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Abstract

Finding failures in autonomous vehicles is especially important when trying to perform risk as-
sessment in simulation before system deployment. When working with high-fidelity simulators
and computationally expensive autonomous systems, efficiently finding failures becomes a primary
objective. This work proposes an end-to-end risk assessment framework for autonomous vehicles—
combining risky driving scenarios, sensor observation models, autonomous vehicle policies, efficient
falsification techniques, and risk assessment methods. To build an observation model of the sensor
noises in the environment, this work proposes a surrogate modeling-based approach to learn the
underlying probability distributions of the noise disturbances from data. To automatically find
high-likely failures in simulation, this work extends a reinforcement learning approach known as
adaptive stress testing to be more data efficient. In a low-fidelity simulator, we compare two traffic
flow-based driver models and introduce an intelligent behavior model learned through model pre-
dictive control to compare against a more realistic driving policy. The proposed framework is open
source and has a modular design to extend to higher-fidelity simulators.
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1 Introduction
To prevent loss of life and property, it is necessary to validate the safety of autonomous vehicles
(AVs) before their widespread deployment into the real world. Along with validation, it is important
that the risk of the AV systems can be properly quantified, assessed, and compared to other AVs.
To stress the AV systems, it is common to develop simulation-based environments that attempt to
mimic realistic driving scenarios and sensor observations [1]. Failures in AV systems tend to focus on
collisions with other vehicles or pedestrians caused by errors in the sensor observations which lead
control actions to an unsafe situation [2]–[5]. Therefore, safety validation requires identifying and
analyzing failures that may occur as a result of likely sensor errors within a simulation environment.
In this work, we develop an end-to-end framework for autonomous vehicle risk assessment with
proposed methods for data efficient validation.

The end-to-end AV risk assessment framework is illustrated in fig. 1. First, realistic risky driving
scenarios are selected; scenarios inspired by the US National Highway Traffic Safety Administration
(NHTSA) pre-crash database [6]. These driving scenarios include difficult situations that have
been analyzed to frequently lead to collisions. This includes four-way intersection crossings, hard
braking on a highway, a pedestrian in a crosswalk, merging onto a highway, blind left turns, etc.
Once scenarios are selected, the observation models that model the sensor characteristics in the
environment are configured (e.g., GPS, radar, etc.) Errors in these observation models are the
source of failures in the studied AV systems. Next, the particular AV systems (i.e., AV policies) are
selected for stress testing. In this work, we focus on three AV policies: the intelligent driver model
(IDM) [7], the Princeton driver model [8], and a behavior agent generated using model predictive
control (MPC) that was develop as part of this work (see section 3.3). Using these AV policies,
the objective is now to validate their safety in simulation using efficient techniques that search for
failures. The adaptive stress testing (AST) [9] approach is the primary focus of this work, which
we extend to be more data efficient using several proposed modifications. The goal is to efficiently
find many high-likelihood failures to produce an empirical distribution of the cost (or severity) of

Intersections, hard braking,
pedestrian in crosswalk,
highway merging, etc.

Real-World Scenarios

Noisy sensors: GPS, radar,
LiDAR, cameras, etc.

Observation Models

Intelligent driver model,
Princeton driver model,

MPC behavior agent, etc.

AV Policies

Efficient failure search
using adaptive stress testing

Validation

Expected cost, worst case cost, value at risk (VaR),
conditional value at risk (CVaR), failure rate,

highest-likelihood of failure, etc.

Risk Assessment

failure cost distribution

Figure 1: High-level end-to-end autonomous vehicle risk assessment framework.
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failure. We use the closing velocity (i.e., closing rate) at time of collision as the cost measure of
a failure. Using closing rate as the cost metric has been shown to be an effective measure of the
severity of failure [10]. Finally, given this collected distribution of cost values, we propose methods
to assess the AV risk using a combination of metrics output by the failure search (e.g., failure
rate, highest likelihood of failure, etc.) and combine them with commonly used risk metrics from
the financial and robotics industries (e.g., expected cost, worst case cost, value at risk (VaR), and
conditional value at risk (CVaR)) [11].

We hold a principle that the end-to-end framework should be modular to easily add new sce-
narios, sensors, AV policies, validation solvers, and risk assessment metrics. This work resulted
in several software packages written in the Julia programming language [12], all under the open-
source AutonomousRiskFramework1 tool. We extend the POMDPStressTesting.jl2 [13] AST tool
to include our proposed data efficient methods. This work is also based on existing AV simulation
environments from the AutomotiveSimulator.jl3 package, which models 2D driving scenarios.
We also have preliminary work extending the framework to higher fidelity simulation environments
like CARLA [14] (see appendix A.2).

We focus on AST as the primary validation method for several reasons. For safety validation
through simulation, AST has been proposed in prior work and shown to be effective [1], [15].
AST uses reinforcement learning to search for the most likely sequence of disturbances in the
stochastic variables within the environment that lead to a failure event. The framework applies to
a broad range of autonomous systems and driving scenarios with multiple interacting agents (where
agents could be other vehicles or pedestrians). The driving or motion behaviors of all agents in
the simulation environment are assumed to be black box, or only known up to the input/output
behavior. This is useful because the driving behaviors in modern autonomous systems rely on
a variety of complex algorithms with multiple components [4], [5]. Section 2.1 provides a more
detailed background on AST.

Although prior work on AST has been effective at discovering autonomous system failures in
simulation, the existing framework requires a known probability model of the environment dis-
turbances. This requirement is restrictive because many simulators do not provide direct access
to the probability values associated with disturbances. Additionally, these disturbances are high-
dimensional, such as errors present in simulated camera images or LiDAR point clouds [4], [5].
Therefore, directly searching for failure-causing disturbances is difficult due to a large and complex
search space. The problem is exacerbated by the sequential nature of the search-space since sensor
observations across multiple time steps must be considered. Furthermore, failure-causing errors in
sensor observations are rare, and require running the simulation a large number of times to deter-
mine the probability, thus resulting in high computation costs. To address these challenges, part of
this work extends the AST framework to incorporate a learned probability model of environment
disturbances. Instead of high-dimensional sensor observations, our method models disturbances in
the low-dimensional environment state as perceived by the perception software on the autonomous
system. Using the disturbance values from running the simulation several times, we fit a model
of disturbance probability as a function of the true environment state. Therefore, our framework
can be used both in scenarios that contain multiple high-dimensional sensor observations and in
situations where a probability model of the disturbances is unavailable.

Another drawback of current AST approaches is a potential for inefficient failure searches due
to stochasticity in the solvers. When dealing with fast 2D simulators, data efficiency may not pose

1https://github.com/sisl/AutonomousRiskFramework
2https://github.com/sisl/POMDPStressTesting.jl
3https://github.com/sisl/AutonomotiveSimulator.jl
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a problem to find failures. Yet when extending this work to higher-fidelity 3D simulators, efficiently
finding failures becomes vital. Motivated by data efficiency, we propose several modifications to
AST for more data efficient failure searches. The first modification is to use the closure rate
value within the AST reward function (detailed in section 3.1.1), which satisfies a potential-based
reward shaping function that has been proven to preserve the optimal policy while speeding up
learning [16]. The second modification is to extend the Monte Carlo tree search (MCTS) algorithm
[17] used as an AST solution method to learn a rollout policy that biases towards failures rather
than a strictly random rollout of future trajectories. We learn these rollout policies using deep
reinforcement learning (DRL). To use DRL, we first must have a useful state representation to be
used as an input to the policies. Because we are still treating the AV system as a black box, we
explore the use of state proxies to stand in for the true state. We investigate two state proxies:
the distance to a failure (which is already required by AST) and the closure rate (which is simply
derived from the distance metric). We also perform ablation studies to highlight the individual
contributions of each of these data efficient approaches (section 4.2).

Finally, to compare two “simple” AV policies (namely, the IDM and the Princeton model),
we also develop an optimization-based agent using model predictive control (MPC). This lets us
create and evaluate a proxy for future and existing autonomous vehicles which rely on trajectory
optimization in their low-level decision making.

1.1 Contributions

The main contributions of this work are a combination of research, development, and analysis. The
primary contributions include:

• An open-source, modular, end-to-end autonomous vehicle risk assessment framework.

• Tools for modeling the probability distribution of sensor errors within the risk assessment
framework to extend the framework to unknown disturbance models and improve efficiency.

• Data efficient extensions to AST including potential-based reward shaping (using closure
rate), learned rollout policies for efficient MCTS, and the use of state proxies to preserve the
black-box assumption while extending AST to state-based solvers.

• Optimization-based MPC agent complementing existing, simpler behavior models to represent
autonomous vehicles of the future.

• Integration of the open-source CARLA simulator with the stress testing framework and pre-
liminary analysis

• Preliminary analysis comparing AV policies using the end-to-end framework.

1.2 Related Work

Many approaches to safety validation of autonomous systems have been previously proposed in
literature [18]. These approaches span across a variety of domains, such as optimization [19],
path-planning [20], reinforcement learning [9], and sampling techniques [21]. Mathesen, Yaghoubi,
Pedrielli, et al. [19] proposed a stochastic search method that mixes global and local search for
generating test cases. Zutshi, Deshmukh, Sankaranarayanan, et al. [20] used randomized algorithms
to search over segments of trajectories produced during the execution of an autonomous system.
Although these approaches discover potential failures, they do not prioritize failures that are more
likely to occur. Lee, Mengshoel, Saksena, et al. [9] formulated the problem of system failure
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identification as a Markov decision process and use reinforcement learning to optimize it, thus
introducing the adaptive stress testing framework. The framework uses known probability models
of errors to prioritize failures based on their likelihood. However, the requirement of a known
probability model of errors limits the framework’s applicability to high-fidelity simulators. Huang,
Lam, LeBlanc, et al. [21] suggested discovering failures by sampling sensing errors from a piece-wise
probability model constructed using simulated or real-world data. Although such an approach is
useful for sensors with low-dimensional observations, extending them for general sensors which may
have high-dimensional errors is challenging due to the huge data requirement.

