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Summary. The paper proposes that the theory of expectations be reformulated under the
assumption that agents do not know the structural relations (such as equilibrium prices) of the
economy. Instead, we postulate that they can observe past data of the economy and form
probability beliefs based on the data generated by the economy. Using past data agents can
compute relative frequencies and the basic assumption of the theory is that the system which
generates the data is stable in the sense that the empirically computed relative frequencies
converge. It is then shown that the limit of these relative frequencies induce a probability on the
space of infinite sequences of the observables in the economy. This probability is stationary.
A belief of an agent is a probability on the space of infinite sequences of the observable variables in
the economy. Such a probability represents the “theory” or “hypothesis™ of the agent about the
mechanism which generates the data. A belief is said to be compatible with the data if under the
proposed probability belief the economy would generate the same limit of the relative frequencies
as computed from the real data. A theory which is “compatible with the data” is a theory which
cannot be rejected by the data. A belief is said to be a Rational Beliefif it is (i) compatible with the
data and (ii) satisfies a certain technical condition. The Main Theorem provides a characterization
of all Rational Beliefs.
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1 Introduction

The formation of expectations and probability beliefs has played a central role
in the formulation of dynamic equilibria and rational expectations has been at
the foundations of most expectations models in recent years. Yet, the theory of
rational expectations in economics and game theory is based on the premise
that agents know a great deal about the basic structure of their environment.
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In economics agents are assumed to have knowledge about demand and
supply functions. of how to extract present and future general equilibrium
prices, and about the stochastic law of motion of the economy over time. In
game situations it is assumed that players know the structure of the game and
the equilibrium (random) strategies of the opponents. For the sake of termino-
logical clarity we shall say that these agents possess “structural knowledge.”
We suggest this term in order to distinguish it from the often used term of
“information” which is employed to indicate the degree of observability of the
state.

It is usually hard to conceive of how agents come to possess structural
knowledge. The recent response to this problem has been to formulate
dynamic processes of learning which aim to show how agents learn what they
know when formulating their beliefs. The problem is that this research has not
solved the initial problem. Without engaging in a full scale survey of the results
of the recent effort, we think it is accurate to say that there are examples
worked out where complete learning does take place. However, in general, the
learning approach has not been able to provide a satisfactory mechanism for
agents to acquire full structural knowledge and hold rational expectations.
This conclusion has a counterpart in the statistical literature where a spirited
debate has been taking place about the “Bayes consistency” problem (see
Diaconis and Freedman [1986] for an excellent recent survey). We note that
“Bayes consistency” may fail even when the statistician is able to conduct
independent, repeated controlled experiments'. The problem is then com-
pounded by the fact that in almost all instances, a learning economic agent
cannot obtain independent observations and must be content with the actual
data generated by the system.

A central characteristic of rational expectations equilibria is the fact that in
such equilibria all agents hold the same probability belief and make the same
forecasts i.e. those implied by the stochastic law of motion of the economy in
the given equilibrium. This is also true of Bayesian equilibria. Although not

~mandated by the axioms of subjective probability, applications of the

Bayesian approach in the social sciences almost always make the “common
prior” assumption which requires all agents to have the same priorif they have
the same information. In fact, Bayesians insist that this assumption is justified
both on general principles, as well as being a prerequisite for the consistency of
any equilibrium concept (see, for example, Aumann [1976] and [1987] page 12
and Harsanyi [1967-19687).

We suggest thatitis an empirical fact that intelligent economic agents may
exhibit drastic differences in beliefs even when they have the same information.
Consequently, the study of the diversity of rational beliefs is important and the
characterization of the conditions which permit this diversity to arise is one of
the objectives of this paper.

! Feldman (19917 uses the resuits surveyed by Diaconis and Freedman [1986] to demonstrate

the problematics of Bayes learning in economics even in the i.id case.
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The prototype problem with which this paper is concerned may be simply
explained with the aid of an example. Let y,, t =0. 1, 2,... be a sequence of
random profits or rewards of a household, a corporation or an investment
project. Let 0 <y < 1 be the discount rate employed and let the present value,
at date t, of future rewards be defined by

p:k = Z 7k+lyz+k' (1)

- Aneconomic agent who observes the data needs to evaluate, atdate t, the risky
prospect p;*. The problem is that the agent does not know the true probability of
the random sequence {y,t=0,1,2,...}. He does have a finite but massive
amount of past data since t = 0 occurred a long time ago and all past data were
recorded. Given these data the agent sets up to learn all that he can and then
form a conditional probability belief Q' about the future sequence of random
variables y, ,, k > 0. We aim to establish criteria to determine if a probability
belief of an agent is “rational.” Moreover, given such criteria of rationality, we
want to characterize the structure of all rational beliefs and consequently have
a better understanding of the causes for diversity among agents. We formulate
the economic environment as a stochastic dynamical system and propose that
a belief should be taken to be rational if it is compatible with the data. The idea
that rationality of beliefs should be defined relative to what is learnable from
the data, rather than relative to some model of the economy is the central
driving force of our theory.

2 Model formulation and the issue of stationarity

We suppose that there is a finite number, K, of observables in the economy so
thatateach datetfort =0,1,2,... all agents observe x, = (x,, X5;5..., Xg;)EX
where X < R¥ is the state space. The x,, are such quantities as GNP, prices of
commodities or assets, profits of firms or data about climate conditions. The
economic environment is represented by a dynamical system (2, #,I1, T)
defined on the non-negative integers ¢t > 0 where

0= X" = (R,

F'=0(xg,X1,....%,),0 <t < oc, — the o-field generated by (x4, x,,...,X,),
L

97=O'<U .7”).
t=0

IT is a probability on measurable sets of infinite sequences in X *. Although
we shall think of x as a random point in X * it is important for us to associate
with such a point the starting date of the sequence. We use the notation
x'=(x,x,,,...) to identify a random sequence from the perspective of date t.
The realization of the stochastic process is represented by the measurable
transformation T. We assume, as is standard in probability theory, that T is
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a shift transformation. Thus,
x'th=Tx' (2)

One defines T>x = T(Tx) and, in general, T"x = T(T"" 'x). From the
measurability of T'it follows that the iterated maps T" are also measurable
transformations. Since we assume that the process starts at a date called t =0
with x% = x we have that

X=T'x t=0,1,2,...

T is not assumed to be invertible. The economic meaning of this assumption is
that any particular future evolution, x', of the economy is not associated with
aunique past T~ '(x'); a future x* may arise from many possible pasts! Since T'is
not assumed invertible we reserve the notation T°"S for the preimage of
S under T". That is

TS = {x:T"xeS}. (3)

For this reason we think of T7"S as the set S = X * located n periods into the
future. Or, if Bis the set of xe 2 such that T"xeS, then B is the set of points in
X from which one reaches S in n steps.

Each of our agents does not have any knowledge of the causal structure of
the economy. This leads to the assumption, that /T is not known by anyone.
Since the objective of the observer is to discover, for each measurable set Se#,
the true probability I7(S) he has a natural way to proceed. Define

1 if xeS§
1S(x)={0 if x¢s

and then compute

1 n—1
m(S)(x) =~ 3 15(T*x) )
k=0

m*(8)(x) is the relative frequency at which the dynamical system visits the set
S given that it started at x. Our observing agent can conceivably learn
something about the true /T only if m"(S)(x) converges so that with sufficient
data the limit lim m"(S)(x) can be computed to any desired accuracy. This

motivates the following:

Definition 1: A dynamical system (2, #, [T, T) is said to be stable if for all
finite-dimensional sets, or cylinders, Se.# the limit of m"(S)(x) exists [T a.e.
and the limit is denoted by

m(S)(x) = lim m"(S)(x) IT ae. (5)

The system is said to be strongly stable if the limit of m"(S)(x) exists IT a.e. for
all Se#.
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The distinction between stability and strong stability is important. If S
is a cylinder, one needs a finite number of observations in order to verify if xe S
or not. However, for infinite dimensional sets a verification that xe$ requires
an infinite set of observations. We assume that (2, Z. IT, T) is only stable but
our analysis adapts certain mathematical techniques which were developed for
the study of strongly stable systems. Also, since 0 < m*(S)(x) < | the lack of
convergence of m"(S)(x) means that for increasing lengths of time the means
m™(S)(x) remain in different parts of the interval [0, 1] without ever settling
down. If this occurs there would be no common learning among the agents and
little in the way of agreement. The requirement that m"(S)(x) converges a.e.
for all finite cylinders S is a minimal condition needed to establish common
learning of something meaningful about probabilities?. In the development
below we shall assume that the limits in (5) are known to all agents.

