smallest degree such that the 1RSB equations at x = 1
have a non-trivial solution, and cc is the smallest degree such that the uniform
measure over proper colorings is ‘condensed’. The table in Fig. 20.10 gives some
examples of these thresholds. An asymptotic analysis for large q shows that:

cd,SP = q(log q + log log q + 1 − log 2 + o(1)) (20.35)

cd = q(log q + log log q + O(1)) (20.36)

cc = 2q log q − log q − 2 log 2 + o(1) (20.37)

cs = 2q log q − log q − 1 + o(1) (20.38)

These predictions can be rephrased into a statement on the chromatic num-
ber, i.e. the minimal number of colors needed to color a graph. Because of the
heuristic nature of the approach, we formulate it as a conjecture:

Conjecture 20.1 With high probability, the chromatic number of a random reg-
ular graph with N vertices and degree c ≥ 4 is equal to χchrom(c), where

χchrom(c) = max{q : Σe(ε = 0; c, q) > 0} . (20.39)

Here Σe(ε = 0; c, q) is given by Eq. (20.34) with a the largest solution of (20.33)
in the interval [0, 1/q].

Using the numbers in table 20.10, this conjecture predicts for instance that
χchrom(c) = 3 for c = 4, 5, χchrom(c) = 4 for c = 6, 7, 8, 9, and χchrom(c) = 5
for 10 ≤ c ≤ 14.

On the side of rigorous results, a clever use of the first and second moment
methods allows to prove the following result:

Theorem 20.2 With high probability, the chromatic number of a random regular
graph with N vertices and degree c is either k or k + 1 or k + 2, where k is the
smallest integer such that c < 2k log k. Furthermore, if c > (2k − 1) log k, then
with high probability the chromatic number is either k or k + 1.

One can check explicitely that the results of the 1RSB cavity conjecture agree
with this theorem, that proves the correct leading behavior at large c.

While this presentation was focused on random regular graphs, a large class
of random graph ensembles can be analyzed along the same lines.

Notes

Random K-satisfiability was first analyzed using the replica symmetric cavity
method in (Monasson and Zecchina, 1996; Monasson and Zecchina, 1996). The
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resulting equations are equivalent to a density evolution analysis of belief propa-
gation. BP was used as an algorithm for finding SAT assignments in (Pumphrey,
2001). This study concluded that BP is ineffective in solving satisfiability prob-
lems, mainly because it assigned variables in a one-shot fashion, unlike in deci-
mation.

The 1RSB cavity method was applied to random satisfiability in (Mézard,
Parisi and Zecchina, 2003; Mézard and Zecchina, 2002), where the value of αc was
computed for 3-SAT. This approach was applied to larger K in (Mertens, Mézard
and Zecchina, 2006), which also derived the large K asymptotics. The SPY and
SP equations for satisfiability were first written in (Mézard and Zecchina, 2002),
where SP-inspired decimation was introduced (Fig. 20.8 is borrowed from this
paper). A more algorithmic presentation of SP was then developed in (Braun-
stein, Mézard and Zecchina, 2005), together with an optimized source code for
SP and decimation (Braunstein, Mézard and Zecchina, 2004). The idea of back-
tracking was suggested in (Parisi, 2003), but its performances have not been
systematically studied yet.

The condensation phenomenon was discussed in (Krzakala, Montanari, Ricci-
Tersenghi, Semerjian and Zdeborova, 2007), in relation with studies of the en-
tropic complexity in colouring (Mézard, Palassini and Rivoire, 2005b; Krzakala
and Zdeborova, 2007) and in satisfiability (Montanari, Ricci-Tersenghi and Se-
merjian, 2008).

The analysis in this chapter is heuristic, and is waiting for a rigorous proof.
Let us point out that one important aspect of the whole scenario has been estab-
lished rigorously for K ≥ 8: it has been shown that in some range of clause density
below αs(K), the SAT assignments are grouped into exponentially many clusters,
well separated from each other (Mézard, Mora and Zecchina, 2005a; Achlioptas
and Ricci-Tersenghi, 2006; Daudé, Mézard, Mora and Zecchina, 2008). This re-
sult can be obtained by a study of ‘x-satisfiability’ problem, that requires to
determine whether a formula has two SAT assignments differing in xN vari-
ables. Bounds on the x-satisfiability threshold can be obtained through the first
and second moment methods.

The coloring problem has been first studied with the energetic 1RSB cav-
ity method by (Mulet, Pagnani, Weigt and Zecchina, 2002; Braunstein, Mulet,
Pagnani, Weigt and Zecchina, 2003): these papers contain the derivation of the
SAT/UNSAT threshold and the SP equations. A detailed study of the entropy of
clusters, and the computation of the other thresholds, has carried out in (Krza-
kala and Zdeborova, 2007). These papers also study the case of Erdös Rényi
graphs. Theorem 20.2 was proven in (Achlioptas and Moore, 2004), and its ana-
logue for Erdös Rényi graphs in (Achlioptas and Naor, 2005).
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GLASSY STATES IN CODING THEORY

In Ch. 15 we studied the problem of decoding random LDPC codes, and found
two phase transitions, that characterize the code performances in the large block-
length limit. Consider, for instance, communication over a binary symmetric
channel with crossover probability p. Under belief propagation decoding, the bit
error rate vanishes in the large blocklength limit below a first threshold pd and
remains strictly positive for p > pd. On the other hand, the minimal bit error
rate achievable with the same ensemble (i.e. the bit error rate under symbol
MAP decoding) vanishes up to a larger noise level pc and is bounded away from
0 for p > pc.

In principle, one should expect each decoding algorithm to have a different
threshold. This suggests not to attach too much importance to the BP threshold
pd. On the contrary, we will see in this chapter that pd is, in some sense, a
‘universal’ characteristics of the code ensemble: above pd, the decoding problem
is plagued by an exponential number of metastable states (Bethe measures). In
other words the phase transition which takes place at pd is not only algorithmic,
it is a structural phase transition. This transition turns out to be a dynamical
1RSB glass transition and this suggests that pd is the largest possible threshold
for a large class of local decoding algorithms.

We have already seen in the last section of Ch. 15 that the two thresholds
pd and pc are closely related and can both be computed formally within the RS
cavity method, i.e. in terms of the density evolution fixed point. The analysis
below will provide a detailed explanation of this connection in terms of the glass
transition studied in Ch.19.

In the next section we start by a numerical investigation of the role of
metastable states in decoding. Sec. 21.2 considers the particularly instructive
case of the binary erasure channel, where the glassy states can be analyzed rel-
atively easily using the energetic 1RSB cavity method. The analysis of general
memoryless channels is described in Sec. 21.3. Finally, Sec. 21.4 draws the con-
nection between metastable states, which are a main object of study in this
chapter, and trapping sets (subgraphs of the original factor graph that are often
regarded as responsible for coding failures).

21.1 Local search algorithms and metastable states

The codewords of an LDPC code are solutions of a constraint satisfaction prob-
lem. The variables are the bits of a word x = (x1, x2, . . . , xN ), with xi ∈ {0, 1},
and the constraints are the parity check equations, i.e. a set of linear equations

500
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mod 2. This is analogous to the XORSAT problem considered in Ch. 18, although
the ensembles of linear systems used in coding are different.

An important difference with XORSAT is that we are looking for a specific
solution of the linear system, namely the transmitted codeword. The received
message y gives us a hint of where to look for this solution. For notational
simplicity, we shall assume that the output alphabet Y is discrete, and the chan-
nel is a binary input memoryless output symmetric (BMS- see Ch. 15) channel
with transition probability32 Q(y|x). The probability that x is the transmitted
codeword, given the received message y, is given by the usual formula (15.1)
P(x|y) = µy(x) where:

µy(x) ∼=
N∏

i=1

Q(yi|xi)
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) . (21.1)

It is natural to associate an optimization problem to the code. Define the
energy E(x) of a word x (also called a ‘configuration’) as twice the number of
parity check equations violated by x (the factor 2 is introduced for future simpli-
fications). Codewords coincide with the global minima of this energy function,
with zero energy.

We already know that decoding consist in computing marginals of the distri-
bution µy(x) (symbol MAP decoding), or finding its argmax (word MAP decod-
ing). In the following we shall discuss two closely related problems: (i) optimizing
the energy function E(x) within a subset of the configuration space defined by
the received word and the channel properties; (ii) sampling from a ‘tilted’ Boltz-
mann distribution associated to E(x).

21.1.1 Decoding through constrained optimization

Let us start by considering the word-MAP decoding problem. We shall ex-
ploit our knowledge of the BMS channel. Conditional on the received word
y = (y1, y2, . . . , yN), the log-likelihood for x to be the channel input is:

Ly(x) =
N∑

i=1

logQ(yi|xi) . (21.2)

We shall later use the knowledge that the input word was a codeword, but Ly(x)

is well defined for any x ∈ {0, 1}N , regardless of whether it is a codeword or not,
so let us first characterize its properties.

Assume without loss of generality that the codeword 0 had been transmitted.
By the law of large numbers, for large N the log-likelihood of this codeword is
close to −Nh, where h is the channel entropy: h = −

∑
y Q(y|0) logQ(y|0). The

probability of an order-N deviation away from this value is exponentially small

32Throughout this chapter we adopt a different notation for the channel transition probability
than in the rest of the book, in order to avoid confusion with 1RSB messages.
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in N . This suggests to look for the transmitted codeword among those x such
that Ly(x) is close to h.

The corresponding ‘typical pairs’ decoding strategy goes as follows: Given
the channel output y, look for a codeword x ∈ C, such that Ly(x) ≥ −N(h + δ).
We shall refer to this condition as the ‘distance constraint’. For instance, in
the case of the BSC channel, it amounts to constraining the Hamming distance
between the codeword x and the received codeword y to be small enough. If
exactly one codeword satisfies the distance constraint, return it. If there is no
such codeword, or if there are several of them, declare an error. Here δ > 0 is
a parameter of the algorithm, which should be thought of as going to 0 after
N →∞.

Exercise 21.1 Show that the block error probability of typical pairs decoding
is independent of the transmitted codeword.
[Hint: use the linear structure of LDPC codes, and the symmetry property of
the BMS channel.]

Exercise 21.2 This exercise aims at convincing the reader that typical pairs
decoding is ‘essentially’ equivalent to maximum likelihood (ML) decoding.

(a) Show that the probability that no codeword exists with Ly(x) ∈ [−N(h+
δ),−N(h− δ)] is exponentially small in N .
[Hint: apply Sanov Theorem, cf. Sec. 4.2, to the type of the received
codeword.]

(b) Upper bound the probability that ML succeeds and typical pairs decoding
fails in terms of the probability that there exists an incorrect codeword x
with Ly(x) ≥ −N(h+ δ), but no incorrect codeword Ly(x) ≥ −N(h− δ).

(c) Estimate the last probability for Shannon’s random code ensemble. Show
in particular that it is exponentially small for all noise levels strictly
smaller than the MAP threshold and δ small enough.

Since codewords are global minima of the energy function E(x) we can
rephrase typical pairs decoding as an optimization problem:

Minimize E(x) subject to Ly(x) ≥ −N(h + δ) . (21.3)

Neglecting exponentially rare events, we know that there always exists at least
one solution with cost E(x) = 0, corresponding to the transmitted codeword.
Therefore, typical pairs decoding is successful if and only if the minimum is non-
degenerate. This happens with high probability for p < pc. On the contrary,
for p > pc, the optimization admits other minima with zero cost (incorrect
codewords). We already explored this phenomenon in chapters 11 and 15, and
we shall discuss it further below. For p > pc there exists an exponential number of
codewords whose likelihood is larger or equal to the likelihood of the transmitted
one.
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Similarly to what we have seen in other optimization problems (such as MAX-
XORSAT or MAX-SAT), generically there exists an intermediate regime pd <
p < pc, which is characterized by an exponentially large number of metastable
states. For these values of p, the global minimum of E(x) is still the transmitted
codeword, but is ‘hidden’ by the proliferation of deep local minima. Remarkably,
the threshold for the appearence of an exponential number of metastable states
coincides with the BP threshold pd. Thus, for p ∈]pd, pc[ MAP decoding would
be successful, but message passing decoding fails. In fact no practical algorithm
which succeeds in this regime is known. A cartoon of this geometrical picture is
presented in Fig. 21.1.

At this point, the reader might be puzzled by the observation that finding
configurations with E(x) = 0 is per se a polynomial task. Indeed it amounts
to solving a linear system modulo 2, and can be done by Gauss elimination.
However, the problem (21.3) involves the condition Ly(x) ≥ −N(h + δ) which is
not a linear constraint modulo 2. If one resorts to local-search based decoding
algorithms, the proliferation of metastable states for p > pd can block the algo-
rithms. We shall discuss this phenomenon on two local search strategies: ∆-local
search and simulated annealing.

21.1.2 ∆ local-search decoding

A simple local search algorithm consists in starting from a word x(0) such that
Ly(x(0)) ≥ −N(h + δ) and then recursively constructing x(t + 1) by optimizing
the energy function within a radius ∆ neighborhood around x(t):

∆ local search (channel output y, search size ∆, likelihood resolution δ)
1: Find x(0) such that Ly(x(0)) ≥ −N(h + δ) ;
2: for t = 0, . . . tmax − 1:
3: Choose a uniformly random connected set U ⊂ {1, . . . , N}

of variable nodes in the factor graph with |U | = ∆;
4: Find the configuration x′ that minimizes the energy subject

to x′
j = xj for all j .∈ U ;

5: If Ly(x′) ≥ −N(h + δ), set x(t + 1) = x′;
otherwise, set x(t + 1) = x(t);

6: end;
7: return x(tmax).

(Recall that a set of variable nodes U is ‘connected’ if, for any i, j ∈ U , there
exists a path in the factor graph connecting i to j, such that all variable nodes
along the path are in U as well.)

Exercise 21.3 A possible implementation of step 1 consists in setting xi(0) =
argmaxx Q(yi|x). Show that this choice meets the likelihood constraint.
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Fig. 21.1. Three possible cartoon landscapes for the energy function E(x) (the
number of violated checks), plotted in the space of all configurations x with
Ly(x) ≥ N(h − δ). On the left: the energy as a unique global minimum
with E(x) = 0 (the transmitted codeword) and no (deep) local minima. Cen-
ter: many deep local minima appear although the global minimum remains
non-degenerate. Right: More than one codeword is compatible with the like-
lihood constraint, and the global minimum E(x) = 0 becomes degenerate.