To search for failures in systems involving high-dimensional sensor observations, many previous
works use gradient-based optimization. These approaches, based on falsification, search for inputs
to a system that invalidate (falsify) system requirements while satisfying robustness constraints.
Donzé and Maler [22] developed a sensitivity-based search algorithm to find parameters of a system
that minimize a robustness measure. Abbas, Winn, Fainekos, et al. [23] used gradient descent to
find trajectories that violate system safety specifications. Deng, Zheng, Zhang, et al. [2] analyzed
multiple adversarial attack techniques that search for failures in autonomous systems that depend on
camera images. However, these techniques require a known and differentiable model for perception
and decision making based on the sensor observations. This constraint is restrictive because modern
autonomous systems contain complex perception, estimation and decision-making algorithms which
might not be fully known for stress testing.

Since failures in an autonomous system usually result from rare events, realizing these failures
in a simulation may require a large number of computationally expensive evaluations. Therefore,
many prior works have focused on reducing the number of required system evaluations by instead
evaluating approximate models of the system quantities. Li and Xiu [24] proposed computing
failure probability using a hybrid approach that samples both the original system and a constructed
surrogate model. Xiao, Zhan, and Yuan [25] developed a method for reliability analysis of a system
based on adaptive importance sampling and kriging models (i.e., Gaussian process regression).
Pulch [26] applied strategies of generalized polynomial chaos to determine failure probabilities
in periodic systems. These approaches are efficient since they replace the expensive probability
evaluation requiring multiple simulations with evaluation of the constructed model. However, the
accuracy of the estimated failure probability depends on the accuracy of the approximated model
of system quantities, which is difficult to ensure for complex scenarios involving several interacting
road agents and multiple time instances.

Autonomous vehicle risk assessment has been extensively studied in the literature to ensure
AV policies are safe before deployment [27]–[30]. Koopman and Wagner [27] layout the current
challenges when testing and validating AVs and indicate that machine learning-based systems can be
complex to validate and that collecting data on rare edge cases where the AVs fail may be expensive
and hard to scale. Our work attempts to address this concern with an adaptive framework that
treats the AV policy and environment as a black box and intelligently and efficiently finds failures
to better assess the AV risk. Bhavsar, Das, Paugh, et al. [29] perform risk analysis of AVs in
mixed traffic streams by breaking down the AVs into their individual components, but they rely
on previously published data to perform the assessment. One goal of our work is to automatically
collect a dataset of failures in simulation in an inexpensive manner without having to break down
the AVs into their subcomponents. Other work defines the AV risk as the probability of collision
itself [31], where Chen, Liu, Chen, et al. [32] separate the probabilistic risk into high and low
levels of risk based on some threshold and Wang, Huang, Jasour, et al. [33] define risk as the
probability of entering a ring around the ego vehicle. Instead of just probability of collision, our
work defines risk as a weighted combination of metrics computed over the failure cost distribution
(where we use the closing rate at time of collision as the cost metric) combined with failure metrics
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found during falsification. Shannon, Rizzi, Murphy, et al. [34] define risk using the “expected
compensation costs (ECCs)” for vehicle collision modeling which considers all injuries involved and
links to compensation and medical costs, lost earnings, among other metrics. Their work uses a
delta-V measure (i.e., the change in velocity before and after the collision). Richards [10] also uses
the delta-V measure for risk and the closing rate (or impact speed) when dealing with collisions
between a vehicle and pedestrian. Their work indicates that while delta-V captures parameters of
the vehicles such as weight, the closing rate at impact is effective at predicting the probability of
fatality [10].

This report is broken down as follows: Section 2 provides necessary background information
on AST and MCTS, section 3 describes the technical approaches and contributions of this work,
section 4 details the experiments and results from ablation studies and a full end-to-end risk as-
sessment, and section 5 concludes with a discussion about current and future work. Supplemental
material is provided in the appendices.

2 Background
In this section, we present an overview of the adaptive stress testing (AST) framework proposed
in [1] and [9]. Using a model of the disturbances to agent states in a simulated environment,
AST finds the most likely path to a failure event in simulation. We first describe the Markov
decision process (MDP) for finding failures in AST, then we detail the black-box interface required
to interact with the AV system under test (SUT). We then describe the Monte Carlo tree search
algorithm often used in reinforcement learning for solving the MDP. Figure 2 illustrates the AST
problem formulation.

Simulator M

Environment
E

System
Under Test

(SUT)

Reinforcement
Learner/Solver

Reward
Function

R

sampled noise disturbance x

reward r terminal τ ,
transition probability p,
event e, miss distance d

Figure 2: Adaptive stress testing formulation.

2.1 Adaptive Stress Testing MDP

AST formulates the search for the most likely path to a failure event as an MDP. An MDP is
characterized by a 5-tuple 〈S,A, P,R, γ〉, where S is a set of states; A is a set of actions; P (s′ | s, a)
is probability of transition from state s ∈ S to s′ ∈ S when action a ∈ A is chosen; R(s, a) is the
reward function; γ ∈ [0, 1] is the discount factor for discounting future reward values.

Simulator. In AST, the simulator M consists of the environment E , the system under test (SUT),
and any interacting agents. The SUT interacts with the environment E and the agents over discrete
time instances t ∈ {0, . . . , T}.

States. Any given state s ∈ S in the MDP is the state of the simulation environment E comprised
of positions and velocities of the SUT and all agents. A path (or trajectory) in the MDP is
represented as a sequence of states s0:t = {s0, . . . , st} up to time t.
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Actions. An MDP action in AST denotes choosing a value of environmental disturbance xt ∈ N
from a specified probabilistic disturbance model N . The disturbance xt captures the environment
stochasticity from all factors such as wind conditions or uncertainty in motions of environment
actors such as pedestrians. At each time t, the environment generates an observation ot ∈ O based
on state st and disturbance xt.

Transition Probability. Based on the generated observation ot, the MDP then transitions to
the next state st+1 by executing driving behaviors of all agents in the environment E . Since all
environment stochastic variables are modeled in xt, the transition (st, xt) → st+1 is deterministic
within the simulator such that P (st+1 | st, xt) = 1 for some (st, st+1, xt).

Reward Function. The reward function directs the search towards two objectives: 1) finding a
failure event, and 2) maximizing the path likelihood. The reward function is given by

R (s, x) =


RT if s is a failure event
−d(s) if s is a non-failure terminal event
log p(x) otherwise,

(1)

where RT is the reward for finding a failure (we use RT = 0 in this work), d(s) is a user-defined
measure of miss distance to the failure, and p(x) is computed from the disturbance model N . The
reward function is designed to maximize the sum of the log-likelihoods, which is equivalent to
maximizing the product of the likelihoods.

2.2 AST Black-Box Interface

To apply AST to an autonomous system, the AST black-box interface must be defined. The
interface wraps around the simulator M, which includes the environment and SUT. It defines how
we initialize, evaluate (i.e., step), and determine miss distance from the system. Table 1 outlines
the interface functions and their inputs and outputs [35]. We then describe the implemented AST
interface functions used for the AV risk problem.

Table 1: Adaptive Stress Testing Interface [35]

Function Input 7→ Output∗

Initialize M 7→ ∅
Evaluate 〈M, x〉 7→ 〈p, d, e〉
Transition 〈M, x〉 7→ p ∈ R
MissDistance M 7→ d ∈ R
IsEvent M 7→ e ∈ B

IsTerminal M 7→ τ ∈ B
* R indicates all real values and B indicates a boolean value.

Each of the following interface functions takes the simulation structure M as input, and may
modify the structure in place.

• Initialize: To initialize the simulator, we reset simulation variables. This includes the
simulation time t = 0, the underlying adversarial MDP that controls the ego and adversarial
vehicles, the SUT state from the adversarial MDP, the current noise disturbances, and the
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previous distance value used to calculate the closure rate. The simulation structure is modified
in place and nothing is returned (indicated by the empty set ∅).

• Evaluate: To evaluate the simulator and SUT, we combine three calls to the below functions
(Transition, MissDistance, and IsEvent) into a single function call. Here, we also update
the previous distance value used in the closure rate calculation. We include the sampled noise
disturbance x as input, and return the transition probability p, the miss distance d, and the
failure event indication e as output.

– Transition: To transition (or step) the simulator, which includes the SUT, we first
increment the simulation time t by our dt (in our case dt = 1). Then we take the
sampled noise disturbance x given as input and apply the disturbance to the agents in
the environment (this could be applied to the ego vehicle only or to all agents). Then the
underlying adversarial MDP that controls the SUT (and all other agents) is propagated
forward one step, taking the current MDP state and disturbances as input and returns
the next state. Finally, we return the log-likelihood p of the sampled noise disturbance
and MDP state as output (which we ultimately want to maximize given failure).

– MissDistance: The miss distance d is calculated as the distance between the centers
of the ego vehicle and the other agent (either another vehicle or a pedestrian). Then d
is returned as output.

– IsEvent: To indicate that a failure event occurred or not, we determine if there was a
collision between the agents using the parallel axis theorem [36]. A boolean e is return
indicating if a collision occurred.

• IsTerminal: Finally, we provide an indication that the simulation has terminated. We define
termination if both vehicles are out of the frame, a collision event occurred, or the maximum
simulation time T has been reached. A boolean τ indicating termination is returned as output.

2.2.1 Monte Carlo Tree Search

Selection Expansion Rollout

Q

πrandom

Backpropagation

Q

Figure 3: The four steps of the Monte Carlo tree search algorithm using a random rollout policy π [35].