Animportant case where a dynamical system has adequate repetition is the
case of a stationary system. The dynamical system (£, %, IT, T) is said to be
stationary if the transformation T is measure preserving; that is, if for all Se #

IT™'S)=I1(S).

When T preserves IT then IT is said to be invariant under T.

Almost all results in Ergodic Theory have been proved for the case of
measure preserving transformations. When a dynamical system is stationary
and agents know that it is stationary the questions raised in this paper have very
clear answers. The main tool employed is Birkhoff’s ergodic theorem (1931).

To see the implications of this theorem to our problem introduce the following
terms:

Definition 2: Se.# is said to be invariant with respect to T if T™'!S =S.
A measurable function is said to be invariant with respect to T if for any xe 2,

f(Tx) =f(x).

Definition 3: A dynamical system is said to be ergodic if IT(S) = 0 or I1(S) = 1
for all invariant sets S. '
Now let the collection J of invariant sets be defined by

J3={SeF: T !S=5).

It is easily seen that J is a sub o-field of .# and hence one can define the
conditional probability of IT given J; we denote it by

I[I(S|3)(w) for all SeF#, wel.

? The data may need to be “cleaned” for trend and deterministic cycles if “stability” is to be
a useful tool. Thisis a standard practice in time series analysis. We note that deterministic cycles of
amplitude up to M are identified by applying the definition of stability to the transformations T"
forn=2,3,..., M and determining the limits of such relative frequencies. For example T? calls for
an examination of the data from the perspective of all even (or odd) dates: T3 calls for shifting
3 dates at a time. More details on this issue are provided in Section 5.4 below.
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Applying Birkhoff’s ergodic theorem to our problem when (2, 7. [T, T) is
stationary hence strongly stable, we do not assume the condition of strong
stability but rather, we prove it. We then draw three implications:

(a) lim m"(S)(x) = m(S)(x) exists ITa.e. for all Se#,

(b) m(S)(x) = IT(S|J)(x) ITa.e.for all SeF,
(¢) if (2 #, IT, T) is ergodic then
m(S)(x)=m(S)= II(S) ITae. forall SeF.

If the dynamical system is stationary and the agents know that it is
stationary then they can calculate m(-)(x) and know that they have learned
exactly the conditional probability J7( ‘| 3)(x). In the ergodic case the agents
calculate the measure m and know that m = IT. The conclusion that in the
non-ergodic case m(S)(x) = I1(S|S)(x) for all Se#, is sensible since in this
case the sequence (T"x) will visit only the invariant sets which contain x and
hence 71(-|J)(x) is the only object which can be learned.

It is important to point out that when the dynamical system is stationary
agents may not know that it is stationary. Moreover, there does not exist any
statistical means by which agents can ascertain that a stationary system is, in
fact, stationary. More important is the fact that the dynamical system may not
be stationary. In this eventuality, even if we work with a stable system for
which m(-)(x) exists, agents cannot use the ergodic theorem to determine what
is it that they are learning.

In our view the determination if a dynamical system is stationary or not
must originate with the foundation of the mechanism which gives rise to the
system®. Thus stationarity is a logical implication of the underlying theory
rather than an empirical observation which is deduced from the data. Apart
from the fact that agents do not know the stochastic mechanism which
generates the data it is relatively rare that economic theoretic reasoning
enables us to make a logical deduction of what must be the nature of the
probability laws under which the economic data is generated. More specifi-
cally, we suggest that although the assumption of stationarity is almost
universally employed in applied economics, there is little theoretical justifica-
tion for it. If anything, there are compelling reasons to question it. Economic
growth has been associated with bursts of innovations, changes in technology
and organizational structure; wars, depressions, major migrations, revolu-
tions, etc. remain outliers in most empirical studies no matter what stationary
model is employed.

> An example will illustrate the point. In certain applications in physics the description of
stochastic dynamical systems arises from Hamiltonian structures. These Hamiltonians imply that
the transformation of the dynamical systems is measure preserving and thus stochastically
stationary. However. this stationarity can be traced to the fact that Hamiitonians are required to
satisfy Liouville’s theorem on the conservation of energy. Putting it differently, the stationarity of
the dynamical system is proved as a logical consequence of Liouville's Theorem which, in turn, is
proved from the underlying physical structure.
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In addition to the above we have our own unique reason to allow for the
possibility of non-stationarity. In Kurz [1994b] we incorporate our theory of
Rational Beliefs into an equilibrium model. We then show that if agents believe
that the economic system may be non-stationary, then equilibrium prices and
quantities become non-stationary even if the exogenous environment is, in fact.
stationary. The belief of agents in the possibility of non-stationarity becomes
self justifying!

The validity of our approach does not depend on the existence of a con-
clusive proof for non-stationarity. It does, however, hinge on the fact that we
do not have a conclusive theoretical reasoning to compel a rational agent to
believe that his environment is stationary. We therefore only require that an
economic agent not be declared irrational if he takes the view that the
economic process at hand may be non-stationary. ,

The concept of “stability” is central to this paper. Since we insist that
(€, #, I1, T) may not be stationary* our method of analysis is reversed: We
assume that (£2, #, I, T)is stable and then regard the ergodic properties which
emerge as the common learned knowledge of all agents. This calls for further
clarification of the property of stability.

3 Stable systems
Definition 1 leaves open a subtle but important technical question. To see the

problem denote by # the field of all cylinders in %; it satisfies # = O F*.The
t=0

question is, then, which xe satisfy the requirement that m(S)(x) is well
defined for all Se.#. It would be desirable to have this property satisfied 17
a.e. so as to enable an extension of m(-)(x) from the field # to the o-field
F generated by #. In other words, we would like this property to hold for all
xeC for some set C with IT(C)= 1. To accomplish this we first restrict the
domain of m(-)(x) slightly. Thus, consider only those sets in Z#* which are
defined by rectangles with rational end points. That is, each rectangle with
rational end points 4 in X' (the ¢ + 1 product of X ) defines a set Se# as
follows:

S= {.\‘E.Q

The countable collection of such sets in #* is denoted by # ' and we know that
F'=0(#"). The sequence {Z#'.t=0,1,2,...} is a generating sequence for

Z 1n the sense that
x )
F = a< U .’7‘>.
t=0

* Inthe term “stationarity” we include all deterministic transformations or decompositions which
result in stationarity e.g. stationary increments, stationary ratios, deterministic cycles or, say, two
stationary sequences alternating on odd or even dates (see footnote 1).

