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The Sherrington-Kirkpatrick model
Andrea Montanari Lecture - 4/12-14/2010

The Sherrington-Kirkpatrick (SK) model was introduced by David Sherrington and Scott Kirkpatrick in
1975 as a simple ‘solvable’ (in their words) model for spin-glasses. Spin-glasses are some type of magnetic
alloys, and ‘solvable’ meant that the asymptotic free entropy density could be computed exactly.

It turns out that the original SK solution was incorrect and in fact inconsistent (the authors knew this).
A consistent conjecture for the asymptotic free energy per spin was put forward by Giorgio Parisi in 1982,
and derived through the non-rigorous replica method.

It took 24 years to prove this conjecture. The final proof is due to Michel Talagrand (2006) and is a real
tour de force. In these two lectures we will prove that the asymptotic free entropy density exists and that
it is upper bounded by the Parisi formula. The first result is due to Francesco Guerra and Fabio Toninelli
[GT02], and the second to Guerra [Gue03]. They are based on an interpolation trick that was a authentic
breakthrough eventually leading to Talagrand’s proof.

1 Definitions and the Parisi formula

Let {Jij}i,j∈[n] be a collection of i.i.d. N(0, 1/(2n)) random variables. The SK model is the random measure
over x ∈ {+1,−1}n defined by

µJ,β,B(x) =
1

Zn(β,B)
exp

{
β

n∑
i,j=1

Jijxixj +B

n∑
i=1

xi

}
, (1)

Here Zn(β,B) is defined by the normalization condition
∑
x µJ,β,B(x) = 1. It is of course a random variable.

An alternative but sometime useful formulation of the model consists in saying that

µβ,B(x) =
1

Zn(β,B)
exp

{
−H(x)

}
, (2)

where H(x) is a gaussian process indexed by x ∈ {+1,−1}n with mean and covariance

EH(x) = −nBMx , Cov(H(x), H(y)) =
1
2
nβ2Q2

x,y . (3)

Here Mx, and Qx,y denote the empirical magnetizaton and empirical overlap, namely

Mx ≡
1
n

n∑
i=1

xi , Qx,y ≡
1
n

n∑
i=1

xiyi . (4)

Throughout these lectures we will be interested in the free entropy density

φn(β,B) ≡ 1
n

logZn(β,B) . (5)

Parisi formula provides a surprising prediction for this quantity.

Definition 1. Let D be the space of non-decreasing functions x : [0, 1]→ [0, 1]. The Parisi functional is the
function P : D ×R×R→ R defined by

P[x;β,B] = log 2 + f(0, B;x)− β2

2

∫ 1

0

q x(q) dq , (6)
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where f : [0, 1]×R×D → R, (q, y, x) 7→ f(q, y;x) is the unique solution of the partial differential equation

∂f

∂q
+

1
2
∂2f

∂y2
+

1
2
x(q)

(
∂f

∂y

)2

= 0 , (7)

with boundary condition f(1, y;x) = log coshβy.

The relation between Parisi formula and the SK free entropy is given by the following theorem.

Theorem 2. Let φn(β,B) be the free entropy density of a Sherrington-Kirkpatrick model with n variables.
Then, almost surely

lim
n→∞

φn(β,B) = P∗(β,B) ≡ inf
x∈D

P[x;β,B] . (8)

At first sight, this result appears analogous to the one we proved in the first lecture for the Curie-Weiss
model, that we reproduce here for convenience:

lim
n→∞

φCW
n (β,B) = sup

m∈[−1,1]

ϕβ,B(m) , (9)

ϕβ,B(m) ≡ H
(1 +m

2
)

+
1
2
β m2 +Bm . (10)

Notice however two important and surprising differences: (i) The supremum in the last expression is replaced
by an infimum in Eq. (8); (ii) The optimum is taken over a single real parameter in the Curie-Weiss model,
and over a function in the SK case.

2 Existence of the limit

In this section we will prove that the limit n→∞ exists almost surely.