The Monte Carlo tree search (MCTS) algorithm [17] is a stochastic tree-based search algorithm
often used in planning and reinforcement learning (RL) [37]. MCTS iterates through simulations
and uses rollouts of a random policy to estimate the state-action Q-value of each node in the tree.
Figure 3 illustrates the four steps of each simulation: Selection, Expansion, Rollout, and
Backpropagation. MCTS is an “anytime” algorithm, often used as an online RL solver, which
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means it can be stopped after any iteration and the best solution (so far) can be returned. Yet after
many more iterations, the solution will improve. The random rollout policy is executed during the
Rollout step to provide an unbiased estimate of the future Q-value from that particular state
node. This can be very useful for exploration, yet may pose as a bottleneck when we want to bias
towards some portion of the state space.

3 Approach
This section details the technical approaches proposed by this work. The approaches range from
data efficient falsification methods for better failure searches, sensor observation modeling for wider
application to complex environmental models, and an intelligent behavior AV agent learned using
model predictive control for a more realistic comparison to other lane-following AV policies.

3.1 Data Efficient Falsification

To assess risk, we must first find failures. A motivating objective of this work is to find failures
efficiently, especially when the SUT may be computationally expensive to evaluate. There are
several proposed methods we explore to more efficiently find failures using AST. The first method
is a modification to the AST reward function itself to speed up learning, which means it can be
applied regardless of the chosen solver. The second method is a modification of the MCTS solver
to use a precomputed learned rollout policy to bias towards failures, instead of a random rollout
policy. This section describes the details of these two data efficient falsification methods.

3.1.1 Potential-Based Reward Shaping

Reward shaping is a technique used in reinforcement learning to help guide an agent to their goal
through clever modifications to the reward function [16]. Ng, Harada, and Russell [16] showed that
if the reward function is modified using a potential-based reward shaping function F that satisfies
certain non-cyclic properties, then the optimal policy is invariant under this reward modification.
Let F (s, s′) be the reward shaping function F : S × S 7→ R we employ. The reward shaping
function becomes a potential-based shaping function when we use a real-valued function φ : S 7→ R
that necessarily satisfies that there are no positive reward cycles (which could lead the agent to
divert from the goal to collect more intermediate reward, thus “distracting” the agent). The reward
shaping function F then becomes the difference of potentials between consecutive states:

F (s, s′) = γφ(s′)− φ(s) (2)

Note, in this work (and most other AST research [9], [15]), we use a discount factor of γ = 1 to not
penalize failures later in the trajectory.

In this work, the potential function φ is defined as the negative distance to failure φ(s) = −d(s).
As shown by Ng, Harada, and Russell [16], using a “distance-to-goal” potential function does not
introduce cycles and thus satisfies the necessary condition to preserve the optimal policy. Therefore,
we define the reward shaping function F (s, s′) as:

F (s, s′) = φ(s′)− φ(s) (potential-based reward shaping function definition)
= d(s)− d(s′) (substitute φ(s) = −d(s))
= d∆(s, s

′) (closure rate, i.e. distance-rate)
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The shaping function is added to the existing reward function R to get the modified (or augmented)
reward function R′:

R′(s, x, s′) = R(s, a) + F (s, s′) (3)

Adding the potential-based reward shaping function F has been shown to reduce learning time for
an agent to reach their goal (in our case the goal is a failure/collision) [16]. Knowing that the
optimal policy is the same under R and R′, we can expect to find failures faster in simulation while
achieving similar (or increased) failure rates using R′ as we would under R.

The AST reward function described in eq. (1) can be written as

R(s, x) = log p(x) +RE1(sT ∈ E)− d1(sT 6∈ E) (4)

where sT is the terminal state, E represents the set of all failure events, and 1(·) is the indicator
function (which evaluates to 1 if the input is true and 0 otherwise). Using this form of the reward
function, the augmented reward function R′ can then be written as

R′(s, x, s′) = log p(x) +RE1(sT ∈ E)− d1(sT 6∈ E) + d∆(s, s
′) (5)

which we can use without changing the existing AST black-box assumption because d∆ is a function
of two distances, which we already have access to through the Distance interface function.

3.1.2 Learned Rollout Policies
Learned Rollout

Q′

πppo (previously learned)

Figure 4: The MCTS rollout phase us-
ing a learned rollout policy output by
PPO.

To increase the efficiency of finding failures, we investigate
the use of a pretrained policy from a separate failure search
to be used as the replacement rollout policy that MCTS em-
ploys. Figure 4 illustrates the learned rollout stage of MCTS,
where we use a policy π : S 7→ A that biases towards failure
which was previously learned using proximal policy optimiza-
tion (PPO) [38]. The input to the learned policy is the state
of the environment, but we investigate the use of a state proxy
to approximate the true state with known information while
preserving the AST black-box assumption. The output of the
learned policy is an action, i.e., a sample of the noise distur-
bances to apply to each agent in the environment. Figure 5
illustrates the phased approach starting with the offline learn-
ing phase, then using the learned policy for a more efficient
MCTS phase, and finally using the collected cost distribution
for risk assessment.

By replacing the random rollout policy that is currently
used by standard MCTS, we expect to bias the search towards
failures to ultimately find more failures that we can use for a
wider spread of cost evaluation of the AV policies under test.
This also allows us to explore the space of failures without increasing the number of iterations we
run MCTS. Algorithm 1 details the learned rollout algorithm used during the third stage of MCTS,
which recursively samples a next action from the learned policy (instead of random) and simulates
or “hallucinates” the future trajectories down a particular tree path. By replacing the random
rollout with a rollout biased towards failures, we can greatly increase the failure rate of MCTS and
use an offline policy to increase the performance of an online solution method.

9
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Algorithm 1 Simulate rollouts using a previously learned policy.
function LearnedRollout(s, d, π)

if d = 0 ∨ IsTerminal(s)
return 0

x ∼ πlearned(x | s) . sample action from learned policy
(s′, r) ∼ G(s, x) . calls Evaluate(s) and R′(s, x, s′)
return r + γ LearnedRollout(s′, d− 1, π)

The use of any offline learning algorithm can be selected, where we chose PPO for its simplicity
in implementation and its empirical performance in the literature. It is important to note that we
need some representation of a state value to be able to use the state-based RL solvers like PPO. If
we have access to the true state of the environment, then we can use that. But to keep the AST
black-box assumption, and to allow this work to be easily extended to other black-box AV policies
and simulators, we are interested in other measures we can use as proxies for the true state.

s ∈ S
a
[1]
1

a
[1]
2

a
[2]
1

a
[2]
2

a
[2]
3

a
[2]
4

a
[3]
1

a
[3]
2

a
[3]
3

a
[4]
1

a
[4]
2

a
[4]
3

a
[4]
4

a ∈ A

AST search using state-proxy DRL solver
(falsification)

Offline Learning Phase
Selection Expansion Rollout

Q

πppo

Backpropagation

Q

AST search using learned rollout policy π
(MCTS bootstrapped)

Efficient Search Phase

Measure and analyze AV system risk
(assessment)

Risk Assessment

policy π failure
distribution F

Figure 5: Phased efficient falsification for risk assessment.

3.1.3 State Proxy

The true state of the simulation environment consists of s = {x1, y1, θ1, v1, x2, y2, θ2, v2}, which are
the xy-positions, the heading θ, and the velocity v of each agent. This information may not be
readily available when moving this work to other simulators (e.g., CARLA), so we investigate the
use of a state-proxy to replace the true state with known information we have already required
from AST, namely the distance and rate metrics. Using the state-proxies, we can maintain the
black-box nature of the problem by using either the distance from the Distance AST interface
function or the closure rate which is derived from the distance. Again, state-proxies also enable
the use of deep reinforcement learning solution methods (proximal policy optimization (PPO) [38],
Trust-region policy optimization (TRPO) [39], deep deterministic policy gradient (DDPG) [40], etc.)
that require state as input to learned neural network-based policies.

3.2 Sensor Observation Modeling

In this section, we build on the AST framework to determine the most likely paths to failure events
in a simulation under sensor observation errors. The proposed framework is applicable to scenarios
where the probability distribution of the disturbances in the environment state due to the sensor
observation errors may be unknown. The simulation environment consists of the system under test
(SUT) as well as other agents (vehicles, pedestrians, etc.). At each time instant, the simulator
generates observations o from a set of sensors. From the observations, the SUT uses onboard
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perception algorithms to perceive the state s̃ of the surrounding environment and determines the
control action c to take based on the driving policy. These control actions are then input to the
simulator to advance to the next time instant.

We modify the optimization objective in AST to incorporate disturbances in perceiving the
environment from sensor observations while simultaneously estimating the probability of the dis-
turbances. Naïve approaches to evaluate the probability of disturbances require executing the
computationally expensive simulation several times at each time instant. Instead, our modified
AST objective evaluates the probability using a learned model η of disturbances. We learn the
disturbance model in a two-phased approach:

• The first phase is the simulation phase that links the perception and driving algorithms on the
autonomous vehicle with sensor observations from the simulator. By repeatedly executing the
simulation loop, we first record several samples of the true environment state s and the noise
in the perceived environment state s̃ − s, where the state consists of quantities used by the
controls system such as positions and velocities of all agents. Using the recorded states and
noise, we then fit a surrogate probability model η (section 3.2.1), or the disturbance model,
that models the probability distribution of the noise in s̃ conditional on the true state s.

• The second phase is the stress-testing phase that uses the constructed disturbance model η
in AST optimization to search for the most likely sequence of disturbances that leads to a
failure event. We use the Monte Carlo tree search algorithm (section 2.2.1) for optimization
using the log-likelihood of disturbances from the probability model. Finally, we update the
recorded set of states with the new environment states encountered during the search and
repeat the two phases for either a predefined number of iterations or until convergence.