(Xg>Xy,...,X,)€A where A< X*' is a rectangle
with rational end points and x;eR¥ for all j>1¢}
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The field 7 = U f’) contains a countable number of sets which we denote by
- t=0

={F,i=1,2,...) and wecall 7 “the field of cylinders with rational end points.
We can ﬁnally restrict m(-)(x) to 7. Although m(-)(x) is defined on &, to avoid
confusion we shall _not introduce a separate notation for the restriction of this
measure to % < .7 Instead, whenever this restriction is discussed we shall
simply specify “m(-)(x) on F . Finally note that the countable number of
members F,i=1,2,... of the ﬁeld Z have the property that m(F )(x) are well
defined Ha e. for each F, e 7. With this formalized we have:

Proposition 1: There exists a set Ce# with [7(C)=1 and for each xeC
a probability measure m(-)(x) on (£2, #) which is the unique extension of
m(-)(x). The dynamical systems (£2. 7, m(-)(x), T) are stationary for all xeC.

Proof: From the construction of 7 there exist sets CieF suchthat [1(C,) =1
and m(F,)(x) is well defined for all xeC;and F,e 7. Deﬁne

c=Nc,
i=1
and hence [T(C)= 1. m(F)(x) is well deﬁned for all F; e# and xeC. Since
m(-)(x) is a finitely additive measure on 7 for each xeC and the space (2, F)
has the countable extension property, there exists a umque extension m(-)(x)
which is a probability measure on the o-field # = ¢(# ) for each xeC. From
the deﬁmtlon of stability it follows that m(T ™! S)(x) = m(S )(x) for all cylinders
SeZ and this property is inherited by m(-)(x). Hence (2, Z#. m(-)(x). T) is
stationary.
The uniqueness of m(-)(x ) means that although the observing agents can

compute only m(S)(x) for Se.# . they can analytically deduce the knowledge of

m(-)(x) on (L2, #) and this knowledge is common to all of them. We 51mp11fy
notation by assuming that m(S)(x) =0 for x¢C and Se#, while m(Q)(x) =
for all x. The family m(-)(x) is then well defined for all xe£.

Our assumption that agents learn the stationary measure m(-)(x) from

a finite but large set of data needs a few comments. First, it follows from the
assumption of stability that with a large enough body of data and for a low
dimension cylinder S it is possible to obtain an approximation of the limit

m(S)(x) to a very high degree of accuracy. In most economic applications of
interest agents discount the future and, to any degree of approximation, are
concerned only with events which will occur within a finite horizon. Keeping
this in mind, let the o-field of J horizon events at date ¢ be defined by

7t +J
F =0 X g X )

Then, there exists a finite J such that the error in economic values of using sets
in # ;" instead of .7 * is negligible. If the length of the data set is large relative
toJ, m( J(x)forSeFy s can be approximated to a high degree of accuracy. Since
m(-)(x) is stationary, it is the same on all 7'+’
A second point is a methodological one. We should think of the limits
m(S)(x) as describing the average or normal patterns of the dynamics. The
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collection of these limits is what is conceivably knowable by all the agents and
therefore it is what all agents could agree upon. In practice, one develops
algorithms to approximate m(S)(x) and diversity of opinions may arise with
respect to the quality of the approximation. The idea of endowing the agents
with what they can conceivably learn is a methodological simplification which
we are making in order to avoid the complication of approximation.

Finally, the merit of our theory depends upon the tractability of the
stationary measure m(-)(x). For example, suppose the stochastic process {x,,
t=0,1,2,...} is a Markov process with respect to m(-)(x) or, more generally,
suppose the conditional probabilities of future events at date ¢ given the past,
under the measure m(-)(x), depend only upon (x,_,, X, _»....X,_,) where k is
modest in length. Then agents can estimate an appropriately defined transi-
tion function and construct the measure from it. In this case only low
dimensional blocks of data need ever be considered.

Definition 4: A dynamical system (2, #, IT, T) is said to be weak asymptoti-
cally mean stationary ( WAMS ) if for all cylinders Se.Z, the limits

nl

Mg (S) = Z II(T *S) exist. (6)
o ” k=0

It is strong asymptotically mean stationary if the limit in (6) holds for all Se.Z.
We mentioned earlier that most of the results available in ergodic theory
areapplicable only to stationary systems. The exception is the small number of
papers written about systems which are strong asymptotically mean station-
ary. Such processes were studied by Dowker [1951], [1955], Rechard [1956],
Gray and Kieffer [1980] and Gray [1988]. Also, some studies in Information
Theory have employed such processes (see for example Fontana, Gray and
Kieffer [1981] and Kieffer and Rahe [1981]). These authors searched for
conditions on non-stationary processes which would imply an ergodic the-
orem. Their central conclusion is that strong stability of (2, #, I1. T) and
strong asymptotically mean stationarity of this system are equivalent and are
both equivalent to the existence of an ergodic theorem for (£2, %, IT. T). In this
paper we assume only weak stability in order to expand as much as possible
the set of processes allowed under our theory. The consequence is that the
condition of stability does not imply a standard ergodic theorem for our
system. The following important proposition, entailing a particular version of
the ergodic theorem that applies to our system. is the main technical result

which will be at the heart of the Rationality Axioms spcified later.

Proposition 2: (2, #, 1, T) is stable if and only if it is weak asymptotically
mean stationary.

Proof: To prove that stability implies WAMS let S eZ bea cylinder. Define

I if xeT*S
Tkx) = '
Is(T7x) {o if x¢ T+
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and consider the following sequence of equalities

1

[ 15(T*x) I(dx)
0Q

In—l In—
= Y I(T*S)=-
”kgo ny=
n—1

= fl Z 14(T*x) (dx)
olliZo

= [ m"(S)(x) [T(dx).

Q

Now taking limits on both sides and passing to the limit yields

n—1

[ (S)(x) M(dx) = lim - Y IH(T*S) = i, (S).

Q n—ax 1y o
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(7)

The condition of stability implies that the integral on the left of (7) exists, hence
the limit on the right exists as well. This proves that (2, #, IT, T) is weak

asymptotically mean stationary.

The proof that weak asymptotically mean stationarity implies stability
requires a proof of an ergodic theorem which is suitable for our situation. In
order to do that we adapt the Katznelson and Weiss [1982] proof of the

ergodic theorem to our problem. Pick a cylinder S and define

T .
gs(x) =lim inf - Y 14(T'x)
- nex Nl
1”_1 )
gs(x)=limsup - Y 15(T'x).
n—xc ,=0

To prove our claim, we need to show that

However, since

g4(x) < g,(x) for all x

and since g,(x) > 0, it is sufficient to prove that

J 9560 I(dx) < | g,(x) H(dx).
Q2

By weak asymptotic mean stationarity

1 K1 . s .
lim — 3 II(T™'S)=m,(S) exists.

K—x K i=0

Hence it is sufficient to prove that

J G0 T(dx) < i (S) < [ g (x) ().
Q Q

(8)
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Now, since §(x) <1, for any € > 0 there is an » such that
1 n—{ ]
=Y (T 2 (x) . (9)
i=0

Wefix ¢ > 0 and let n(x) be the smallest integer for which (9) holds. Since g, (x) is
an invariant function (see Definition 2) we can rewrite (9) as

mx)—1 nx)—1|
Y G(TX)< Y 1g(Tix) + n(x)e. (10)
i=0 i=0 '
n(x) 1s finite for all x hence there exists an N for which
O({x:n(x)>N)= Y {xin(x)=k}) <e. (11)
' k=N+1

The inequality in (11) follows from the fact that the sum goes to 0 as N - .
For such an N let
B = {x:n(x)> N}

be the set of “bad” sequences. Note that if xeB° then T'xeB° for
i=1,2,....n(x)— 1. That is, if x is good then the next n(x) — 1 shifts are also
good. To handle the “bad” sequences in B we define

~ lg(x) if xé¢B
= 12
st {1 if xeB (122)
. n(x) for x¢B ‘
= 12
) {1 for xeB. (12b)
Modifying (10) to account for ((12a)—(12b)) we have
A(x)—1 ii(x)—1 - )
Y G(Tix)< Y I(Tix) + fi(x)e (13)
i=0 i=0

and 7i(x)<N. (13) is~ certainly true for xeB. If x¢B, T'x¢B for
i=1,2,...,n(x) — Land 14(T"x) = 15(T"x), and then (13) follows from (10).

