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Homework due on Mon (starting 4/9/2012).
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Topics

I Probability distributions that are `local' wrt a graph

I Random variables sit on vertices.

I Strongly dependent if they are nearby.

I Images, philogenies, error-correcting codes, Bayes networks. . .
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Topics

Emphasis on computational and mathematical aspects.
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Topics

I Equivalent graphical representations.

I Polynomial reductions between various probabilistic inference
tasks. Computational hardness.

I Models on trees. Belief propagation.

I Variational inference: naive mean �eld, Bethe free energy,
generalized BP and convex relaxations.

I Gaussian graphical models.

I Learning graphical model form data.

I Correlation decay. The Markov Chain Monte Carlo method.

I Applications to clustering and classi�cation.
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Why you should not take this class

I Emphasis on fundamental challenges.

I There is no textbook.

I We'll use the P-word.
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Let us start: Families of graphical models
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General theme

Probability distribution over x = (x1; x2; : : : ; xn)

�(x1; x2; : : : ; xn)
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Family # 1: Undirected Pairwise Graphical Models
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Family # 1: Undirected Pairwise Graphical Models

(aka Markov Random Fields)

x1

x2 x3 x4

x5
x6

x7x8x9
x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X

�(x ) =
1

Z

Y
(ij )2E

 ij (xi ; xj ) :
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Undirected Pairwise Graphical Models

Speci�ed by

I Graph G = (V ;E).

I Alphabet X .

I Compatibility functions  ij : X � X ! R+, (i ; j ) 2 E .
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Alphabet

Typically jX j <1.

Occasionally X = R and

�(dx ) =
1

Z

Y
(ij )2E

 ij (xi ; xj )dx

(all formulae interpreted as densities)

Key challenge: n � 1 (space dimension).
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Partition function

Z �
X
x2XV

Y
(ij )2E

 ij (xi ; xj )

[Plays a crucial role!]
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Notations

1

2 3 4

5
6

78
9

10

11
12

@i �
�
neighbors of vertex i

	
; deg(i) = j@i j ;

@9 =
�
10; 2; 11

	
; deg(9) = 3;

xU � (xi )i2U ;

xf1;7;10g = (x1; x7; x10) :
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Example: Ising models

x1

x2 x3 x4

x5
x6

x7x8x9
x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 f+1;�1g

�(x ) =
1

Z

Y
(ij )2E

 ij (xi ; xj ) :
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Example: Ising models

x1

x2 x3 x4

x5
x6

x7x8x9
x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 f+1;�1g

�(x ) =
1

Z
exp

n X
(i ;j )2E

�ij xixj +
X
i2V

�ixi
o
:
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A motivation: Boltzmann Machines
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Can we train a computer to do handwriting?
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Can we train a computer to do handwriting?

MNIST dataset: 60; 000 handwritted digits (28� 28 pixels)

Can we learn �(xI ), xI 2 f+1;�1g
I , I = [28]� [28] that generates

samples as above?
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An attempt

(R. Salakhutdinov, G. Hinton, AISTATS 2009)

What's the magic?
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What's the magic?

Image

Hidden variables

�(xI ) =
X

xH (1);xH (2);xH (3)

�G;�(xI ; xH (1); xH (2); xH (3))

�G;�( � ) Ising model on G = (V ;E)

V = (I ;H (1);H (2);H (3))
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Family # 2: Factor Graph Models
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Family # 2: Factor Graph Models

x3

x1

x6

x4

x2

x5

x7

x

x

x

8

9

10

 variable xi 2 X

 factor  a(x5; x7; x9; x10)

G = (V ;F ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X

�(x ) =
1

Z

Y
a2F

 a(x@a) :
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Factor graph models

Terminology

I Variable nodes: i ; j ; k ; � � � 2 V .

I Function nodes: a ; b; c � � � 2 F .

Speci�ed by

I Factor graph G = (V ;F ;E).

I Alphabet X .

I Compatibility fuctions  a : X @a ! R+, a 2 F .
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Factor graphs are as powerful as pairwise models

A pairwise model on G = (V ;E) with alphabet X can be represented
by a factor graph model on G 0 = (V 0;F 0;E 0) with V 0 = V , F 0 ' E ,
jE 0j = 2jE j, X 0 = X .

I Put a factor node on each edge.

A factor model on G = (V ;F ;E) with alphabet X can be represented
by a pairwise model on G 0 = (V 0;F 0) with V 0 = V [ F , E 0 = E ,
X 0 = X�, � � maxa2F deg(a).

I Represent at a factor node the state of its neighbors,
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Family # 3: Bayesian Networks
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Family # 3: Bayesian Networks

x1 x2 x3

x4 x5

x6 x7 x8

G = (V ;D), directed V = [n ], x = (x1; : : : ; xn), xi 2 X
D = f directed edges g

�(x ) =
Y
i2V

�i (xi jx�(i)) ; �(i) =
�
parents of i

	
:
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Bayesian Networks

Speci�ed by

I Directed acyclic graph G = (V ;D), ((i ; j ) 6= (j ; i)).

I Alphabet X .

I Conditional probability tables �i ( � j � ) : X � X
�(i) ! R+, i 2 F :

X
xi2X

�i (xi jx�(i)) = 1 for all x�(i) 2 X
�(i) :
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Bayes networks are as powerful as factor graphs

A Bayes network G = (V ;D) with alphabet X can be represented by a
factor graph model on G 0 = (V 0;F 0;E 0) with V 0 = V , jF 0j = jV j,
jE 0j = jD j+ jV j, X 0 = X .