Figure 6 illustrates the proposed framework.
Our approach offers several advantages over existing stress testing techniques. Similar to the

current work on AST, we treat the simulator as a black-box and do not assume any prior knowl-
edge about the system transitions. Furthermore, we relax the previous requirement of a known
probabilistic model of disturbances, and instead construct the model using sensor observations and
perception algorithms within the simulation. As a result, our approach can be used with a broad
range of high-fidelity simulators where a probability model of disturbances is unavailable. Gen-
erating sensor observations and executing the perception algorithm within the simulation is com-
putationally expensive. Therefore, our approach separates the data-collection phase—in which a
disturbance model is constructed by parallelly querying the simulator a fixed number of times—and
the stress-testing phase for identifying failures using the constructed model. Unlike existing falsifi-
cation approaches for high-dimensional sensor observations, we search over the lower dimensional
space of disturbances applied to the quantities determined by the perception algorithm. Hence,
our approach is scalable to environments with multiple interacting agents as well as observations
from multiple sensors.

3.2.1 Surrogate Modeling

In most modern autonomous driving simulators, the probability associated with a disturbance
x in the environment state is unknown or difficult to evaluate. For instance, the distribution
of noise in sensor observations such as camera images have complex profiles that do not have a
readily available closed-form expression. Furthermore, even if the source probability distribution of
the simulated sensor noise is known (e.g., Gaussian), the resulting probability distribution of the
perceived environment state s̃ and hence the disturbance x may be difficult to evaluate without

11



Autonomous Vehicle Risk Assessment

Figure 6: The proposed stress testing framework including sensor observation errors. The environment
interacts with the autonomous vehicle software through sensor observations. In the simulation phase (black
and green arrows), the perception system processes the sensor observations to determine a perceived state of
the environment, which may differ from the true state within the environment due to environment noise. The
control system then computes control actions to take based on the perceived state to advance the simulation.
Through samples of the environment state and noise recorded from repeated evaluations of the simulation
loop, a probability model of disturbances is constructed. Next, the disturbance model is used in the stress
testing phase (black and red arrows) to determine the disturbance log-likelihood without sensor observations
and guide the search for the most likely failure path.

assuming constraints on the functional relation between the noise x given an environment state s.
To address these challenges, we construct a surrogate model η(x, s) ≈ P(x | s) of the conditional
probability distribution of x for an environment state s that can be evaluated easily.

In this work, we use a Mixture Density Network (MDN) [41] as our surrogate probability model

η(x, s) =

K∑
k=1

πk(s)N (x | µk(s),Σk(s)),

where K is the number of mixture components, {πk, µk,Σk}Kk=1 are the learned parameters of
the probability distribution modeled via neural networks, and N (·) is the multivariate Gaus-
sian distribution. Furthermore, we have the constraints on the mixing coefficients πk such that∑K

k=1 πk(s) = 1 and πk(s) ≥ 0. As a preprocessing step, we extract features from the state s based
on position and velocity of the SUT as well as relative positions and velocities of all environment
agents from the SUT. We feed the extracted features as inputs to the MDN and train by minimizing
the negative log-likelihood over the recorded data from the simulation phase:

L(x, s) = − log(η(x, s)).

Since η captures the conditional probability distribution based on the environment state s, it can
model variations in the disturbance probability based on the states of environment agents, for
instance, capturing the increased/decreased noise in detecting as well as positioning an obstacle
that is far from/close to the vehicle camera.

12



Autonomous Vehicle Risk Assessment

3.3 MPC Behavior Agent

Model Predictive Control (MPC) is an optimal control algorithm which selects actions taken by an
agent by solving a finite horizon optimization program simulating agent’s and the world’s behavior
into the future. Although in theory such an optimal computed plan can then by executed to its
end, in practice, in order to reject disturbance, only the first action is executed and the plan is
recomputed at the next time step. Because the Model Predictive optimization is performed over
both agent’s action u, future states z and the state of the world s, a model of the agent and
the evolution of the world (most generally in response to these actions, but possibly statically) is
required. In practice, the model of agent’s and the world’s states in response to the agent’s actions
(which are optimized) need not be perfect, the optimal plan is recomputed at every step, to reject
disturbance, which include modeling errors. Typically MPC is computed for discrete dynamics
(with discrete time steps), which results in a computational limit on the horizon considered into
the future. Realistically, the choice of the horizon is an algorithmic hyperparameter, but in practice
a horizon encompassing the next second or two of driving is used. The finite horizon approximation
can be made exact if the optimal cost-to-go is known for the last state in the plan, but, in general,
knowing that implies having solved the optimal control problem for all possible states which voids
the need for MPC.

In this work we consider linear second order integrator dynamics, in the lane frame of reference,
for the longitudinal and, optionally, lateral dynamics of the vehicle. We justify this assumption
by noting that it is trivial to construct an autonomous car controller which rejects the centrifugal
force of a curving road, rendering the dynamics as we formulate them to be linear. Linear dy-
namics in frame of reference of the lane significantly simplify the computational complexity of the
MPC optimization because linear constraints (encoding dynamics) typically do not increase the
computational difficulty of solving an optimization problem for a given driving objective.

Given the linear autonomous vehicle dynamics in the lane frame of reference

z(k+1) = Az(k) +Bu(k)

with

A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 B =


0 0
1 0
0 0
0 1


and autonomous car dynamical state z

z(k) =
[
p
(k)
longitudinal v

(k)
longitudinal p

(k)
lateral v

(k)
lateral

]T
where p denotes position and v the speed.

We formulate the following MPC optimization problem, resolved at every step

minimizeu c
(
u(k), z(k)

)
subject to z(0) = z0

z(k+1) = Az(k) +Bu(k)

z(k) ∈ Z u(k) ∈ U ∀k ∈ [0, . . . , Nhorizon]

where c
(
·, ·

)
is the objective associated with the state and actions of the vehicle and Z,U are feasible

sets for the state and actions of the vehicle (e.g., the state z should deviate less than 1 m from the
lane centerline and the action’s absolute value u should not exceed 10 m/s2).
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The specific behavior of the MPC agent is highly dependent on the choice of the objective func-
tion c(·, ·), because, within the realm of dynamically feasible trajectories, there exists an objective
function for every possible behavior. For example, whether the car attempts to avoid obstacles
or actively seeks to crash into them is dependent on the sign of the term quantifying that in the
objective function. The behavior is then specified in terms of desirability of outcome and not, like
in simpler, direct driving models, through direct dependence of actions on the state of the world.
MPC behavior specification via the objective enables more behaviors that take into account the
future explicitly and is much closer to how humans and autonomous vehicles act in reality—by
planning and not just reacting.

3.3.1 Human-Interpretable Objective Specification via Signal Temporal Logic

Signal Temporal Logic (STL) allows to quantitatively express several human-interpretable notions
of outcomes and allows for temporal dependencies between them. The language of STL enables the
specification of desired outcomes expressed in human language (like English), for example, never
crash into another car and do not pass until the oncoming lane is clear in a principled way in the
objective function. For a formal definition of STL we refer the reader to Section C in the Appendix.

3.4 Risk Assessment Method

To quantitatively measure the risk of an AV policy, we base our assessment on several risk-based
metrics from the literature and failure-based metrics output from the AST search. By defining
some measure of cost to the system when it fails, we can calculate risk metrics over the distribution
of cost. In this work, we use the closure rate (i.e., relative speed at time of collision) as the cost
measure Z, sometimes called the severity of failure. It has been shown that this closure rate value
is a useful indicator of vehicle risk in predicting occupant fatalities [10].
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2
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CVaR
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cost (i.e., closure rate)
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Figure 7: Distribution of cost values with expected cost, VaR, CVaR, and worst case cost illustrated.
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Cost metrics. The robotics and financial communities [11] have previously used value at risk
(VaR) as their primary risk assessment metric. Given some risk tolerance threshold α (where we
are willing to accept α fraction of the highest cost), we define VaR as the value at that particular
α threshold:

VaRα(Z) := min {z | P(Z > z) ≤ α} (lowest cost given probability threshold)

Figure 7 illustrates the cost metrics we use in this work. Along with VaR, we also record the
expected cost of failure and the worst case cost of failure. Recently, the robotics community
suggested that conditional value at risk (CVaR) is a well-formed risk metric for autonomous robotics
applications, including autonomous vehicles [11]. CVaR is defined as the expected cost under the
conditional distribution set by the risk tolerance threshold α:

CVaRα(Z) :=
1

α

∫ 1

1−α
VaR1−τ (Z)dτ (expected cost under conditional distribution)

:= EP ′ [Z] (where P ′(z) := P {z | P(Z > z) ≤ α})

Shown in fig. 7 and further analyzed by Majumdar and Pavone [11], we can see that CVaR captures
more information about the tail of the failure cost distribution which is deemed the “acceptable”
failure region given α.

Failure metrics. Along with the cost metrics, we use three failure-based metrics output from
the AST failure search as another measure of AV policy sensitivity to failures. We use the failure
rate (i.e., the number of failures over number of simulations or the biased probability of failure)
as an indicator of how often the AV policy fails in simulation. We use the first failure episode (or
index) as a way to measure the “ease” of finding failures. Finally, we use the highest log-likelihood
of failure as an indicator of the likelihood of failure within the simulation environment.