N . :
Next choose L large so that T < ¢ and define n,(x) inductively by

ne(x)=0
n(x) =n, _ (x)+ A(T™"x)

and let k(x) be the largest k for which n(x)< L — 1. Now, since

L—-1 ] kix) mx)—1 . L—1 ]
2 4(Tx)=3Y Y 4T+ ¥ §(T'x
i=0 k=1 ny_(x) i=ny(X)

we can apply the bound in (13) to each one of the k(x) blocks in the inner sum.
That is,

nxy—1 mix)—1

Y (T Y TUTX) + (m(x) — 1, (x)e. (14)

g q(x) 1y q(x)
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Summing up in (14) we have

Z_:g' T'x Z 14(Tix )+ Le+ (N —1). (15)

The term (N — 1) accounts for the last (incomplete) block from No(X)to L—1
which is at most N — 1. Now take expectations in (15) with respect to /7 to have

Y [g(T'x) Z j1 T'x)II(dx)+ Le + (N — 1). (16)
i Q i=0
Observe now the following sequence of inequalities

[ Ts(0(dx) = | Ts(x) M(dx) +
2

m“z

‘<)H (dx)

%

[ 1s(x) [T(dx) + [ 1-1T(dx) by ((12a)~(12b))

IA

| 1s(x)IT(dx) + [1(B)

Q
<II(S)+e¢ ' by (11). (17)

Hence using (17) and inserting into (16) we get

L-1

Y [ G(T'x) [(dx) < Z II(TiS)+ Le+Le+(N—1). (18)

i=0 2

Now recall that g, is invariant so that

G(T'x) = gy(x). (19)
Recall also that N/L <. Now use (19) and divide (18) by L to conclude that

L—-1

fg‘s(x)H(dx)s%JZ I(T™'S) + 3e. (20)
i=0

Q

But since S is a cylinder, weak asymptotic mean stationarity implies that

L-1

1 - )
lim- Y IKT ‘S)=rr‘z,7(S) exists. (21)

L—-x i=0

Since L and ¢ are arbitrary, (20) and (21) prove that
f gs(x) IT(dx) < nip(S).
This proves the left hand inequality in (8). The right hand inequality is proved

by a completely symmetrical argument. |

We now seek the final link between the finitely additive measure i,
calculated in (6) from the dynamical system and the family of finitely additive
measures m(-)(x) deduced from the data.
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Proposition 3: The set function mp(*) on F can be extended uniquely to
a probability measure m,, on (£2, # ) which is stationary with respect to T and
such that for all Se.#

(i) my(SI13)(x) = m(S)(x) my ae.
(ii) m(S) = m(S)

where

m(S) = [ m(S)(x)m(dx).
2

Proof: Itisimmediate that i, is a countably additive probability measure on
. It follows from the Carathiodory extension theorem that there exisots
a unique extension of ri; to a measure m,; on (£, F ). Now define, for Se#

(S) = | H(S)(x) [T(dx)

Q
and for all Se#

m(S) = [ m(S)(x) [T(dx).
0

The function m(-) on Fisa finitely additive measure and the function m() on
Z 1s a countably additive measure which is an extension of r}. Since by (7)
m(S)=m,(S) forall Se#

and since the extension is unique it follows that
m(S) = [ m(S)(x) [T(dx) = mg(S) forall Se#. (22)
2

From (6) m (T~'S)=my(S) for all cylinders Se# and this property is
inherited by m; and hence (22, #, m m T)1s stationary. It then follows from the
ergodic theorem that m (C,)=1 where C,; are the convergence sets for F,
(see Proposition 1). Consequently

I1(C) = m(C) = m(C)=1.

By the stationarity of m, we can repeat the argument leading to (7) using m,
instead of IT to conclude that

[m(S)(x)my(dx)=m(S) forall Se#F

2

~ and hence

m(S) = [m(S)(x)m(dx) forall SeF.
0

Denote by m (| 3)(x) the conditional probability of m given the o-field of
invariant events. Since m,, is stationary, it is strong asymptotically mean
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stationary. It then follows that for all Se.#, m(S)(x) is the limit of the relative

frequencies m, a.e. Hence from Theorem 6.6.1 of Gray [1988] we conclude
that ’

m(S)(0) = my(SIF)x) my ae. n

The case of an ergodic dynamical system is probably the central case of
interest. In this case the limits of the relative frequencies are independent of x.
We state this as follows:

~ Corollary to Proposition 3: If (2, #, I1, T) is ergodic then for all Se.#
m(S)(x)=m(S)=my(S) II and m, ae.

Proof: We need to prove only thEolt if (2 7, I, ’.IO") is ergodic, m(S)(x) is
independent of x [T a.e. for all Se# . Thus pick Se.# and define

Ac={xe2: m(S)(x) =mg(S)}
Al = {xe2:m(S)(x)>my(S)}
Af ={xe2: m(S)(x) <my(S)}.

All three sets are invariant and hence IT(A;) =0 or [I(A.) = 1. The only case
compatible with (22) is [T(A.) = 1. n

With the results above in place, we now have a strengthening of Pro-
position 1:

Proposition 4: The dynamical system (2, #, m(-)(x), T) is stationary and
ergodic m; a.e. ‘

Proof: Follows from Gray [1988], Theorem 7.4.1.

Assembling our conclusions we see that when the dynamical system is
stable but not stationary, the agents who try to learn IT know that it is not
learnable; they end up learning the stationary probability m(-)(x). If the system
is ergodic m(-)(x) = m independent of x but m # IT. The condition of stability
provides the agents additional knowledge which consists of three parts:

(a) Astable ITinduces a unique stationary measure m, on (£2, #) which we
shall call “the stationary measure of I1.” '

(b) m(S)(x)=my(S|3I)(x) for all SeF m; ae.

(c) The dynamical system (2, #, m(-)(x), T) is stationary and ergodic
m; a.e.

These conclusions are central to our development to follow. However, they
also indicate that we have been conducting the analysis under the presumption
that the learning agents may observe only one single realization {x,, X, X,,
Xs3,... } of the dynamical system. Proposition 4 says thateven if (£, #, I1, T) is
not ergodic the single realization x together with all its iterates T'x will all
belong to only one ergodic component of £2 which is an invariant set. But this
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means that if F is the ergodic component which contains x, at no time in
human history would we ever observe anything outside of F! For practical
purposes, we should think of F as the basic space rather than £. Defining Fr
to be the restriction of # to F and IT; to be the restriction of IT to F the real
dynamical system is therefore (F, #;, IT, T) and this dynamical system is
ergodic. We then claim that if the data available is a single realization of the
dynamical system then from the analytical point of view we may as well
assume that the system is ergodic and in that case

(@) m(S)(x)=m(S) for all Se#, independent of x,
(b) m(S)=m,(S) for all Se#.

- For the sake of generality and analytic unity we shall assume that the true
dynamical system (2, #, IT, T) is not necessarily ergodic. However, we shall
also assume that the agents know the stationary measure m and, in addition,
they know that m =m,,.

4 The structure of rational beliefs

In most economic applications the concept of “rationality” must be under-
stood with respect to statements about conditional probabilities. However,
our approach is based on considerations of ergodic theory rather than on
Bayesian statistics and for this reason it is not convenient to specify criteria for
the selection of rational conditional probabilities. Instead we shall specify two
rationality axioms which we apply to the selection of unconditional probabili-
ties. We shall then provide a characterization of rational beliefs in terms of
unconditional as well as conditional probabilities.

