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Undirected Pairwise Graphical Model
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G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X , jX j <1

�(x ) =
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 ij (xi ; xj ) :

Computing marginals of �
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A motivating example
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In�uenza

[A.H. Reid, T.G. Fanning, J.V. Hultin, and J.K. Taubenberger,

Proc. Natl. Acad. Sci. 96 (1999) 1651-1656]
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Challenges in phylogeny

Phylogeny reconstruction: Given DNA sequences at vertices (only

at leaves), infer the underlying tree T = (V ;E).

Phylogeny evaluation: Given a tree T = (V ;E) evaluate the
probability of observed DNA sequences at vertices (only at leaves).
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A Markov model

T = (V ;D) directed graph, observed x = (xi )i2V 2 XV

�T (x ) = qo(xo)
Y

(i ;j )2D

qi ;j (xi ; xj ) ;

qi ;j (xi ; xj ) = Probability that the descendent is xj if ancestor is xi .
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Simpli�ed model: X = f+1;�1g

qo(xo) =
1

2
;

q(xi ; xj ) =

(
1� q if xj = xi ,

q if xi 6= xj .
q(xi ; xj ) / e�xixj :

Andrea Montanari (Stanford) Stat375: Lecture 5, 6 April 16, 2012 9 / 43



Simpli�ed model: X = f+1;�1g

qo(xo) =
1

2
;

q(xi ; xj ) =

(
1� q if xj = xi ,

q if xi 6= xj .
q(xi ; xj ) / e�xixj :

Andrea Montanari (Stanford) Stat375: Lecture 5, 6 April 16, 2012 9 / 43



Simpli�ed model: X = f+1;�1g

T = (V ;E) directed graph, observed x = (xi )i2V 2 XV

�T (x ) =
1

Z�(T )

Y
(i ;j )2E

e�xixj :

Problem: For given T , compute �T (x ). Di�cult part: Z�(T ).
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Recursion on trees
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Subtree

i

j

Ti!j = (Vi!j ;Ei!j ) = Subtree rooted at i and excluding j ,

�i!j (xVi!j
) =

1

Z (Ti!j )

Y
(u ;v)2Ei!j

e�xuxv ;

�i!j (xi ) =
X

xVi!j
ni

�i!j (xVi!j
)
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Merging trees

i

j

k l

�i!j (xVi!j
) =

1

Z (Ti!j )
e�xixk e�xixl

n Y
(u ;v)2Ek!i

e�xixj
on Y

(u ;v)2El!i

e�xuxv
o
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Merging trees

i

j

k l

�i!j (xVi!j
) �= e�xixk e�xixl�k!i (xVk!i

)�l!i (xVl!i
)X

xvi!j ni

�i!j (xVi!j
) �=

X
xVk!i

e�xixk�k!i (xVk!i
)
X
xVl!i

e�xixl�l!i (xVl!i
) ;

�i!j (xi ) �=
nX

xk

e�xixk �k!i (xk )
onX

xl

e�xixl�l!i (xl)
o
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Merging trees

i

j

k

�i!j (xi ) �=
Y

k2@inj

nX
xk

e�xixk �k!i (xk )
o

�i (xi ) �=
Y
k2@i

nX
xk

e�xixk �k!i (xk )
o
= �T (xi )
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What about a general model ?

i

j

k

�i!j (xi ) �=
Y

k2@inj

n X
xk2X

 ik (xi ; xk )�k!i (xk )
o

�i (xi ) �=
Y
k2@i

n X
xk2X

 ik (xi ; xk )�k!i (xk )
o
= �T (xi )

Computes the marginals in jX j2n operations.
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Belief propagation
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Notation

~E � Directed edges;

� � f�i!j ( � )g(i ;j )2~Eg 2 M(X )
~E ;messages

F M(X )
~E ! M(X )

~E

� 7! F(�); F(�)i!j (xi )�=
Y

k2@inj

n X
xk2X

 ik (xi ; xk )�k!i (xk )
o

F
v
M(X )

~E ! M(X )V

� 7! F
v(�); F

v(�)i (xi )�=
Y
k2@i

n X
xk2X

 ik (xi ; xk )�k!i (xk )
o
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Belief propagation (sequential version)

Belief propagation( Tree T = (V ;E),  = f ij g )

1: Initialize �i!k (xi ) = 1=jX j for all i leaves;

2: Recursively over (i ; j ) 2 ~E compute (from leaves):

3: �i!j = F(�)i!j ;

4: For each i 2 V output the estimated marginal;

5: �i = F
v(�)i ;
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Belief propagation (parallel version)

Messages: �
(t)
i!j ( � ), t 2 f0; 1; 2; : : : g

Belief propagation( Tree T = (V ;E),  = f ij g )

1: Initialize �
(0)
i!k (xi ) = 1=jX j for all i leaves;