If the factor graph has bounded degree (which is the case with LDPC en-
sembles), and ∆ is bounded as well, each execution of the cycle above implies
a bounded number of operations. As a consequence if we let tmax = O(N), the
algorithm has linear complexity. A computationally heavier variant consists in
choosing U at step 3 greedily. This means going over all such subsets and then
taking the one that maximizes the decrease in energy |E(x(t + 1))− E(x(t))|.

Obviously the energy E(x(t)) of the configuration produced after t iterations
is a non-increasing function of t. If it vanishes at some time t ≤ tmax, then the
algorithm implements a typical pairs decoder. Ideally, one would like a charac-
terization of the noise levels and code ensembles such that E(x(tmax)) = 0 with
high probability.

The case ∆ = 1 was analyzed in Ch. 11, under the name of ‘bit-flipping’
algorithm, for communicating over the channel BSC(p). We saw that there exists
a threshold noise level p1 such that, if p < p1 the algorithm returns with high
probability the transmitted codeword. It is reasonable to think that the algorithm
will be unsuccessful with high probability for p > p1.

Analogously, one can define thresholds p∆ for each value of ∆. Determining
these thresholds analytically is an extremely challenging problem.

One line of approach could consist in first studying ∆-stable configura-
tions. We say that a configuration x is ∆-stable if, for any configuration x′ such
that Ly(x′) ≥ −N(h + δ) and d(x, x′) ≤ ∆, E(x′) ≥ E(x).

Exercise 21.4 Show that, if no ∆-stable configurations exists, then the greedy
version of the algorithm will find a codeword after at most M steps (M being
the number or parity checks).

While this exercise hints at a connection between the energy landscape and
the difficulty of decoding, one should be aware that the problem of determining
p∆ cannot be reduced to determining whether ∆-stable states exist or to estimate
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their number. The algorithm indeed fails if, after a number t of iterations, the
distribution of x(t) is (mostly) supported in the basin of attraction of ∆-stable
states. The key difficulty is of course to characterize the distribution of x(t).

21.1.3 Decoding through simulated annealing

A more detailed understanding of the role of metastable configurations in the
decoding problem can be obtained through the analysis of the MCMC decoding
procedure that we discussed in Sec. 13.2.1. We thus soften the parity check
constraints through the introduction of an inverse temperature β = 1/T (this
should not be confused with the temperature introduced in Ch. 6, which instead
multiplied the codewords log-likelihood). Given the received word y, we define
the following distribution over the transmitted message x, cf. Eq. (13.10):

µy,β(x) ≡ 1

Z(β)
exp{−βE(x)}

N∏

i=1

Q(yi|xi) . (21.4)

This is the ‘tilted Boltzmann form’ that we alluded to before. In the low-
temperature limit it reduces to the familiar a posteriori distribution which we
would like to sample: µy,β=∞(x) is supported on the codewords, and gives to each
of them a weight proportional to its likelihood. At infinite temperature, β = 0,
the distribution factorizes over the bits xi. More precisely, under µy,β=0(x), the
bits xi are independent random variables with marginal Q(yi|xi)/(Q(yi|0) +
Q(yi|1)). Sampling from this measure is very easy.

For β ∈]0,∞[, µy,β( · ) can be regarded as a distribution of possible channel
inputs for a code with ‘soft’ parity check constraints. Notice that, unlike the
β = ∞ case, it depends in general on the actual parity check matrix and not
just on the codebook C. This is actually a good feature of the tilted measure:
performances of practical algorithms do indeed depend upon the parity check
matrix representation of C. It is therefore necessary to take it into account.

We shall sample from µy,β( · ) using Glauber dynamics, cf. Sec. 13.2.1. We
have already seen in that section that decoding through sampling at a fixed β
fails above a certain noise level. Let us now try to improve on it using a simulated
annealing procedure in which β is increased gradually according to an annealing
schedule β(t), with β(0) = 0. This decoder uses as input the received word y,
the annealing schedule, and some maximal numbers of iterations tmax, n:

Simulated Annealing Decoder ( y, {β(t)}, tmax, n )
1: Generate x∗(0) form µy,0( · );
2: for t = 0, . . . tmax − 1:
3: Set x(0; t) = x∗(t− 1);
4: Let x(j; t), j ∈ {1, . . . , n} be the configurations produced by

n successive Glauber updates at β = β(t);
5: Set x∗(t) = x(n; t);
6: end
7: return x(tmax).
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Fig. 21.2. Decoding random codes from the (5, 6) LDPC ensemble through sim-
ulated annealing. Here we consider blocklength N = 12000 and transmission
over the BSC(p) with p = 0.12 (left) and 0.25 (right). The system is annealed
through tmax = 1200 temperature values equally spaced between T = 1.2 and
T = 0. At each temperature n = Nτ updates are executed. Statistical errors
are comparable with the size of jumps along the curves.

Its algorithmic complexity is proportional to the total number of Glauber
updates ntmax. If we want the algorithm to be efficient, this should grow linearly
or slightly super-linearly with N . The intuition is that the first (small β) steps
allow the Markov chain to equilibrate across the configuration space while, as β
gets larger, the sample concentrates onto (or near to) codewords. Hopefully at
each stage x∗(t) will be approximately distributed according to µy,β(t)( · ).

Figure 21.2 shows the result obtained by the simulated annealing decoder,
using random LDPC codes from the (5, 6) regular ensemble, used over the binary
symmetric channel at crossover probabilities p = 0.12 and 0.25 (for this ensemble,
pd ≈ 0.139 and pc ≈ 0.264). The annealing schedule is linear in the temperature,
namely β(t) = 1/T (t) with

T (t) = T (0)−
{
T (0)− T (tmax)

} ( t

tmax

)
, (21.5)

with T (0) = 1.2 and T (tmax) = 0. The performance of decoding can be evaluated
through the number of violated checks in the final configuration, which is half
E(x(tmax)). The figure shows the energy density averaged over 10 repetitions of
the decoding experiment (each time with a new code randomly chosen from the
ensemble), e(t) = 1

N 〈E(x(t))〉, versus the temperature T (t). As the number of
updates performed at each temperature increases, the number of violated checks
per variable seems to converge to a well defined limiting value, that depends on
t only through the corresponding temperature

1

N
〈E(x(t))〉 → eann(β(t)) . (21.6)

Further, E(x(t))/N seems to concentrate around its mean as N →∞.



LOCAL SEARCH ALGORITHMS AND METASTABLE STATES 507

At small p, the curve eann(β) quickly converges to 0 as β → ∞: a codeword
(the transmitted one) is found efficiently. In fact, already at β = 1, the numerical
result for eann(β) is indistinguishable from 0. We expect that eann(β) coincides
within numerical accuracy with the theoretical prediction for the equilibrium
average

eeq(β) ≡ 1

N
lim

N→∞
〈E(x)〉β . (21.7)

This agrees with the above observations since eeq(β) = O(e−10β) (the lowest
excitation over the ground state amounts to flipping a single bit, its energy is
equal to 10). The numerics thus suggest that x(tmax) is indeed approximately
distributed according to µy,β(t)( · ).

At large p, eann(β) has instead a non-vanishing β → ∞ limit: the annealing
algorithm does not find any codeword. The returned word x∗(tmax) typically
violates Θ(N) parity checks. On the other hand, in the equilibrated system at β =
∞, the energy vanishes by construction (we know that the transmitted codeword
satisfies all checks). Therefore the simulation has fallen out of equilibrium at
some finite β, thus yielding a distribution of x(tmax) which is very different from
µy,β=∞( · ). The data in Fig. 21.2 shows that the energy varies very slowly at low
temperatures, which confirms the fact that the system is out of equilibrium.

We shall argue below that this slowing down is in fact due to a dynamical
glass phase transition occuring at a well defined temperature Td = 1/βd. Below
this temperature, x(tmax) gets trapped with high probability into a pure state
corresponding to a deep local minimum of E(x) with positive energy, and never
reaches a global minimum of the energy (i.e. a codeword).

This is related to the ‘energy landscape’ picture discussed in the previous
section. Indeed, the success of the simulated annealing decoder for p ≤ pd can be
understood as follows. At small noise the ‘tilting’ factor

∏
i Q(yi|xi) effectively

selects a portion of the configuration space around the transmitted codeword
(more or less like the likelihood constraint above) and this portion is small enough
that there is no metastable state inside it. An interesting aspect of simulated
annealing decoding is that it can be analyzed on the basis of a purely static
calculation. Indeed for any β ≤ βd, the system is still in equilibrium and its
distribution is simply given by Eq. (21.4). Its study, and the determination of
βd, will be the object of the next sections.

Before moving to this analysis, let us make a last remark about simulated
annealing: for any finite β, the MCMC algorithm is able to equilibrate if it is
iterated a large number of times (a direct consequence of the fact that Glauber
dynamics is irreducible and aperiodic). This raises a paradox, as it seems to im-
ply that the annealing energy always coincide with the equilibrium one, and the
system never falls out of equilibrium during the annealing process. The conun-
drum is that, in the previous discussion we tacitly assumed that the number of
Monte Carlo steps cannot grow exponentially with the system size. To be more
precise, one can for instance define the annealing energy as
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eann(β) ≡ lim
tmax→∞

lim
N→∞

1

N
〈EN (x(tβ = <(1 − β(0)/β)tmax=))〉 , (21.8)

where we assumed β(tmax) = ∞ The important point is that the limit N → ∞
is taken before tmax →∞: in such a case simulated annealing can be trapped in
metastable states.

21.2 The binary erasure channel

If communication takes place over the binary erasure channel BEC(ε), the anal-
ysis of metastable states can be carried out in details by adopting the point of
view of constrained optimization introduced in Sec. 21.1.1.

Suppose that the all zero codeword x∗ = (0, · · · , 0) has been sent, and let
Let y ∈ {0, ∗}N be the channel output. We shall denote by U = U(y) the set of
erased bits. The log-likelihood for the word x to be the input can take two possible
values: Ly(x) = |U | log ε if xi = 0 for all i .∈ U , and Ly(x) = −∞ otherwise.
Of course the input codeword belongs to the first set: Ly(x∗) = |U | log ε. The
strategy of Sec. 21.1.1 reduces therefore to minimizing E(x) (i.e. minimizing the
number of violated parity checks) among all configurations x such that xi = 0
on all the non-erased positions.

When the noise ε is smaller than the MAP threshold, there is a unique min-
imum with energy 0, namely the transmitted codeword x∗. Our aim is to study
the possible existence of metastable states, using the energetic cavity method
of Sec. 19.5. This problem is closely related to XORSAT, whose analysis was
presented analysis in Ch. 18 and Ch. 19: Once all the non-erased bits have been
fixed to xi = 0, decoding amounts to solving a homogeneous system of linear
equations among the remaining bits. If one uses a code from the LDPCN (Λ, P )
ensemble, the degree profiles of the remaining nodes are Λ(x), R(x), where the
probability of a check node to have degree k, Rk, is given in terms of the original
Pk by:

Rk =
kmax∑

k′=k

Pk′

(
k′

k

)
εk(1 − ε)k′−k , (21.9)

and the corresponding edge perspective degree profile is given as usual by rk =
kRk/

∑
p pRp.

Exercise 21.5 Show that r(u) =
∑

k rkuk−1 = ρ(1 − ε(1 − u)).

Assuming as usual that the number of metastable states - solutions of min-
sum equations- of energy Ne grows like exp(NΣe(e)), we will use the 1RSB
energetic cavity method to compute the energetic complexity Σe(e). This can
be done using the SP(y) equations on the original factor graph. As our problem
involves only hard constraints and binary variables, we can use the simplified
formalism of Sec.19.5.3. Each min-sum message can take three possible values,
0 (the meaning of which is “take value 0”), 1 (“take value 1”) and ∗ (“you can
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take any value”). The SP(y)messages are distributions on these three values or,
equivalently, normalized triplets.

21.2.1 The energetic 1RSB equations

Let us now turn to the statistical analysis of these messages. We denote by
Q = (Q0, Q1, Q∗) the messages from variable to check, and Q̂ the messages from
check to variables. We first notice that, if a bit is not erased, then it sends a
sure 0 message Q = (1, 0, 0) to all its neighboring checks. This means that the
distribution of Q has a mass at least 1 − ε on sure 0 messages. We can write:

Q =

{
(1, 0, 0) with probability (1− ε) ,

Q̃ with probability ε .
(21.10)

The distributional equations of Q̃ and Q̂ can then be obtained exactly as in
Secs. 19.5 and 19.6.3.

Exercise 21.6 Show that the distributions of Q̃ and Q̂ satisfy the equations:

Q̃σ
d
= Fl,σ(Q̂1, · · · , Q̂l−1) (21.11)




Q̂0

Q̂1

Q̂∗



 d
=





1
2

∏k−1
i=1 (Q̃i

0 + Q̃i
1) + 1

2

∏k−1
i=1 (Q̃i

0 − Q̃i
1)

1
2

∏k−1
i=1 (Q̃i

0 + Q̃i
1)− 1

2

∏k−1
i=1 (Q̃i

0 − Q̃i
1)

1 −
∏k−1

i=1 (1 − Q̃∗,i)



 (21.12)

where we defined, for σ ∈ {0, 1, ∗}

Fl,σ(Q̂1, . . . , Q̂l−1) ≡ Zl,σ({Q̂a})
Zl,0({Q̂a}) + Zl,1({Q̂a}) + Zl,∗({Q̂a})

(21.13)

Zl,σ({Q̂a}) ≡
(σ)∑

Ω0,Ω1,Ω∗

e−y min(|Ω0|,|Ω1|)
∏

a∈Ω0

Q̂a
0

∏

a∈Ω1

Q̂a
1

∏

a∈Ω∗

Q̂a
∗ . (21.14)

Here we denoted by
∑(σ)

Ω0,Ω1,Ω∗
the sum over partitions of {1, · · · , l − 1} =

Ω0 ∪ Ω1 ∪ Ω∗ such that |Ω0| > |Ω1| (for the case σ = 0), |Ω0| = |Ω1| (for
σ = ∗), or |Ω0| < |Ω1| (for σ = 1). Furthermore, k, l, are random integers, with
distributions respectively rk and λl, the {Q̃i} are l − 1 i.i.d. copies of Q̃, and
{Q̂a} are k − 1 i.i.d. copies of Q̂.