In the previous sections we have endeavored to show that the common
empirical knowledge of all the agents is entirely represented by the stationary
probability measure m and all rational beliefs should be required to be
compatible with this knowledge. Thus, suppose an agent considers if a given
stable system (£2, #, Q, T) can conceivably be the true one (which is empirically
known to have generated m). From Definition 4 and the extension argument in
Proposition 3 we know that (2, #, Q, T) induces a “theoretical” stationary
measure which we denoted by m,. Now denote by 2(£2) the space of all
probabilities on (£2, #). This leads to the following:

Definition 5: We say that a probability Qe 2(Q) is compatible with the data if

(2, #, Q, T) is stable with a stationary measure m. That is, for all cylinders
SeF

n—1
my(S) = lim * S Q(T™*S)=m(S).

n-x "y
We define the agent’s acceptable set B(IT) to be

B(IT)= {Qe2(£2):Q is compatible with the data.}
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Proposition 5: B([T) is a convex subset of 2(£2) which is a complete and
separable metric space.

Proof: Since X is a complete and separable metric space, the space 2(£2)
endowed with the topology of weak convergence is also a complete and
separable metric space (see Parthasarathy [1967], Chapter I1.6). The convex-
ity of B(IT) follows from the definition of stability. |

4.1 Forming beliefs

We presume that each agent makes a probability assessment of events in Q.
Taking a direct approach first, the formation of a belief by an agent about the
dynamical system (£2, #, I1, T) must result in his selecting a probability P and
then presuming that the dynamical system is (€2, #, P, T). This means that he
will assign the probability P(S) to each event Se#. An alternative view point
holds that if 2(£2) is the set of all probabilities on £, then the object of
uncertainty is 2(£2) itself and hence forming a belief about IT would necessitate
the agent's selecting a probability P* on 2(Q). That s, if (2 (£2))is the space of
all probabilities on £ (£2) then the agent must select P*e2(2(£2)). P* is an
agent specific, or “subjective,” probability over the set of all possible probabili-
ties which the agent may adopt for his decision-making. We would then define
the expectations to be

P= [ pP*dy
2Q)
(if such an integral makes sense) and say that the agent forms the belief P* with
hich the probability P is selected. Given this we would also say that the agent
believes that the dynamical system is (£2, #, P, T). We stress that this selection
procedure is fixed and is not updated with additional data. This is the case
since P* itself is already the limit of the updated beliefs given all the wealth of
data which we have provided the agent in the first place.

We now claim that if the support of P* is B(IT) rather than 2(£2), then the
two procedures above are equivalent. Since the basic axiom of rationality (to
be presented below) requires the agents to select beliefs only from B(IT), this
will provide us a representation result for rational beliefs. Let C(2(£2)) be the
space of continuous and bounded real valued functions f: 2(2)— R. Since
B(IT) = 2(£2) then for each P*c2(2(£2)) the integral

P*(f)= ] fP*(dy
BUT)

1s a well defined linear functional on C(2(2)) . We say that P* represents
PeB(IT) if

P*(f)=f(P) forall feC(2(£).
Now define the collection of real valued functions f¥: 2(2) - R by
3w =u(S), ue? (), SeF. (23)
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Proposition 6: (Representation of Acceptable Beliefs). For any P*e2(B(IT)) let

S)= [ fS5(wP*dy) all Ser. (24)
BN

Then PeB(II); conversely, if Pe B(IT) there exists P*e 2(B(IT)) such that P*
represents P and the support of P* is the set of extreme points in B(IT).

Proof: Let P*e2(B(IT)). If S = Qwe have fYu) = u(2) = L and if S = & then
f° —-;1(@) 0. Hence P(2)=1 and P(¥) =0. To check for s-additivity let
S= U S; with §;nS;=F for i#j and consider P(S). Since f5(x)= lim

n—r

Z u(s;) = 11m Z f%( ) and since these limits exist P* a.e., it follows from the
i=1 Ti=1

bounded convergence theorem that

x<

P(S)=1lim | Zfs (WP*dw =Y P(S)).

"= Ty i= =1

This proves that P is a probability. To prove that Pe B(JT) let S be a cylinder.
Then

— ln—l -
z T4§)= | <~ZfT S(u)>P*(du). (25)
.z B \M =9

But now from (23) and using the fact that ue B(IT) we have

11m Zfr S(p) = lim - Z w(T ~*S)=m(S) P* ae.

n—cc N 7y n—x B 7

Again, by the bounded convergence theorem

1 n=! .
= ( =2 fTY >P*(du =lim | < ZfT S(At)>P*(du) (26)

B(IT) n—»x"l,\ =% p'm

Combining (25) and (26) we conclude that for all cylinders §

n—1

lim - ZP(T “S)=m(S)

n—x N =

and this shows that Pe B(IT).

To prove the converse let PeB(IT). By the properties of B(IT) proved in
Proposition 5 the integral representation theorem of Choquet (see Choquet
[1969] Proposition 26.3 or for an exposition of the theory, see Phelps [1980]
pp. 115-157) becomes applicable. It implies that there exists P* € 2 B(IT)) such
that P* represents P and has the claimed property. [

4.2 Axioms of rationality

Before introducing our axioms of rationality define, for each S e 7, the set
B,={Pe B(II): P(S)>0}.

The axioms specify conditions which a rational choice of P* must satisfy.
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Axiom 1 (Compatibility with the data): An agent forms a belief P* with B(/T)
as its support.

Axiom 2 (Continuity with respect to the data). If for S€.# m(S)> 0 then
P*(Bg) > 0.

Discussion. Axiom 1 is the crucial axiom of rationality. It requires of any
agent to form a belief P* which places probability 1 on B(IT). It then follows
from Proposition 5 that this is equivalent to a selection of Pe B([T). Axiom
2 further restricts the allowable P’s within B(IT). We think of Axiom 2 as
a continuity axiom. To see this note that if S is a cylinder and m(S)> 0
Axiom 1 together with the definition of stability imply that P* assigns positive
probability to the set of measures Pe B(IT) which satisfy a particular require-
ment. That is, that there exists an ¢ > 0 such that for an infinite set of dates, k,
constituting a positive fraction of all the positive integers P(T ~*S)>¢ > 0.
Apart from being intuitively appealing, the main function of Axiom 2 is to
prevent the degeneracy of belief to a probability mass at a single point when
m gives the point zero probability.

Before proceeding to our next proposition we dispose of a few technicali-
ties. First, add to the notation in Sections 2 and 3 the notation indicating the
history up to t:x,,=(x¢,%y,...,X,_;). Next, we write the conditional prob-
ability of a future event S € #* given x,,, in the form P'(S|x,,). We remark that
the technical issue of selecting regular conditional probabilities P* and o'
should be entirely disregarded here since 2= X* is a complete and separable
metric space (see Blackwell and Dubins [1975] and Ash [1972] page 265). In
addition, we are interested in P'(-|x,,) for large ¢ and this motivates

Definition 6: Regular conditional probabilities P'(-|x,) and Q'(‘|x,) on
(2, #) are said to agree for Q almost all histories if

lir‘ns:upSEf:,_]Pf(Slx(,,)—Q’(Slxm)l=O Q0 ae.

and we write P' x Q' Q a.e. If they agree Q a.e. and P a.e. then we write P' = Q' Q
a.e, Pae.

The notation P «Q is used to indicate that a probability measure P is
absolutely continuous with respect to a probability measure Q: P 1L Q to
indicate that they are singular and P « Q as well as Q « P to indicate that they
are equivalent. We now state the important result:

Proposition 7: (Blackwell and Dubins [1962]). Suppose that P and Q are
probability measures on (€2, # ) and Q« P. Then for each t and for every
regular conditional probability P* of the future given the past there exists
a corresponding conditional probability Q' such that

PP=Q" Q ae.

