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Abstract
In a recent article (Proc. Natl. Acad. Sci., 110(36), 14557-14562), El Karoui et al. study the

distribution of robust regression estimators in the regime in which the number of parameters p is
of the same order as the number of samples n. Using numerical simulations and ‘highly plausible’
heuristic arguments, they unveil a striking new phenomenon. Namely, the regression coefficients
contain an extra Gaussian noise component that is not explained by classical concepts such as
the Fisher information matrix.

We show here that that this phenomenon can be characterized rigorously techniques that were
developed by the authors for analyzing the Lasso estimator under high-dimensional asymptotics.
We introduce an approximate message passing (AMP) algorithm to compute M-estimators and
deploy state evolution to evaluate the operating characteristics of AMP and so also M-estimates.
Our analysis clarifies that the ‘extra Gaussian noise’ encountered in this problem is fundamentally
similar to phenomena already studied for regularized least squares in the setting n < p.

1 M-Estimation under high dimensional asymptotics

Consider the traditional linear regression model

Y = X θ0 +W , (1)

with Y = (Y1, . . . , Yn)T ∈ Rn a vector of responses, X ∈ Rn×p a known design matrix, θ0 ∈ Rp a
vector of parameters, and W ∈ Rn random noise having zero-mean components W = (W1, . . . ,Wn)T

i.i.d. with distribution F = FW having finite second moment 1.
We are interested in estimating θ0 from observed data2 (Y,X) using a traditional M-estimator,

defined by a non-negative convex function ρ : R → R≥0:

θ̂(Y ;X) ≡ arg min
θ∈Rp

L(θ;Y,X) , L(θ;Y,X) ≡
n∑

i=1

ρ
(
Yi − 〈Xi, θ〉

)
, (2)

∗Department of Statistics, Stanford University

†Department of Electrical Engineering and Department of Statistics, Stanford University

1With a slight abuse of notation, we shall use W to denote a random variable with the same distribution FW .

2We denote by X1, . . . , Xn the rows of X. We often omit the arguments Y , X as this dependency will hold
throughout. Without loss of generality, we assume that the columns of X are normalized so that ‖X ei‖2 ≈ 1. (A more
precise assumption will be formulated below.)
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where 〈u, v〉 =
∑m

i=1 uivi is the standard scalar product in Rm, and θ̂ is chosen arbitrarily if there is
multiple minimizers.

Although this is a completely traditional problem, we consider it under high-dimensional asymp-
totics where the number of parameters p and the number of observations n are both tending to
infinity, at the same rate. This is becoming a popular asymptotic model owing to the modern
awareness of ‘big data’ and ‘data deluge’; but also because it leads to entirely new phenomena.

1.1 Extra Gaussian noise due to high-dimensional asymptotics

Classical statistical theory considered the situation where the number of regression parameters p is
fixed and the number of samples n is tending to infinity. The asymptotic distribution was found by
Huber [Hub73, Bic75] to be normal N(0,V) where the asymptotic variance matrix V is given by

V = V (ψ, FW )(XTX)−1 (3)

here ψ = ρ′ is the score function of the M-estimator and V (ψ, F ) = (
∫
ψ2dF )/(

∫
ψ′dF )2 the asymp-

totic variance functional of [Hub64], and (XTX) the usual Gram matrix associated with the least-
squares problem. Importantly, it was found that for efficient estimation – i.e. the smallest possible
asymptotic variance – the optimal M-estimator depended on the probability distribution FW of the
errors W . Choosing ψ(x) = (log fW (x))′ (with fW the density of W ), the asymptotic variance func-
tional yields V (ψ, FW ) = 1/I(FW ), with I(F ) denoting the Fisher information. This achieves the
fundamental limit on the accuracy of M-estimators [Hub73].

In modern statistical practice there is increasing interest in applications where the number of
explanatory variables p is very large, and comparable to n. Examples of this new regime can be
given, spanning bioinformatics, machine learning, imaging, and signal processing (a few research
areas in the last domains include [LDSP08, Sca97, Ric05, Cha03]).

This paper considers the properties of M-estimators in the high-dimensional asymptotic n→∞,
n/p(n) → δ ∈ (1,∞) In this regime, the asymptotic distribution of M-estimators no longer needs to
obey the classical formula (3) in widespread use. We make a random-design assumption on the X’s
detailed below. We show that the asymptotic covariance matrix of the parameters is now of the form

V = V (Ψ̃, F̃W )(E{XTX})−1, (4)

where V is still Huber’s asymptotic variance functional, but Ψ̃ is the effective score function, which
is different from ψ under high-dimensional asymptotics and F̃W is the effective error distribution,
which is different from FW under high-dimensional asymptotics. In the limit δ → ∞, the effective
score and the effective error distribution both tend to their classical counterparts, and one recovers
V (ψ, FW ).

The effective error distribution F̃W is a convolution of the noise distribution with an extra Gaus-
sian noise component, not seen in the classical setting (here ? denotes convolution):

F̃W ≡ FW ? N(0, τ2
∗ (ψ, FW , δ)) . (5)

The extra Gaussian noise depends in a complex way on ψ, FW , δ, which we characterize fully below
in Corollary 4.2.

Several important insights follow immediately:
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1. Existing formulas are inadequate for confidence statements about M-estimates under high
dimensional asymptotics, and will need to be systematically broadened.

2. Classical maximum likelihood estimates are inefficient under high-dimensional asymptotics.
The idea dominating theoretical statistics since R.A. Fisher to use ψ = (− log fW )′ as a scoring
rule, does not yield the efficient estimator.

3. The usual Fisher Information bound is not necessarily attainable in the high-dimensional
asymptotic, as I(F̃W ) < I(FW ).

M-estimation in this high-dimensional asymptotic setting was considered in a recent article by El
Karoui, Bean, Bickel, Lim, and Yu [EKBBL13], who studied the distribution of θ̂ for Gaussian design
matrices X. In short they observed empirically the basic phenomenon of extra Gaussian noise ap-
pearing in high-dimensional asymptotics and rendering classical inference incorrect. The dependence
of the additional variance τ2

∗ on δ, ψ and F was characterized by [EKBBL13] through a non-rigorous
heuristics 3 that the authors describe as ‘highly plausible and buttressed by simulations.’4 (We refer
to Section 5 for further discussion of related work.)

1.2 Proof Strategy: Approximate Message Passing

In the present paper, we show that this important statistical phenomenon can be characterized
rigorously, in a way that we think fully explains the main new concepts of extra Gaussian noise,
effective noise and the effective score. Our proof strategy has three steps

• Introduce an Approximate Message Passing (AMP) algorithm for M-estimation; an iterative
procedure with the M-estimator as a fixed point, and having the effective score function Ψ̃ as
its score function at algorithm convergence.

• Introduce State Evolution for calculating properties of the AMP algorithm iteration by itera-
tion. We show that these calculations are exact at each iteration in the large-n limit where we
freeze the iteration number and let n→∞.

At the center of the State Evolution calculation is precisely an extra Gaussian noise term that
is tracked from iteration to iteration, and which is shown to converge to a nonzero noise level.
In this way, State Evolution makes very explicit that AMP faces at each iteration and even in
the limit, an effective noise that differs from the noise W by addition of an appreciable extra
independent Gaussian noise.

• Show that the AMP algorithm converges to the solution of the M-estimation problem in mean
square, from which it follows that the asymptotic variance of the M-estimator is identical to
the asymptotic variance of the AMP algorithm. More specifically, the asymptotic variance of
the M-estimator is given by a formula involving the effective score function and the effective
noise.

3To the reader familiar with the mathematical theory of spin glasses, the argument of [EKBBL13] appears analogous
to the cavity method from statistical physics [MPV87, MM09, Tal10]

4After the first version of our manuscript was posted on ArXiv, Noureddine El Karoui announced an independent
proof of related results, using a completely different approach.
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As it turns out, our formula for the asymptotic variance coincides with the one derived heuris-
tically in [EKBBL13, Corollary 1] although our technique is remarkably different, and our proof
provides a very clear understanding of the operational significance of the terms appearing in the
asymptotic variance. It also allows explicit calculation of many other operating characteristics of the
M-estimator, for example when used as an outlier detector5.

1.3 Underlying tools

At the heart of our analysis, we are simply applying an approach developed in [BM11, BM12] for
rigorous analysis of solutions to convex optimization problems under high-dimensional asymptotics.

That approach grew out of a series of earlier papers studying the compressed sensing problem
[DMM09, DMM11, DJMM11, BM12]. From the perspective of this paper, those papers considered
the same regression model (1) as here; however, they emphasized the challenging asymptotic regime
where there are fewer observations than predictors, (i.e. n/p(n) → δ ∈ (0, 1)) so that even in the
noiseless case, the equations Y = Xθ would be underdetermined. In the p > n setting, it became
popular to use `1-penalized least squares (Lasso, [Tib96, CD95]). That series of papers considered
the Lasso convex optimization problem in the case of X with iid N(0, 1/n) entries (just as here)
and followed the same 3-step strategy we use here; namely, 1. Introducing an AMP algorithm; 2.
Obtaining the asymptotic distribution of AMP by State Evolution; and 3. Showing that AMP agrees
with the Lasso solution in the large-n limit. This procedure proved that the Lasso solution has the
asymptotic distribution

θ̂u ∼ N(θ0, (σ2 + τ2
Lasso)Ip×p) (6)

where σ2 is the variance of the noise in the measurements, and τ2
Lasso is the variance of an extra

Gaussian noise, not appearing in the classical setting where p(n)/n → 0. The variance of this
extra Gaussian noise was obtained by state evolution and shown to depend on the distribution of
the coefficients being recovered, and on the noise level in a seemingly complicated way that can be
characterized by a fixed-point relation, see [DMM11, BM12]. At the center of the rigorous analysis
stand the papers [BM11, BM12] which analyze recurrences of the type used by AMP and establish
the validity of State Evolution in considerable generality. Those same papers stand at the center of
our analysis in this paper.