I Represent by a factor node each CPT.

A factor model on G = (V ;F ;E) with alphabet X can be represented
by a Bayes network G 0 = (V 0;D 0) with V 0 = V and X 0 = X .

I Choose a total ordering of V 0 = V and write � in terms of
conditional probabilities.

In general the resulting Bayes network is dense.
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Bayes networks with observed variables

V = H [O ;

x = (xi )i2H = (x1; : : : ; xn) = ( Hidden Variables ) ;

y = (yi )i2O = (y1; : : : ; ym) = ( Observed Variables )

�(x ; y) =
Y
i2H

�(xi jx�(i)\H ; y�(i)\O)
Y
i2O

�(yi jx�(i)\H ; y�(i)\O)

Of interest �y(x ) = �(x jy)
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Example 1: Forensic science

[Kadane, Shum, A probabilistic analysis of the Sacco and Vanzetti evidence, 1996]

[Taroni et al., Bayesian Networks and Probabilistic Inference in Forensic Science,

2006]
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Example 2: Diagnostic network

diseases

`soft ORs'

symptoms

[M. Shwe, et al., Methods of Information in Medicine, 1991]
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Example 2: Diagnostic network

diseases

symptoms
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Bayes networks are as powerful as factor graphs

diseases

symptoms

With observed variables graph remains unchanged
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Markov property
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Global Markov Property

�(x ) = �(x1; x2; : : : ; xn)
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Global Markov Property

A B C

De�nition

Let A[B [C be a partition of V . We say that B separates A from C

if any path starting in A and terminating in C has at least one node in
B .
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Global Markov Property

A B C

De�nition

The probability distribution � over XV satis�es the global Markov
property on G if for any partition V = A [B [C such that B
separates A from C ,

�(xA; xC jxB ) = �(xAjxB )�(xC jxB )
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The most general

Theorem (Hammersley, Cli�ord, 1971)

Let �( � ) be a probability distribution on XV , and G = (V ;E) be a
graph such that

I � is Markov with respect to G.

I �(x ) > 0 for all x 2 XV .

I G does not contain triangles.

Then � is a pairwise graphical model on G.
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Proof sketch (Grimmett, Bull. London Math. Soc. 1973)

For every S � V , de�ne

e S (xS ) � Y
U�S

�(xU ; 0V nU )
(�1)jSnU j

Example: For S = fi ; j g (not necessarily edge) let
�ij ;+( � ) � �( � ; 0V nfi ;jg)

e ij (xi ; xj ) = �ij ;+(xi ; xj )�ij ;+(xi ; 0)
�1�ij ;+(0; xj )

�1 �ij ;+(0; 0) :

Exercise: If V = fi ; j g. . .
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Proof sketch (Grimmett, 1973)

I Claim 1: �(x ) = �(0V )
Q
S�V

e S (xS )

I Claim 2: For S 6= fi ; j g 2 E , fig, e S (xS ) =const.
Given �, can construct G !
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Useful facts

Fact

X
K�W

(�1)jK j = I(W = ;) :

(Sum includes the empty set.)

Fact

If f is a set function, W 0 �W proper subset, then

X
K�W

(�1)jK jf (K \W 0) = 0 :

(Sum includes the empty set.)
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If G contains triangles

�(x ) =
1

Z

Y
C2cliques(G)

 C(xC) :
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Footnote #1

De�nition (Global Markov)

For any partition V = A [B [C such that B separates A from C ,

�(xA; xC jxB ) = �(xAjxB )�(xC jxB )

Local Markov: Required only for A = fig, B = @i , C = V n fig[ @i .

Pairwise Markov: Required only for A = fig, B = V n fi ; j g,
C = fj g.
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They are in fact equivalent

Obviously

(G)) (L)) (P)
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Less obviously: (P) ) (G)

By induction over s � jV nB j:

I s = 2: Pairwise property.

I Assume (G) for any jB j with jV nB j = s � 2 and prove it for
jV nB j = s + 1.

WLOG take A [B [C = V and jAj � 2.
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Less obviously: (P) ) (G)
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Induction step: The Intersection Lemma

We write A�B�C if xA is conditionally independent of xC given xB .

Lemma

If � is strictly positive and

A�(C [D)�B ; A�(B [D)�C ;

then

A�D�(B [C ) :
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Induction step

i

eA
A B C

A = eA [ fig
by induction assumption C�(B [ i)�eA

C�(B [ eA)�fig

By the intersection lemma

C�B�(eA [ i) = A
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An interesting mathematical phenomenon

This is not true if G is in�nite.

BTW: How do you de�ne a MRF on an in�nite graph?
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Footnote #2

Where does the (�1)jSnU j come from?
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Möbius inversion formula

2V =
�
subsets of V

	
;

Theorem

Let f ; g : 2V ! R. Then the following are equivalent

f (S) =
X
U�S

g(U ) ; for all S � V ;

g(S) =
X
U�S

(�1)jSnU jf (U ) ; for all S � V :

Proof: Exercise.

[see also G.C.Rota, Prob. Theor. Rel. Fields, 2 (1964) 340-368]
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Relation with what we did

f (S) = log�(xS ; 0V nS ) ;

g(S) =
X
U�S

(�1)jSnU j log�(xU ; 0V nU ) = ~psiS (x )

Claim 1 in the proof  Möbius
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