To see the significance of Proposition 7 for us, suppose that two agents
hold probability beliefs P and Q with P # Q but P and Q are equivalent. Since
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- these two probabilities are required to agree only on the null sets, their
numerical values on other sets may be drastically different and hence it
appears that ample ground is left for diversity of opinions. In fact, it is almost
standard in the economics literature to assume the equivalence of subjective
probability beliefs whenever heterogeneity of beliefs is introduced (see, for
example, Harrison and Kreps [1979] where this assumption is crucial). In our
context ample past data is available and therefore it follows from Proposition
6 that, although P # Q, P'(S|x,,) is essentially equal to Q'(S|x,)forallSe #
In our context mathematical equivalence implies an essential economic
equivalence?.

4.3 The main theorem

Main Theorem: Given a dynamical system (2, #, IT, T) let an agent form
a rational belief P* which satisfies Axioms 1 and 2 . Then P* eZ(B(Il)) and
there exists a probability P e B(IT) which is the expectation under P* in the
sense of (24). Moreover, there exist probabilities P, and P, on (£2, #) and
aconstant 0 < 4, <1 such that

(i) P has a unique representation
P=4,P,+(1-4,)P, (27a)

where P, and m are equivalent while P, and m are singular; that is, there exist
sets 4 and B with AnB = ¢J, AU B = Qsuch that

m(A)=1 and P,(B)=1.
(11) (9, F, P, T)and (2, #, P, T) are stable with stationary measures P, and
P, such that for all Se.#

n—1
lim ! Y P(T*S)=P,(S) (27b)

n—x M, =y

and for all cylinders S

| 2 i . 2
lim - Y Po(T™*S)=P,(S) and P, is the extension of P,. (27¢)
e (T
In addition, P, and m are equivalent

F«m.

If (2, #, I1, T) is ergodic and 0 < 4, < 1 then we have P,= Py =m.

* In a model of learning in games, Kalai and Lehrer {19937 and Nyarko [1992], [1993] assume
the absolute continuity of the equilibrium probability measure with respect to the belief of every
player. Feldman [1987] makes a similar assumption in a market context. From our perspective
this amounts to assuming that players know ar the outset what the model sets for them to learn.
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(i) There exist regular versions of the conditional probabilities P', m' and
P}, and densities

dm apP,
V= IP Vo= TP

which satisfy m a.e. for Se # e

P(S]x,) = AP (ST1X W () + (1 — L) Po(SIxp)Wolx,).  (27d)

And conversely: For any P, P, and P,, satisfying conditions (i)-(iii) there exists
a rational belief P* € 2(B(I1)) which represents P.

Proof of Main Theorem

Let P* be a rational belief. By Axiom 1 P*e 2(B(IT)) and by Proposition
6 there exists P e B([I) which P* represents.

Next we consider the decomposition of P. It follows from the Lebesgue
Decomposition Theorem (See Royden [1988], page 278) that there exist
probabilities P, and P, on (2, F ),sets A = Qand B= Q— A, and a constant
0<%, < 1 such that

P=/:\.pPa+(1 “'/:t.p)PO

where P, «<m, P, L m, 4, = P(A), m(4) =1 and m(B) = 0. For any set Se .Z, if
P(A)> 0 and P(B) >0 we have

P(ANS) P.(S P(BnNS)

P(4) " P(B)
By Axiom 2, m(A)=1 implies P(4) >0 and hence 0 < 4, < 1. We do not
exclude 4, =1 and P(B)=0.

We shall now show that P, and m are equivalent. From the Lebesgue
decomposition theorem we already have that P, « m. To prove that m < P,

suppose that it is false. Thus let Se.# and P,(S)=0 while m(S)>0. From
Axiom 2 it follows that P(S) > 0. But then we have

0<P(S)=4,P,(S)+ (1l — A Po(S) = (1 = A,) Py(S)
0 <m(S)=m(SNA)+m(SnB)=m(Sn A).

P,(S)=

Hence m(S~ A4) >0 and P,(S) > 0. Now consider S = S A. Clearly m(S) > 0
but S = Simplies P,(S) = 0and § = 4 implies P, (S) = 0 (P, and m are singular).
Hence P(S) =0 and this contradicts Axiom 2.

We now demonstrate that (2, 7, P,, T) and (2, %, P,, T) are stable with
stationary measures P, and P, and that P, and m are equivalent. For Se. # we
have that

n—1 n—1 n—1
! D P(T""S):xlpikzo Pa(T_kS)-i-(l—;tp)l S Po(T7*S). (28)

np=o Ni=o

Since PeB(IT) the left hand side of (28) converges to m(S) for all cylinders
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Se# . Now since P, «m and since m is stationary it follows from Theorem 2 of

Gray and Kieffer [1980] that P, is strong asymptotically mean stationary and
hence for all Se.# the limit

1t _
lim - Y. P(T*S)=P(S) exists. (28"
e flg=0
Combining (28) and (28’) leads to the conclusion that for all cylinders Se # the
limit
n—1

lim - Y Py(T7*S)= P, (S) exists.

e

lo

Now extend P;) to a measure B, on (2, #). This implies that for all Se.#

m(S) =i, B,(S) + (1 — 4,) P (S). (29)
This shows that both (2,%#,P,T) and (2, Z, P,, T) are stable dynamical
systems with stationary measures P, and P,. It is immediate from (29) that
P, «m and P, «m. We need to prove that and P, and m are equivalent. To
prove that m « P, assume the contrary and select Se.# with P,(S)=0 but
m(S) > 0. Since P, is equivalent to m, P,(S) > 0. Now define

x

S= (x\ J(T7FS)

n=0k=n

=lim sup(T~*S).

We claim that P, (S) = 0. This is so since

C) T"‘S>SIZ<O T"‘S>s i P(T7*S)=0.
= k=1 k=1

k=n

n—

P (S) = lim Fa<

But S is an invariant set and since P, is strong asymptotically mean stationary
it follows from Lemma 6.3.1 of Gray [1988] that P,(S) = P,(S) = 0. Hence
m(S) = 0. By Fatou's Lemma

m(S) = m (lim sup T7kS)> lim supm (T *S)=m(S)>0

and this is a contradiction hence m « P,. This concludes the proof that P, and
m are equivalent.

To prove that in the ergodic case P, = P, = m it is sufficient to prove that
P, = m since the conclusion follows from (29) and 0 < A, <1.Toprove PL,=m
recall that P, « m hence there exists an m-integrable function g such that for all
SeF

P,(S) = | glw)m(dw).
Hence ’

P(T™*S)=[ glwm(do).

T™*S
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By the change of variables thorem and the stationarity of m we have that

[ glwym(dew) = [ g(T* w)(m T %) (dw) ={g(T*w)m(dw).
T°*§ s s

It then follows that

n—x N k=0 s \n—ox 1 k=0

_ ) 1 n—-1 ) 1 n—1
P,(S)=lim - ) P(T~*S) =j<11m -y g(T"w))m(dw).
Since F, is strong asymptotically mean stationary it follows from Theorem
7.2.1 of Gray [1988] and the assumption that ({2, %, P, T) is ergodic that
1 n—1
lim =) g(T*w)=E, g=1.
nf»ocn n,. -,
Hence
P(S)=m(S) all Sez.

We finally turn to the conditional probabilities. Since 2 is a complete

and separable metric space it follows from Proposition 7 that for all
SeF!