Apart from allowing a simple treatment, this provides a unified understanding of the phenomenon
of high-dimensional extra Gaussian noise.

1.4 The role of AMP

This paper introduces a new first-order algorithm for computing the M-estimator θ̂ which is uniquely
appropriate for the random-design case. This algorithm fits within the class of approximate message
passing (AMP) algorithms introduced in [DMM09, BM11] (see also [Ran11] for extensions). This
algorithm is of independent interest because of its low computational complexity.

AMP has a deceptive simplicity. As an iterative procedure for convex optimization, it looks
almost the same as the ‘standard’ application of simple fixed-stepsize gradent descent. However, it is

5The slightly more general [EKBBL13, Result 1] covers heteroscedastic noise is not covered by the analysis of this
paper, but should be provable by adapting our argument.
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intended for use in the random-design setting, and it has an extra memory term (aka reaction term)
that modifies the iteration in a profound and beneficial way. In the Lasso setting, AMP algorithms
have been shown to have remarkable fast convergence properties [DMM09], far outperforming more
complex-looking iterations like Nesterov and FISTA.

In the present paper, AMP has an second important wrinkle – it solves a convex optimization
problem associated to minimizing ρ with iterations based on gradient descent with an objective ρbt

which varies from one iteration to the next, as bt changes, but which does not tend to ρ in the limit.
In the present paper, AMP is mainly used as a proof device, one component of the three-part

strategy outlined earlier. However, a key benefit produced by the curious features of AMP is strong
heuristic insight, which would not be available for a ‘standard’ gradient-descent algorithm.

The AMP proof strategy makes visible the extra Gaussian noise appearing in the M-estimator
θ̂. Elementary considerations show that such extra noise is present at iteration zero of AMP. State
Evolution faithfully tracks the dynamics of this extra noise across iterations. State Evolution proves
that the extra noise level does not go to zero asymptotically with increasing iterations, but instead
that the extra noise level tends to a fixed nonzero value. Because AMP is solving the M-estimation
problem, the M-estimator must be infected by this extra noise.

The AMP algorithm and its State Evolution analysis shows that the extra noise in parameter θ̂t
i

at iteration t is due to cross-parameter estimation noise leakage, where errors in the estimation of all
other parameters at the previous iteration (t− 1) cause extra noise to appear in θ̂t

i . In the classical
setting no such effect is visible. One could say that the central fact about the high-dimensional
setting revealed here as well as in our earlier work [DMM09, DMM11, DJMM11, BM12], is that
when there are so many parameters to estimate, one cannot really insulate the estimation of any one
parameter from the errors in estimation of all the other parameters.

2 Approximate Message Passing (AMP)

2.1 A family of score functions

For the rest of the paper, we make the following smoothness assumption on ρ:

Definition 2.1. We call the loss function ρ : R → R smooth if it is continuously differentiable, with
absolutely continuous derivative ψ = ρ′ having an a.e. derivative ψ′ that is bounded: supu∈R ψ

′(u) <
∞.

Our assumption excludes some interesting cases, such as ρ(u) = |u|, but includes for instance the
Huber loss 6

ρH(z;λ) =

{
z2/2 if |z| ≤ λ,
λ|z| − λ2/2 otherwise.

(7)

Associated to ρ, we introduce the family ρb of regularizations of ρ:

ρb(z) ≡ min
x∈R

{
bρ(x) +

1
2
(x− z)2

}
, (8)

6We expect that the proof technique developed in this paper should be generalizable to a broader class of functions
ρ, at the cost of additional technical complications.
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in words, this is the min-convolution of the original loss with a square loss. Each ρb has a corre-
sponding score function

Ψ(z; b) = ρ′b(z).

The effective score of the M-estimator belongs to this family, for a particular choice of b, explained
below.

In the classical M-estimation literature [HR09], monotonicity and differentiability of the score
function ψ is frequently useful; our assumptions on ρ guarantee these properties for the nominal
score function ψ. The score family Ψ( · ; b) has such properties as well: for any b, Ψ( · ; b) is a strictly
monotone increasing function; second, for any b > 0, Ψ( · ; b) is a contraction. With Ψ′ denoting
differentiation with respect to the first variable, we have Ψ′(z; b) ∈ (0, 1). For proof and further
discussion, see Appendix A.

Before proceeding, we give an example. Consider the Huber loss ρH(z;λ), with score function
ψ(z;λ) = min(max(−λ, z), λ). We have

Ψ(z; b) = bψ
( z

1 + b
;λ

)
.

In particular the shape of each Ψ is similar to ψ, but the slope of the central part is now ‖Ψ′( · ; b)‖∞ =
b

1+b < 1.

2.2 AMP algorithm

Our proposed approximate message passing (AMP) algorithm for the optimization problem (2) is
iterative, starting at iteration 0 with an initial estimate θ̂0 ∈ Rp. At iteration t = 0, 1, 2, . . . it applies
a simple procedure to update its estimate θ̂t ∈ Rp, producing θ̂t+1. The procedure involves three
steps.

Adjusted residuals. Using the current estimate θ̂t, we compute the vector of adjusted residuals
Rt ∈ Rn,

Rt = Y −Xθ̂t + Ψ(Rt−1; bt−1) ; (9)

where to the ordinary residuals Y −Xθ̂t we here add the extra term7 Ψ(Rt−1; bt−1).

Effective Score. We choose a scalar bt > 0, so that the effective score Ψ( · ; bt) has empirical average
slope p/n ∈ (0, 1). Setting δ = δ(n) = n/p > 1, we take any solution8 (for instance the smallest
solution) to 9:

1
δ

=
1
n

n∑
i=1

Ψ′(Rt
i; b) . (10)

7Here and below, given f : R → R and v = (v1, . . . , vm)T ∈ Rm, we define f(v) ∈ Rm by applying f coordinate-wise
to v, i.e. f(v) ≡ (f(v1), . . . , f(vm))T.

8This equation always admits at least one solution since b 7→ Ψ′(r; b) is continuous in b ≥ 0, with Ψ′(r; 0) = 0 and
(for ρ strictly convex) Ψ′(r;∞) = 1, cf. Proposition A.1.

9Under this prescription, the sequence bt depends on the instance (Y,X). As explained in the next section, for the
proof of our main result we will use a slightly different prescription, that is independent of the problem instance.
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Scoring. We apply the effective score function Ψ(Rt; bt):

θ̂t+1 = θ̂t + δXTΨ(Rt; bt) . (11)

The Scoring step of the AMP iteration (11) is similar to traditional iterative methods for M-
estimation, compare [Bic75]. Indeed, using the traditional residual zt = Y − Xθt, the traditional
method of scoring at iteration t would read

θ̂t+1 = θ̂t +
1

1
n

∑n
i=1 ψ

′(zt
i)

(XTX)−1XTψ(zt), (12)

and one can see correspondences of individual terms to the method of scoring used in AMP. Of course
the traditional term [

∑n
i=1 ψ

′(zt
i)/n]−1 corresponds to AMP’s [

∑n
i=1 Ψ′(Rt

i; bt)/n]−1 ≡ δ (because
of step (10)), while the traditional term (XTX)−1 corresponds to AMP’s implicit Ip×p – which is
appropriate in the present context because our random-design assumption below makes XTX behave
approximately like the identity matrix.

2.3 Relation to M-estimation

The next lemma explains the reason for using the effective score Ψ(·; bt) in the AMP algorithm: this
is what connects the AMP iteration to M-estimation (2).

Lemma 2.2. Let (θ̂∗, R∗, b∗) be a fixed point of the AMP iteration (9), (10), (11) having b∗ > 0. Then
θ̂∗ is a minimizer of the problem (2). Viceversa, any minimizer θ̂∗ of the problem (2) corresponds to
one (or more) AMP fixed points of the form (θ̂∗, R∗, b∗).

Proof. By differentiating Eq. (2), and omitting the arguments Y,X for simplicity from L(θ;Y,X),
we get

∇θL(θ) = −
n∑

i=1

ρ′
(
Yi − 〈Xi, θ〉

)
Xi = −XTρ′(Y −Xθ) , (13)

where as usual ρ′ is applied component-wise to vector arguments. The minimizers of L(θ) are all the
vectors θ for which the right hand side vanishes.