Given a solution of the 1RSB equations, one can compute the Bethe free-
entropy density FRSB,e(Q, Q̂) of the auxiliary problem. Within the 1RSB cavity
method we estimate the free-entropy density of the auxiliary model using Bethe
approximation as: Fe(y) = 1

N FRSB,e(Q, Q̂). This gives access to the energetic
complexity function Σe(e) through the Legendre transform Fe(y) = Σe(e)− y e.
Within the 1RSB cavity method we estimate the latter using Bethe approxima-
tion: Fe(y) = fRSB,e(y).
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Exercise 21.7 Computation of the free-entropy. Using Eq. (19.92) show that
the Bethe free-entropy of the auxiliary graphical model is N fRSB,e + o(N),
where:

fRSB,e = −Λ′(1)ε E log ze(Q̃, Q̂) + ε E log zv({Q̂a}; l)+

+
Λ′(1)

P ′(1)
E log zf({Q̃i}; k) . (21.15)

Here expectations are taken over l (with distribution Λl), k (with distribution
Rk defined in (21.9)), Q̃, Q̂ as well as their i.i.d. copies Q̃i, Q̂a. The contributions
of edges (ze), variable (zv) and function nodes (zf) take the form:

ze(Q̃, Q̂) = 1 + (e−y − 1)
(
Q̃0Q̂1 + Q̃1Q̂0

)
, (21.16)

zv({Q̂i}; l) =
∑

Ω0,Ω1,Ω∗

∏

b∈Ω0

Q̂b
0

∏

b∈Ω1

Q̂b
1

∏

b∈Ω∗

Q̂b
∗ e−y min(|Ω0|,|Ω1|) , (21.17)

zf({Q̃i}; k) = 1 +
1

2
(e−y − 1)

{
k∏

i=1

(Q̃i
0 + Q̃i

1)−
k∏

i=1

(Q̃i
0 − Q̃i

1)

}
, (21.18)

where the sum in the second equation runs over the partitions Ω0∪Ω1∪Ω∗ = [l].

21.2.2 BP threshold and onset of metastability

A complete study of the distributional equations (21.11), (21.12) is a rather
challenging task. On the other hand they can be solved approximately through
population dynamics. It turns out that the distribution obtained numerically
shows different symmetry properties depending on the value of ε. Let us define
a distribution Q̃ (or Q̂) to be ‘symmetric’ if Q̃0 = Q̃1, and ‘positive’ if Q̃0 > Q̃1.
We know from the BP decoding analysis that directed edges in the graph can be
distinguished in two classes: those that eventually carry a message 0 under BP
decoding, and those that instead carry a message ∗ even after a BP fixed point
has been reached. It is natural to think that edges of the first class correspond to
a positive 1RSB message Q̃ (i.e., even among metastable states the corresponding
bits are biased to be 0), while edges of the second class correspond instead to a
symmetric message Q̃.

This motivates the following hypothesis concerning the distributions of Q̃
and Q̂. We assume that there exist weights ξ, ξ̂ ∈ [0, 1] and random distributions
b, b̂, c, ĉ, such that: b, b̂ are symmetric, c, ĉ are positive, and

Q̃
d
=

{
b with probability ξ
c with probability 1− ξ,

(21.19)

Q̂
d
=

{
b̂ with probability ξ̂,
ĉ with probability 1− ξ̂.

(21.20)
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In other words ξ (respectively ξ̂) denotes the probability that Q (resp. Q̂) is
symmetric.

Equation (21.11) shows that, in order for Q̃ to be symmetric, all the input Q̂i

must be symmetric. On the other hand, Eq. (21.12) implies that Q̂ is symmetric
if at least one of the input Q̃a must be symmetric. Using the result of Exercise
21.5, we thus find that our Ansatz is consistent only if the weights ξ, ξ̂ satisfy
the equations:

ξ = λ(ξ̂) ξ̂ = 1 − ρ(1 − εξ) , (21.21)

If we define z ≡ εξ, ẑ ≡ ξ̂, these coincide with the density evolution fixed point
conditions for BP, cf. Eqs. (15.34). This is not surprising in view of the physical
discussion which lead us to introduce Ansatz (21.19), (21.20): ξ corresponds to
the fraction of edges that remain erased at the BP fixed point. On the other
hand, we will see that this observation implies that BP stops to converge to the
correct fixed point at the same threshold noise εd where metastable states start
to appear.

For ε ≤ εd, Eqs. (21.21) admit the unique solution ξ = ξ̂ = 0, corresponding
to the fact that BP decoding recovers the full transmitted message. As a con-

sequence we can take Q( · ) d
= c( · ), Q̂( · ) d

= ĉ( · ) to have almost surely positive
mean. In fact it is not hard to check that a consistent solution of Eqs. (21.11),
(21.12) is obtained by taking

Q̂ = Q̃ = (1, 0, 0) almost surely. (21.22)

Since the cavity fields do not fluctuate from state to state (their distribution
is almost surely a point mass), the structure of this solution indicates that no
metastable state is present for ε ≤ εd. This is confirmed by the fact that the free
entropy density of this solution Fe(y) vanishes for all y.

Above a certain noise threshold, for ε > εd, Eq. (21.21) still possesses the
solution ξ = ξ̂ = 0, but a new solution with ξ, ξ̂ > 0 appears as well. We have
discussed this new solution in the density evolution analysis of BP decoding: it
is associated with the fact that the BP iterations have a fixed point in which
a finite fraction of the bits remains undetermined. Numerical calculations show
that that, for ε > εd, the iteration of Eqs. (21.11), (21.12) converges to a non-
trivial distribution. In particular Q̃ (resp. Q̂) is found to be symmetric with
probability ξ > 0 (resp ξ̂ > 0), where the values of ξ, ξ̂ are the non-trivial solution
of (21.21). The free-entropy of the auxiliary model Fe(y), can be computed using
(21.15). Its Legendre transform is the energetic complexity curve Σe(e).

Figure 21.3 shows the typical outcome of such a calculation for LDPC en-
sembles, when εd < ε < εc. In this whole regime, there exists a zero energy word,
the transmitted (all 0) codeword. This is described by the solution ξ = ξ̂ = 0.
On top of this, the non-trivial solution gives a complexity curve Σe(e) which is
positive in an interval of energy densities (ec, ed). A positive complexity means
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Fig. 21.3. Metastable states for random elements of the (3, 6) regular ensemble
used over the BEC(ε) (for this ensemble εd ≈ 0.4294 and εc ≈ 0.4882). Left
frame: complexity as a function of the energy density for three values of
the channel parameter above εd. Right frame: the maximum and minimum
energy density ed and ec of metastable states as a function of the erasure
probability.

that an exponential number of metastable states is present. But since ec > 0,
these metastable states violate a finite fraction of the parity checks.

As ε increases both ed and ec decrease. At εc, ec vanishes continuously and
ec = 0, ed > 0 for all ε ≥ εc. In other words, at noise levels larger than εc there
appears an exponential number of zero energy ‘metastable’ states. These are
codewords, that are indeed separated by energy barriers with height Θ(N). Con-
sistently with this interpretation Σ(e = 0) = fRS

h,u where fRS
h,u is the RS free-entropy

density (15.48) estimated on the non-trivial fixed point of density evolution.
The notion of metastable states thus allows to compute the BP and MAP

thresholds within a unified framework. The BP threshold is the noise level where
an exponential number of metastable states appears. This shows that this thresh-
old is not only associated with a specific decoding algorithm, but it also has a
structural, geometric meaning. On the other hand the MAP threshold coincides
with the noise level where the energy of the lowest-lying metastable states van-
ishes.

Figure 21.4 shows the results of some numerical experiments with the simu-
lated annealing algorithm of Sec. 21.1.3. Below the BP threshold, and for a slow
enough annealing schedule the algorithm succeeds in finding a codeword (a zero
energy state) in linear time. Above the threshold, even at the slowest annealing
rate we could not find a codeword. Furthermore, the residual energy density at
zero temperature is close to ed, suggesting that the optimization procedure is
indeed trapped among the highest metastable states. This suggestion is further
confirmed by Fig. 21.5 which compares the ε dependence of ed with the residual
energy under simulated annealing. Once again, there is rough agreement between
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Fig. 21.5. Decoding random codes from the (3, 6) regular ensemble used over
the BEC(ε). Here we plot the minimum energy density achieved through
simulated annealing versus the channel parameter. The continuous line is the
energy of the highest lying metastable states. Size and annealing schedule as
in Fig. 21.4.

the two (let us stress that one should not expect perfect agreement between the
residual energy in Fig. 21.5 and ed: the former does indeed depend on the whole
dynamical annealing process).
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21.3 General binary memoryless symmetric channels

One would like to generalize to other channel models the above analysis of
metastable states in the constrained optimization formulation of decoding. In
general the computation is technically more intricate than for the BEC. The
reason is that in general channels, the distance condition Ly(x) ≥ −N(h + δ)
cannot be written in terms of ‘local’ binary constraints. As a consequence, one
cannot use the simplified approach of Sec. 19.5.3 and the general 1RSB formalism
is required.

We shall follow this line of approach, but rather than pushing it to the point
of determining the full complexity function, we will only determine whether the
model (21.4) undergoes a dynamical phase transition as β increases from 0 to
∞, and locate the critical point βd(p) (here p denotes the channel parameter).
This is indeed the most important piece of information for our purposes. If a
dynamical phase transition occurs at some βd < ∞, then for β > βd the measure
(21.4) decomposes into an exponential number of metastable pure states. As β
crosses βd the system is trapped in one of these and falls out of equilibrium. Upon
further cooling (increase of β) the energy density of the annealed system remains
higher than the equilibrium one and does not vanish as β → ∞. This analysis
allows to determine the noise threshold of the simulated annealing decoder, as
the largest noise level p such that there is no finite βd.

In the following we first write the general 1RSB equations at finite β, and
present some results obtained by solving them numerically. Finally we give a
heuristic argument showing that βd(p) goes to infinity exactly for p ↓ pd.

21.3.1 The 1RSB cavity approach

We shall apply the 1RSB cavity approach of Ch. 19 to the decoding problem.
Given a code and the received message y, we want to study the probability
distribution µy,β(x) defined in Eq. (21.4), and understand whether it decomposes
in exponentially many extremal Bethe measures. The BP equations are simple
generalizations of those written in Ch. 15 for the case β = ∞. In terms of the
log-likelihoods

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

≡ B(yi) , (21.23)

they read:

hi→a = Bi +
∑

b∈∂i\a

ub→i ≡ fi({ub→i}) , (21.24)

ua→i = atanh
{

tanhβ
∏

j∈∂a\i

tanhhj→a

}
≡ f̂a({hj→a}) . (21.25)

The corresponding Bethe free-entropy is given by (unlike in Ch. 15, here we use
natural logarithms)
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F(u, h) = −
∑

(ia)∈E

log

[
∑

xi

ν̂ua→i(xi)νhi→a(xi)

]
+

N∑

i=1

log

[
∑

xi

Q(yi|xi)
∏

a∈∂i

ν̂ua→i(xi)

]

+
M∑

a=1

log




∑

x∂a

exp(−βEa(x∂a))
∏

i∈∂a

νhi→a(xi)



 . (21.26)

As in (15.44), we shall introduce a “shifted” free-entropy density φ defined as

φ =
1

N
F(u, h) −

∑

y

Q(y|0) logQ(y|0) , (21.27)

Recall that the 1RSB cavity approach assumes that, to leading exponential
order, the number N (φ) of Bethe measures with a shifted free-entropy density
equal to φ is equal to the number of quasi-solutions of Eqs. (21.24), (21.25).
We shall write as usual N (φ)

.
= exp(NΣ(φ)), and our aim is to compute the

complexity Σ(φ), using as in Ch. 19 an auxiliary graphical model which counts
the number of solutions of BP equations, weighted by a factor exp(Nxφ). If the
free-entropy of the auxiliary model is F(x) = limN→∞ FRSB(x)/N , then Σ(φ) is
given by the Legendre transform F(x) = xφ + Σ(φ), ∂Σ/∂φ = −x.

For a given code and received y, the basic objects involved in the 1RSB
approach are the distributions of the fields hi→a and ub→j denoted respectively

as Qia and Q̂bj . They satisfy the following 1RSB equations:

Qia(hi→a) ∼=
∫

δ (hi→a = fi({ub→i})) (zia)x
∏

b∈∂i\a

dQ̂bi(ub→i) , (21.28)

Q̂ai(ua→i) ∼=
∫

δ
(
ua→i = f̂a({hj→a})

)
(ẑai)

x
∏

j∈∂a\i

dQja(hj→a) . (21.29)

Exercise 21.8 Show that the factors zia and ẑai in these equations, defined
in (19.23), (19.24), are given by:

zia({ub→i}, Bi) =
2 cosh(Bi +

∑
b∈∂i\a ub→i)∏

b∈∂i\a(2 cosh(ub→i))
, (21.30)

ẑai({hj→a}) = 1 + e−2β . (21.31)

Although in this case ẑai is a constant and can be absorbed in the normal-
ization, we shall keep it explicitly in the following.

We now turn to the statistical analysis of these equations. Picking up a uni-
formly random edge in the Tanner graph of a code from the LDPCN (Λ, P ) en-
semble, the densities Q̂ and Q become themselves random objects which satisfy
the distributional equations:



516 GLASSY STATES IN CODING THEORY

Q(h)
d
=

1

Z

∫
z({ua}; B(y))x δ

(
h− fl−1({ua}; B(y))

) l−1∏

a=1

dQ̂a(ua) , (21.32)

Q̂(u)
d
=

1

Ẑ

∫
ẑ({hi})x δ

(
u − f̂k−1({hi})

) k−1∏

i=1

dQi(hi) . (21.33)

where k, l, y are random variables, {Q̂a} are l − 1 i.i.d. copies of Q̂, and {Qi}
are k−1 i.i.d. copies of Q. Further, l is drawn from the edge perspective variable
degree profile λ, k is drawn from the edge perspective check degree profile ρ,
and y is drawn from Q( · |0), the distribution of channel output upon input 0.

The functions f̂k−1({hi}) = atanh(tanhβ
∏k−1

i=1 tanh(hi)), and fl−1({ua}; B) =

B−
∑l−1

a=1 ua are defined analogously to Eqs. (21.24), (21.25). The functions z( · )
and ẑ( · ) are given similarly by the expressions in (21.30), (21.31).