Theorem 3. Let φn(β,B) be the free entropy density of a Sherrington-Kirkpatrick model with n variables.
Then, almost surely

lim
n→∞

φn(β,B) = φ∗(β,B) , (11)

for some non-random quantity φ∗(β,B).

Proof Let φav
n (β,B) = Eφn(β,B) be the expected free entropy density. (We will often drop the depen-

dence on β,B in the following.) The proof is proceed in two steps. First one shows that φn concentrates
around φav

n , and therefore is sufficient to show that the latter (deterministic) sequence converges. This is
proved by showing that the sequence {nφav

n }n≥0 is superaddittive, and applying Fekete’s lemma.
Concentration follows from gaussian isoperimetry. Recall indeed that if F : Rk → R is Lipshitz continuous

with modulus L (i.e. if |F (a)−F (b)| ≤ L ‖a− b‖) and Z = (Z1, . . . , Zk) is a vector of i.i.d. standard N(0σ2)
random variables, then

P{F (Z)− EF (Z) ≥ u} ≤ e−u
2/2(Lσ)2 . (12)

It is easy to check that φn is a Lipshitz continuous function with modulus β of the n2 random variables Jij ,
whence

P{|φn − φav
n | ≥ u} ≤ e−nu

2/β2
. (13)

By Borel-Cantelli it is therefore sufficient to prove that φav
n has a limit.
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As mentioned, existence of the limit folllows from the superaddittivity of the sequence {nφav
n }n≥0, i.e

from the observation that, for any n1, n2 ∈ N, letting n = n1 + n2, we have

nφav
n ≥ n1φ

av
n1

+ n2φ
av
n2
. (14)

In order to prove this inequality, define, for t ∈ [0, 1], the gaussian process on the hypercube {Ht(x)}x∈{+1,−1}n

with mean and covariance

EHt(x) = −nBM = −n1BM1 − n2BM2 , (15)

Cov(Ht(x), Ht(y)) =
1
2
β2
{
t nQ2 + (1− t)[n1Q

2
1 + n2Q

2
2]
}
. (16)

where, letting [n] = V1∪V2 with V1 = {1, . . . , n1}, V2 = {n1 + 1, . . . , n1 +n2 = n}, we defined, for a ∈ {1, 2},

Ma ≡ 1
na

∑
i∈Va

xi , (17)

Qa ≡ 1
na

∑
i∈Va

xiyi . (18)

Further M = (n1/n)M1 + (n2/n)M2 and Q = (n1/n)Q1 + (n2/n)Q2 are the magnetization and overlap
defined in Eq. (4).

Define

Φ(t) ≡ E log
{∑

x

e−Ht(x)
}
. (19)

It is obvious that Φ(1) = nφav
n . Further, for t = 0, one can represent the gaussian process as

H0(x) = −β
∑
i,j∈V1

J1
ijxixj −B

∑
i∈V1

xi (20)

−β
∑
i,j∈V2

J2
ijxixj −B

∑
i∈V2

xi ,

with J1
ij ∼ N(0, 1/(2n1)) i.i.d. and J2

ij ∼ N(0, 1/(2n2)). It follows that Φ(0) = n1φ
av
n1

+ n2φ
av
n2

.
The superaddittivity is proved by showing that the first derivative Φ′(t) is non-negative. In order to

compute this derivative, it is convenient to use the following Lemma.

Lemma 4. For t ∈ [0, 1], let {Xk}k∈S be a finite collection of normal random variables, with covariance
Ckl(t) = Et[XkXl] − Et[Xk]Et[Xl], and mean ak = Et[Xk] independent of t. Then, for any polynomially
bounded function F : RS → R,

d
dt

Et{F (X)} =
1
2

∑
k,l∈S

dCk,l
dt

(t) Et
{ ∂2F

∂xk∂xl
(X)

}
(21)