By combining the cost metrics and the failure metrics, we can produce an overall measure of
risk by plotting the values over a polar plot and calculating the area under the curve. If necessary,
we can apply different weights to each metric using a vector w, which can be chosen by the user or
policy maker when balancing how much each of the metrics count towards the overall AV risk. In
full, we have the following seven metrics used for risk assessment:

• E[Z] (mean cost of failure)

• VaR (Value at Risk)

• CVaR (Conditional Value at Risk)

• Worst case cost

• Failure rate (i.e., biased p(fail))

• First failure episode (i.e., “ease” of finding failures)

• Highest log-likelihood of failure

The last three failure metrics are output by the AST search, and the other cost metrics are agnostic
to the method of falsification (and their cost value Z can be changed from severity of failure to
monetary value or other cost measures).
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4 Experiments and Results
Experiments were preformed to first test the individual components proposed for increased data
efficient falsification. These ablation studies first show how well a random search solver compares
to MCTS using the IDM as a baseline. The next ablation study tests the effect of the potential-
based reward shaping function proposed in section 3.1.1. We also test the effects of the learned
rollout policy on increased failure rate for a better coverage of the distribution of cost (which we
use to calculate risk). We study different uses of state proxies in place of the true state to both
extend this to state-based deep RL solvers and to preserve the black-box assumption within AST.
Experiments to test the performance of the observation modeling described in section 3.2 were
also preformed. Lastly, we run an end-to-end risk assessment across six NHTSA pre-crash inspired
scenarios comparing three AV policies and quantifying their risk using several weighted metrics.

(a) Crossing intersection. (b) Pedestrian crosswalk.

(c) Head-on T-intersection turn. (d) Left T-intersection turn.

(e) Highway stopping. (f) Highway merging.

Figure 8: Driving scenarios studied in this work, inspired by the NHTSA pre-crash scenario database [6].
The red vehicle is the ego vehicle and white arrows indicate the current velocities.

4.1 Scenarios

Figure 8 illustrates the six driving scenarios that have been shown to be stressing cases where
collisions tend to occur [42]. The six driving scenarios were designed based on the NHTSA pre-
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crash scenario database [6] using the AutomotiveSimulator.jl4 package. The scenarios provide a
useful mix of different normal driving situations where some scenarios result in failures easily (as
shown in table 2) and others are more rare.

4.2 Ablation Studies

Ablation studies are primarily used in the field of machine learning to investigate the contributions
of many individual components to the overall performance of some method. In this section, we
describe and present results from experiments run to facilitate ablation studies.

Random Solver. First, we want to test how easy it is to find failures in the six scenarios we
study. We compare the MCTS solver to a naive random search solver (i.e., naive Monte Carlo) as a
baseline for failure rate. Table 2 highlights these results. Note that we run each algorithm across 5
different RNG seeds to more effectively compare across different random runs. Notice that MCTS
has significantly higher failure rate compared to random, which is what we would expect: we want
these scenarios to have rare failures. MCTS makes a major difference in maximum log-likelihood
of a failure trajectory (last column) when the random failure rate is extremely rare; looking at the
crossing intersection and highway merging scenarios as examples. This highlights that AST can
find more failures than random, and then maximizes the likelihood of the failure trajectories as a
secondary optimization objective. Note that unless otherwise specified, these experiments are using
the IDM with the learned observation model and the potential-based reward shaping function, but
are not using the learned rollout policies (as that will be studied in a separate section).

Table 2: Random solver vs. MCTS results.

Scenario Algorithm* Failure Rate (%) First Failure Episode† max log(p)

Crossing intersection Random 0.54±0.305% 84.0±75.72 −740.13±679.47

MCTS 34.09±24.12% 58.6±32.54 −206.82±329.59

Head-on T-turn Random 3.18±0.44% 70.8±56.41 −23.77±10.70

MCTS 17.08±21.72% 35.2±37.67 −32.57±29.29

Left T-turn Random 10.6±0.47% 15.2±10.06 −102.32±34.87

MCTS 74.9±4.33% 7.6±12.03 −44.76±36.95

Highway stopping Random 2.16±0.31% 36.0±17.61 1.20±1.15

MCTS 8.60±8.40% 29.8±19.65 1.18±0.94

Highway merging Random 0.16±0.11% 207.3±213.41 −10080.16±17398.66

MCTS 10.05±15.91% 292.3±170.75 −128.49±191.29

Pedestrian crosswalk Random 18.86±2.28% 5.8±3.56 −1.59±1.64

MCTS 69.73±11.43% 6.4±7.70 −0.01±0.52

* Ran across 5 different RNG seeds using the IDM as the AV policy.
† Ran over 1000 episodes.

Potential-based reward shaping (rate). Next, we want to test the effectiveness of the potential-
based reward shaping function described in section 3.1.1. Table 3 details the experimental results.
Notice that including the rate in the reward function (i.e., those rows with the reward R′(s, x, s′)
from eq. (3)) makes a small improvement to most of the failure metrics. The experiments were run

4https://github.com/sisl/AutomotiveSimulator.jl
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across all scenarios, with 5 different RNG seeds for each trial (but shared RNG seeds across dif-
ferent reward functions for a better comparison). The failure metrics either stayed the exact same
or slightly increased, with the exception in the pedestrian crosswalk scenario where the failure rate
is lower but with a larger standard deviation. Further analysis will help understand the impact of
using R′, but these preliminary studies help indicate that including a potential-based term in the
reward function can generally help performance in falsification and most likely failure analysis.

Table 3: Potential-based reward shaping results.

Scenario Reward* Failure Rate (%) First Failure Episode† max log(p)

Crossing intersection R(s, x) 34.09±24.12 58.6±32.54 −206.82±329.59

R′(s, x, s′) 34.09±24.12 58.6±32.54 −206.82±329.59

Head-on T-turn R(s, x) 17.04±21.76 35.2±37.67 −32.57±29.29

R′(s, x, s′) 17.08±21.72 35.2±37.67 −32.57±29.29

Left T-turn R(s, x) 74.74±4.29 7.6±12.03 −56.67±38.35

R′(s, x, s′) 74.94±4.33 7.6±12.03 −44.76±36.95

Highway stopping R(s, x) 7.49±13.18 29.8±19.65 0.72±1.13

R′(s, x, s′) 8.60±8.39 29.8±19.65 1.18±0.94

Highway merging R(s, x) 9.33±16.29 383.6±241.60 −191.31±180.70

R′(s, x, s′) 10.05±15.91 292.3±170.75 −128.49±191.29

Pedestrian crosswalk R(s, x) 74.31±4.41 6.4±7.70 −0.54±0.64

R′(s, x, s′) 69.73±11.43 6.4±7.70 −0.01±0.52

* Ran using MCTS across 5 different RNG seeds using the IDM as the AV policy.
† Ran over 1000 episodes.

Learned rollout policy. We study the effect of the phased approach to increase failure rate
using a pretrained learned rollout policy through experimentation. This experiment also tests the
different state-proxy configurations (true state, distance proxy, or rate proxy) to see how they
compare when using PPO to learn the rollout policy. From table 4, the baseline MCTS run uses
the standard random rollout policy and achieves a mean failure rate of about 7.5%. When we use
a neural network-based solver like PPO that takes a state (or state-proxy) as input, we get about a
97−99% failure rate across the state-proxy configurations. Using that learned policy as the rollout
policy for MCTS in the efficient search phase dramatically increases the failure rate from about
7.5% to about 98−100%. Notice that the maximum likelihood of the failure is much higher in the

Table 4: Learned rollout policy results.

Phase Solver* State-Proxy Failure Rate (%) First Failure Episode† max log(p)

Baseline MCTS — 7.49±13.18 29.8±19.65 0.72±1.13

Offline Learning PPO true 99.00 4.0 −655.50
Efficient Search MCTS true 98.20±1.78 1.0±0.0 0.44±1.59

Offline Learning PPO distance 97.30 19.0 −154.60
Efficient Search MCTS distance 99.10±0.51 1.0±0.0 0.27±1.38

Offline Learning PPO rate 98.10 14.0 −791.24
Efficient Search MCTS rate 100.00±0.0 1.0±0.0 −0.14±1.10

* Ran across 5 different RNG seeds using the highway stopping scenario.
† Ran over 1000 episodes.
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MCTS case compared to simply solving using PPO. This means that we can learn a policy that
leads to failures using some state-based algorithm and transfer that policy to the MCTS setting to
increase failure rate and find failures with higher likelihood.

Learned disturbance models. We study the performance of the developed disturbance model
fitting technique in corresponding to the probability distribution of the actual noise in the envi-
ronment state variables. To measure the fitting performance, we treat the agent state variables
(position, velocity) as observed quantities with a known noise model. We experiment with dif-
ferent noise profiles as well as with different agents (ego vehicle, non-ego vehicle) by comparing
the known noise model with the disturbance model that is fit from environment samples collected
during the simulation phase. We compare the probability distributions using the KL divergence
(fit from noise), symmetric KL divergence, and the cosine distance between sample probabilities.
Throughout the experiment, we use a bi-modal Gaussian mixture as the disturbance model, the
architecture of which is kept fixed for all experiments. For the baseline, we use Gaussian distribu-
tions with randomly generated parameters about the true noise parameters and take the average
of the metrics across 5 random seeds. We observe that the learned disturbance model is signifi-
cantly closer (several orders of magnitude) to the true noise model than the baseline in terms of
the symmetric KL divergence and the cosine distance. Therefore, the probability of disturbance
evaluated from the learned disturbance model is a good proxy for the noise probability if the actual
probability distribution is not known.

Table 5: Fitting performance of the learned disturbance model.