The 1RSB free-entropy density (i.e. the entropy density of the auxiliary
model) is estimated as F(x) = fRSB(Q, Q̂) where fRSB(Q, Q̂) is the expected free-
entropy density and Q and Q̂ are distributed according to the ‘correct’ solution
of the distributional equations Eqs. (21.32), (21.33).

fRSB(Q, Q̂) = −Λ′(1) E log ze(Q, Q̂) + E log zv({Q̂a}; l, y) +
Λ′(1)

P ′(1)
E log zf({Qi}; k) .

Here the expectation is taken with respect to k i.i.d. copies of Q̂ and l i.i.d. copies

of Q, and with respect to k
d
= P·, l

d
= Λ· and y

d
= Q( · |0). Finally, ze, zv, zf read:

ze(Q, Q̂) =

∫
dQ(h) dQ̂(u)

[ 1∑

x=0

νh(x)νu(x)
]x

, (21.34)

zv({Q̂a}; l, y) =

∫ l∏

a=1

dQ̂a(ua)
[ 1∑

x=0

Q(y|x)

Q(y|0)

l∏

a=1

νua(x)
]x

, (21.35)

zf({Qi}; k) =

∫ l∏

i=1

dQi(hi)
[ ∑

{x1,··· ,xk}

k∏

i=1

νhi(xi)

(
I
(∑

i

xi = even
)

+ e−2β I
(∑

i

xi = odd
))]x

.(21.36)

A considerable amount of information is contained in the 1RSB free-energy den-
sity F(x). For instance, one could deduce from it the energetic complexity by
taking the appropriate β → ∞ limit. Here we shall not attempt at developing
a full solution of the 1RSB distributional equations, but use them to detect the
occurrence of a dynamical phase transition.

21.3.2 Dynamical phase transition

The location of the dynamical phase transition location βd(p) is determined as
the smallest value of β such that the distributional equations (21.32), (21.33)
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Fig. 21.6. Left: Dynamic phase transition for random codes from the (5, 6) en-
semble used over the BSC(p) (circles are obtained through sampled density
evolution; the dashed line is a guide for the eye). Right: residual energy den-
sity after simulated annealing, as measured in numerical simulations. The
dashed line gives the equilibrium energy at the dynamical transition temper-
ature Td.

have a non-trivial solution at x = 1. For β > βd(p), the distribution (21.4)
decomposes into an exponential number of pure states. As a consequence, we
expect simulated annealing to fall out of equilibrium when βd(p) is crossed.

In Fig. 21.6 left frame, we show the result of applying such a technique to
the (5, 6) regular ensemble used for communication over the BSC(p). At small p,
no dynamic phase transition is revealed through this procedure at any positive
temperature. Above a critical value of the noise level p, the behavior changes
dramatically and a phase transition is encountered at a critical point βd(p) that
decreases monotonically for larger p. By changing both β and p, one can iden-
tify a phase transition line that separates the ergodic and non-ergodic phases.
Remarkably, the noise level at which a finite βd appears is numerically indistin-
guishable from pd ≈ 0.145.

Does the occurrence of a dynamical phase transition for p # pd indeed influ-
ence the behavior of the simulated annealing decoder? Some numerical confir-
mation was already presented in Fig. 21.2. Further support in favor of this thesis
is provided by Fig. 21.6, right frame, which plots the residual energy density of
the configuration produced by the decoder as β → ∞. Above pd this becomes
strictly positive and only slowly dependent on the cooling rate. It is compared
with the equilibrium value of the internal energy at βd(p). This would be the
correct prediction if the system didn’t decrease any more its energy after it falls
out of equilibrium at βd(p). Although we do not expect this to be strictly true,
the resulting curve provides a good first estimate.
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21.3.3 Metastable states and BP threshold

One crucial element of this picture can be confirmed analytically, for a generic
BMS channel family ordered by physical degradation with respect to p: At zero
temperature, the dynamical transition, signaling the proliferation of metastable
Bethe states, occurs exactly at the decoding threshold pd. More precisely, the
argument below proves that at β = ∞ there cannot exist any non-trivial x = 1
solution of Eqs. (21.32), (21.33) for p < pd, while there exists one for p > pd.
We expect that, for most channel families, the same situation should hold for β
large enough (and dependent on p), but this has not been proven yet.

Let us consider the 1RSB equations (21.32), (21.33) in the case β = ∞.
Assuming that the degree profiles are such that l ≥ 2 and k ≥ 2 (a reasonable
requirement for useful code ensembles), it is clear that they have a special ‘no-
error’ solution associated with the sent codeword in which Q(h) = δ∞(h) and
Q̂(u) = δ∞(h) almost surely. It is a simple exercise to check that the (shifted)
free-entropy density of this solution is equal to 0.

The important question is whether there exist other solutions beyond the ‘no-
error’ one. We can make use of the simplification occuring at x = 1. As we saw in
Sec. 19.4.1, the expectation values of the messages, νav

i→a(xi) ≡
∑

νia
Qia(νia)νia(xi)

and ν̂av
a→i(xi) ≡

∑
bmai

Q̂ai(ν̂ai)ν̂ai(xi) satisfy the BP equations.
Let us first study the case p < pd. We have seen in Ch. 15 that there is a

unique solution of BP equations: the no-error solution. This shows that in this
low noise regime, there cannot exist any non-trivial 1RSB solution. We conclude
that there is no glass phase in the regime p < pd

We now turn to the case p > pd (always with β = ∞), and use the analysis of
BP presented in Ch. 15. That analysis revealed that, when p > pd, the density
evolution of BP messages admits at least one ‘replica symmetric’ fixed point
distinct from the no-error one.

We shall now use this replica symmetric fixed point in order to construct a
non-trivial 1RSB solution. The basic intuition behind this construction is that
each Bethe measure consists of a single configuration, well separated from other
ones. Indeed, each Bethe measure can be identified with a zero-energy configura-
tion, i.e. with a codeword. If this is true, then, with respect to each of these Bethe
measures the local distribution of a variable is deterministic, either a unit mass
on 0 or a unit mass on 1. Therefore we seek a solution where the distribution of
Q and Q̂ is supported on functions of the form:

Q(h) =
1

2
(1 + tanh h̃) δ+∞(h) +

1

2
(1 − tanh h̃) δ−∞(h) , (21.37)

Q̂(u) =
1

2
(1 + tanh ũ) δ+∞(u) +

1

2
(1 + tanh ũ) δ−∞(u) , (21.38)

where h̃ and ũ are random variables.
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Exercise 21.9 Show that this Ansatz solves Eqs. (21.32), (21.33) at β = ∞ if
and only if the distributions of h̃, ũ satisfy:

h̃
d
= B(y) +

l−1∑

a=1

ũ , ũ
d
= atanh

[ k−1∏

i=1

tanh h̃i

]
. (21.39)

It is easy to check that the random variables h̃ and ũ satisfy the same equa-
tions as the fixed point of density evolution for BP (see Eq. (15.11)). We conclude
that, for p > pd and x = 1, a solution to the 1RSB equations is given by the
Ansatz (21.37), (21.38), if h̃, ũ are drawn from the fixed point distributions of
Eq. (15.11).

It turns out that a similar solution is easily found for any value of x > 0,
provided β = ∞. The only place where x plays a role is in the reweighting factor
of Eq. (21.35): when x .= 1, the only modification in the distributional equations
(21.39) is that B(y) should be multiplied by x. Therefore one can obtain the 1RSB
solution for any x > 0 if one knows the solution to the RS cavity equations (i.e.
the fixed point of the density evolution for BP) in a slightly modified problem in
which B(y) is changed to xB(y). Technically this is equivalent to studying the
modified measure

µy(x) ∼=
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0)

N∏

i=1

Q(yi|xi)
x , (21.40)

within the RS approach of Ch. 15 (such a modified measure was already intro-
duced in Ch. 6).

Let us assume that we have found a non-trivial fixed point for this aux-

iliary problem, characterized by the distributions a
(x)
RS(h), and â

(x)
RS(u), and call

fRS(x) the corresponding value of the free-entropy density defined in (15.45). The
1RSB equations with reweighting parameter x have a solution of the type (21.37),

(21.38), provided h̃ is distributed according to a
(x)
RS( · ), and ũ is distributed ac-

cording to â
(x)
RS( · ). The 1RSB free-entropy density F(x) = E FRSB(x)/N is simply

given by:
F(x) = fRS(x) . (21.41)

Therefore the problem of computing F(x), and its Legendre transform the com-
plexity Σ(φ), reduce to a replica symmetric computation. This is a simple gen-
eralization of the problem Ch. 15, whereby the decoding measure is modified by
raising it to the power x, as in Eq. (21.40). Notice however that the interpreta-
tion is now different. In particular x has to be properly chosen in order to focus
on dominant pure states.

The problem can be easily studied numerical using the population dynamics
algorithm. Fig. 21.7 shows an example of the complexity Σ(φ) for a BSC channel.
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Fig. 21.7. Left: The free-entropy of the auxiliary model, F(x), as a func-
tion of the weight parameter x, for a (3, 6) code on the BSC chan-
nel (recall that pd ≈ 0.084 and pc ≈ 0.101 in this case). From bot-
tom to top: p = 0.090, 0.095, 0.100, 0.105, 0.110. Right: The complexity
Σ(φ) plotted versus the shifted free-entropy density φ. From left to right:
p = 0.090, 0.095, 0.100, 0.105, 0.110.

The regime pd < p < pc is characterized by the existence of a band of metastable
states with negative shifted free-entropy φ ≤ φ0 < 0. They are in principle
irrelevant when compared to the ‘no-error’ solution which has φ = 0, confirming
that MAP decoding will return the transmitted codeword. In fact they are even
unphysical: φ is nothing but the conditional entropy density of the transmitted
codeword given the received message. As a consequence it must be non-negative.
However the solution extends to β < ∞, where it makes perfect sense (it describes
non-codeword metastable configurations), thus solving the puzzle.

The appearance of metastable states coincides with the noise threshold above
which BP decoding fails. When p > pc the top end of the band φ0 becomes
positive: the ‘glassy’ states dominate the measure and MAP decoding fails.

21.4 Metastable states and near-codewords

In a nutshell, the failure of BP decoding for p > pd can be traced back to
configurations (words) x that: (i) Are deep local minima of the energy function
E(x) (that counts the number of violated parity checks); (ii) Have a significant
weight under the measure

∏
i Q(y|xi).

Typically, such configurations are not codewords, although they can be very
close to codeword from the energy point of view. An interesting qualitative anal-
ogy can be drawn between this analysis, and various notions that have been
introduced to characterize the so-called error floor.

Let us start by describing the error floor problem. We saw that for p < pd

the bit error rate under BP decoding vanishes when the blocklength N → ∞.
Unhappily, the blocklength cannot be taken arbitrarily large because of two types
of practical considerations. First, coding a block of N bits simultaneously implies
a communication delay proportional to N . Second, any hardware implementation
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Fig. 21.8. Bit error probability for 40 random elements of the (3, 6) regular
ensemble with N = 2500 used over the BEC(ε). The continuous curve corre-
sponds to the average error probability.

of BP decoding becomes increasingly difficult as N get larger. Depending on the
application, one can be forced to consider a maximum blocklength between 103

and 105.
This brings up the problem of characterizing the bit error rate at moderate

blocklength. Figure 21.8 shows the outcomes of numerical simulations for random
elements of the (3, 6) ensemble used over the erasure channel. One can clearly
distinguish two regimes: a rapid decrease of the error probability in the ‘waterfall
region’ ε " εd ≈ 0.429 (in physics terms, the ‘critical regime’); a flattening at
lower noise values, in the ‘error floor’. It is interesting to note that the error floor
level is small but highly dependent (in relative terms) on the graph realization.

We know that the error floor should vanish when taking codes with larger and
larger blocklength, but we would like a prediction of its value given the graph G.
With the notable exception of the erasure channel, this problem is largely open.
However several heuristics have been developed. The basic intuition is that the
error floor is due to small subgraphs of the Tanner graph that are prone to
error. If U is the set of variable nodes in such a subgraph, we can associate to
it a configuration x that takes value 1 on U and 0 otherwise (throughout our
analysis we are assuming that the codeword 0 has been transmitted). This x
needs not to be a codeword but it is in some sense ‘close’ to it.

Once a class F of such subgraphs is identified, the error probability is es-
timated by assuming that any type of error is unlikely, and errors on different
subsets are roughly independent:

PB(G) ≈
∑

U∈F
P {BP decoder fails on U} . (21.42)
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If the subset U are small, each of the terms on the right hand side can be
evaluated efficiently via importance sampling.

It is interesting to have a look at some definitions of the class of subgraphs F
that have been introduced in the literature. In each case the subgraph is char-
acterized by two integers (w, e) that describe how dangerous/close to codewords
they are (small w or e corresponding to dangerous subgraphs). In practice one
restricts the sum in Eq. (21.42) to small w, e.

Trapping sets. (or near codewords) A trapping set is a subgraph including
the variable nodes in U , all the adjacent check nodes and the edges that connect
them. It is a (w, e) near-codeword if the number of variable nodes is |U | = w
and the number of check nodes of odd degree is e.

In our framework a trapping set is simply a configuration x with weight
(number of non-zero entries) equal to w and energy E(x) = 2e. Notice that hardly
any restriction is imposed on trapping sets. Special constraints are sometimes
added depending on the channel model, and on the decoding algorithm (if not
BP).

Adsorbing sets. A (w, e) adsorbing set is a (w, e) trapping set that satisfies
two further requirements: (i) Each variable node is adjacent to more check nodes
of even degree (with respect to the subgraph) than of odd degree; (ii) It does
not contain a (w′, e) adsorbing set with w′ < w.

The first condition implies that the corresponding configuration x is a local
minimum of E(x) stable with respect to 1 flip.

The connection between small weak subgraphs and error probability is still
somewhat vague. The ‘energy landscape’ E(x) might provide some hints towards
bridging this gap.

Notes

This chapter is largely based on the analysis of metastable states in (Montanari,
2001b), (Montanari, 2001a) and (Franz, Leone, Montanari and Ricci-Tersenghi,
2002). One step replica symmetry breaking was also investigated in (Migliorini
and Saad, 2006). The approach was extended to asymmetric channels in (Neri,
Skantzos and Bollé, 2008).