Consider then a fixed point (θ̂∗, R∗, b∗), of the AMP iteration (9), (11). This satisfies the equations

R∗ = Y −Xθ̂∗ + Ψ(R∗; b∗) , (14)

0 = δXTΨ(R∗; b∗) . (15)

The first equation can be written as

Y −Xθ∗ = R∗ −Ψ(R∗; b∗) , (16)

Using Proposition A.2 below, (16) implies that Ψ(R∗; b∗) = b∗ρ
′(Y −Xθ̂∗). Hence the second equation

reads

0 = δb∗XTρ′(Y −Xθ̂∗) , (17)

which coincides with the stationarity condition (13) for b∗ > 0. This concludes the proof.
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2.4 Example

To make the AMP algorithm concrete, we consider an example with n = 1000, p = 200, so δ = 5.
For design matrix we let Xi,j ∼ N(0, 1

n), and we draw θ0 a random vector of norm ‖θ0‖2 = 6
√
p. For

the distribution F = FW of errors, we use Huber’s contaminated normal distribution CN(0.05, 10),
so that F = 0.95Φ + 0.05H10, where Hx denotes a unit atom at x. For the loss function, we use the
Huber’s ρH(z;λ) with λ = 3. Starting the AMP algorithm with θ̂0 = 0, we run 20 iterations.

Separately, we solved the M-estimation problem using CVX, obtaining θ̂.
Figure 1 (left panel) shows the progress of the AMP algorithm across iterations, presenting

RMSE(θ̂t; θ0) ≡
1
√
p
‖θ̂t − θ0‖2 ,

while Figure 1 (right panel) shows the progress of AMP in approaching the M-estimate θ̂, as measured
by

RMSE(θ̂t; θ̂) ≡ 1
√
p
‖θ̂t − θ̂‖2.

As is evident, the iterations converge rapidly, and they converge to the M-estimator, both in the
sense of convergence of risks - measured here by RMSE(θ̂t; θ0) → RMSE(θ̂; θ0) ≈ 1.6182 - and, more
directly, in convergence of the estimates themselves: RMSE(θ̂t; θ̂) → 0.

Figure 2 (left panel) shows the process by which the effective score parameter b̂t is obtained at
iteration t = 3, while the right panel shows how b̂t behaves across iterations. In fact it converges
quickly towards a limit b∞ ≈ 0.2710.

2.5 Contrast to iterative M-estimation

Earlier we pointed to resemblances between AMP (11) and the traditional method of scoring for
obtaining M-estimators (12). In reality the two approaches are very different:

• The precise form of various terms in (9), (10) (11) is dictated by the statistical assumptions
that we are making on the design X. In particular the memory terms are crucial for the state
evolution analysis to hold. Several papers document this point [Mon12, Sch10, SSS10, Ran11,
KMZ13].

• Under classical asymptotics, where p is fixed and n→∞, it is sufficient to run a single step of
such an algorithm [Bic75], in the high-dimensional setting it is necessary to iterate numerous
times. The resulting analysis is considerably more complex because of correlations arising as
the algorithm evolves.

3 State evolution description of AMP

State Evolution is a method for computing the operating characteristics of the AMP iterates θ̂t and
Rt for arbitrary fixed t, under the high-dimensional asymptotic limit n, p→∞, n/p→ δ.

In this section we initially describe a purely formal procedure which assumes that the AMP
adjusted residuals Rt = Y −Xθ̂t +Ψ(Rt; bt) really behave as W + τtZ, with W the error distribution
and Z an independent standard normal, for t = 0, 1, 2, . . . . The variable τ2

t thus quantifies the extra
Gaussian noise supposedly present in the adjusted residuals of AMP; we show how this ansatz allows
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one to calculate τ2
t for each t = 0, 1, 2, 3, . . . , and to calculate the limit of τt as t → ∞. Later in

the section we present a rigorous result validating the method under the following random Gaussian
design assumption.

Definition 3.1. We say that a sequence of random design matrices {X(n)}n, with n → ∞ is a
Gaussian design if each X = X(n) has dimensions n × p, and entries (Xij)i∈[n],j∈[p] that are i.i.d.
N(0, 1/n). Further, p = p(n) is such that limn→∞ n/p(n) = δ ∈ (0,∞).

3.1 Initialization of the extra variance

Under the Gaussian design assumption, suppose that u is a vector in Rp with norm ‖u‖2. Then
{E‖Xu‖2

2} = ‖u‖2
2. Moreover, Xu is a Gaussian random vector with entries iid N(0, ‖u‖2

2/n).
It will be convenient to introduce for any estimator θ̃ the notation

MSE(θ̃, θ0) =
1
p
m‖θ̃ − θ0‖2

2. (18)

So initialize AMP with a deterministic estimate θ̂0, and take R−1 = 0. Then the initial residual
is R1 = Y −Xθ̂0 = W + X(θ0 − θ̂0). The terms W and X(θ0 − θ̂0) are independent, and X(θ0 − θ̂0)
is Gaussian with variance τ2

0 = ‖θ̂0− θ0‖2
2/n = MSE(θ̂0, θ0)/δ. Consider some fixed coordinate R1(i)

of R1. Then

Var(R1
i ) = Var(W ) + Var(X(θ0 − θ̂0)) = Var(W ) + MSE(θ0, θ0)/δ.

Hence, when AMP is started this way, we see that the adjusted residuals initially contain an extra
Gaussian noise of variance τ2

0 = MSE(θ̂0, θ0)/δ.

3.2 Evolution of the extra Gaussian variance to its ultimate limit

Assuming the adjusted residuals continue, at later iterations, to behave as W + τt Z with Z an
independent standard normal, we now calculate τ2

t for each t = 1, 2, 3, . . . , and eventually identify
the limit of τt as t→∞.

For a given τ > 0, δ = n/p and noise distribution FW , define the variance map

V(τ2, b; δ, FW ) = δ E
{

Ψ(W + τ Z; b)2
}
,

where W ∼ FW , and, independently, Z ∼ N(0, 1). In this display, the reader can see that extra
Gaussian noise of variance τ2 is being added to the underlying noise W , and V measures the δ-scaled
variance of the resulting output. Evidently for b > 0, 0 ≤ V(τ2, b) · δ ≤ (Var(W ) + τ2) · δ.

Under our assumptions for Ψ, for each given specification (τ ; δ, FW ) of the ingredients besides b
that go into V, there is (as clarified by Lemma A.3) a well-defined value b = b(τ ; δ, FW ) giving the
smallest solution b ≥ 0 to

1
δ

= E
{

Ψ′(W + τ · Z; b)
}
. (19)

Definition 3.2. State Evolution is an iterative process for computing the scalars {τ2
t }t≥0, starting

from an initial condition τ2
0 ∈ R≥0 following

τ2
t+1 = V(τ2

t , b(τt)) = V(τt, b(τt; δ, FW ); δ, FW ). (20)
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Figure 3: The State Evolution Variance Mapping. Left Panel: Blue Curve: Ṽ versus τ2, Red Curve:
diagonal; unique fixed point at about 0.472. Right Panel: the iteration history of state evolution,
starting from τ2

0 = 2.0556

Defining Ṽ(τ2) = V(τ2, b(τ)), we see that the evolution of τt follows the iterations of the map Ṽ.
In particular, we make these observations:

• Ṽ(0) > 0,

• Ṽ(τ2) is a continuous, nondecreasing function of τ .

• Ṽ(τ2) < τ2 as τ →∞.

Figure 3, left panel, considers the case where W again follows the Huber’s contaminated normal
distribution CN(0.05, 10) and ψ is the standard Huber estimator with parameter λ = 3. The ratio
n/p = δ = 2, and the parameter vector has ‖θ0‖2

2/p = 62. It displays the function Ṽ (τ2) as a function
of τ .

Evidently, there is a stable fixed point τ∗ = τ∗(δ, FW ), i.e. a point obeying Ṽ(τ2
∗ ) = τ2

∗ , such that
τ2 7→ Ṽ(τ2) has a derivative less than 1 at τ2

∗ . We conclude that τt evolves under state evolution to
a nonzero limit. Figure 3, right panel, shows how τ2

t evolves to the fixed point near 0.472 starting
from τ2

0 = 2.056.

3.3 Predicting operating characteristics from State Evolution

State Evolution offers a formal10 procedure for predicting operating characteristics of the AMP
iteration at any fixed iteration t or in the limit t→∞. Nater in this section, we will provide rigorous
validation of these predictions.

10By formal, we mean a rule-based procedure which we can follow to get a prediction, without any guarantees that
the prediction is correct.
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Call the tuple S = (τ ; b, δ, F ) a state; in running the AMP algorithm we assume that the algorithm
is initialized with θ̂0 so that τ2

0 = MSE(θ̂0, θ0)/δ, so that AMP starts in state S = (τ0; b0, δ, F ), and
visits S1 = (τ1; b1, δ, F ), S2 = (τ2; b2, δ, F ), . . . ; eventually AMP visits states arbitrarily close to the
equilibrium state S∗ = (τ∗; b∗, δ, F ).

SE predictions of operating characteristics are provided by two rules assigning predictions to
certain classes of observables, based on the state that AMP is in.

Definition 3.3. The state evolution formalism assigns predictions E to two types of observables
under specific states.

Observables Involving θ̂ − θ0. Given a univariate test function ξ : R 7→ R, assign the predicted
value for p−1

∑
i∈p ξ(θ̂i − θ0,i) under state S by the rule

E(ξ(θ̂ − ϑ)|S) ≡ E
{
ξ(
√
δ τ Z)

}
,

where expectation on the right hand side is with respect to Z ∼ N(0, 1).