P,(S|x,))=m'(S|x,) ae m and P,
A standard argument leads to
P'=4,Po, + (1= 4,) Py

dm

P,
ap and Y, = 6—1—0. We thus conclude that

dp
P'~i,my, +(1—4i) Py, ae mandP,

where ¢/, =

To prove the converse let P, P, P, and 4, be as in conditions (i)-(iii).
Clearly P is stable hence Pe B(I). It then follows from Proposition 6 that there
exists P*c2(B(II)) such that P* represents P. This proves Axiom 1. Next let
SeZ satisfy m(S) > 0. Since P, « m and m « P, it follows that P,(S) > 0. Since
4, >0 it follows that P(S)> 0. This implies that P*(Bg) > 0 thus proving
Axiom 2. |

5 Some comments and examples

In the introduction we asked why should two rational agents with the same
information end up with different probability beliefs. The significance of the
Main Theorem is that it shows not only why the two agents may have different
beliefs but also how these beliefs will differ. To explain this we refer to the
representation (27d) in terms of conditional probabilities in which case we may
as well replace P, with m:

(a) First. the agents may have different degrees of confidence in the validity of
the empirically generated stationary probability m. These levels of con-
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fidence are measured by the subjective parameters 4,. Thus, the degree of
belief in the stationarity of the environment is translated into a degree of
confidence in the empirical evidence m.

(b) Second. agents may have drastically different singular measures P,. Since
these measures are not stationary they represent beliefs in what we
commonly call “structural changes.” This means that important but
infrequent events may be assigned significant probabilities under P, even if
their probabilities under m are very small (or even zero). Although these
singular measures may be drastically different for different agents, the
condition of rationality requires that they satisfy common asymptotic
stability conditions which are compatible with the stationary measure m.

The Main Theorem also highlights the main consequences of our depar-
ture from the Rational Expectations framework. It says that when agents do
not have structural knowledge and we use only statistical regularity as
a foundation for a rational theory of belief. then objective rationality criteria
can provide only asymptotic restrictions. These restrictions generate sets like
B(IT). Consequently, the selection by each agent of a particular member of
B(IT) must be based on subjective criteria which represent individual “theories”
about the environment. In applications we would identify a “society” by
the distribution of beliefs in B(IT) and such distributions could be as impor-
tant as the distribution of preferences for the explanation of economic
performance.

A word about the advantage of our approach over other learning theories
such as Bayesian learning or least squares learning. We take a non-parametric
approach and thus avoid the artificial construct of a parameter space. More
importantis the fact that we demand from a rational agent to form a belief only
after he has, so to speak, “mined” the data. By doing so we declare as irrational
any Bayesian who selects a prior such that his limit posterior is not in B(IT).
Forexample, if a prior stipulates that the x, are i.i.d. all posteriors will continue
to maintain such a stipulation. Such a posterior would be contradicted by
a stationary measure m if under it x, and x, ., are correlated for some k > 0.
Hence, the Main Theorem insists that rational frequentist criteria be imposed
on the selection of a prior. The Main Theorem also suggests that when an
econometrician formulates a stationary least squares learning model then the
condition of stability will ensure the convergence of the empirical moments.
However, rational agents know that such a procedure enables them merely to
learn something about the stationary probability m. Since m and IT may not be
the same, these agents may doubt the validity of any least squares learning
model and adopt as their beliefs an object as in the Main Theorem. In a general
equilibrium context this would invalidate any stationary model while, at the
same time, permit the estimated parameters of such a least squares stationary
model to converge.

We conclude by considering three examples. These aim to further clarify
certain aspects of the concept of “rational beliefs.”
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5.1 Coin tossing (1): Singularity of stable Q, and m.

We give an example of a measure Q, which is stable, singular with m and has
m as its stationary measure. Thus, consider the sequence of i.i.d. random
variables x, such that under the true measure P = m

__ 1 with probability 1/2
*~ |0 with probability 1/2.
Now consider a belief Q.. Let D ={r,,t,,t,,,...} be an infinite sequence of

“remote” dates such that r; >2, ¢, > 2t _, for all n> 1. Define the random
variables z, under Q,:

t eqe /
IftéD = 1 wi h probabill‘lty 1/2
0 with probability 1/2.
1 with ility 1
IfteD Z, = wi probab? ity /3
0 with probability 2/3.

Note that for any cylinder set S the future set (T™*S) will fall on fewer and
fewer dates in D and since these distances are more than geometric it follows
that

) 1 n—1

lim = ) Qu(T*S) =m(S).

n—xc N =y
It is then clear that (2, 7, Qo T) is stable with m as its stationary measure.
Nevertheless we shall now indicate that Q, and m are singular. To see this
consider the following B set:

By the frequency of “1” at the infinite dates in
7 Dis 1/3. ‘

By the strong law of large numbers m(B) = 0 and P(B)=1.Now consider the
set |

the frequency of “1” in the sequence (Xgs X15X325--.)
A=/ x: is 1/2 and the same frequency holds among the infinite \.
number of dates in D

Here we must have m(4) = 1, Qo(A4) = 0 and this violates Axiom 2 . However,
any belief Q of the form Q = 4pm + (1 — 4,)Q, with 4, >0 is compatible with
the Main Theorem. :

5.2 Coin tossing (2): Singularity with m

The example above hints how delicate the condition of singularity of measures
onsequence spaces is. To highlight this point consider a set of dates D as above
and define the stochastic process {x,,t=0,1,2,... }, where x,€{0, 1}, by the
conditions

x+¢e if t¢D
o if teD.

Pl =1} -
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This defines the probability P. The stationary measure m is the probability on
Li.d. sequences where the probability of 1 is « and it is then seen that for any
¢> 0 and any set of remote dates D, P is singular with m.

5.3 Coin tossing (3 ): Persistent non-stationarity

We consider now an example where persistent non-stationarity is represented
by a process of switching regimes. Since such a process of regime switching
must satisfy the stability conditions we employ a procedure of unobserved
parameters. To do that pick an iid. process {y, t =0, 1,2,...} of random
variables in {0, 1} with probability of 1 being, say, 1/4. Now generate a realiz-
ation (y§, yf, y%,...) and define the process {x, r=0,1,2,...} where
x,eX ={0,1} by

a if yr=1

P{x'=1}={5 if yx=0

The non-stationary process {x,, t =0,1,2,...} identifies a probability /7. on
(X, Z (X™)) and a stable dynamical system denoted by (X*, # (X*), 1I,.,7T)
with a stationary measure m represented by the i.i.d. process {v,t=0,1,2,... },
v,eX with P{v,=1} =(1/4)a + (3/4)B. Each realization y* is a sequence of
structural parameters which selects, at each date, either the « or the g
“coin”. This regime switching generates the non-stationarity of the process
{x,t=0,1,2,... .

A belief in the stationary measure m represents the view that the data is
generated by a single coin which is tossed as an iid. process with the
probability of 1 being (1/4)a + (3/4) B. This is wrong but it is a rational belief.
There are, however, other rational beliefs. To construct one define a process of
private signals {z,, t=0,1,2,...} of iid. random variables on {0,1} with
probability of 1 being &. Using a realization z* of private signals with
frequency of z¥=1 being ¢ an agent can now define the perceived process
{x,t=0,1,2,...} by

independently over time. (30)

!

o if z¥F=1

P{x;=1}={ﬁ, if 25=0

(31) defines Q: it is a rational belief relative to IT,. if éx' +(1 —&)f =
(1/4)o + (3/4)8.