Typical pairs decoding presented here is slightly different from the original
procedure of (Aji, Jin, Khandekar, MacKay and McEliece, 2001).

Stopping sets were introduced in (Di, Proietti, Richardson, Telatar and Ur-
banke, 2002), and inspired much of the subsequent research on error floors. The
idea that small subgraphs of the Tanner graph are responsible for error floors
was first convincingly demonstrated for general channel models in (MacKay and
Postol, 2003) and (Richardson, 2003). Absorbing sets are defined in (Dolecek,
Zhang, Anantharam and Nikolić, 2007).

After its invention, simulated annealing was the object of a significant amount
of work within operations research and probability. A review can be found in
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(Aarts, Korst and van Laarhoven, 2003). A detailed comparison between 1RSB
analysis and simulated annealing experiments for models on sparse graphs is
presented in (Montanari and Ricci-Tersenghi, 2004).



22

AN ONGOING STORY

This book describes a unified approach to a number of important problems in
information theory, physics and computer science. We have presented a consistent
set of methods to address these problems, but the field is far from being fully
understood, and there remain many open challenges. This chapter provides a
synthetic description of some of these challenges, as well as a survey of recent
progress. Our ambition is to set an agenda for the newly developed field that we
have been describing. We will distinguish roughly three types of directions.

The first one, to be discussed in Sec. 22.1, is the main challenge. It aims at
a better qualitative understanding of models on sparse random graphs. At the
core of the cavity method lies the postulate that such systems can have only a
limited number of ‘behaviors’ (phases). Each phase corresponds to a different
pattern of replica symmetry breaking (replica symmetric -RS, one-step replica
symmetry breaking -1RSB, etc. . . ). In turn they also have a description in terms
of pure states decomposition, as well as in terms of long range correlations.
Understanding the fundamental reasons and conditions for the universality of
these phases, as well as the equivalence among their characterizations would be
extremely important.

The second direction, described in Sec. 22.2, concerns the development of the
cavity formalism itself. We have mainly focused on systems in which either the
RS or 1RSB cavity method is expected to be asymptotically exact in the large
size limit. This expectation is in part based on some internal consistency checks
of the 1RSB approach. An important one consists in verifying that the 1RSB
‘solution’ is stable with respect to small perturbations. Whenever this test is
passed, physicists feel confident enough that the cavity method provides exact
conjectures (thresholds, minimum cost per variable, etc. . . ). If the test is not
passed, higher order RSB is thought to be needed. The situation is much less
satisfactory in this case, and the cavity method poses some technical problems
even at the heuristic level.

Section 22.3 lists a number of fascinating questions that arise in the connexion
between the existence of glassy phase transitions and algorithmic slowdown.
These are particularly important in view of the applications in computer science
and information theory: sparse graphical models can be useful for a number of
practically relevant tasks, as the example of LDPC codes in channel coding has
shown. There is some empirical evidence that phase transitions have an impact
on algorithms behavior and efficiency. Physicists hope that this impact can be
understood (to some extent) in a unified way, and is ultimately related to the
geometric structure of the set of solutions, and to correlation properties of the

524



GIBBS MEASURES AND LONG-RANGE CORRELATIONS 525

measure. While some general arguments in favour of this statement have been
put forward, the actual understanding is still very poor.

22.1 Gibbs measures and long-range correlations

At an abstract level, the cavity method explored in the last few chapters relies
on a (yet unproven) structural theorem. Consider a generic graphical model, a
probability distribution on N variables, x, taking values in a discrete space XN :

µ(x) =
1

Z

∏

a∈F

ψa(x∂a) . (22.1)

The cavity method postulates that, for large classes of models taken from some
appropriate ensembles, the model is qualitatively described in the large N limit
by one out of a small number of generic scenarios, or phases. The postulated
qualitative features of such phases are then cleverly used to derive quantitative
predictions (e.g. phase transition locations.)

Needless to say, we are not able to state precisely, let alone to prove, such a
structural theorem in this generality. The complete set of necessary hypotheses is
unknown. However we discussed several examples, from XORSAT to diluted spin
glasses or error correcting codes. In principle, it is not necessary that the factor
graph be locally tree-like, but in practice locally tree-like models are the ones
that we can control most effectively. Such a structure implies that when one digs
a cavity in the graph, the variables on the boundary of the cavity are far apart.
This leads to a simple structure of their correlation in the large system limit,
and hence to the possibility of writing asymptotically exact recursion equations.

Here we do not want to discuss in more details the hypotheses. It would
certainly be a significant achievement to prove such a structural theorem even
in a restricted setting (say, for the uniform measure over solutions of random K-
SAT formulae). We want instead to convey some important features of the phases
postulated within the cavity approach. In particular there is a key aspect that
we want to stress. Each of the various phases mentioned can be characterized
from two, complementary, points of view:

1. In terms of decomposition of the distribution µ( · ) into ‘lumps’ or ‘clusters’.
Below we shall propose a precise definition of the lumps, and they will be
called pure states.

2. In terms of correlations among far apart variables on the factor graph.
We shall introduce two notions of correlation decay that differ in a rather
subtle way but correspond to different phases.

These two characterizations are in turn related to the various aspects of the
cavity method.

22.1.1 On the definition of pure states

The notion of pure state is a crucial one in rigorous statistical mechanics. Un-
fortunately, standard definitions are tailored to translation-invariant models on
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infinite graphs. The graphical models that we have in mind are sparse random
graphs (in this class we include labeled random graphs, whereby the labels spec-
ify the nature of function nodes), and standard approaches don’t apply to them.
In particular, we need a concrete definition that is meaningful for finite graphs.

Consider a sequence of finite graphical models {µN ( · )}, indexed by the num-
ber of variable nodes N . A pure state decomposition is defined by assign-
ing, for each N , a partition of the configuration space XN into NN subsets
Ω1,N , . . . ,ΩNN ,N :

XN = Ω1,N ∪ · · · ∪ ΩNN ,N . (22.2)

The pure state decomposition must meet the following conditions:

1. The measure of each subset in the partition is bounded away from 1:

max{µN(Ω1,N ), . . . , µN (ΩN ,N )} ≤ 1 − δ . (22.3)

2. The subsets are separated by ‘bottlenecks.’ More precisely, for Ω ⊆ XN ,
define its ε-boundary as

∂εΩ ≡ {x ∈ XN : 1 ≤ d(x,Ω) ≤ Nε} . (22.4)

where d(x,Ω) is the minimum Hamming distance between x and any con-
figuration x′ ∈ Ω. Then we require

lim
N→∞

max
r

µN (∂εΩr,N)

µN (Ωr,N )
= 0 , (22.5)

for some ε > 0. Notice that the measure of ∂εΩr,N can be small for two rea-
sons, either because Ωr,N is small itself (and therefore has a small bound-
ary) or because the boundary of Ωr,N is much smaller than its interior.
Only the last situation corresponds to a true bottleneck, as is enforced by
the denominator µN (Ωr,N ) in (22.5).

3. The conditional measure on the subset Ωr,N , defined by

µr
N (x) ≡ 1

µN (Ωr,N )
µN (x)I(x ∈ Ωr,N ) (22.6)

cannot be further decomposed according to the two conditions above.

Given such a partition, the distribution µN ( · ) can be written as a convex
combination of distributions with disjoint support

µN ( · ) =
NN∑

r=1

wr µr
N ( · ) , wr ≡ µN (Ωr,N ) . (22.7)

Notice that this decomposition is not necessarily unique, as shown by the example
below. Non-uniqueness is due to the fact that sets of configurations of XN with
negligeable weight can be attributed to one state or another. On the other hand,
the conditional measures µr

N ( · ) should depend weakly on the precise choice of
decomposition.
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Example 22.1 Consider the ferromagnetic Ising model on a random regular
graph of degree (k + 1). The Boltzmann distribution reads

µN (x) =
1

ZN(β)
exp




β
∑

(i,j)∈E

xixj




 , (22.8)

with xi ∈ X = {+1,−1}. To avoid irrelevant complications, let’s assume that
N is odd. Following the discussion of Sec. 17.3, we expect this distribution
to admit a non-trivial pure state decomposition for k tanhβ > 1, with par-
tition Ω+ ∪ Ω− = XN . Here Ω+ (respectively Ω−) is the set of configura-
tions for which

∑
i xi is positive (negative). With respect to this decomposition

w+ = w− = 1/2.
Of course an (asymptotically) equivalent decomposition is obtained by let-

ting Ω+ be the set of configurations with
∑

i xi ≥ C for some fixed C.

It is useful to recall that the condition (22.5) implies that any ‘local’ Markov
dynamics that satisfies detailed balance with respect to µN ( · ) is slow. More
precisely, assume that

µN (∂εΩr,N )

µN (Ωr,N )
≤ exp{−∆(N)} . (22.9)

Then any Markov dynamics that satisfies detailed balance with respect to µN

and flips at most Nε variables at each step, has relaxation time larger than
C exp{∆(N)} (where C is an N -independent constant that depends on the de-
tails of the model). Moreover, if the dynamics is initialized in x ∈ Ωr,N , it will
take a time of order C exp{∆(N)} to get at distance Nε from Ωr,N .

In many cases based on random factor graph ensembles, we expect Eq. (22.9)
to hold with a ∆(N) which is linear in N . In fact in the definition of pure state
decomposition we might ask a bound of the form (22.9) to hold, for some function
∆(N) (e.g. ∆(N) = Nψ, with some appropriately chosen ψ). This implies that
pure states are stable on time scales shorter than exp{∆(N)}.

22.1.2 Notions of correlation decay

The above discussion on relaxation times brings up a second key concept: cor-
relation decay. According to an important piece of wisdom in statistical me-
chanics, physical systems that have only short-range correlations should relax
rapidly to their equilibrium distribution. The hand-waving reason is that, if dif-
ferent degrees of freedom (particles, spins, etc) are independent, then the system
relaxes on microscopic time scales (namely the relaxation time of a single par-
ticle, spin, etc). If they are not independent, but correlations are short ranged,
they can be coarse grained in such a way that they become nearly independent,
Roughly speaking, this means that one can construct ‘collective’ variables from
blocks of original variables. Such conditional variables take |X |B values, where
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B is the block size, and are nearly independent under the original (Boltzmann)
distribution.

As we are interested in models on non-Euclidean graphs, the definition of
correlation decay must be precised. We will introduce two distinct types of cri-
teria. Although they may look similar at first sight, it turns out that they are
not, and each of them will characterize a distinct generic phase.

The simplest approach, widely used in physics, consists in considering two-
points correlation functions. Averaging them over the two positions defines a
susceptibility. For instance, in the case of Ising spins xi ∈ X = {1,−1}, we have
already discussed the spin glass susceptibility

χSG =
1

N

∑

i,j∈V

(〈xixj〉 − 〈xi〉〈xj〉)2 , (22.10)

where 〈 · 〉 denotes the expectation value with respect to µ. When χSG is bounded
as N →∞, this is an indication of short range correlations. Through the fluctua-
tion dissipation theorem (cf. Sec. 2.3), this is equivalent to stability with respect
to local perturbations. Let us recall the mechanism of this equivalence. Imagine
a perturbation of the model (22.16) that acts on a single variable xi. Stability
requires that the effect of such a perturbation on the expectation of a global ob-
servable

∑
j f(xj) should be bounded. The change in the marginal at node j due

to a perturbation at i, is proportional to the covariance 〈xixj〉 − 〈xi〉〈xj〉. As in
Sec. 12.3.2, the average effect of the perturbation at i on the variables xj , j .= i
often vanishes (more precisely limN→∞

1
N

∑
j∈V

(
〈xixj〉−〈xi〉〈xj〉

)
= 0) because

terms related to different vertices j cancel. The typical effect of the perturbation
is captured by the spin glass-susceptibility.

Generalizing this definition to arbitrary alphabets is easy. We need to use a
measure of how much the joint distribution µij( · , · ) of xi and xj is different from
the product of the marginals µi( · ) times µj( · ). One such measure is provided
by the variation distance:

||µij( · , · )− µi( · )µj( · )|| ≡
1

2

∑

xi,xj

|µij(xi, xj) − µi(xi)µj(xj)| . (22.11)

We then define the two-points correlation by averaging this distance over the
vertices i, j

χ(2) ≡ 1

N

∑

i,j∈V

||µij( · , · )− µi( · )µj( · )|| . (22.12)

Exercise 22.1 Consider again the case of Ising variables, X = {+1,−1}. Show
that χSG = o(N) if and only if χ(2) = o(N).

[Hint: Let Cij ≡ 〈xixj〉 − 〈xi〉〈xj〉. Show that Cij = 2||µij( · , · ) −
µi( · )µj( · )||. Then use χSG = NE{C2

ij}, χ(2) = NE{|Cij |}/2, the expectation
E being over uniformly random i, j ∈ V .]
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Of course one can define l-points correlations in an analogous manner:

χ(l) ≡ 1

N l−1

∑

i(1),...,i(l)∈V

||µi(1)...i(l)( · · · ) − µi(1)( · ) · · ·µi(l)( · )|| . (22.13)

The l-points correlation χ(l) has a useful interpretation in terms of a thought
experiment. Suppose you are given an N -dimensional distribution µ(x) and have
access to the marginal µi(1)( · ) at a uniformly random variable node i(1). You
want to test how stable is this marginal with respect to small perturbations.
Perturbations affect l− 1 randomly chosen variable nodes i(2),. . . , i(l) changing
µ(x) into µ′(x) ∼= µ(x)(1 + δ2(xi(2))) · · · (1 + δl(xi(l))). The effect of the resulting
perturbation on µi(1), to the first order in the product δ2 · · · δl, is bounded in

expectation by χ(l) (this is again a version of the fluctuation dissipation theorem).

Definition 22.2. (First type of correlation decay) The graphical model given
by µ( · ) is said to be stable to small perturbations if, for all finite l, χ(l)/N →
0 as N →∞.

In practice in sufficiently homogeneous (mean field) models, this type of stability
is equivalent to the one found using only l = 2.