Agents State Noise* KL-divergence Symmetric KL-divergence Cosine distance†

Baseline x, y N (0, 1) −0.12±0.60 21.91±8.72 0.31±0.22

Non-ego only x, y N (0, 1) −0.04±0.22 0.16±0.15 0.01±0.007

Non-ego only x, y N (0, 5) 0.29±0.20 0.09±0.07 0.00±3e−4

Baseline x, y N (0, 1) 0.00±1e−3 2.38±3.27 0.48±0.44

Ego, Non-ego x, y N (0, 1) 0.06±0.11 0.01±0.08 0.01±0.01

Ego, Non-ego x, y N (0, 5) 0.00±2e−3 0.00±5e−4 0.00±4e−4

Baseline x, y, v N (0, 1) 0.00±3e−5 0.57±0.22 0.74±0.37

Ego, Non-ego x, y, v N (0, 1) 0.01±0.01 0.00±6e−3 0.02±0.03

Ego, Non-ego x, y, v N (0, 5) 0.00±2e−5 0.00±9e−5 0.00±1e−4

* Corresponds to each state variable. Ran across 5 different RNG seeds using the highway stopping scenario.
† Computed from 100 samples.

4.3 End-to-End Risk Assessment Study

The ultimate goal of this work is to automate the risk assessment process. This section goes through
an example end-to-end risk assessment of three AV policies: the IDM, the Princeton model, and the
MPC behavior model from section 3.3. We employ proposed data efficient falsification approaches
(i.e., reward shaping and the phased learned rollout approach), and learn a sensor observation
model for each of the AVs. The end-to-end study runs across all six driving scenarios and collects
both cost and failure metrics. We compute the overall risk measure as the area under the polar
curves shown in fig. 10. Each metric can be weighted individually (defaults to all ones) and for this
experiment we set the weights for the three failure metrics to be wi = 10 to provide more emphasis
on failure rate (i.e., biased probability of failure), first failure episode (i.e., “how easy was it to find
failures?”), and the maximum likelihood of failures (i.e., “how likely are the failures?”). Table 6
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Table 6: End-to-end risk assessment results.

Scenario AV Policy E[Z] VaR CVaR Worst-Case Failure Rate FFE* max log(p) Risk AUC

Crossing
intersection

IDM 1.35±0.27 1.71±0.12 1.83±0.06 2.0±0.02 99.30±0.92 1.0±0.0 −256.6±186.33 26.22
Princeton 1.48±0.05 1.8±0.09 1.99±0.06 2.22±0.08 76.62±7.14 25.80±18.73 −307.19±200.34 24.51
MPC Behavior 3.26±0.53 4.86±0.75 5.44±0.82 6.35±0.98 1.54±0.34 42.80±42.60 −6812.82±5896.56 29.87

Head-on
T-turn

IDM 1.37±0.25 1.61±0.23 1.66±0.18 1.73±0.14 27.41±29.71 110.67±38.42 −15.94±16.69 14.66
Princeton 0.97±0.77 1.0±0.85 1.13±0.74 1.33±0.7 18.18±17.19 494.25±281.13 −591.53±1280.35 17.46
MPC Behavior 2.46±1.74 4.13±2.82 5.28±3.36 7.85±3.13 17.20±18.88 27.60±31.29 −88.26±122.12 27.62

Left
T-turn

IDM 1.85±0.05 2.16±0.01 2.22±0.01 2.3±0.01 99.66±0.21 1.0±0.0 −344.35±174.27 27.57
Princeton 1.27±0.28 1.39±0.26 1.41±0.25 1.45±0.23 40.88±25.70 93.80±20.17 −103397.66±152910.3 19.68
MPC Behavior 1.25±0.44 1.55±0.8 2.23±1.34 3.37±1.82 5.74±11.06 21.00±12.92 −3566.96±3553.93 19.34

Highway
stopping

IDM 0.61±0.06 0.93±0.01 1.1±0.01 1.29±0.01 100.0±0.0 1.0±0.0 0.64±1.51 72.69
Princeton 0.64±0.02 0.84±0.01 0.92±0.0 1.07±0.0 100.0±0.0 1.0±0.0 −2.43±4.72 48.75
MPC Behavior 3.35±0.51 3.8±0.15 4.03±0.11 4.86±0.19 73.71±18.30 1.4±0.55 −106.25±156.37 36.22

Highway
merging

IDM 0.3±0.04 0.42±0.02 0.46±0.01 0.57±0.04 99.96±0.05 1.0±0.0 −311.45±248.84 21.65
Princeton 0.19±0.04 0.24±0.03 0.26±0.02 0.33±0.03 94.03±4.5 1.2±0.45 −192.2±278.92 20.40
MPC Behavior 1.54±0.57 2.27±1.02 2.74±0.96 4.38±1.83 9.78±9.03 6.8±7.5 −4928.2±5487.19 24.83

Pedestrian
crosswalk

IDM 0.97±0.04 1.11±0.03 1.19±0.01 1.34±0.01 99.86±0.13 1.0±0.0 −4.60±3.54 25.71
Princeton 1.04±0.05 1.22±0.02 1.28±0.02 1.4±0.02 100.0±0.0 1.0±0.0 −10.39±3.65 24.50
MPC Behavior 2.92±0.28 3.92±0.27 4.63±0.43 6.8±0.61 90.77±3.77 1.0±0.0 −2.73±1.54 38.88

Overall
IDM 1.05±0.55 1.3±0.6 1.39±0.6 1.52±0.59 87.70±29.56 12.75±36.09 −155.38±202.86 74.25
Princeton 0.93±0.51 1.09±0.58 1.17±0.6 1.3±0.63 71.62±34.14 89.34±192.09 −17416.9±68955.41 48.53
MPC Behavior 2.46±1.12 3.42±1.66 4.06±1.89 5.6±2.21 33.12±37.70 16.77±25.63 −2584.2±4263.2 39.01

* First failure episode.

details the results from running 5 different RNG seeds and highlights the “best” AV policy for each
metric in green. Note that unlike the results from the ablation studies, a lower failure rate and
lower maximum log-likelihood is better (i.e., less risky), while a higher “ease” of failure metric is
better (i.e., harder to fail). The last row in table 6 combines the metrics across all of the scenarios
to get an overall measure of risk.

Breaking down the risk into the individual scenarios highlights where certain AV policies may
have difficulties. Using this type of assessment during AV development can also provide an op-
portunity to find and resolve any system problems before deployment. The cost distributions for
each AV are illustrated in fig. 9 to show where the AVs fail across different closure rates (i.e.,
costs). Evident from these distributions is an increased cost for the MPC behavior policy which
may be attributed to the lack of a constraint on the maximum acceleration (where the IDM has
an acceleration maximum and the Princeton model has a velocity maximum). There is room to
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Figure 9: Cost distributions of each AV policy over the six driving scenarios.
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Figure 10: Polar plots of the total risk for each driving scenario. A weight of 10 is applied to each failure
metric.

tune the MPC agent through hyperparameters based on these results, which also emphasizes the
use of this type of automated assessment during development. We left the MPC agent “un-tuned”
for an example where one AV policy (the MPC agent) has higher cost metrics but lower failure
metrics—thus, providing a useful example of balancing metrics using the risk weights. The wider
distribution for the MPC agent can be seen in the cost distributions and in the higher cost metrics
in table 6. Balancing the cost of a failure with how often failures occur is the reasoning behind
the weighted risk measure. Selecting weights of 10 for the failure metrics puts more emphasis on
how likely the system is to fail, and then incorporating the cost metrics when it does fail. Polar
plots that qualitatively represent the AV risk are shown in fig. 10 (using the previously described
weights). The risk area under the curves (AUC) is shown in the figure legends where larger values
means riskier. Dominance of one AV curve over another is a quick indication that the dominating
policy is riskier. The high cost for the MPC agent (in purple) is visible in the polar plots and
the high failure statistics are also evident in the IDM and Princeton policies (in green and blue,
respectively). Because we want higher to represent riskier in each of these risk metrics, we define
the “ease of failing” as (N − F )/N , where F is the first failure episode and N is the total number
of episodes. We also use the likelihood (rather than log-likelihood) in the polar plots to ensure all
metrics are non-negative.

Focusing on the risk over all scenarios, we can also see the higher cost trend when using the

21



Autonomous Vehicle Risk Assessment

MPC behavior agent with the IDM and Princeton models exhibiting similar distributions in the
aggregate (shown in fig. 11). Looking at the polar plots over all scenarios, fig. 12(a) illustrates the
risk with the adjusted failure weights and fig. 12(b) illustrates the risk with uniform weights (i.e.,
all set to one). Figure 12(b) clearly highlights the higher cost metrics when using the MPC agent
and higher failure metrics when using the IDM or Princeton models, illustrating the importance of
having control over the weighting scheme.
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Figure 11: Cost distribution over all six driving scenarios.
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Figure 12: Risk area over all six driving scenarios using separate weights.
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5 Conclusion and Future Work
This work presents an end-to-end autonomous vehicle risk assessment framework to automate the
validation process. The intention is to compare different AV policies across stressing driving scenar-
ios and quantify their risk across several important metrics. We use established risk metrics over
a cost distribution combined with failure metrics found through adaptive stress testing. Balancing
these metrics using weights provides developers or policy makers with control over the relative
importance of each risk metric in the total measured risk. The risk framework is open-source with
a modular design to allow for “plug-in-play” components ranging from driving scenarios, sensor
observation models, AV policies, validation methods, and risk assessment metrics. We introduce a
method to learn surrogates of complex or unknown probability distributions of the sensor obser-
vation models to extend the black-box assumption around the simulation environment itself, not
just the AV system under test. We propose several modifications to adaptive stress testing for
more efficient failure searches; including a rate component in the reward function and employing
a two-stage learned rollout method for Monte Carlo tree search. Comparing against two lead-car
following driver models (namely, the IDM and Princeton model), we have also developed a driving
behavior agent using model predictive control to compare against more realistic AV policies. Abla-
tion studies were performed to test the individual components we propose and their relative affect
on performance. An example end-to-end risk assessment study compared the three AV policies
across six driving scenarios to compute individual risk for each scenario and an overall risk across
all scenarios. The modularity of the developed framework can be extended to higher-fidelity sim-
ulators and more realistic AV policies, hence the research focus on data efficient falsification and
sensor observation modeling in lieu of more computationally expensive simulators and systems.