Observables involving Residual, Error. Let R denote some coordinate of the adjusted residual
for AMP in state S and W the same coordinate of the underlying error. Given a bivariate test
function ξ2 : R2 7→ R, assign the prediction of n−1

∑n
i=1 ξ2(Ri,Wi) in state S by

E(ξ2(R,W )|S) ≡ Eξ2(W + τ Z,W )

where Z ∼ N(0, 1) and W ∼ FW is independent of Z.

The two most important predictions of operating characteristics are undoubtedly:

• MSE at iteration t. We let St = (τt, b(τt), δ, FW ) denote the state of AMP at iteration t, and
predict

MSE(θ̂t, θ0) ≈ E((ϑ̂− ϑ)2|St) = E
{

(
√
δ τt Z)2

}
= δτ2

t .

• MSE at convergence. With τ∗ > 0 the limit of τt, let S∗ = (τ∗, b(τ∗), δ, FW ) denote the state of
AMP at convergence. and predict

MSE(θ̂∗, θ0) ≈ E((ϑ̂− ϑ)2|S∗) = E
{

(
√
δ τ∗ Z)2

}
= δτ2

∗ .

Other predictions might also be of interest. Thus, concerning the mean absolute error MAE(θ̂t, θ0) =
‖θ̂t − θ0‖1/p, state evolution predicts MAE ≈

√
2δτ2

t /π. Concerning functions of (R,W ), consider
the ordinary residuals Y −Xθ̂∗ at AMP convergence. These residuals will of course in general not
have the distribution of the errors W . Setting η(z; b) = z − Ψ(z; b), we have Y − Xθ̂∗ = η(R; b∗).
State evolution predicts that the ordinary residuals will have the same distribution as η(W+τ∗Z; b∗).

3.4 Example of State Evolution predictions

Continuing with our running example, we again consider the case of contaminated normal data
W ∼ CN(0.05, 10) and Huber ρ with λ = 3. If we start AMP with the all-zero estimate θ̂0 = 0, then
since ‖θ0‖2 = 6

√
p we start SE with τ0 = 2.056. Figure 4 presents predictions by state evolution for

the MSE (left panel) and for the mean absolute error MAE.
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Figure 4: State Evolution predictions for CN(0.05, 10), with Huber ψ, λ = 3. Predicted evolutions
of two observables of θ̂t − θ0: Left: MSE, Mean Squared Error. Right: MAE, Mean Absolute Error.

Again in our running example, these predictions can be tested empirically. For illustration, we
conducted a very small experiment, generating 10 independent realizations of the running model at
n = 1000 and p = 200, and comparing the actual evolutions of observables during AMP iterations
with the predicted evolutions. Figure 5 shows that the predictions from SE are very close to the
averages across realizations.

3.5 A lower bound on State Evolution

State Evolution cannot evolve so that τ2
t → 0; under minimal regularity, it always exceeds a specific

nonzero noise level.

Lemma 3.4. Suppose that FW has a well-defined Fisher information I(FW ). Then for any t > 0

τ2
t ≥

1
δI(FW )

.

Proof. Let G = FW ?N(0, τ2). EGΨ′ = 1
δ and, if ξG denotes the score function for location of G, then

|EGΨ′| = |EGΨ · ξG| . Meanwhile, by Cauchy-Schwartz, |EGΨ · ξG| ≤
√

EGΨ2
√

EGξ2G. We conclude
that

Ṽ(τ) = δEGΨ2 ≥ δ
|EGΨ · ξG|2

EGξ2G
= δ

|EGΨ′|2

I(G)
=

1
δI(G)

.

From convexity and translation-invariance of Fisher Information I(G) = I(FW ? N(0, τ2)) < I(FW ).
Then τ2

t = Ṽ(τ2
t−1) ≥ 1/(δI(FW )).
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We can sharpen this bound one step further. It will be convenient to write I(X) for the Fisher
information of distribution FX .

Lemma 3.5.

I(W + τZ) ≤ I(W )
1 + τ2I(W )

.

Proof. Barron and Madiman [MB07] give the inequality I(W +τZ) ≤ x2I(W )+(1−x)2I(τZ), valid
for any x ∈ (0, 1). By calculus, we know that for a, b > 0,

min
x∈(0,1)

x2a+ (1− x)2b =
ab

a+ b
.

Setting a = I(W ) and b = I(τZ) = τ−2, and dividing both numerator and denominator by b, we are
done.

Revisit the argument of Lemma 3.4; the inequality τ2
t ≥ 1/(δI(FW )) shows that if t > 0, then

τ2
t I(W ) ≥ 1/δ. Using this in the previous Lemma,

I(W + τtZ) ≤ I(W )
1 + τ2

t I(W )
≤ I(W )

1 + 1
δ

.

This yields a ‘one-step’ improvement:

Corollary 3.6. Suppose that FW has a well-defined Fisher Information I(FW ). Then for any t > 1

τ2
t ≥

1 + 1
δ

δI(FW )
.

We can iterate this argument across many steps, obtaining that, for every t > k,

τ2
t ≥

1 + 1
δ + 1

δ2 + · · ·+ 1
δk

δI(FW )
.

We obtain immediately:

Corollary 3.7. Suppose that FW has a well-defined Fisher information I(FW ). Then for every
accumulation point τ∗ of State Evolution

τ2
∗ ≥

1
δ − 1

· 1
I(FW )

.

3.6 Correctness of State Evolution predictions

The predictions of state evolution can be validated in the large-system limit n, p → ∞, under the
random Gaussian design assumption of Definition 3.1. We impose regularity conditions on the
observables whose behavior we attempt to predict:

Definition 3.8. A function ξ : Rk → R is pseudo-Lipschitz if there exists L <∞ such that, for all
x, y ∈ Rk, |ξ(x)− ξ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2) ‖x− y‖2.
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In particular, ξ(x) = x2 is pseudo-Lipschitz.
Recall also the definition of MSE in equation (18). For a sequence of estimators θ̃, define the

per-coordinate asymptotic mean squared error (AMSE) as the following large-system limit:

AMSE(θ̃; θ0) =a.s. lim
n,pn→∞

MSE(θ̃; θ0), (21)

when the indicated limit exists.
The following result validates the predictions of State Evolution for pseudo-Lipschitz observables.

Our proof is deferred to Appendix B.

Theorem 3.9. Assume that the loss function ρ is convex and smooth, that the sequence of matri-
ces {X(n)}n is a standard Gaussian design, and that θ0, θ̂0 are deterministic sequences such that
AMSE(θ0, θ̂0) = δτ2

0 . Further assume that FW has finite second moment and let {τ2
t }t≥0 be the state

evolution sequence with initial condition τ2
0 . Let {θ̂t, Rt}t≥0 be the AMP trajectory with parameters

bt as per Eq. (19).
Let ξ : R → R, ξ2 : R× R → R be pseudo-Lipschitz functions. Then, for any t > 0, we have, for

Z ∼ N(0, 1) independent of W ∼ FW

lim
n→∞

1
p

p∑
i=1

ξ(θ̂t
i − θ0,i) =a.s. E

{
ξ(
√
δ τt Z)

}
, (22)

lim
n→∞

1
n

n∑
i=1

ξ2(Rt
i,Wi) =a.s. E

{
ξ2(W + τt Z,W )

}
. (23)

In particular, we may take ξ(x) = x2 and obtain for the AMP iteration

AMSE(θ̂t, θ0) = δτ2
t ,

in full agreement with the predictions of state evolution in Definition 3.3.

4 Convergence and characterization of M-estimators

The key step for characterizing the distribution of the M-estimator θ̂, cf. Eq. (2), is to prove that
the AMP iterates θ̂t converge to θ̂. We will prove that this is indeed the case, at least in the limit
n, p→∞, and for suitable initial conditions11.

Throughout this section, we shall assume that ρ is strongly convex, i.e. that infx∈R ρ
′′(x) > 0.

This corresponds to assuming infx∈R ψ
′(x) > 0, which is rather natural from the point of view of

robust statistics since it ensures uniqueness of the M estimator12.
The key step is to establish the following high-dimensional convergence result.

11We expect convergence for arbitrary initial conditions (as long as they are independent of (W,X)), but proving
this claim is not needed for our main goal, and we leave it for future study. Proving this claim would require showing
convergence of the state evolution recursion (20).

12The Huber estimator is not covered by the result of this section; although we expect our approach to apply in such
generality. We focus here on the strongly convex case to avoid un-necessary complications.
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Theorem 4.1. (Convergence of AMP to the M-Estimator.) Assume the same setting as in
Theorem 3.9, and further assume that ρ is strongly convex and that δ > 1.

Let (τ∗, b∗) be a solution of the two equations

τ2 = δ E
{

Ψ(W + τ Z; b)2
}
, (24)

1
δ

= E
{

Ψ′(W + τ Z; b)
}
. (25)

and assume that AMSE(θ̂0, θ0) = δτ2
∗ . Then

lim
t→∞

AMSE(θ̂t, θ̂) = 0 . (26)

From this and Theorem 3.9, the desired characterization of θ̂ immediately follows.
To tie back to the introduction, we prove formula (4):

Corollary 4.2. (Asymptotic Variance Formula under High-Dimensional Asymptotics.)
Assume the setting of Theorem 3.9, and further assume that ρ is strongly convex and δ > 1. The
asymptotic variance of θ̂ obeys

lim
n,p→∞

Avei∈[p]Var(θ̂i) =a.s V (Ψ̃, F̃ ), (27)

where Avei∈[p] denotes the average across indices i, V (ψ, F ) denotes the usual Huber asymptotic
variance formula for M-estimates – V (ψ, F ) = (

∫
ψ2dF )/(

∫
ψ′dF )2 – and the effective score Ψ̃ is

Ψ̃( · ) = Ψ( · ; b∗),

while the effective noise distribution F̃ is

F̃ = FW ? N(0, τ2
∗ ).