Let us now introduce another type of criterion for correlation decay. Again we
look at a variable node i, but now we want to check how strongly xi is correlated
with all the ‘far apart’ variables. Of course we must define what ‘far apart’ means.
Fix an integer - and define B(i, -) as the ball of radius - centered at i, and B(i, -)
its complement, i.e. the subset of variable nodes j such that d(i, j) ≥ -. We then
want to estimate the correlation between xi and x

B(i,%) = {xj : j ∈ B(i, -)}. This

amounts to measuring the distance between the joint distribution µi,B(,%)( · , · )
and the product of the marginals µi( · )µB(,%)( · ). If we use the total variation

distance defined in (22.11) we obtain the following point-to-set correlation
function

Gi(-) ≡ ||µi,B(i,%)( · , · ) − µi( · )µB(i,%)( · )|| . (22.14)

The function Gi(-) can be interpreted according to two distinct but equally
suggestive thought experiments. The first one comes from the theory of struc-
tural glasses (it is meant to elucidate the kind of long range correlations arising
in a fragile glass). Imagine to draw a reference configuration x∗ from the distri-
bution µ( · ). Now generate a second configuration x as follows: variables outside
the ball, with i ∈ B(i, -), are forced to the reference configuration: xi = x∗

i .
Variables at distance smaller than - (denoted by xB(i,%)) are instead drawn from
the conditional distribution µ(xB(i,%)|x∗

B(i,%)
). If the model µ( · ) has some form of

rigidity (long range correlations), then xi should be close to x∗
i . The correlation

Gi(-) measures how much the distributions of xi and x∗
i differ.

The second experiment is closely related to the first one, but has the flavour
of a statistics (or computer science) question. Someone draws the configuration
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x∗ as above from the distribution µ( · ). She then reveals to you the values of far
apart variables in the reference configuration, i.e. the values x∗

j for all j ∈ B(i, -).
She asks you to reconstruct the value of x∗

i , or to guess it as well as you can.
The correlation function Gi(-) measures how likely you are to guess correctly
(assuming unbounded computational power), compared to the case in which no-
variable has been revealed to you.

This discussion suggests the following definition:

Definition 22.3. (Second type of correlation decay) The graphical model
µ( · ) is said to satisfy the non-reconstructibility (or extremality) condition
if for all i’s, Gi(-) → 0 as - →∞. (More precisely, we require that there exists a
function δ(-), with lim%→∞ δ(-) = 0, such that Gi(-) ≤ δ(-) for all i and N). In
the opposite case, i.e. if Gi(-) remains bounded away from zero at large distance,
the model is said reconstructible.

22.1.3 Generic scenarios

We shall now describe the correlation decay properties and the pure state de-
composition for the three main phases that we have encountered in the previous
chapters: RS, dynamical 1RSB, and static 1RSB. When dealing with models on
locally tree-like random graphs, each of these phases can also be studied using
the appropriate cavity approach, as we shall recall.

Here we focus on phases that appear ‘generically’. This means that we ex-
clude: (i) Critical points, that are obtained by fine-tuning some parameters of
the model; (ii) Multiplicities due to global symmetries, like for instance in the
zero-field ferromagnetic Ising model. Of course there also exist other types of
generic phases, such as higher order RSB phases that will be discussed in the
next section, and maybe some more that have not been explored yet.

Replica symmetric. In this phase there exists no non-trivial decomposition
into pure states of the form (22.7). In other words NN = 1 with high probability.

Correlations decay according to both criteria: the model is stable to small
perturbations and it satisfies the non-reconstructibility condition. Therefore it is
short-range correlated in the strongest sense.

Finally, the replica symmetric cavity method of Ch. 14 yields asymptotically
exact predictions.

Dynamical 1RSB. In this phase the measure µ( · ) admits a non trivial de-
composition of the form (22.7) into an exponential number of pure states: NN =
eNΣ+o(N) with high probability for some Σ > 0. Furthermore, most of the mea-
sure is carried by states of equal size. More precisely, for any δ > 0, all but an
exponentially small fraction of the measure is comprised in states Ωr,N such that

−Σ− δ ≤ 1

N
log µ(Ωr,N ) ≤ −Σ + δ . (22.15)

From the correlation point of view, this phase is stable to small perturbations,
but it is reconstructible. In other words, a finite number of probes would fail to
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αd(K) αc(K) αs(K) α

UNSAT

Fig. 22.1. A pictorial view of the different phases in K-SAT with K ≥ 4,
depending on the number of clauses per variable α. Form left to right: replica
symmetric, dynamical 1RSB, static 1RSB and UNSAT.

reveal long range correlations. But long range correlations of the point-to-set
type are instead present, and they are revealed, for instance, by a slowdown of
reversible Markov dynamics.

The glass order parameter overlap distribution P (q) is trivial in this phase
(as implied by (12.31)), but its glassy nature can be found through the ε-coupling
method of Sec. 12.3.4.

The model is solved exactly (in the sense of determining its asymptotic free-
energy density) within the 1RSB cavity method. The thermodynamically dom-
inant states, i.e. those satisfying (22.15), correspond to the 1RSB parameter
x = 1.

Static 1RSB. This is the ‘genuine’ 1RSB phase analogous to the low tem-
perature phase of the random energy model. The model admits a non-trivial
pure states decomposition with wildly varying weights. For any δ > 1, a frac-
tion 1 − δ of the measure is comprised in the k(N, δ) pure states with largest
weight. The number k(N, δ) converges, when N → ∞, to a finite random vari-
able (taking integer values). If we order the weights according to their magnitude
w(1) ≥ w(2) ≥ w(3) ≥ · · · , they converge to a Poisson-Dirichlet process, cf. Ch. 8.

This phase is not stable to small perturbation, and it is reconstructible: It
has long range correlations according to both criteria. The asymptotic overlap
distribution function P (q) has two delta-function peaks, as in Fig.12.3.

Again, it is solved exactly within the 1RSB cavity method.

These three phases are present in a variety of models, and are often separated
by phase transitions. The ‘clustering’ or ‘dynamical’ phase transition separates
the RS and dynamical 1RSB phases, while a condensation phase transition sepa-
rates the dynamical 1RSB from the static 1RSB phase. Fig. 22.1.3 describes the
organization of various phases in random K-SAT with K ≥ 4, as we discussed
in Sec. 20.3. For α < αd(K) the model is RS; for αd(K) < α < αc(K), it is
dynamically 1RSB; for αc(K) < α < αs(K), it is statically 1RSB, for αs(K) < α
it is UNSAT. Fig. 22.1.3 shows the point-to-set correlation function in random
4-SAT. It clearly develops long-range correlations at α ≥ αd ≈ 9.38. Notice the
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Fig. 22.2. The point-to-set correlation function defined in (22.14) is plotted
versus distance for random 4-satisfiability, at clause densities α = 9.30, 9.33,
9.35 and 9.40 (from bottom to top).

peculiar development of correlations through a plateau whose width increases
with α, and diverges at αd. This is typical of the dynamical 1RSB transition.

22.2 Higher levels of replica symmetry breaking

For some of the models studied in this book the RS, or the 1RSB cavity method
are thought to yield asymptotically exact predictions. However, in general higher
orders of RSB are necessary. We shall sketch how to construct these higher
order solutions hierarchically in locally tree-like graphical models. In particular,
understanding the structure of the 2RSB solution allows to derive a ‘stability
criterion’ for the 1RSB approach. It is on the basis of this criterion that, for
instance, our derivation of the SAT-UNSAT threshold in Ch. 20 is conjectured
to give an exact result.

22.2.1 The high-level picture

Let us first briefly summarize the RS/1RSB approach. Consider an ensemble of
graphical models defined through the distribution (22.1) with a locally tree-like
factor graph structure. Within the RS cavity method, the local marginals of µ( · )
are accurately described in terms of the message sets {νi→a}, {ν̂a→i}. Given a
small (tree-like) subgraph induced by the vertex set U ⊂ V , the effect of the rest
of the graph G \GU on U is described by a factorized measure on the boundary
of U .

One-step replica symmetry breaking relaxes this assumption, by allowing for
long-range correlations, with a peculiar structure. Namely, the probability dis-
tribution µ( · ) is assumed to decompose into the convex combination of Bethe
measures µr( · ). Within each ‘state’ r, the local marginals of the measure re-
stricted to this state are well described in terms of a set of messages {νr

i→a}
(by ‘well described’ we mean that the description becomes asymptotically exact
at large N). Sampling at random a state r defines a probability distribution
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d0

d1
d2

Fig. 22.3. Cartoon of the distribution µ(x) for a model described by two-step
replica symmetry breaking. The probability mass is concentrated on the gray
‘lumps’ of radius d2, which are organized in ‘clouds’ of radius d1 > d2. The
dashed circle corresponds to the typical distance d0 between clouds.

P({ν}, {ν̂}) over messages. This distribution is then found to be described by
an ‘auxiliary’ graphical model which is easily deduced from the original one. In
particular the auxiliary factor graph inherits the structure of the original one,
and therefore it is again locally tree-like. 1RSB amounts to using the RS cavity
method to study of this auxiliary graphical model over messages.

In some cases 1RSB is expected to be asymptotically exact in the thermody-
namic limit. However, this is not always the case: it may fail because the measure
P({ν}, {ν̂}) decomposes into multiple pure states. Higher-order RSB is used to
study this type of situation by iterating the above construction.

More precisely, the two-step replica symmetry breaking (2RSB) method starts
from the ‘auxiliary’ distribution P({ν}, {ν̂}). Instead of studying it with the RS
method as we did so far, we use instead the 1RSB method to study P({ν}, {ν̂})
(introducing therefore an auxiliary auxiliary model, that is studied by the RS
method).

The 2RSB Ansatz admits a hand-waving interpretation in terms of the qual-
itative features of the original model µ( · ). Reconsider again 1RSB. The inter-
pretation was that µ( · ) is the convex combination of ‘pure states’ µr( · ), each
forming a well separated lump in configuration space. Within 2RSB, lumps have
a hierarchical organization, i.e. they are grouped into ‘clouds’. Each lump is ad-
dressed by giving a ‘cloud index’ r1, and, within the cloud, a ‘lump index’ r2.
The measure thus decomposes as

µ(x) =
∑

r1∈S1, r2∈S2(r1)

wr1,r2 µr1,r2(x) . (22.16)

Here S2(r1) is the set of indices of the lumps inside cloud r1. A pictorial sketch
of this interpretation is shown in Fig. 22.2.1.
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Fig. 22.4. Hierarchical structure of the distribution µ(x) within k-step replica
symmetry breaking. Here k = 3.

Even the most forgiving reader should be puzzled by all this. For instance,
what is the difference between N1 clouds, each involving N1 lumps, and just
N1N2 lumps? In order to distinguish between these two cases one can look at
a properly defined distance, say the Hamming distance divided by N , between
two i.i.d. configurations drawn with distribution µ( · ) (in physics jargon, two
replicas). If one conditions on the two configurations to belong to the same lump,
to different lumps within the same cloud, or to different clouds, the normalized
distances concentrate around three values, respectively d2, d1, d0, with d2 <
d1 < d0. As in the case of 1RSB, one could in principle distinguish dynamic and
static 2RSB phases depending on the number of relevant clouds and lumps within
clouds. For instance in the most studied case of static 2RSB, these numbers are
subexponential. As a consequence, the asymptotic distribution of the distance
between two replicas has non-zero weight on each of the three values d0, d1, d2

(in other words, the overlap distribution P (q) is the combination of three delta
functions).

Of course this whole construction can be bootstrapped further, by having
clouds grouped into larger structures etc. . . Within k-RSB, the probability dis-
tribution µ( · ) is a convex combination of ‘states’ µr( · ) where r = (r1, r2, . . . , rk)
indexes the leaves of a k-generations tree. The indices r1, r2, . . . , rk correspond
to the nodes encountered along the path between the root and the leaf. This
translates into a hierarchy of auxiliary graphical models. By allowing k to be
arbitrarily large, this hierarchy is expected to determine the asymptotic prop-
erties of a large class of models. In particular one can use it to compute the
free-entropy per variable φ ≡ limN→∞ N−1 log ZN .

The resulting description of µ(x) has a natural ultrametric structure, as dis-
cussed in Ch. 8 and recalled in Fig. 22.4. This structure is captured by the
generalized random energy model (GREM), a simple model that generalizes the
REM discussed in Chapter 5. While presenting the solution of the GREM would
take us too far, it is instructive to give its definition.
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Example 22.4 The GREM is a simple model for the probability distribu-
tion µ( · ), within k-step RSB. Its definition involves one parameter N ∈ N

that corresponds to the system size, and several others (to be denoted as
{a0, a1, . . . , ak−1}, {d0, d2, . . . , dk−1} and {Σ0,Σ1, . . . ,Σk−1}) that are thought
to be fixed as N → ∞. States are associated with the leaves of a k-generations
tree. Each leaf is indexed by the path r = (r0, . . . , rk−1) that connects it to the
root, cf. Fig. 22.4.

The GREM does not describe the structure of each state µr( · ) (that can
be thought as supported on a single configuration). It only describes the dis-
tribution of distances between the states, and the distribution of the weights
wr appearing in the decomposition (22.16).

A node at level i has exp{NΣi} offsprings. The total number of states is
therefore exp{N(Σ0 + · · · + Σk−1)}. Two random configurations drawn from
states r and s have distance di(r,s), where i(r, s) is the largest integer i such
that ri = si. Finally, the weight of state r has the form

wr =
1

Z
exp{−β(E(0)

r0
+ · · · + E(k−1)

rk−1
)} , (22.17)

where E(i)
r are independent normal random variables with mean 0 and variance

Nai. The interested reader is invited to derive the thermodynamic properties
of the GREM, for instance the free-energy as a function of the temperature.

22.2.2 What does 2RSB look like?

Higher order RSB has been studied in some detail in many ‘fully connected’
models such as the p-spin Ising model considered in Chapter 8. On the contrary,
if one considers models on sparse graphs as we do here, any cavity calculation
beyond 1RSB is technically very challenging. In order to understand why, it is
interesting to have a superficial look at how a 2RSB cavity calculation would be
formally set up without any attempt at justifying it.

For the sake of simplicity we shall consider a model of the form (22.1) with
pairwise interactions. Therefore all the factor nodes have degree 2, and BP al-
gorithms can be simplified by using only one type of messages passed along the
edges of an ordinary graph, cf. Sec. 14.2.5. Consider a variable node 0 ∈ V of
degree (l+1), and denote l of its neighbors by {1, . . . , l}. We let ν1, . . . , νl be the
messages from (respectively) 1, . . . , l, and ν0 the message from 0 to its (l + 1)-th
neighbor.