In order to use this formula for computing Φ′(t), we use

∂2

∂H(x)∂H(y)
log
{∑

x

e−H(x)
}

= µ(x) Ix=y − µ(x)µ(y) , (22)

and

d
dt

Cov(Ht(x), Ht(y)) =
1
2
β2n

{(n1

n
Q1(x, y) +

n2

n
Q2(x, y)

)2

− n1

n
Q1(x, y)2 − n2

n
Q2(x, y)2

}
. (23)
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Therefore the first term in Eq. (22) does not give any contribution to the derivative, and

∑
x,y

d
dt

Cov(Ht(x), Ht(y))
∂2 log

{∑
x e
−H(x)

}
∂H(x)∂H(y)

= −1
2
β2nEµ×µ

{(n1

n
Q1 +

n2

n
Q2

)2

− n1

n
Q2

1 −
n2

n
Q2

2

}
,

which is non-negative by convexity of x 7→ x2. The derivative Φ′(t) is obtained by taking the expectation of
the above and hence is non-negative as well.

3 RSB bounds

Theorem 5. Let φav
n (β,B) be the expected free entropy density of a Sherrington-Kirkpatrick model with n

variables. Then

φav
n (β,B) ≤ P∗(β,B) ≡ inf

x∈D
P[x;β,B] . (24)

Proof Since β, B are fixed throughout the proof, we will regard P : D → R uniquely as a function of
x : [0, 1] → [0, 1]. An important simplifying remark is that P is Lipshitz continuous with respect to the L1

norm. More precisely, for x, x′ ∈ D, we have∣∣P[x]− P[x′]
∣∣ ≤ β2 ‖x− x′‖1 . (25)

We refer to [Gue03] for a proof of this statement.
It is therefore sufficient to prove φav

n (β,B) ≤ P[x] for x in a dense subset of D. The proof proceeds
by considering the set ∪K≥1DK , where DK is the subset of functions x : [0, 1] → [0, 1] non-decreasing and
right-continuous which takes at most K distinct values in [0, 1) (plus, eventually, x(1) = 1). A function
x ∈ DK is parameterized by two vectors 0 ≤ q0 ≤ q1 ≤ · · · ≤ qK−1 ≤ qK ≤ qK+1 = 1 and 0 = m0 ≤ m1 ≤
· · · ≤ mK ≤ mK+1 = 1, by letting, for q ∈ [0, 1)

x(q) =
K+1∑
i=1

mi I
{
q ∈ [qi−1, qi)

}
. (26)

(The notation is here slightly different from [Gue03].)
Of particular interest is the case K = 0 (replica symmetric, RS) where

x(q) =
{

0 if 0 ≤ q < q0,
1 if q0 ≤ q ≤ 1. (27)

Also important in the analysis of other models is the case K = 1 (one-step replica symmetry breaking,
1RSB)

x(q) =

 0 if 0 ≤ q < q0,
m1 if q0 ≤ q < q1,
1 if q1 ≤ q ≤ 1.

(28)

The function x(q) actually achieving the inf P[x] has the interpretation of cumulative distribution of the
overlap Qx,y for two configurations drawn from the random measure µJ × µJ .

The partial differential equation (7) is easily solved for x ∈ DK yielding amore explicit expression for
P[x] = PK(m, q). We get

PK(m, q) = E log Y0 −
1
4
β2

K+1∑
i=1

mi (q2i − q2i−1) , (29)

4



where Y0 is the random variable constructed as follows. Define, for X0, . . . , XK+1 i.i.d. N(0, 1),

YK+1 = 2 cosh
(
B + β

K+1∑
`=0

√
q` − q`−1X`

)
. (30)

where it is understood that q−1 = 0. Then, recursively, for ` = K,K − 1, . . . , 0

Y` = {E`+1(Y m`+1
`+1 )}1/m`+1 . (31)

where E`+1 denotes expectation with respect to X`+1. In particular in the replica symmetric case (K = 0),
we have the following function of the only remaining parameter q0

P0(q0) = E log 2 cosh(B + β
√
q0X) +

1
4
β2(1− q0)2 . (32)