Here (τ∗, b∗) are the unique solutions of the equations (24)-(25).

Proof. By symmetry, Avei∈[p]Var(θ̂i) = EMSE(θ̂, θ0). Theorem 4.1 and State Evolution show that
AMSE(θ̂, θ0) = δτ2

∗ . By (24)-(25)

V (Ψ̃, F̃ ) =
EΨ2(W + τ∗Z; b∗)

[EΨ′(W + τ∗Z; b∗)]2
=
τ2
∗ /δ

δ−2
= δτ2

∗ .

Recall that the traditional information bound for M-estimators is V (Ψ, F ) ≥ 1
I(FW ) , and that

this is achievable under p fixed, n → ∞ asymptotics. Considering the formula for F̃ we see that
because τ∗ > 0, such an asymptotic variance is not achievable under high-dimensional asymptotics.
We now make this effect more visible. Combining Corollary 4.2 with Corollary 3.7’s lower bound on
the equilibrium noise τ∗ reachable by State Evolution, we have the following.

Corollary 4.3. Information Bound under High-Dimensional Asymptotics:

V (Ψ̃, F̃ ) ≥ 1
δ − 1

· 1
I(FW )

.
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In this inequality, the effect of the high-dimensional asymptotics parameter δ is extremely clear;
it shows that the classical information bound is not achievable when δ = n/p <∞, There is always
an inflation in variance at least by (1− δ)−1 = n

n−p . Moreover, the inflation completely blows up as
δ → 1.

Corollary 4.4. Assume the setting of Theorem 3.9, and further assume that ρ is strongly convex
and δ > 1. Then for any pseudo-Lipschitz function ξ : R → R, we have, for Z ∼ N(0, 1)

lim
n→∞

1
p

p∑
i=1

ξ(θ̂t
i − θ0,i) =a.s. E

{
ξ(
√
δ τ∗ Z)

}
. (28)

In particular, the solution of Eqs. (24), (25) is necessarily unique.

Among other applications, this result can be used to bound the suboptimality of AMP after a
fixed number of iterations. Combining Theorems 3.9 and 4.1 gives:

Corollary 4.5. Assume the same setting as in Theorem 3.9, and further assume that ρ is strongly
convex and δ > 1. Then the almost sure limits AMSE(θ̂t; θ0) and AMSE(θ̂; θ0) exist, and obey

AMSE(θ̂t; θ0)−AMSE(θ̂; θ0) = δ(τ2
t − τ2

∗ ) . (29)

Theorem 4.1 extends to cover general Gaussian matrices X with i.i.d. rows.

Definition 4.6. We say that a sequence of random design matrices {X(n)}n, with n → ∞, is a
general Gaussian design if each X = X(n) has dimensions n × p, and rows (Xi)i∈[n] that are i.i.d.
N(0,Σ/n), where Σ = Σ(n) ∈ Rp×p is a strictly positive definite matrix. Further, p = p(n) is such
that limn→∞ n/p(n) = δ ∈ (0,∞).

Notice that, if X is a general Gaussian design, then XΣ−1/2 is a standard Gaussian design. The
following then follows from Corollary 4.7 together with a simple change of variables argument, cf.
[EKBBL13, Lemma 1].

Corollary 4.7. Assume the same setting as in Theorem 3.9, but with {X(n)}n≥0 being a general
Gaussian design with covariance Σ, and further assume that ρ is strongly convex and δ > 1. There
is a scalar random variable Tn so that

θ̂ = θ0 +
√
δ TnΣ−1/2Z , (30)

where Z ∼ N(0, Ip×p) and we have the almost-sure limit limn→∞ Tn =a.s. τ∗, where τ∗ solves
Eqs. (24), (25).

This result coincides with Corollary 1 in [EKBBL13] apart from a factor
√
n in the random part

of Eq. (30) that arises because of a difference in the normalization of X.

5 Discussion

Several generalizations of the present proof technique should be possible, and would be of interest.
We list a few in order of increasing difficulty:
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1. Generalize the i.i.d. Gaussian rows model for X by allowing different rows to be randomly
scaled copies of a common X ∼ N(0,Σ/n). This is the setting of [EKBBL13, Result 1].

2. Remove the smoothness and strong convexity assumptions on ρ.

3. Add a regularization term to the objective function L(θ) cf. Eq. (2), of the form
∑p

i=1 J(θi),
with J : R → R a convex penalty. For `1 penalty and `2 loss, this reduces to the Lasso, studied
in [BM12].

4. Generalize the present results to non-Gaussian designs. We expect –for instance– that they
should hold universally across matrices X with i.i.d. entries (under suitable moment condi-
tions). A similar universality result was established in [BLM12] for compressed sensing.

Let us mention that alternative proof techniques would be worth exploring as well. In particular,
Shcherbina and Tirozzi [ST03] define a statistical mechanics model with energy function that is
analogous to the loss L(θ), cf. Eq. (2), and Talagrand [Tal10, Chapter 3] proves further results
on the same model. While this treatment focuses on estimating a certain partition function, in
the case of strongly convex ρ it should be possible to extract properties of the minimizer from a
‘zero-temperature’ limit.

Finally, Rangan [Ran11] considers a similar regression model to the one studied here using ap-
proximate message passing algorithms, albeit from a Bayesian point of view.

6 Duality between robust regression and regularized least squares

The reader might have noticed many analogies between the analysis in the last pages and earlier work
on estimation in the underdetermined regime n < p using the Lasso [DMM09, DMM11, DJMM11,
BM12]. Most specifically, the central tool in our proof of the correctness of State Evolution is a set
of lemmas and theorems about analysis of recursive systems that were developed to understand the
Lasso. That the same machinery directly gives results in robust regression - see for example our
proof of correctness of State Evolution in Appendix B below - might seem particularly unexpected.
In this section we briefly point out that the two problems are so closely linked that phenomena which
appear in one situation are bound to appear in the other.

6.1 Duality of optimization problems

In a very strong sense, solving an M-estimation problem with p < n is the very same thing as solving
a related penalized regression problem in p̃ > ñ. Given a convex function J : R → R, define the ρ
function

ρJ(z) ≡ min
x∈R

{1
2
(z − x)2 + J(x)

}
(31)

We then have the M-Estimation problem

(MJ) min
θ∈Rp

n∑
i=1

ρJ(Yi − 〈Xi, θ〉) (32)

This problem has p < n and is generically a determined problem. We now construct a corre-
sponding underdetermined problem with the ‘same’ solution. Set ñ = n − p, p̃ = n. We soon will
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construct a vector/matrix pair (Ỹ ∈ Rñ, X̃ ∈ Rñ×p̃) obeying ñ < p̃, where Ỹ and X̃ are related to Y
and X̃ in a specific way. With this pair we pose the J-penalized least squares problem

(LJ) min
β∈Rp̃

1
2
‖Ỹ − X̃β‖2

2 +
p̃∑

i=1

J(βi) . (33)

with solution β̂(Ỹ ; X̃), say.
Here is the specific pair that links (MJ) with (LJ). We let X̃ be a matrix with orthonormal rows

such that X̃X = 0, i.e.

null(X̃) = image(X) , (34)

finally, we set Ỹ = X̃Y .

6.1.1 The Lasso-Huber connection

Of special interest is the case J(x) = λ |x| in which case (LJ) of (33) defines the Lasso estimator.
Then ρJ(x) = ρH(x;λ) is the Huber loss and (MJ) of (32) defines the Huber M-estimate. Indeed, in
that case (LJ) is more classically presented as

(Lassoλ) min
β∈Rp̃

1
2
‖Ỹ − X̃β‖2

2 + λ

p̃∑
i=1

|βi| , (35)

while (MJ) is more classically presented as

(Huberλ) min
β∈Rp

n∑
i=1

ρH(Yi − 〈Xi, β〉;λ) (36)

In this special case, our general result from the next section implies the following:

Proposition 6.1. With problem instances (Y,X) and (Ỹ , X̃) related as above, the optimal values of
the Lasso problem (Lassoλ) and the Huber problem (Huberλ) are identical. The solutions of the two
problems are in one-one-relation. In particular, we have

θ̂ = (XTX)−1XT(Y − β̂) . (37)

In a sense the Lasso problem solution β̂ is finding the outliers in Y ; once the solution is known,
the solution of the M-estimation problem is simply a least squares regression on adjusted data
Yadj ≡ (Y − β̂) with outliers removed.