Future work will extend this framework from low-fidelity simulators to high-fidelity 3D simu-
lators like CARLA [43] and to more realistic AV policies like Comma AI’s OpenPilot.5 Further
extending the data efficiency of adaptive stress testing can be explored; either through modifications
to the problem formulation itself or to existing reinforcement learning algorithms. Further analysis
of the potential-based reward shaping approach and how the magnitude of the rate value may help
speed up learning would also be useful. Normalization schemes applied to each risk metric could
also be investigated so the metrics can be weighted and scaled relative to other metrics. Finally,
other cost models besides closure rate could be applied in simulation to further assess AV risk under
a different definition of cost (e.g., property damage).

5https://github.com/commaai/openpilot
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A Software Tools
This section describes the open-source software tools produced as part of this research.

A.1 AutonomousRiskFramework

The end-to-end autonomous vehicle risk assessment framework is collected into the Autonomous-
RiskFramework6 package. This high-level collection of packages serves as the main repository
for documentation and example notebooks. The following four main Julia packages have been
developed to support this work and are included in the AutonomousRiskFramework repository.

A.1.1 RiskSimulator.jl

The RiskSimulator.jl package is designed to set up and run the risk assessment process, linking
all of the packages together. The package is built off of AutomotiveSimulator.jl7, Adversari-
alDriving.jl8, and POMDPStressTesting.jl9 [13] to build a falsification-based simulator around
different driving scenarios and AV policies. The driving scenarios studied in this work are included
in this package, along with all of the code used in the experiments. Plotting tools for risk assess-
ment and analysis are included, along with code to compute the cost-based risk metrics and AUC
measures used in this work.

A.1.2 ObservationModels.jl

The ObservationModels.jl package contains tools for fitting a probabilistic model of the distur-
bances in the simulation environment. The package relies on the interface from AutomotiveSimu-
lator.jl and AdversarialDriving.jl to simulate and collect several scenes containing the noisy
environment state. Using the collected scenes, the package contains methods and examples to con-
struct a disturbance model using a Mixture Density Network or using moment matching. Methods
for simulating sensor observations (e.g., GPS pseudorange and range-bearing measurements) with
associated noise models are included in the package, along with examples for visualizing distur-
bances and landmark objects in the environment (such as buildings).

A.1.3 IntelligentDriving.jl

The IntelligentDriving.jl package allows constructing an MPC driver agent within the large
AST framework by specifying an arbitrary objective function that the agent should attempt to
minimize. The agent then minimizes a finite horizon optimal control plan at every time step and
executes the first action from the plan—attempting to drive optimally according to the specified
objective function.

In the interest of computational speed, a separate automatic differentiation package is pro-
vided (SpAutoDiff.jl) which computes the sparse first and second order derivatives of objectives
specified using its atoms. A wide range of functions (not necessarily convex) are implemented.

Although IntelligentDriving.jl does not allow specifying state and action constraints ex-
plicitly, exact satisfaction of these can be guaranteed by specifying the constraints within the
objective function via exact penalty functions [44].

6https://github.com/sisl/AutonomousRiskFramework
7https://github.com/sisl/AutomotiveSimulator.jl
8https://github.com/sisl/AdversarialDriving.jl
9https://github.com/sisl/POMDPStressTesting.jl
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A.1.4 STLCG.jl

The STLCG.jl package allows specifying the human-interpretable Signal Temporal Logic (STL)
atoms and computing their robustness score. This can then be used either within Autonomous-
RiskFramework to specify the undesirable occurrences within the scene (indicated by a low or neg-
ative robustness score) or as an objective for a MPC agent specified via IntelligentDriving.jl.
Because IntelligentDriving.jl relies on general nonlinear derivative based optimization (and
some STL atoms generate sparse derivative information) the STL formulas can be relaxed, replac-
ing low-level max and min operators with their smooth approximation defined conveniently via a
guaranteed overapproximator in the form of the logsumexp operator with a tunable smoothness
parameter (where large values of the parameter indicate an almost exact approximation).

A.2 CARLA Integration

The objective of the CARLA integration is to leverage the high-fidelity sensor observations and
driving models available in the CARLA simulator for stress testing. By directly searching for failures
within CARLA, AST can assess the risk associated with realistic driving scenarios and with the
algorithms for perception and control. Furthermore, the integration leverages the ScenarioRunner
package in CARLA to simulate various NHTSA-inspired pre-crash scenarios, thereby improving the
risk assessment. The integration between the CARLA Python interface and AST Julia interface
is enabled using PyCall.jl and PyJulia packages. For efficiency, the interface is implemented in
two phases; the first phase executes the stress testing in CARLA using a specified model of the
disturbances and the second phase generates and records the sensor observations corresponding to a
specified trajectory. The first phase does not necessarily require sensor observations to be simulated
or the environment to be rendered, and therefore can be executed at 10 times the real-time speed.
The input to the second phase are the trajectories encountered by AST during the failure search,
for which several sensor observations are generated asynchronously and noisy environment states
are computed. In the next steps of this integration, these sensor observations and environment

Figure 13: An example failure discovered in the CARLA simulator. The ego vehicle uses the BaseAgent
class for choosing the control actions and observes the noisy position and velocity of the bicyclist. AST finds
a likely sequence of disturbances added to the position and velocity in the simulation that causes the ego
vehicle to hit the bicyclist.

25



Autonomous Vehicle Risk Assessment

states will be utilized in constructing a new disturbance model using the ObservationModels.jl
package, and repeat the first phase with the updated disturbance model to improve the accuracy
of the assessed risk. Figure 13 shows an example of a failure discovered in CARLA using AST.

B Demonstration: End-to-End Risk Assessment
This section illustrates an example end-to-end risk assessment when using the AutonomousRisk-
Framework. To load the framework code into a Julia session, we run:

using RiskSimulator

Next we choose which AV policy we want to stress test. In this case, we use the IDM as our SUT.

system = IntelligentDriverModel()

We select a scenario from the SCENARIO enumeration, where we chose the highway merging scenario
here as an example.

scenario = get_scenario(MERGING)

We then set up the AST planner, passing in the specific SUT and scenario.

planner = setup_ast(sut=system, scenario=scenario)

Now we can run the failure search, which will automatically collect necessary metrics.

search!(planner)

To access the failure and risk metrics, we can pull out the necessary metrics for further analysis.

α = 0.2 # risk tolerance
fail_metrics = failure_metrics(planner)
cost_metrics = risk_assessment(planner, α)

Finally, we can plot metrics (not shown) and calculate the overall risk (with optional weights w).

risk = overall_area(planner, weights=𝐰, α=α)

C Signal Temporal Logic (STL)
Signal Temporal Logic (STL) defines a continuous satisfaction robustness score for Linear Temporal
Logic (LTL) formulas. STL and LTL operate on the idea of a signal. Below is a summary based
on an excellent description of STL in [45].

Definition 1 (Signal). A signal st0 = (x0, t0), (x1, t1), . . . , (xT , tT ) is an ordered (ti−1 < ti) finite
sequence of states xi ∈ Rn and their associated times ti ∈ R. For ease of notation, s (i.e., when
the subscript on st is dropped) denotes the entire signal.

STL allows specifying requirements in a human-interpretable way over autonomous agents tra-
jectories by capturing things like
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• Always avoid collisions with other vehicles.

• Do not leave your lane, to overtake, until the oncoming lane is free from traffic.

• Eventually reach goal A or goal B and always avoid collisions with other vehicles.

STL formulas are defined recursively according to the following grammar [45]:

φ ::= > | µc | ¬φ | φ ∧ ψ | φU[a,b] ψ. (6)

The symbols are: ¬ (negation/not), ∧ (conjunction/and), logical connectives, and U (until) is a
temporal operator. The time range for temporal operator is denoted in the subscript and, when
omitted, is the positive ray [0,∞). Other commonly used logical connectives are ∨ (disjunction/or)
and =⇒ (implies) and temporal operators ♦ (eventually) and � (always) and can be defined as
follows:

φ ∨ ψ = ¬(¬φ ∧ ¬ψ), φ⇒ ψ = ¬φ ∨ ψ, ♦[a,b] φ = >U[a,b] φ, �[a,b] φ = ¬♦[a,b](¬φ).

Formally, the Boolean (true or false) value w.r.t. to a signal st is defined as follows:

st |= µc ⇔ µ(xt) > c

st |= ¬φ ⇔ ¬(st |= φ)

st |= φ ∧ ψ ⇔ (st |= φ) ∧ (st |= ψ)

st |= φ ∨ ψ ⇔ (st |= φ) ∨ (st |= ψ)

st |= φ⇒ ψ ⇔ ¬(st |= φ) ∨ (st |= ψ)

st |= ♦[a,b]φ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. st′ |= φ

st |= �[a,b]φ ⇔ ∀t′ ∈ [t+ a, t+ b] s.t. st′ |= φ

st |= φU[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (st′ |= ψ) ∧ (st |= �[0,t′]φ)

STL differs from LTL in that it defines a continuous robustness score ρ, a measure of “how much”
a given formula is satisfied (with positive values indicating Boolean value of true and negative values
indicating Boolean false). This takes the following form:

ρ(st,>) = ρmax where ρmax > 0

ρ(st, µc) = µ(xt)− c

ρ(st,¬φ) = −ρ(st, φ)
ρ(st, φ ∧ ψ) = min(ρ(st, φ), ρ(st, ψ))
ρ(st, φ ∨ ψ) = max(ρ(st, φ), ρ(st, ψ))
ρ(st, φ⇒ ψ) = max(−ρ(st, φ), ρ(st, ψ))
ρ(st,♦[a,b]φ) = max

t′∈[t+a,t+b]
ρ(st′ , φ)

ρ(st,�[a,b]φ) = min
t′∈[t+a,t+b]

ρ(st′ , φ)

ρ(st, φU[a,b] ψ) = max
t′∈[t+a,t+b]

(min(ρ(st′ , ψ), min
t′′∈[0,t′]

ρ(st′′ , φ)))
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D Environment Noise
Table 7 details the probability distributions for the noise disturbances added to both the ego and
other vehicle (or pedestrian).