We need now to prove that, for any K, and for any choice of the parameters {mi}, {qi}, we have
φav
n ≤ PK(m, q). This is done by interpolation. Define, for t ∈ [0, 1],

Ht(x) = −β
√
t

n∑
i,j=1

Jijxixj −B
n∑
i=1

xi − β
√

1− t
K+1∑
`=0

√
q` − q`−1

n∑
i=1

G`ixi , (33)

with the {G`i} i.i.d. N(0, 1) random variables. We then construct the partition functions {Z`(t)}0≤`≤K+1 by
letting

ZK+1(t) ≡
∑
x

e−Ht(x) , (34)

and then recursively for ` ∈ {0, . . . ,K}

Z`(t) ≡ {E`+1(Zm`+1
`+1 (t))}1/m`+1 , (35)

where E`+1 denotes expectation with respect to {G`+1
i }1≤i≤n. Finally, we define

Φ(t) ≡ 1
n

E0 logZ0(t) . (36)

Here E0 is expectation with respect to both {G0
i }1≤i≤n and {Jij}1≤i,j≤n.

It is easy to see that Φ(1) = φav
n , since in this case H0(x) = H(x) is just the SK energy function. Further

Φ(0) = E log Y0 (with Y0 defined as above) since

ZK+1(t) ≡
n∏
i=1

{
2 cosh

(
B + β

K+1∑
`=0

√
q` − q`−1G

`
i

)}
, (37)

is the product of n i.i.d. copies of YK+1. The proof is completed by evaluating the defivative of Φ(t) with
respect to t. This takes the form

Φ′(t) = −1
4
β2

K+1∑
`=1

m` (q2` − q2`−1)− 1
4
β2

K∑
`=0

(m`+1 −m`) 〈(Q(x, y)− q`)2〉` , (38)

where 〈 · 〉` denotes expectation with respect to an apropriate measure on (x, y) ∈ {+1,−1}n × {+1,−1}n.
Since the argument in this expectation is a perfect square, it follows that

Φ(1) ≤ Φ(0)− 1
4
β2

K+1∑
`=1

m` (q2` − q2`−1) , (39)
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which is our claim.
Computing the derivative (38) is not particularly difficult, just a bit laborious. For the sake of simplicity,

we will consider the case K = 0 (replica symmetric). In that case, applying the definitions we get

Φ(t) =
1
2
β2(1− t)(1− q0) +

1
n

E log
{∑

x

e−
bHt(x)

}
, (40)

Ĥt(x) = −β
√
t

n∑
i,j=1

Jijxixj −B
n∑
i=1

xi − β
√

1− t√q0
n∑
i=1

Gixi . (41)

We then have

Φ′(t) = −1
2
β2(1− q0) +

β

2n
√
t

n∑
i,j=1

E{Jijµt(xixj)} −
β
√
q0

2n
√

1− t

n∑
i=1

E{Giµt(xi)} , (42)

where µt is the probaility measure µt(x) ∝ exp{−Ĥt(x)}, and µt(xixj), µt(xi) denote the expectations of
xixj and xi. Using Stein’s Lemma, we get

Φ′(t) = −1
2
β2(1− q0) +

β2

4n2

n∑
i,j=1

E{µt(x2
ix

2
j )− µt(xixj)2} −

β2q0
2n2

n∑
i=1

E{µt(x2
i )− µt(xi)2}

= −1
4
β2 − β2

4n2

n∑
i,j=1

E{µ(2)
t (xiyixjyj)}+

β2q0
2n

n∑
i=1

E{µ(2)
t (xiyi)}

= −1
4
β2 − β2

4
E{µ(2)

t (Q(x, y)2)}+
β2

2
q0E{µ(2)

t (Q(x, y))}

where µ(2)
t = µt × µt is the product distribution over x, y. By completing the square, we get

Φ′(t) = −1
4
β2(1− q20)− β2

4
E{µ(2)

t ([Q(x, y)− q0]2)} ,

which indeed coincides with Eq. (38) for K = 0.
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