6.1.2 General duality result

We will now show that the problem (32) is dual to (33) under or special choice of (Ỹ , X̃), via (34).
Notation. For x ∈ Rn, we denote by ∂ρ(x) the subgradient of the convex function

∑n
i=1 ρ(xi), at

x. Analogously, for z ∈ Rp̃, we denote by ∂J(z) the subgradient of the convex function
∑p̃

i=1 J(zi),
at z.
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Proposition 6.2. Assume that ρ( · ) = ρJ( · ), that X̃ has orthonormal rows with null(X̃) = image(X),
and finally that Ỹ = X̃Y . Then the solutions of the regularized least squares problem (33) are in
one-to-one correspondence with the solutions of the robust regression problem (2), via the mappings

β̂ = Y −Xθ̂ − u , u ∈ null(XT) ∩ ∂ρ(y −Xθ̂) , (38)

θ̂ = (XTX)−1XT(Y − β̂) . (39)

Proof. ‘Differentiating’ Eq. (31) it is easy to see that

u ∈ ∂ρ(x) if and only if u ∈ ∂J(x− u) . (40)

First assume θ̂ is a minimizer of problem (32). This happens if and only if there exists u ∈ Rn

such that

XTu = 0 , u ∈ ∂ρ(Y −Xθ̂) . (41)

We then claim that β̂ ≡ Y −Xθ̂ − u is a minimizer of Eq. (33). Indeed

X̃T(Ỹ − X̃β̂) = X̃TX̃(Y − β̂) (42)

= X̃TX̃
(
Xθ̂ + u

)
= u , (43)

where the last identity follows since, by Eq. (34), null(XT) = image(X̃T), and hence u ∈ image(X̃T)
by Eq. (41). Using again Eqs. (41) and (40), we deduce that u ∈ ∂J(β̂), i.e.

X̃T(Ỹ − X̃β̂) ∈ ∂J(β̂) , (44)

which is the stationarity condition for the problem (33).
Viceversa a similar argument shows that, given β̂ that minimizes Eq. (33), and θ̂ ≡ (XTX)−1XT(Y−

β̂) is a minimizer of the robust regression problem (32).

6.2 Comparison to AMP in the p > n case

The last section raises the possibility that the phenomena found in this paper for M-estimation in
the p < n case are actually isomorphic to those found in our previous work on penalized regression
in the p > n case; [DMM09, DMM11, DJMM11, BM12]. Here we merely content ourselves with
sketching a few similarities.

To be definite, consider robust regression using the Huber loss [Hub64, HR09] ρ(x) = x2/2 for
|x| ≤ λ and ρ(x) = λ|x| − λ2/2 otherwise. In this case it is easy to see that

Ψ(z; b) =


λb if z > λ(1 + b),
b z/(1 + b) if |z| ≤ λ(1 + b),
−λb if z < −λ(1 + b).

(45)

In order to make contact with the Lasso, recall the definition of soft thresholding operator η(x;α) =
sign(x) (|x| − α)+. We have the relationship

Ψ(z; b) =
b z

1 + b
− η

( b z

1 + b
;λb

)
. (46)
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Letting ct ≡ bt/(1 + bt), the state evolution equation (20), then reads

τ2
t+1 = δc2t E

{[
η
(
W + τt Z;λ(1 + bt)

)
−W − τt Z

]2}
, . (47)

This is very close to the state evolution equation in compressed sensing for reconstructing a sparse
signal whose entries have distribution FW , from an underdetermined number of linear measurements;
indeed in that setting we have the state evolution recursion

τ2
t+1 = δ E

{[
η
(
W + τt Z;λτt

)
−W ]2

}
; (48)

[DMM09, DMM11, DJMM11, BM12]. The connection is quite suggestive: while in compressed
sensing we look for the few non-zero coefficients in the signal, in robust regression we try to identify
the few outliers contaminating the linear relation. A similar duality was already pointed out in
[DT09], although in a specific setting.
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A Properties of the functions Prox, Ψ

Throughout this section ρ : R → R is convex bounded below and smooth (i.e. with bounded second
derivative). Recall the definition of Prox : R× R>0 → R and Ψ : R× R>0 → R, given by

Prox(z; b) ≡ arg min
x∈R

{
ρ(x) +

1
2b

(x− z)2
}
, (49)

Ψ(z; b) ≡ b ρ′
(
Prox(z; b)

)
. (50)

Proposition A.1. The function Prox : R × R>0 → R is differentiable in its domain, with partial
derivatives

∂Prox

∂z
(z; b) =

1
1 + bρ′′(x)

∣∣∣∣
x=Prox(z;b)

,
∂Prox

∂b
(z; b) = − ρ′(x)

1 + bρ′′(x)

∣∣∣∣
x=Prox(z;b)

. (51)

In particular, letting ‖ρ′′‖∞ ≡ supx∈R ρ
′′(x), and for any fixed b, z 7→ Prox(z; b) is strictly increasing

and Lipschitz continuous, with

1
1 + b‖ρ′′‖∞

≤ ∂Prox

∂z
(z; b) ≤ 1 (52)

Proof. Since, for b > 0, x 7→ ρ(x)+ (x− z)2/(2b) is differentiable and strongly convex, x = Prox(z; b)
is uniquely determined by setting to zero the first derivative:

x+ bρ′(x)− z = 0 . (53)

The claim then follows from the Implicit Function theorem.
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Proposition A.2. For (z, b) ∈ R× R+, we have

Ψ(z; b) = z − Prox(z, b) , (54)

and hence Ψ is differentiable, with partial derivatives

∂Ψ
∂z

(z; b) =
bρ′′(x)

1 + bρ′′(x)

∣∣∣∣
x=Prox(z;b)

,
∂Ψ
∂b

(z; b) =
ρ′(x)

1 + bρ′′(x)

∣∣∣∣
x=Prox(z;b)

. (55)

In particular, for any fixed b, z 7→ Ψ(z; b) is strictly increasing and Lipschitz continuous, with

b infx∈R ρ
′′(x)

1 + b infx∈R ρ′′(x)
≤ ∂Ψ
∂z

(z; b) ≤ b‖ρ′′‖∞
1 + b‖ρ′′‖∞

. (56)

Proof. Using again the stationarity condition (53) that holds for x = Prox(z; b), we have

Prox(z; b) + bρ′(Prox(z; b))− z = 0 , (57)

which is our first claim. The other claims immediately follow by calculus.

Finally, we prove that Eq. (19) that defines bt as a function of τt always has at least one solution.

Lemma A.3. For τ > 0 fixed, let G : R>0 → R be defined by

G(b) ≡ E
{

Ψ′(W + τ Z; b)
}
. (58)

Then for any a ∈ (0, 1), the set of solutions

Sa ≡
{
b ∈ R>0 : G(b) = a

}
, (59)

is closed and non-empty.

Proof. It follows immediately from the continuity properties of Ψ that b 7→ G(b) is continuous. The
claim follows by proving that limb→0G(b) = 0 and limb→∞G(b) = 1.

By Proposition A.2 equation (56) 0 ≤ Ψ′(z; b) ≤ 1. The limit b → 0 follows from dominated
convergence since, by the upper bound in (56) limb→0 Ψ′(z; b) = 0 for each z.

In order to obtain the limit as b→∞, note that by Stein Lemma:

G(b) =
1
τ

E
{
Z Ψ(W + τ Z; b)

}
. (60)

Since 0 ≤ Ψ′(z, b) ≤ 1, the integrand is bounded in modulus by an integrable quantity. We can
therefore use again dominated convergence. Now limb→∞ Prox(z; b) = arg minx∈R ρ(x) ≡ c0 and
hence limb→∞Ψ(z; b) = z − c0. By dominated convergence we obtain

lim
b→∞

G(b) =
1
τ

E
{
Z (W + τZ − c0)

}
= 1 . (61)
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B Proof of correctness of State Evolution (Theorem 3.9)

We will show correctness of State Evolution for the AMP algorithm using analytically defined bt.
Namely, we suppose that with bt defined recursively as the smallest positive solution of the second
equation in this system:

τ2
t+1 = δ E

{
Ψ(W + τt Z; bt)2

}
, (62)

1
δ

= E
{

Ψ′(W + τt Z; bt)
}
. (63)

For analysis purposes, we consider a recursion equivalent to the AMP recursion, in which the data
are recentered and the recursion is recast around recentered variables. We change the initial condition
of the AMP iteration by letting θ̂cen,0 = θ̂0 − θ0, and change data by letting Y cen = Y −Xθ0 ≡ W .
Applying the AMP recursion in these new coordinates gives the new trajectory θ̂cen,t = θ̂t − θ0 for
all t, and Rcen,t = Rt for all t.

The new trajectory follows the recursion

Rcen,t = W −Xθ̂cen,t + Ψ(Rcen,t−1; bt−1) , (64)

θ̂cen,t+1 = θ̂cen,t + δXTΨ(Rcen,t; bt) , (65)

In this form, the recursion can be reduced to a recursion studied in [BM11], for which State
Evolution has been proven correct. The reduction is to introduce a recursion generating iterates
{ϑt, St} that approximates closely the iterates {θ̂cen,t, Rcen,t} defined by (64),(65). The new sequence
is defined by letting ϑ0 = θ̂0 − θ0 and, for all t ≥ 0

St = −Xϑt + Ψ(W + St−1; bt−1) , (66)

ϑt+1 = δXTΨ(W + St; bt) + qtϑ
t , (67)

where

qt = δ
{ 1
n

n∑
i=1

Ψ′(Wi + St
i ; bt)

}
. (68)

The only difference between this recursion and the previous one cf. Eqs. (64), (65), lies in the new
coefficient qt, which was identically equal to 1 in the previous recursion. The benefit of this specific
recursion is that we already know that State Evolution is correct.