As we saw in Sec. 14.2.5, the RS cavity equation (i.e. the BP fixed point
equation) at node 0 reads

ν0(x0) =
1

z{νi}

k∏

i=1

∑

xi

ψ0i(x0, xi)νi(xi) , (22.18)

where z{νi} is determined by the normalization condition of ν0( · ). In order to
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lighten the notation, it is convenient to introduce a function f0 that, evaluated
on l messages ν1, . . . , νl returns the message ν0 as above. We will therefore write
Eq. (22.18) in shorthand form as ν0 = f0{νi}. Each νi is a point in the (|X |− 1)-
dimensional simplex.

The 1RSB cavity equations are obtained from Eq. (22.18) by promoting the
messages νi to random variables with distribution Qi( · ), cf. Ch. 19. The equa-
tions depend on the 1RSB parameter (a real number), that we denote here as
x1. Adopting a continuous notation for the messages distributions, we get

Q0(ν0) =
1

Z{Qi}

∫
z{νi}x1 δ(ν0 − f0{νi})

l∏

i=1

dQi(νi) , (22.19)

Analogously to the replica-symmetric case, Eq. (22.18), we shall write Q0 =
F0{Qi} as a shorthand for this equation. The function F0 takes as argument l
distributions Q1, . . . , Ql and evaluates a new distribution Q0 (each of the Qi’s is
a distribution over the (|X | − 1)-dimensional simplex).

At this point the formal similarity of Eqs. (22.18) and (22.19) should be
clear. The 2RSB cavity equations are obtained by promoting the distributions
Qi to random variables (taking values in the set of distributions over the |X |-
dimensional simplex)33. Their probability distributions are denoted as Qi, and
the resulting equations depend on one further real parameter x2. Formally the
2RSB equation can be written as

Q0(Q0) =
1

Z{Qi}

∫
Z{Qi}x2/x1 δ(Q0 − F0{Qi})

l∏

i=1

dQi(Qi) . (22.20)

This equation might look scary, as Qi( · ) are distributions over distributions over
a compact subset of the reals. It is useful to rewrite it in a mathematically more
correct form. This is done by requiring, for any measurable set of distributions
A (see the footnote), the following equality to hold:

Q0(A) =
1

Z{Qi}

∫
Z{Qi}x2/x1 I(F0{Qi} ∈ A)

l∏

i=1

dQi(Qi) . (22.21)

The interpretation of the 2RSB messages Qi is obtained by analogy with the
1RSB one. Let α1 be the index of a particular cloud of states and Qα1

i ( · ) be
the distribution of the message νi over the lumps in cloud α1. Then Qi is the
distribution of Qα1

i when one picks up a cloud index α1 randomly (each cloud
being sampled with a weight that depends on x1.)

33The mathematically inclined reader might be curious about the precise definition of a
probability distribution over the space of distributions. It turns out that given a measure space
Ω (in our case the (|X | − 1) dimensional simplex), the set of distribution over Ω can be given
a measurable structure that makes 2RSB equations well defined. This is done by using the
smallest σ-field under which the mapping Q "→ Q(A) is measurable for any A ⊆ Ω measurable.
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In principle Eq. (22.20) can be studied numerically by generalizing the pop-
ulation dynamics approach of Ch. 19. In the present case one can think of two
implementations: for one given instance, one can generalize the SP algorithm,
but this generalization involves, on each directed edge of the factor graph, a pop-
ulation of populations. If instead one wants to perform a statistical analysis of
these messages, seeking a fixed point of the corresponding density evolution, one
should use a population of populations of populations! This is obviously chal-
lenging from the point of view of computer resources (both memory and time).
To the best of our knowledge it has been tried only once, in order to compute
the ground state energy of the spin glass on random 5-regular graphs. Because
the graph is regular it looks identical at any finite distance from any given point.
One can therefore seek a solution such that the Qi on all edges are the same, and
one is back to the study of populations of populations. The results have been
summarized in Table 17.4.5: if one looks at the ground state energy, the 2RSB
method provides a small correction of order 10−4 to the 1RSB value, and this
correction seems to be in agreement with the numerical estimates of the ground
state.

22.2.3 Local stability of the 1RSB phase

The above discussion of 2RSB will help us to check the stability of the 1RSB
phase. The starting point consists in understanding the various ways in which
the 2RSB formalism can reduce to the 1RSB one.

The first obvious reduction consists in taking the 2RSB distribution Qi to
be a Dirac delta at Q∗

i . In other words, for any continuous functional F on the
space of distributions

∫
F(Qi) dQi(Qi) = F(Q∗

i ) . (22.22)

It is not hard to check that, if {Q∗
i } solves the 1RSB equation Eq. (22.19), this

choice of {Qi} solves Eq. (22.20) independently of x2.
There exists however a second reduction, that corresponds to taking Qi( · )

a non-trivial distribution, but supported on Dirac deltas: let us denote by δν∗ a
1RSB distribution which is a Dirac delta on the message ν = ν∗. Given a set of
messages{Q∗

i } that solves the 1RSB equation Eq. (22.19), we construct Qi( · ) as
a superposition of Dirac deltas over all values of ν∗, each one appearing with a
weight Q∗

i (ν
∗). Again this distribution is more precisely defined by its action on

a continuous functional F(Q):

∫
F(Qi) dQi(Qi) =

∫
F(δν∗) dQ∗

i (ν
∗) . (22.23)
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Exercise 22.2 Suppose that {Q∗
i } solves the analog of the 1RSB equation

Eq. (22.19) in which the parameter x1 has been changed into x2. Show that Qi

defined by Eq. (22.23) solves Eq. (22.20) independently of x1.
[Hint: Show that, when evaluated on Dirac deltas, the normalization Z

appearing in (22.19) is related to the normalization z in (22.18) by Z{δνi} =
(z{νi})x1 .]

In view of the interpretation of the 2RSB messages Qi outlined in the pre-
vious section, and cartooned in Fig. 22.2.1, these two reductions correspond to
qualitatively different limit situations. In the first case, described by Eq. (22.22),
the distribution over clouds becomes degenerate: there is essentially one cloud
(by this we mean that the number of clouds is not exponentially large in N : the
corresponding complexity vanishes). In the second case, described by Eq. (22.23),
it is the distribution within each cloud that trivializes: there is only one cluster
(in the same sense as above) in each cloud.

What are the implications of these remarks? Within the 1RSB approach one
needs to solve Eq. (22.19) in the space of didtributions over BP messages: let
us call this the ‘1RSB space’. When passing to 2RSB, one seeks a solution of
(22.20) within a larger ‘2RSB space,’ namely the space of distributions over
distributions over BP messages. Equations (22.22) and (22.23) provide two ways
for embedding the 1RSB space inside the 2RSB space.

When one finds a 1RSB solution, one should naturally ask whether there
exists a proper 2RSB as well (i.e. a solution outside the 1RSB subspace). If this
is not the case, physicists usually conjecture that the 1RSB solution is asymp-
totically correct (for instance it yields the correct free-energy per spin). This
check has been carried out for models on complete graph (e.g. the fully con-
nected p-spin glasses). So far, the difficulty of studying the 2RSB equations have
prevented its implementation for sparse factor graph.

Luckily there is a convenient (albeit less ambitious) alternative: check the
local stability of 1RSB solutions with respect to higher order RSB. Given a
1RSB solution, one looks at it as a point in the 2RSB space according to the two
possible embeddings, and one studies the effect of a small perturbation. More
precisely, consider the iteration of 2RSB equations (22.20):

Q(t+1)
i→j (Q0) =

1

Z{Ql→i}

∫
Z{Ql→i}r δ(Qi→j − Fi{Ql→i})

∏

l∈∂i\j

dQ(t)
l→i(Ql→i) .

Given the factor graph G, we initiate this iteration from a point close to the 1RSB
solution described by either of the embeddings (22.22) or (22.23) and see if, the
iteration converges back to the 1RSB fixed point. This is studied by linearizing
the iteration in an appropriate ‘perturbation’ parameter. If the iteration does
not converge to the 1RSB fixed point, the 1RSB solution is said unstable. The
instability is named of ‘type I’ if it occurs when embedding (22.22) is used and
named of ‘type II’ for embedding (22.23).
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Fig. 22.5. Cartoon of the two types of local instabilities from a 1RSB solution
towards 2RSB.

An alternative approach for checking the local stability of a 1RSB solution
consists in computing the spin glass susceptibility, which describes the reaction
of the model (22.16) to a perturbation that acts on a single variable xi. As
we discussed above, the effect of this perturbation (studied in linear order) re-
mains finite when the spin glass susceptibility χ(2) is finite. One should therefore
compute χ(2) assuming that the 1RSB solution is correct and check that it is
finite. However, the 1RSB picture implies a second condition: each single lump r
should also be stable to small perturbations. More precisely, we define χSG,r as
the spin glass susceptibility with respect to the measure µr( · ) restricted to state
r. Denoting by 〈 · 〉r the expectation value with respect to µr, the ‘intra-state’
susceptibility, χSG,intra, is a weighted average of χSG,r over the state r:

χSG,intra =
∑

r

wr χSG,r, (22.24)

χSG,r =
1

N

∑

i,j

(
〈xixj〉r − 〈xi〉r〈xj〉r

)2
. (22.25)

Within the susceptibility approach, the second condition consists in computing
χSG,intra with the 1RSB approach and requiring that it stays finite as N →∞.

It is generally believed that these two approaches to the local stability of
the 1RSB phase coincide. Type I stability should be equivalent to χ(2) being
finite; it means that the system is stable with respect to the grouping of states
into clusters. Type II stability should be equivalent to χSG,intra being finite; it
means that the system is stable towards a splitting of the states into sub-states.
A pictorial representation of the nature of the two instabilities in the spirit of
Fig. 22.2.1 is shown in Fig. 22.2.3.

The two approaches to stability computations have been developed in several
special cases, and are conjectured to coincide in general. Remarkably 1RSB is
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Fig. 22.6. Top: The energetic complexity Σe in a random 3-SAT problem, com-
puted within the 1RSB cavity method, is plotted versus the density e of
violated clauses, for α = 4.1, 4.2, and 4.3 (from top to bottom). The curve
reproduces Fig. 20.5, but it now shows the stable and unstable regions. The
full thick line, below eG(α), gives the part of the complexity curve for which
the 1RSB computation is locally stable (absent for α = 4.1 < αm(3), where
the full curve is unstable). This is the only part that is computed reliably
by 1RSB, the dashed part is unstable. Bottom: In the same random 3-SAT
problem, plotted versus the clause density α: the continuous line gives the
minimum density of unsatisfied clauses as predicted within 1RSB (this is the
value of e where Σe(e) starts to become positive). The dotted line gives the
threshold energy density as predicted within 1RSB (the maximal value of e
where Σe(e) exists). The gray area indicates the region of local stability of the
1RSB stability. The ground state energy density predicted by 1RSB is wrong
for α > αG (although probably very close to the actual value), because in
this region there is an instability towards higher order RSB. It is conjectured
that the stable region, αm < α < αs, is in a 1RSB phase: if this conjecture
holds the 1RSB prediction αs for the SAT-UNSAT threshold is correct. For
K = 3 one has αm(3) = 4.153(1), αs(3) = 4.2667(1), αG(3) = 4.390(5).
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unstable in several interesting cases and higher order RSB would be needed to
obtain exact predictions.

Stability computations are somewhat involved, and a detailed description is
beyond our scope. Nevertheless, we want to give an example of the results that
can be obtained through a local stability analysis. Consider random K-SAT
formulae, with N variables and M = Nα clauses. Let es(α) denote the minimum
number of unsatisfied clauses per variable, in the large system limit. The limit
es(α) can be computed along the lines of Ch. 20 using the 1RSB cavity method:
for a given α, one computes the energetic complexity density Σe(e) versus the
density of violated clauses e. Then es(α) is found as the minimal value of u such
that Σe(e) > 0. It vanishes for α < αs(K) (the SAT-UNSAT threshold) and
departs continuously from 0, increasing monotonically for α > αs(K).

The stability computation shows that, for a given α, there is in general an
instability of type II which appears above some value e = eG(α): only the part
of Σe(e) with e ≤ eG(α) is in a locally stable 1RSB phase. When α < αm(K),
eG(α) = 0 and the whole 1RSB computation is unstable. For α > αG(K),
eG(α) < es(α) (the ground state energy density) and again 1RSB is unstable (this
implies that the 1RSB prediction for es(α) is not correct). The conclusion is that
the 1RSB calculation is stable only in an interval ]αm(K), αG(K)[. Figure 22.2.3
summarizes this discussion for 3-SAT. For all values of K, the stable interval
]αm(K), αG(K)[ contains the SAT-UNSAT threshold αs(K).

The stability check leads to the conjecture that the 1RSB prediction for
αs(K) is exact. Let us stress however that stability has been checked only with
respect to small perturbations. A much stronger argument would be obtained if
one could do the 2RSB computation and show that it has no solution apart from
the two ‘embedded 1RSB solutions’ that we discussed above.

22.2.4 Open problems within the cavity method

The main open problem is of course to prove that the 1RSB cavity approach
yields correct predictions in some models. This was achieved until now only for
a class of models on the complete graph. Here we want to point out a number
of open questions that wait for an answer, even at a heuristic level, within the
1RSB cavity method itself.

Distributional equations. Cavity predictions are expressed in terms of fixed
point of equations of the form (22.19). When considering models on ensembles of
random graphs, this can be read as an equation for the probability distribution
of Q0( · ) (that is taken identical to the one of Q1( · ),. . . , Qk( · ).)

Currently such equations are mostly studied using the population dynamics
method of Sec. 14.6.4. The main alternative explored so far has been to formally
expand the equations for large degrees. Population dynamics is powerful and
versatile. However in many cases, this approach is too coarse, particularly as
soon as one wants to study k-RSB with k ≥ 2. It is intrinsically hampered by
statistical errors, that are of the order of the inverse square root of population
size. In some models (for instance, in graph ensembles with large but bounded
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average degree), statistical fluctuations are too large for the population sizes that
can be implemented on ordinary PCs (typically 107 ÷ 108 elements). This limits
the possibility to distinguish, for instance, 2RSB from 1RSB effects, because high
precision is generally required to see the difference. Furthermore, metastability is
the crux (and the limit) of the whole population dynamics approach. Therefore
it would be interesting to make progress in two directions:

• Analytical tools and generic results on the cavity equations; this could
provide important guiding principles for any numerical study.