In the example above it is important to see that the realizations z¥ are
strictly private signals and not objective “data”: the agent is the only one who
perceives and understands these signals and the signals z¥ are not part of the
public record of “data”. On the other hand if at date t° the agent adopts
a rational belief about the process {x,, t > t°}, then the future realization of the
process could be used to statistically test the validity of the agent’s belief. For
example, in (31) the agent can consider future dates in his own life when z¥ = 1
and discover that the relative frequency of the x’s may not be «'. With finite
data at his disposal, the agent cannot be certain that his belief is “wrong”.

independently over time. (31)
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Moreover, in any economic model in which an agent lives for a finite life and in
which the number of regimes is large (so that the relative frequency of any one
of them is small), it is a fact that by the time an agent with a positive discount
rate has any statistical evidence with which to question his own belief. it is too
late since all of his important decisions have already been made. On the other
hand, using long time series of past data both agents as well as economet-
ricians can study, in retrospect, the empirical effects of “wrong™ past beliefs on
the performance of markets.

We finally remark that the possibility that agents with rational beliefs may
hold “wrong” beliefs is not unique to our theory and is analogous to situations
where Bayesian agents hold “wrong” posterior beliefs. Just consider a
Bayesian agent who starts with a prior which leads to posterior beliefs which
either do not converge or that converge to the wrong posterior.

5.4 Other deterministic patterns

The handling of deterministic patterns requires an examination of subsequen-
ces of x. Suppose that {xt‘_, k=0,1,...} is a subsequence. We can compute
relative frequencies of the subsequence and if they converge, they may
contradict the stationary measure m. We stress that, in general, relative
frequencies on subsequences may not converge. Moreover, even if they
converge, no general theory exists about the behavior of the system on
subsequences and consequently two rational agents may disagree about the
interpretation of such patterns of behavior. Keep in mind that given a se-
quence of non-degenerate i.i.d random variables with probability one we can
find subsequences which will contradict m. It is then clear that the only
relevant subsequences are those which contradict m and are also predictable.
That is, a subsequence has a predictable index set (in short “predictable”) if
there exists a time invariant function fsuch thatforallk=1,2,...

teo1 =f(t,) hence t, =f*t,)

where f* is the k iterate of /. If a rational agent computes relative frequencies
on predictable subsequences and these contradict m, he would supplement
m with this knowledge.

The main class of predictable subsequences is the one used to study
seasonality and deterministic cycles and for this class we have a complete
theory. The class is characterized by a function f of the linear form

[k+1:tk+n.

In this case we consider the shift transformations T" instead of T. For example,
quarterly data with seasonality should be studied as a sequence of quadruples
(g5 X 15 X3, X3), (X4 X5, X, X7), ... ) under the four-shift T+ rather than under 7.
It can be shown that if (2, #, IT, T) is stable with a stationary measure m then
(2, #, II, T" is stable for all n with the stationary measure m,. The
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relationship between m and m,, is

n—1
m(A) :% Y m, (T A) AeF.
i=0
If m=m,, for all n then the data contains no seasonality or deterministic
cycles. If m # m, then rational agents will use the structure of m,,  instead of m.
In this paper we assume that the data has been adjusted for such patterns.
There could be predictable subsequences which are not linear shifts. For
example,let {£,,r=0,1,2,...} beani.i.d.sequence on theinterval [0, 1] and let
n,t=0,1,2,... } be ani.i.d. sequence on the interval [2, 3]. Now consider the
composition of these two sequences

{r], for t=2*
X, =

2
¢, for t#2. (32)

Note first that the distinguishing characteristic of (32) compared with any of
the linear shifts above is that the realizations of x, along the predictable
subsequence ¢ = 2* has no effect on the stationary measure m. It then appears
that the restriction imposed by (32) on the data is not reflected in m. From
the formal point of view the study of the subsequence of data at dates t = 2*
can be transformed into the study of the linear shifts T" in the following
way. Let

L for =2k k=0,1,2,...
=V, for t=2%k+1 k=012,

Hence
y = (7’20,620, rlzl,CZI,.. .,rlzj,CZ;,.. . ).

Treating y as a stochastic sequence we study its asymptotic properties on even
and odd dates by comparing the outcomes under Tand T2. Under the i.i.d.
assumptions made above m and m,, are different and their interpretation is
clear. However, in general, suppose that relative frequencies are calculated
along all dates and compared to those calculated along the dates t = 2% If both
converge and yield different stationary measures then an agent may obtain
useful information from this difference. From the formal viewpoint this is
exactly the same as in the case of linear shifts. The difference is that without the
1i.d. assumption above, we do not know how to interpret the asymptotic
frequencies of y along the dates ¢ = 2* and consequently, two rational agents
would be allowed — under our theory —to have different views about the
meaning of the observations. We think that there are two ways to consider the
issue raised by example (32).

We start with the purely theoretical perspective. We have already pointed
out that the central characteristic of the predictable subsequences such as in
(32)is that the dates ¢ = 2* are “remote” in the sense that the realizations of x, at
these dates have no effect on the stationary measure and for this reason the
measure m will place zero probability on the events defined by (32) at dates
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r =2* Note that we may extend this example. For example, modify (32) and
have the process take differenr values at dates ¢ = 2* which is a predictable
subsequence of t = 2* and further different values on a predictable subsequence
of these dates, etc. Assuming that the relative frequencies converge on each of
these infinite number of subsequences we shall get a hierarchy of probability
measures each having the property of being a probability measure on subsets
of zero measure of the probability which precedes it in the order. More
specifically, the probability measure calculated from the data realized at the
predictable subsequence of dates t = 2* is defined on subsets of zero m measure
and the probabilities calculated from data realized at ¢ = 2* is defined on
subsets of zero measure of the second measure in the order. Thus, the theore-
tical solution which responds to example (32) is to impose on the measure m
the added empirical restrictions implied by the entire hierarchy of measures —
singular with m — which the data on predictable subsequences may imply.

One may, however, consider a different view and we offer it by making
three observations. First, our theory is based on the perspective that a rational
belief is formulated given a long history of the data. It then follows that any
predictable subsequence like (32) which has no effect on the stationary
measure, has no significance by the time we reach date ¢ at which belief are
formed. To see this note that since by assumption, the starting date t = 0 is far
in the past, for large r the frequency of future dates © > t at which X, satisfies
X, =1, 18, practically speaking, zero. Keep in mind that the stationary measure
is calculated with a finite but very large data set and even if we have the
extraordinary amount of one million observations we would have among
them only 20 past observations at which x; =n;! Moreover, conditional on
observing at ¢ that x, = r,, we need to wait another two million dates for the
occurrence of one additional such observation. Thus, predictable subsequen-
ces that have no effect on the stationary measure m also have the property that
they may be neglected for the purpose of forming a belief about the future.

Our second observation notes that the stationary measure is calculated,
after all, with a large but finite number of observations. We have stressed in our
discussion above (see Section 3) that we made the assumption that agents
know the stationary measure for analytical convenience with the view to avoid
turning the theory into a complex machinery of statistical approximations. We
may also note that the usefulness of our theory depends upon the stationary
measure being a reasonably tractable object. Hence, even under the assump-
tion that we have a vast set of data and the stationary measure can be
reasonably approximated, the theory is justified in concluding that rational
agents may doubt that a pattern that was observed only 20 times in a million
dates is sure to be a deterministic pattern which will be continued in the future.
More generally, with finite data rational agents may be reasonable to doubt
the certainty of deterministic patterns on any remote subsequence which has no
effect on the stationary measure. This is compatible with the basic view of our
theory which holds that rational agents may or may not place positive
probabilities on sets which are assigned zero probability by the stationary
measure.
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Our third and final note is rather simple. We have ample evidence that
some economic time series have deterministic patterns which occur along
linear shifts such as seasonality and other cyclical patterns. These determinis-
tic patterns would be treated as outlined above. However, in all other
applications of our theory one should view non-stationarity as a model of
unpredictable but important structural change. Relative to such dynamical
processes, deterministic patterns on non-linear shifts which have no effect on
the statistics of the economy are ignored since they have little interest to the
usual applications of the theory.
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