Lemma B.1. Under the assumptions of Theorem 3.9, we have, for any fixed t ≥ 0,

lim
n→∞

1
p

p∑
i=1

ξ(ϑt
i) =a.s. E{ξ(

√
δ τt Z)} (69)

lim
n→∞

1
n

n∑
i=1

ξ2(St
i ,Wi) =a.s. E

{
ξ2(τt Z,W )

}
. (70)

Proof. This is an immediate application of Theorem 2 in [BM11]. That Theorem considers general
recursions which include (66)-(67) as a special case, and corresponding state evolution equations, and
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shows the correctness of state evolution, in the process establishing conclusions of the precise form
shown in the conclusion of this lemma. So it is simply a matter of establishing the correspondence
of variables.

In the original notation of [BM11], the generalized AMP recursions studied are

bt = Aqt − λtm
t−1 (71)

ht+1 = A∗mt − ξtq
t (72)

where bt, ht, qt and mt are vectors and λt and ξt scalars. In addition, the vectors qt = ft(ht)
and mt = gt(bt, w) are produced by element wise applications of nonlinearities ft and gt, the latter
involving the random vector w. Here A is a rectangular n × N random matrix with iid Gaussian
entries. The scalars ξt = 〈g′t(bt, w)〉 and λt = 1

δ 〈f
′
t(h

t)〉, where 〈·〉 denotes an empirical mean over
the entries in a vector. and the iteration takes m−1 = 0. For state evolution, the Theorem 2 assumes
the sequence of initial conditions q0 obeys

σ2
0 = lim

N→∞

1
Nδ

= ‖q0‖2
2.

and the state evolution recursion involves the pair of variables

τ2
t = E{g2

t (σtZ,W )}, σ2
t = E{f2

t (τ t−1Z)}.

Table 1 sets up a ‘dictionary’ of correspondences between this paper and [BM11].

(66) ϑt+1 = δXTΨ(W + St; bt) + qtϑ
t ϑt+1 XT δΨ(W + St; bt) qt ϑt

(71) ht+1 = A∗mt − ξtq
t ht+1 A∗ mt ξt −qt

(67) St = −Xϑt + Ψ(W + St−1; bt−1) St X −ϑt 1 Ψ(W + St−1; bt−1)
(72) bt = Aqt − λtm

t−1 bt A qt −λt mt−1

Table 1: Correspondences between terms in the recursions of this paper, (66)-(67), and the recursions
(71)-(72), analyzed in [BM11].

We get exact correspondence between the two systems, provided we identify δΨ(W +St; bt) with
mt = gt(bt;w) and −δht with ft(ht). One has, in particular, that λt = 1

δ 〈f
′
t(h

t)〉 = −1, and that
ξt = 〈g′t(bt, w)〉 = 〈δΨ′(W + St; bt)〉 = qt.

In the [BM11] general study of state evolution, there are two state variables τ t and σt. However,
when applied here, the distinction vanishes. The variable called τ2

t corresponds with δ2E{Ψ(W +
σtZ)2} while the variable σ2

t corresponds with E(ϑt)2. Using facts about τ2
t in this paper, we have

the identities σ2
t = δτ2

t and τ2
t = δτ2

t . Equations (69)-(70) now follow from Theorem 2 of [BM11].

Theorem 3.9 now follows from the equivalence of the last two recursions – i.e. equivalence of
(64)-(65) with (66)-(67).

Lemma B.2. Under the assumptions of Theorem 3.9, we have, for any fixed t ≥ 0,

lim
n→∞

1
p
‖θ̂cen,t − ϑt‖2

2 =a.s 0 , lim
n→∞

1
n
‖Rcen,t − St −W‖2

2 =a.s. 0 . (73)
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B.1 Proof of Lemma B.2 (Equivalence of recursions)

Throughout this proof, we will drop the superscript ‘cen’ from Rcen,t and θ̂cen,t. Define St
+ ≡W +St,

whence

St
+ = W −Xϑt + Ψ(St−1

+ ; bt−1) , (74)

ϑt+1 = δXTΨ(St
+; bt) + qtϑ

t , (75)

Comparing the first of these equations with Eq. (64), and using triangular inequality, we get

‖Rt − St
+‖2 ≤ ‖X‖2‖θ̂t − ϑt‖2 + ‖Ψ(Rt−1; bt−1)−Ψ(St−1

+ ; bt−1)‖2 (76)

≤ ‖X‖2‖θ̂t − ϑt‖2 + ‖Rt−1 − St−1
+ ‖2 , (77)

where the last inequality follows since Ψ( · ; b) : R → R is Lipschitz continuous with Lipschitz constant
at most 1, cf Proposition A.2.

Comparing analogously Eq. (65) and (75), we obtain

‖θ̂t+1 − ϑt+1‖2 ≤ δ‖X‖2 ‖Ψ(Rt; bt)−Ψ(St
+; bt)‖2 + ‖θ̂t − ϑt‖2 + |qt − 1| ‖ϑt‖2 (78)

≤ δ‖X‖2 ‖Rt − St
+‖2 + ‖θ̂t − ϑt‖2 + |qt − 1| ‖ϑt‖2 . (79)

Iterating the upper bounds (77), (79), and using the fact that ϑ0 = θ̂0, we conclude that there exists
a constant A = A(δ) <∞ such that

‖θ̂t − ϑt‖2 ≤ (A‖X‖2)2t
t−1∑
`=0

|q` − 1| ‖ϑ`‖2 (80)

By Lemma B.1, we have, almost surely

lim
n→∞

1
√
p
‖ϑ`‖2 = τ` <∞ , (81)

and

lim
n→∞

qt = δ lim
n→∞

1
n

n∑
i=1

Ψ′(Wi + St
i ; bt) (82)

= δE{Ψ′(W + τtZ; bt)} = 1 , (83)

where the second identity follows from Lemma B.1 and, in the third, we used the definition of bt.
(Note that we are applying here Lemma B.1 to ξ( · ) = Ψ′( · ; bt) which is bounded and non-negative
but not necessarily continuous. However, since W + τtZ has a density for every τt > 0, the limit
holds by a standard weak convergence argument, approximating ξ by simple functions. Namely, we
construct a sequence of simple functions ξ` such that ξ`(t) ≤ ξ(t) ≤ ξ`(t) + (1/`) for all t, and apply
Lemma B.1 –which implies weak convergence of the empirical distribution of {Wi + St

i}– to ξ`.)
Finally, it is a standard result in random matrix theory [AGZ09] that limn→∞ ‖X‖2 = C(δ) <∞.

Hence, by taking the limit of Eq. (80) we get, almost surely,

lim
n→∞

1
√
p
‖θ̂t − ϑt‖2 = 0 . (84)

The norm ‖Rt − St
+‖2 is then controlled using Eq. (77).
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C Proof that AMP converges to the M-estimator (Theorem 4.1)

Notice first of all that, by construction, τ2
t = τ2

∗ , bt = b∗ for all t.
Given δ, ρ as in the statement of the theorem and τ∗, b∗ a solution of the fixed point equation

(24), (25), we define the doubly infinite matrix Γ = (Γt,s)t,s≥0 by letting, recursively for t, s ≥ 0

Γt+1,s+1 = δE{Ψ(W + Zt; b∗)Ψ(W + Zs; b∗)} , (85)

where the expectation is with respect to (Zt, Zs) jointly Gaussian, with zero means and covariance
E{Z2

t } = Γt,t, E{Z2
s} = Γs,s, E{ZtZs} = Γt,s, independent of W ∼ FW . This is supplemented with

the boundary condition Γ0,0 = τ2
∗ and Γ0,t = Γt,0 = 0 for t > 0.

Notice that, in particular, Γs,t = Γt,s for all s, t ≥ 0 and Γt,t = τ2
∗ for all t.

The significance of these quantities is clarified by the following result.

Lemma C.1. Under the hypotheses of Theorem 3.9, further assume that τ2
∗ and Γ are defined as

above. Then, for any t, s ≥ 0,

lim
n→∞

1
p

p∑
i=1

ξ2(θ̂t
i − θ0,i, θ̂

s
i − θ0,i) =a.s. Eξ2(

√
δ Zt,

√
δ Zs) , (86)

lim
n→∞

1
n

n∑
i=1

ξ2(Rt
i −Wi, R

s
i −Wi) =a.s. Eξ2(Zt, Zs) , (87)

where the expectation is with respect to (Zt, Zs) jointly Gaussian, with zero means and covariance
E{Z2

t } = Γt,t, E{Z2
s} = Γs,s, E{ZtZs} = Γt,s, independent of W ∼ FW .

The proof is deferred to Section C.1.
As a special case of the latter result, we have

lim
n→∞

1
p
‖θ̂t − θ̂s‖2

2 =a.s. 2δ
(
τ2
∗ − Γt,s

)
, (88)

lim
n→∞

1
n
‖Rt −Rs‖2

2 =a.s. 2
(
τ2
∗ − Γt,s

)
. (89)

The following lemma provides information about the asymptotic behavior of Γt,s. Its proof is
deferred to Section C.2.