• New efficient and stable numerical methods.

A step forward has been made by the reconstruction algorithm discussed in The-
orem 19.5, but unfortunately it is limited to one value of the rescaling parameter,
x = 1.

Local stability. Local stability criteria provide an important guidance in heuris-
tic studies. It would be important to put these results on firmer grounds. Two
specific tasks could be, for instance:

• Prove that, if all 1RSB solutions of the cavity equations are locally unsta-
ble, then there must exist a 2RSB solution outside the 1RSB subspace.

• Prove that, if a solution of the cavity equations is locally unstable, it does
not describe correctly the model.

Occurrence of k-RSB. A number of random graphical models have been stud-
ied within the cavity (or replica) method. In most cases, one finds that the system
is either RS, or 1RSB, or FRSB. The cases in which a 2RSB phase is found are
rare, and they always involve some kind of special construction of the compati-
bility function (for instance, a fully connected model which is a superposition of
two p-spin glass interactions, with p1 = 3 and p2 = 16 displays 2RSB). Therefore
one should

• Find a ‘natural’ model for which 2RSB is asymptotically exact, or under-
stand why this is impossible.

Full replica-symmetry breaking. We saw that k-RSB provides, as k increases,
a sequence of ‘nested’ schemes that aim at computing various quantities like local
marginals, free-entropy density, etc. . . , in the large system limit. A k-th order
scheme includes all the lower l-RSB schemes with l < k as nested subspaces of
the set of feasible solutions to the cavity equations. On the other hand, as the
number of steps increases, the description of the set of feasible solutions becomes
more and more complicated (distributions of distributions of. . . ).

Surprisingly, in the case of fully connected models, there exists a compact
description of the space of feasible solutions in the FRSB limit k → ∞. An
outstanding problem is to find an analogous description in the case of models on
sparse graphs. This would allow to look for the best solution in the k-RSB space
for all k.
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• Find a description of the space of full replica-symmetry breaking messages
for models on sparse graphs.

Variational aspect. It is widely believed that if one finds a consistent solution of
the cavity k-RSB equations, the free-energy density computed with this solution,
is always a lower bound to the correct free energy density of the model (in
particular the k-RSB ground state energy density prediction is a lower bound
to the true one). This should hold for a large class of models with a statistical
+1/− 1 symmetry. While this has been proven in some specific cases, one would
like to:

• Find a general proof that the free-energy computed with the cavity method
is a lower bound to the correct free-energy of the model.

22.3 Phase structure and the behavior of algorithms

A good part of this book has been devoted to the connection between the various
phases in random graphical models, and the behavior of algorithms. There exists
by now substantial evidence (empirical, heuristic, and, in some cases, rigorous)
that such a connection exists. For instance, we have seen on the example of codes
in Ch.21 how the appearance of a 1RSB phase, and the corresponding prolifer-
ation of metastable states, determines the noise threshold where BP decoding
fails. Developing a broader understanding of this connection, and determining
the class of algorithms to which it applies, is a very important problem.

We propose here a list of broad research problems, whose advancement will
probably help to clarify this issue. We always have in mind a graphical model of
the form (22.1), with a locally tree-like factor graph.

Impact of the dynamical transition on Monte Carlo dynamics.
Consider the problem of sampling from the distribution (22.1) using a Monte

Carlo Markov Chain (MCMC) algorithm. The Markov chain is assumed to flip
a sub-linear (o(N)) number of variables at each step, and to satisfy detailed
balance with respect to the probability distribution µ( · ).

One expects that, if the system is in a 1RSB phase, the relaxation time of
this algorithm will increase rapidly (probably exponentially) with system size.
Intuitive arguments in favor of this statement can be obtained from each of the
two characterizations of the 1RSB phases introduced in Sec. 22.1. The argument
is different whether we start from the pure state decomposition, or from the
characterization in terms of correlations. In the first case, the relaxation time is
estimated through the time to cross a bottleneck, see also Ch. 13. In the second
case, one can define a correlation length -∗i through the point-to-set correlation
function Gi(-), cf. Eq. (22.14). In order for the system to relax, information has
to travel a distance -∗i . But if -∗i diverges with size, so must the relaxation time.

This picture is intuitively satisfying, but it is far from being proved, and
should be formulated more precisely. For instance it often happens that in RS
phases there exist small isolated metastable states that make the relaxation time
(the inverse spectral gap of the MCMC) formally large. But even in such cases,
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numerical simulations indicate that Glauber dynamics equilibrates rapidly within
the RS phase. This observation is probably related to the fact that the initial
condition is chosen uniformly random, and that equilibration is only checked on
local observables. A number of questions arise:

• Why is metastability irrelevant ‘in practice’ in a RS phase? Is it because
of local measurements? Or because of the uniform initial condition? If the
latter is true, what is so special about the uniform initial condition?

• Within a RS phase, can one approximate partition functions efficiently?

Message passing and the estimation of marginals.
For a number of models on sparse random graphs within the RS and (some-

times) dynamical 1RSB phases, message passing methods like belief propagation
or survey propagation show, empirically, good performances. More precisely, they
return good approximations of local expectation values if initialized from uniform
messages.

Current rigorous techniques for analyzing BP often aim at proving that it is
accurate regardless of the initialization. As a consequence, results are dominated
by the behavior under worst case initializations that are not used in practice.
As an illustration, consider applying BP to the uniform measure over solutions
of a random K-SAT formula. The analysis under worst case initialization allows
to prove that BP is accurate only for α ≤ (2 log K)/K[1 + o(1)]. This threshold
is embarrassingly small when compared to the dynamical transition point that
terminates the RS phase αd(K) = 2K log K/K[1 + o(1)].

In general we have no good mathematical control of when BP or SP converge
or/and give good approximations of marginals. Empirically it seems that SP is
able to converge in some regions of 1RSB phases where BP does not. We have
no real understanding of this fact beyond the hand-waving argument that 1RSB
correctly captures the structure of correlations in these phases.

Here are a number of open questions on these issues:

• Why are BP/SP performances on random instances, with uniformly ran-
dom initialization, much better than in the worst case? What is special
about the uniform initialization? What are the features of random instances
that make them easier? Can these features be characterized and checked
efficiently?

• Under what conditions do the BP (or the SP) algorithms converge and give
good approximations to local marginals? When their naive iteration does
not converge, can one systematically either force convergence or use time
averages of the messages?

• It seems that, on sparse random graphical models, BP or SP outperforms
local MCMC algorithms. In particular these message passing algorithms
can have (at least in principle), good performances within the dynamical
1RSB phase. Can one demonstrate this possibility convincingly in some
model?
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Message passing algorithms and optimization.
If one seeks a solution to a random constraint satisfaction problem using

message passing, the main approach so far has been the use of decimation: one
first computes all local marginals, then decides, based on this knowledge, how to
fix a variable, and then iterate the procedure. In general this procedure converges
when the number of constraints per variable is not too large, but it fails above
a critical value of this number, which is strictly smaller than the SAT-UNSAT
threshold. No one knows how to determine analytically this threshold.

An alternative to decimation is the reinforcement method: instead of fixing
a variable based on the knowledge of local marginals, it modifies some local
factors applying to each individual variables, based on this same information. So
far, optimizing this modification is an art, and its critical threshold cannot be
estimated either.

• How to predict the performances of BP+ decimation or SP+decimation.
For instance, empirically these methods find solutions to random K-SAT
formulae with high probability for α < αBP(K) (or α < αSP(K)), but
we have no prediction for these algorithmic thresholds. In what class of
problems is SP better than BP?

• Similar questions for BP+reinforcement or SP+reinforcement.

• Find new ways to use the local marginal information found by message
passing in order to exhibit solutions.

• In an UNSAT phase, the message passing procedure is able to give an
estimate of the minimal number of violated constraints. Is it possible to
use this information, and the one contained in the messages, in order to
prove unsatisfiability for one given instance?

The above questions focus on sparse random instances. Message passing tech-
niques have been (partially) understood and sharpened for this type of instances.
They naturally arise in a large class of applications where the graphical model
is random, or pseudo-random, by design. The theory of sparse graph codes is a
clear example in this direction. In the limit of large block-lengths, random con-
structions proved to be generally superior to deterministic ones. More recently
sparse graph constructions have been proposed for data compression (both loss-
less and lossy), online network measurements, multi-terminal communications,
distributed storage, group testing, etc. . .

On the other hand, being able to deal with structured graphs would open an
even much broader class of applications. When applied to structured problems,
message passing algorithms often fail to converge. This is typically the reason why
the decimation method may fail, even when the marginals of the original problem
are well estimated by message passing: the instance found after fixing many
variables is no longer random. Finding appropriate modifications of message
passing for structured graphs would therefore be very interesting.
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• How to use message passing in order to improve the solution of some general
classes of (non-random) constraint satisfaction problems. Can it be coupled
efficiently to other general methods (such as MCMC)?

Notes

The present chapter was inevitably elliptic. We will provide a few pointers to
recent research without any ambition to be comprehensive.

The connection between correlation lengths and phase transitions is a classical
topic in statistical mechanics which has been recently revived by the interest in
the glass transition. A good starting point for learning about this subject in the
context of glasses is the paper (Bouchaud and Biroli, 2004) which describes the
‘freezing’ thought experiment in Sec. 22.1.2.

The description of point-to-set correlations in terms of ‘reconstruction’ prob-
lems is taken from (Evans, Kenyon, Peres and Schulman, 2000). This paper
studies the reconstruction phase transition for Ising models on trees. Results for
a wide class of models on trees are surveyed in (Mossel and Peres, 2003; Mossel,
2004). We also refer to (Gerschenfeld and Montanari, 2007) for the generaliza-
tion to non-tree graphs. The connection between ‘reconstruction’ and ‘dynamical’
1RSB phase transition was first pointed out in (Mézard and Montanari, 2006).
The implications of this phase transition on dynamics were explored in (Berger,
Kenyon, Mossel and Peres, 2005; Martinelli, Sinclair and Weitz, 2004; Montanari
and Semerjian, 2006b). The definition of pure states presented in this chapter
as well as the location of the dynamical and condensation phase transitions for
random K-SAT and coloring of random graphs are from (Krzakala, Montanari,
Ricci-Tersenghi, Semerjian and Zdeborova, 2007).

The GREM has been introduced by (Derrida, 1985) and studied in details
in (Derrida and Gardner, 1986). A 2RSB phase in fully connected models has
been found by (Crisanti and Leuzzi, 2007). There are very few results about
higher order RSB in models on sparse random graphs. For spin glasses, one
can use perturbative expansions close to the critical point (Viana and Bray,
1985), or for large degrees (Goldschmidt and Dominicis, 1990). The 2RSB com-
putation of ground state energy for spin glasses mentioned in Sec. 22.2 is from
(Montanari, 2003). The method for verifying the local stability of the 1RSB so-
lution in sparse systems was first devised in (Montanari and Ricci-Tersenghi,
2003), and applied to random satisfiability problems in (Montanari, Parisi and
Ricci-Tersenghi, 2004). A complete list of stability thresholds, including their
asymptotic behavior, for random K-SAT can be found in (Mertens, Mézard and
Zecchina, 2006). The interpretation of 1RSB instability in terms of susceptibili-
ties is discussed in (Rivoire, Biroli, Martin and Mézard, 2003).

The fact that the free-energy computed with the cavity (or replica) method is
a lower bound to the true one can be proven in some fully connected models using
the inequalities of (Guerra, 2003). The same strategy also yields rigorous bounds
in some diluted systems (Franz and Leone, 2003; Franz, Leone and Toninelli,
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2003; Panchenko and Talagrand, 2004) but it still relies on some details of the
structure of the models, and a general proof applicable to all cases is lacking.

The reinforcement algorithm has been introduced and discussed for SAT in
(Chavas, Furtlehner, Mézard and Zecchina, 2005).

There exist only scarce results on the algorithmic consequences of the struc-
ture of the solution space. Some recent analyses can be found in (Altarelli,
Monasson and Zamponi, 2007; Montanari, Ricci-Tersenghi and Semerjian, 2007;
Ardelius and Aurell, 2006; Alava, Ardelius, Aurell, Kaski, Krishnamurthy, Or-
ponen and Seitz, 2007). The convergence and correctness of BP for random
K-satisfiability at small enough α was proven in (Montanari and Shah, 2007).

This book covered only a small subsets of problems that lie at the intersection
between information theory, computer science and statistical physics. It would
be difficult to provide an exhaustive list of references on the topics we did not
touch: we will limit ourselves to a few ‘access points’.

As we mentioned, channel coding is only one of the fundamental problems
addressed by information theory. Data compression, in particular in its ‘lossy’
version, is a key component in many modern technologies, and presents a num-
ber of open problems (Ciliberti, Mézard and Zecchina, 2005; Wainwright and
Maneva, 2005). Some other statistics problems like group testing are similar in
spirit to data compression (Mézard, Tarzia and Toninelli, 2007).

Modern wireless and wireline communication systems are intrisically multi-
user systems. Finding optimal coding schemes in a multiuser context is a widely
open subject of great practical interest. Even the information theoretic capacity
of such systems is unknown. Two fields that benefited from tools or analogies
with statistical mechanics are multiuser detection (Tanaka, 2002; Guo and Verdú,
2002) and networking (Kelly, 1991). Always within a communications context,
a large effort has been devoted to characterizing large communication networks
such as the Internet. A useful review is provided by (Kleinberg, Kumar, Ragha-
van, Rajagopalan and Tomkins, 1999).

Statistical mechanics concepts have been applied to the analysis of fluctu-
ations in financial markets (Bouchaud and Potters, 2003) or to model interac-
tions among economic agents (Challet, Marsili and Zhang, 2005). Finally, biol-
ogy presents a number of problems in which randomness, interaction between
different components, and robustness play important roles. Stochastic models on
networks, and inference algorithms have been studied in a number of contexts,
from neural networks (Baldassi, Braunstein, Brunel and Zecchina, 2007; Coolen,
Kuehn and Sollich, 2005) to phylogeny (Mossel, 2003), to gene expression (Fried-
man, Linial, Nachman and Peér, 2000).

A few of these topics, and others, are reviewed in the recent school proceedings
(Bouchaud, Mézard and Dalibard, 2007).