2: For t 2 f0; 1; 2; : : : ; tmax � diam(T )g

3: �(t+1) = F(�(t));
4: For each i 2 V output the estimated marginal;

5: �i = F
v(�)i ;

Computes all the marginals in jX j2n � diam(T ) operations.
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Belief propagation (loopy version)

Messages: �
(t)
i!j ( � ), t 2 f0; 1; 2; : : : g

Belief propagation( Graph T = (V ;E),  = f ij g )

1: Initialize �
(0)
i!k (xi ) = 1=jX j for all i leaves;

2: For t 2 f0; 1; 2; : : : ; tmaxg

3: �(t+1) = F(�(t));
4: For each i 2 V output the estimated marginal;

5: �i = F
v(�)i ;

Computes ?????? in jX j2n � tmax operations.
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Folklore about Loopy BP

Generally it does not converge, and if it does, the output is incorrect.

This does not stop people from using it!

I Works better when  i ;j (xi ; xj ) =  ij ;1(xi ) ij ;2(xj )+small(xi ; xj ).

I Works better when G has few short loops.

I Works better when  ij (xi ; xj ) is attractive.

I Nonconvex variational principle.
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A couple of exercises
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Exercise #1: Partition function on trees
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Exercise #1: Partition function on trees

i

j

k

Z (Ti!j ) =
Y

k2@inj

Z (Tk!i )
X
xi2X

Y
k2@inj

n X
xk2X

 ik (xi ; xk )�k!i (xk )
o

Computes the partition function in jX j2n operations.
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Exercise #1: Example

Suppose you observe

x = (+1;+1;+1;+1;+1;+1;+1;+1;+1)
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Exercise #1: Example

Suppose you observe

x = (+1;+1;+1;+1;+1;+1;+1;+1;+1)

and you know this comes from either of

�(x ) =
1

Z (T )

Y
(i ;j )2E

e�xixj
Y
i2V

e xi

Which one has highest likelihood? argminfZ (T1);Z (T2)g
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Exercise #2: Sampling from on the tree
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Exercise #2: Sampling on the tree

i

j

k

Sampling( Tree T = (V ;E),  = f ij g(ij )2E )

1: Choose a root o 2 V ;

2: Sample Xo � �o( � );
2: Recursively over i 2 V (from root to leaves):

3: Compute �i j�(i)(xi jx�(i));
4: Sample Xi � �i j�(i)( � jx�(i));

Andrea Montanari (Stanford) Stat375: Lecture 5, 6 April 16, 2012 30 / 43



Exercise #2: Sampling on the tree

j

j

k

�T (xVi!j
jxj ) �=  ij (xixj )�Ti!j

(xVi!j
) ;

�T (xi jxj ) �=  ij (xixj ) �i!j (xi ) :
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Tree decomposition
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Idea

OK, this is not a tree but. . .
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Idea

Create an equivalent tree graph.

Price: enlarging the alphabet to X 3.
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How you do this in general?

I Tree decomposition.

I Equivalent graphical model.

I Alphabet enlargement X ! X k .

I Treewidth(G) � Minimum such k .

Problem: In general Treewidth(G) = �(n).
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Tree decomposition of G = (V ;E)

A tree T = (VT ;ET ) and a mapping V : VT !SUBSETS(V ) s.t.:

I For each i 2 V there exists at least one u 2 VT with i 2 V (u).

I For each (i ; j ) 2 E there exists at least one u 2 VT with

i ; j 2 V (u).

I If i 2 V (u1) and i 2 V (u2), then i 2 V (w) for any w on the path

between u1 and u2 in T .
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For instance

Andrea Montanari (Stanford) Stat375: Lecture 5, 6 April 16, 2012 37 / 43



For instance

You see the tree, right?
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General methods to prove convergence

I Monotonicity.

I Contraction.
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The max-product algorithm
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Optimization � Mode computation

x1

x2 x3 x4

x5
x6

x7x8x9

x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X , jX j <1
Compute

arg max
x2XV

�(x ) = arg max
x2XV

Y
(ij )2E

 ij (xi ; xj ) :
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Equivalently

x1

x2 x3 x4

x5
x6

x7x8x9

x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X , jX j <1
Compute

arg max
x2XV

X
(ij )2E

�ij (xi ; xj ) :
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Everything goes through: Max-Marginals

�v (xv )�=max
n Y
(ij )2E

 ij (x
0
i ; x

0
j ) : x 0 2 XV ; x 0v = xv

o
:

Normalization maxxv �v (xv ) = 1
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Everything goes through: Max-Product algorithm

i

j

k

�i!j (xi ) �=
Y

k2@inj

n
max
xk2X

 ik (xi ; xk )�k!i (xk )
o

�i (xi ) �=
Y
k2@i

n
max
xk2X

 ik (xi ; xk )�k!i (xk )
o

Computes the max-marginals in jX j2n operations.

� Dynamic programming.
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