Table 7: Environment distributions of noise disturbances.

Scenario Noise Distribution: xy-position Noise Distribution: velocity

Crossing intersection N (0, 10) N (0, 2)
Head-on T-turn N (0, 10) N (0, 2)
Left T-turn N (0, 10) N (0, 2)
Highway stopping N (0, 2) N (0, 1e−4)
Highway merging N (0, 3) N (0, 1)
Pedestrian crosswalk N (0, 2) N (0, 0.1)

E Proposal: Flagship Research Project
For reference, this section details the original proposal for the flagship project.

E.1 Background

An approach known as adaptive stress testing (AST) has recently been used to find the most likely
failures in aircraft collision avoidance systems [46], [47] and autonomous vehicles [48], [49]. AST
was designed for safety-critical black-box systems, and thus requires minimal interaction with the
system under test. Lee, Kochenderfer, Mengshoel, et al. [46] applied AST to aircraft collision
avoidance systems using a modified Monte Carlo tree search algorithm to control the random
number generator seed used by the system’s simulation environment. By only controlling the seed
of an otherwise intractable problem, AST found likely failure events in a system where failures are
extremely rare. Koren, Alsaif, Lee, et al. [48] applied AST to white-box autonomous vehicles using
deep reinforcement learning as the solver and extended their approach to black-box autonomous
vehicles using recurrent neural networks [49]. Koren and Kochenderfer [50] also propose a method
to learn a heuristic reward using the go-explore algorithm, which otherwise can be difficult or
infeasible to construct from domain knowledge.

To better understand failure events, approaches have been proposed to find human-interpretable
failures [51] and to cluster high-level failures types into categories [52]. Corso and Kochenderfer
[51] use a grammar based on signal temporal logic (STL), which is commonly used for falsification,
to describe the failures and use genetic programming to optimize for high likely failure events.
Their approach results in human-interpretable logical statements that describe the failures (e.g.
“between 0 and 5 seconds the blinker is always on”). Lee, Kochenderfer, Mengshoel, et al. [52]
propose a similar grammar-based approach for interpretability and also provide a categorization of
failure events based on common behaviors described by the grammar. Their work aims to provide
more useful descriptions of failure events to be addressed by the engineers and designers of the
system under test. Other applications of AST include pairwise differential stress testing [47] and
domain-relevant reward augmentation [53]. To stress test two different systems, Lee, Mengshoel,
Saksena, et al. [47] propose a pairwise approach for differential adaptive stress testing (DAST).
Their approach uses reinforcement learning to encourage failures in one system and not the other
to maximize the difference in their outcomes. DAST is useful when assessing a system relative to
another baseline system and can also be used for regression testing. Corso, Du, Driggs-Campbell,
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et al. [53] encode domain relevant information into the AST reward function to encourage finding
a larger and more expressive set of failures (to avoid exploiting repeatedly discovered failures).

One critical category of failure events is sensing and perception failures. An autonomous vehicle
is equipped with an array of sensors for perception, such as cameras, GPS units, inertial navigation
units, LiDARs, radars and transceivers for communication with other vehicles on the road. To
validate image-based neural network controllers, Julian, Lee, and Kochenderfer [54] use AST to
apply disturbances to input images to find failures in an aircraft taxiing system. Their work
addresses the validation of the multi-step properties in neural network controllers. Shetty and Gao
[55] proposed an image-based cross-view geolocalization method for pose estimation with the aid of
georeferenced satellite imagery. The approach consists of two Siamese neural networks that extract
relevant features despite large differences in viewpoints, and integrates the crossview geolocalization
output with visual odometry through a Kalman filter. In addition to images, there is also a large
body of existing work by on LiDAR faults [56], [57], GPS faults [58], [59] and faults of sensor
fusion [60].

E.2 Research Proposal

E.2.1 Overview

To perform autonomous vehicle risk assessment over black-box systems, we propose a framework for
defining safety requirements through temporal logic specifications and using adaptive stress testing
to validate each system under test. With this approach, we can define the failure events to search for
(e.g., collisions) and the events that led to a failure (e.g., sensor failures) as human-interpretable
temporal logic specifications. To better model real-world risk, our safety validation framework
will account for realistic sensor uncertainties in the simulation, as well as interactions with other
agents on the road (e.g., human-driven vehicles). Given the computational tractability of the risk
assessment problem, we propose speed ups to adaptive stress testing by combining reinforcement
learning techniques with local optimization methods.

E.2.2 Scope

The extent of this work is to build a cohesive risk assessment framework that is agnostic to the
black-box autonomous vehicles under test. We will use off-the-shelf intelligent driver models [61] as
our black-box autonomous vehicle systems and high-fidelity simulation environments like CARLA
[62] for realistic integration of physical perception sensors. The design of the modular framework
can easily include additional sensor types, agent behavioral models (e.g., Trajectron++ [63]), au-
tonomous vehicle systems, and driving scenarios into the simulation.

E.2.3 Goals

Our objective is to provide a realistic framework for autonomous vehicle risk assessment. We aim
to use adopted techniques from the safety validation literature, including adaptive stress testing,
temporal logic specification robustness, agent behavioral models, and sensor uncertainty models.
We will also design and develop algorithms to improve the computational tractability of the risk
assessment.
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E.3 Task Descriptions

Task 1: AST Modeling Framework

To expand on our existing research, we would like to incorporate STL robustness measurements into
the AST reward function. For system requirements described using STL, robustness is a measure of
how close the requirement is to being violated [64]. Current approaches in the falsification literature
use robustness to guide their search [18]. To assess autonomous vehicle risk, system requirements
can be specified in STL and we can use AST to find likely failures. These system requirements
can be common across AV platforms, thus allowing us to appropriately compare any number of
black-box systems. Combining the interpretability work described above with STL robustness, we
could automate the process of finding measurable failures that are also human-interpretable.

Task 2: Uncertainty Models

We will aid AST with real-world perception as well agent behavioral uncertainties. Existing work
such as [51] makes certain assumptions about the sensing noise profile (e.g. uniformly distributed
in [0, 1]). We will extend the existing work with a real-world sensing profile, which includes not
only nominal cases that form a multi-modal distribution, but also outlier characteristics. The more
realistic noise profile will enable more accurate risk assessment, and thus higher level of safety.
Another key source of uncertainty is represented by the presence of sentient agents (e.g., human-
driven vehicles, pedestrian, etc.) on the road. We will again leverage STL, along with data-driven
techniques (e.g., [63]), to develop high-quality simulation agents for the purposes of AST and risk
assessments. This task will leverage our recent breakthroughs on imbuing logical structure into
high-capacity, learning-based representations of human behaviors through a tool referred to as
stlcg [45] .

Task 3: Computational Tractability

We would also like to propose to speed up the AST process. One proposed approach is extending
AST to use a two-layered approach similar to Zhang, Ernst, Sedwards, et al. [65]. This approach
splits the failure event search and the most likely failure event search into phases. The two-layered
approach uses optimization techniques to search a local action-space and the result is fed to the
higher-level reinforcement learner. Furthermore, we will apply prior knowledge about sensing and
perception uncertainties in the autonomous vehicle’s physical state to search for the most likely
failure event first. For example, if an autonomous vehicle is driving west during sunset time, image
failures due to sun glare may be the main failure cause and should be searched first. The goal is
to help speed up falsification (i.e. finding failures) so the reinforcement learner can explore the
failure-space for likely cases. Applying this technique to assess autonomous vehicle safety would
ideally speed up the process and assess risk across a more diverse set of failures.
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E.4 Timeline
October November December

Task 1 Design and development of
modular framework

Incorporate STL specifica-
tions

Incorporate robustness cal-
culations

Task 2 Implement simple sensor
models

Implement outlier detec-
tion

Devise STL-based simula-
tion agents

Task 3 Design two-layer approach
into framework

Implement local optimiza-
tion method(s)

Test optimization methods

January February March

Task 1 Incorporate STL specifica-
tion interpretability

Test STL interpretability Perform massive risk as-
sessment tests

Task 2 Model GPS multipath ef-
fects and outlier measure-
ment using a high-fidelity
GPS simulator

Model vision-based per-
ception and sensing with
CARLA

Augment CARLA with re-
alistic GPS sensing mea-
surements and STL-based
simulation agents

Task 3 Include IDM into frame-
work

Interface with CARLA Test end-to-end risk assess-
ment

April May June

Task 1 STL interpretability data
collection

Analysis of STL failures Formalize work into paper

Task 2 Expand to multi-modal
sensing profiles including
both vision and GPS

Port stlcg to Julia Formalize work into paper

Task 3 Two-layered approach data
collection

Analysis of RL/ optimiza-
tion methods

Formalize work into paper

E.5 Deliverables

We anticipate the following deliverables:

1. A peer-reviewed conference paper per task submitted no later than July 15, 2021.

2. A final report on all tasks by July 15, 2021.

3. All general-purpose software will be made open source under a non-restrictive license (e.g.,
MIT or BSD) by July 15, 2021.

E.6 Researchers

1. Mykel Kochenderfer and Robert Moss, Stanford Intelligent Systems Laboratory

2. Grace Gao and Shubh Gupta, Stanford Navigation and Autonomous Vehicles Laboratory

3. Marco Pavone and Robert Dyro, Stanford Autonomous Systems Laboratory
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