Lemma C.2. Let τ∗, Γ be defined as above for δ > 1. Then

lim
t→∞

Γt,t+1 = τ2
∗ (90)

Applying this result to Eqs. (88) and (89) we get, for any fixed h ∈ N,

lim
t→∞

lim
n→∞

1
p
‖θ̂t+h − θ̂t‖2

2 =a.s. 0 , (91)

lim
t→∞

lim
n→∞

1
p
‖Rt+h −Rt‖2

2 =a.s. 0 . (92)

(The case h > 1 follows from h = 1 by the triangle inequality.)
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We are now ready to prove Theorem 4.1. Recall that L(θ) = L(θ;Y,X) denotes the loss function
defined in Eq. (2), and that its gradient and Hessian are given by

∇θL(θ) = −
n∑

i=1

ρ′(Yi − 〈Xi, θ〉)Xi , (93)

∇2
θL(θ) =

n∑
i=1

ρ′′(Yi − 〈Xi, θ〉)XiX
T
i . (94)

In particular, letting σmin(X) denote the minimum non-zero singular value of X, we have

λmin(∇2
θL(θ)) ≥ inf

x∈R
ρ′′(x) · σmin(X)2 . (95)

Using the hypothesis of strong convexity and standard concentration of measure for the singular
values of Wishart matrices [Ver12], these exists constants c0, c1, n0 > 0 for δ > 1 such that for any
n ≥ n0,

P
(
∇2

θL(θ) � c0 I ∀θ ∈ Rp
)
≥ 1− e−c1 n . (96)

As a consequence, with probability at least 1− e−c1n, we have

L(θ̂t) ≥ L(θ̂) ≥ L(θ̂t) + 〈∇θL(θ̂t), θ̂ − θ̂t〉+
1
2
c0 ‖θ̂ − θ̂t‖2

2 . (97)

Hence using Cauchy-Schwartz

‖θ̂ − θ̂t‖2 ≤
2
c0
‖∇θL(θ̂t)‖2 . (98)

The last step of the proof consists in showing that, almost surely

lim
t→∞

lim
n→∞

1
p
‖∇θL(θ̂t)‖2

2 = 0 . (99)

In order to prove this claim, reconsider Eq. (9), for time t+ 1, with bt = b∗. Using the fact that
Ψ(z; b∗) = z − Prox(z; b∗), this can be rewritten as

Prox(Rt; b∗) = Y −Xθ̂t+1 +Rt −Rt+1 . (100)

By Eq. (11), and recalling that Ψ(z; b) = b ρ′(Prox(z; b)), we have

1
b∗δ

(
θ̂t+1 − θ̂t

)
= XTρ′(Prox(Rt; b∗)) (101)

= XTρ′
(
Y −Xθ̂t+1 +Rt −Rt+1

)
, (102)

where the last identity followed by Eq. (100). Using the triangle inequality and noting that, by the
smoothness assumption C ≡ supz∈R ρ

′′(z) <∞, we get

‖XTρ′
(
Y −Xθ̂t+1)‖2 ≤

1
b∗δ

‖θ̂t+1 − θ̂t‖2 + C‖X‖2‖Rt −Rt+1‖2 . (103)

Hence, using Eqs (91) and (91), and recalling that limn→∞ ‖X‖2 <∞ almost surely [AGZ09], we get

lim
t→∞

lim
n→∞

1
p
‖XTρ′

(
Y −Xθ̂t+1)‖2

2 = 0 . (104)

This is equivalent to the claim (99) since ∇θL(θ) = −Xρ′(Y −Xθ).
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C.1 Proof of Lemma C.1

First of all note that, due to Lemma B.2, it is sufficient to prove that

lim
n→∞

1
p

p∑
i=1

ξ2(ϑt
i, ϑ

s
i ) =a.s. Eξ2(

√
δ Zt,

√
δ Zs) , (105)

lim
n→∞

1
n

n∑
i=1

ξ2(st
i, S

s
i ) =a.s. Eξ2(Zt, Zs) . (106)

Note that a similar statement is proved in [BM12, Theorem 4.2] for characterizing the Lasso esti-
mator. While the same argument can be followed here, we outline an alternative argument that is
based on a reduction to the setting of [JM12].

We fix an even number q ∈ N, and will prove the claim for all t, s ≤ T ≡ (q/2)−1. Let N ≡ n+p.
For t ∈ {0, . . . , T}, we introduce a vector zt ∈ (Rq)N , which we think of as a vector with entries in
Rq: zt = (zt

1, . . . , z
t
N ) zt

i ∈ Rq. Its entries are defined as follows:

zt
i = (S0

i , 0, S
1
i , 0, S

2
i , 0, . . . , S

t
i , 0, 0, 0, . . . , 0) if 1 ≤ i ≤ n, (107)

zt+1
i = (0, ϑ1

j , 0, ϑ
2
j , 0, ϑ

3
j , . . . , 0, ϑ

t+1
i , 0, 0, 0, . . . , 0) if n+ 1 ≤ i = j + n ≤ n+ p. (108)

Further, we let A ∈ RN×N be a symmetric matrix with Aii = 0, Aij =
√
n/N Xi,j−n for 1 ≤ i ≤ n

and n+ 1 ≤ j ≤ n+ p, and all the other entries Aij i < j i.i.d. N(0, 1/N). It is then easy to see that
the iteration in Eqs. (66), (67) is equivalent to the following

zt+1 = Af(zt; t)− Bt f(zt−1; t− 1) . (109)

Here, for each t, f( · ; t) : (Rq)N → (Rq)N is separable in the following sense

f(z; t) = (f1(z1; t); f2(z2; t); . . . ; fN (zN ; t)) , (110)

with fi( · ; t) : Rq → Rq. These are defined as follows (letting Ψt,i(x) = Ψ(Wi + x; bt) and h =√
(1 + δ)/δ)

fi(zi; t) = (0, δhΨ0,i(zi,1), 0, δhΨ1,i(zi,3), 0, . . . , 0, δhΨt,i(zi,2t−1), 0, 0, 0, . . . , 0) if 1 ≤ i ≤ n,
(111)

fi(zi; t) = (0, 0,−h zi,2, 0,−h zi,4, 0, . . . ,−h zi,2t, 0, 0, 0, 0, . . . , 0) if n+ 1 ≤ i ≤ n+ p.
(112)

The matrix multiplication in Eq. (109) operates in the natural way over (Rq)N , namely we identified
A with the Kronecker product A⊗ Iq×q. Explicitly, Eq. (109) reads

zt+1
i =

∑
j∈[N ]

Aij fj(zt
j ; t)− Bt fi(zt−1

i ; t− 1) . (113)

Finally Bt ∈ Rq×q is given by

Bt =
1
N

N∑
i=1

∂fi

∂z
(zt

i; t) . (114)
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The recursion (109) is characterized in [JM12, Theorem 1], which establishes –for instance– that,
for ξ : Rq → R pseudo-Lipschitz, we have, almost surely,

lim
N→∞

1
p

n+p∑
i=n+1

ξ(zt
i) = E{ξ(Zt)} . (115)

Here Zt is a Gaussian random vector whose covariance is fully specified in [JM12]. The proof of
the lemma is finished by comparing the expressions in [JM12] for the covariance wit the ones in the
statement of the lemma.

C.2 Proof of Lemma C.2

First of all we introduce the notation qt ≡ Γt,t+1/τ
2
∗ . We then have the recursion

qt+1 = H(qt) , (116)

H(q) =
δ

τ2
∗

Eq{Ψ(W + τ∗ Z1; b∗)Ψ(W + τ∗ Z2; b∗)} , (117)

where expectation Eq is with respect to the centered Gaussian vector (Z1, Z2) with Eq{Z2
1} =

Eq{Z2
2} = 1 and Eq{Z1Z2} = q, independent of W ∼ FW . We claim that:

(i) H(1) = 1;

(ii) H(q) is increasing for q ∈ [0, 1];

(iii) H(q) is strictly convex for q ∈ [0, 1].

In order to prove (i), note that, for q = 1, Z1 = Z2 ≡ Z ∼ N(0, 1) and hence

H(1) =
δ

τ2
∗

Eq{Ψ(W + τ∗ Z; b∗)2} , (118)

which is equal to 1 since b∗, τ∗ satisfy Eq. (24).
In order to prove (ii), (iii), define

hW (z) ≡ Ψ(W + τ∗ z; b∗) , (119)
H(q) ≡ Eq{hW (Z1)hW (Z2)|W} , (120)

We will prove that H is strictly increasing and convex for any W , whence claims (ii) and (iii) follow
by linearity. The argument is the same as in [BM12, Lemma C.1] Let {Xt}t≥0 be the stationary
Ornstein–Uhlenbeck process with covariance E(X0Xt) = e−t, and denote by E expectation with
respect to X. Then

H(q) = E{hW (X0)hW (Xt)}
∣∣∣
t=log(1/q)

, (121)

Then we have the spectral representation (for t = log(1/q))

H(q) =
∞∑

`=0

c2` e
−` t =

∞∑
`=0

c2` q
` , (122)
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whence the claim follows since c` 6= 0 for some ` ≥ 2 as long as hW (x) is non-linear.
Because of the remarks (i)-(iii) just proven, it follows that limt→∞ qt = 1 (and hence limt→∞ Γt,t+1 =

τ2
∗ ) if and only if H′(1) ≤ 1. A simple calculation yields

H′(1) = δ E
{
Ψ′(W + τ∗ Z; b∗)2

}
, (123)

where Z ∼ N(0, 1). Recalling that Ψ′(z; b) ∈ (0, 1), we have (Ψ′)2 ≤ Ψ′ and so

H′(1) ≤ δ E
{
Ψ′(W + τ∗ Z; b∗)

}
= 1 , (124)

where the last identity follows because (τ∗, b∗) solve Eq. (25). This finishes the proof.
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