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Abstract
To plan safely in uncertain environments, agents
must balance utility with safety constraints. Safe
planning problems can be modeled as a chance-
constrained partially observable Markov decision
process (CC-POMDP) and solutions often use ex-
pensive rollouts or heuristics to estimate the opti-
mal value and action-selection policy. This work
introduces the ConstrainedZero policy iteration al-
gorithm that solves CC-POMDPs in belief space by
learning neural network approximations of the op-
timal value and policy with an additional network
head that estimates the failure probability given a
belief. This failure probability guides safe action
selection during online Monte Carlo tree search
(MCTS). To avoid overemphasizing search based
on the failure estimates, we introduce ∆-MCTS,
which uses adaptive conformal inference to update
the failure threshold during planning. The approach
is tested on a safety-critical POMDP benchmark, an
aircraft collision avoidance system, and the sustain-
ability problem of safe CO2 storage. Results show
that by separating safety constraints from the objec-
tive we can achieve a target level of safety without
optimizing the balance between rewards and costs.

1 Introduction
When developing safety-critical agents to make sequential
decisions in uncertain environments, planning and reinforce-
ment learning algorithms often formulate the problem as a
partially observable Markov decision process (POMDP) with
the objective of maximizing a scalar-valued reward func-
tion [Kochenderfer et al., 2022]. To ensure adequate safety,
the scalar reward is tuned to balance the goals of the agent
while penalizing undesired behavior or failures. Recently,
chance-constrained POMDPs (CC-POMDPs) have been used
to frame the safe planning problem by separating the reward
function into a constrained problem [Santana et al., 2016].
The objective of CC-POMDPs is to maximize rewards while
satisfying safety constraints. Lauri et al. [2022] highlight the
limitations of such chance-constrained POMDP algorithms
and the need for scalable approaches to solve large-scale,
long-horizon CC-POMDPs in practice.
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Figure 1: Elements of ConstrainedZero for CC-POMDP planning.

To address scalability and applicability to continuous state
and observation spaces, we introduce the ConstrainedZero
policy iteration algorithm that combines offline neural net-
work training of the value function, the action-selection pol-
icy, and the failure probability predictor with online Monte
Carlo tree search (MCTS) to improve the policy through plan-
ning. ConstrainedZero is a direct extension to the POMDP
belief-state planning algorithm BetaZero [Moss et al., 2024a]
and the family of AlphaZero algorithms [Silver et al., 2018],
with extensions shown in red in fig. 1. Along with an open-
source implementation,1 our main contributions are 1) we
introduce ∆-MCTS, an anytime algorithm for MDPs (ap-
plied to belief-state MDPs) that estimates failure probabilities
along with Q-values and adjusts the failure probability thresh-
old using adaptive conformal inference [Gibbs and Candes,
2021], and 2) we introduce ConstrainedZero, a policy it-
eration algorithm that extends BetaZero for CC-POMDPs,

1https://github.com/sisl/ConstrainedZero.jl

https://github.com/sisl/ConstrainedZero.jl


which includes an additional network head that estimates fail-
ure probability given a belief and uses ∆-MCTS with the neu-
ral network surrogate to prioritize promising safe actions, re-
placing expensive rollouts or domain-specific heuristics. See
Moss et al. [2024b] for the full ConstrainedZero paper.

2 Problem Formulation
This section formulates the safe planning problem we studied.

POMDPs. The partially observable Markov decision pro-
cess (POMDP) is a framework for sequential decision mak-
ing problems where the agent has uncertainty over their state
in the environment [Kochenderfer et al., 2022]. The POMDP
consists of a state space S, an action space A, an observation
space O, a transition model T , a reward model R, an observa-
tion model O, and a discount factor γ ∈ [0, 1]. When solving
POMDPs, the objective is to find a policy π(b) given a be-
lief b over the unobserved state and return an action a ∈ A
that maximizes the value of the belief, which is the expected
discounted sum of rewards when following the policy π.

Belief-state MDPs. Every POMDP can be cast as an MDP
by simply treating the belief as the state. In doing so, one can
construct a belief-state MDP (BMDP) with the belief space
B of the original POMDP as the MDP state space, while us-
ing the same action space A, the belief-based reward model
Rb, and a transition function b′ ∼ Tb(· | b, a) to get an up-
dated belief b′. The belief update may be done exactly or
using approximations such as a Kalman filter [Wan and Van
Der Merwe, 2000] or particle filter [Thrun et al., 2005].
Chance-constrained planning. When dealing with safety-
critical sequential decision making problems, separating
safety constraints from the objective allows for solvers to tar-
get an adequate level of safety while simultaneously max-
imizing rewards. This is in contrast to designing a sin-
gle reward function to balance the rewards from the goals
and penalties from violating safety. The chance-constrained
POMDP (CC-POMDP) defines a failure set F that includes
all state-action pairs (s, a) ∈ S × A that fail and a bound
∆ ∈ [0, 1] on the probability, or chance, of a failure event
occurring. Chance constraints are intuitive for users to de-
fine as they translate to the target failure probability of the
agent, which is often the requirement for systems in industries
such as aviation [Busch, 1985] and finance [Flannery, 1989].
The objective when solving CC-POMDPs is to maximize the
value function while ensuring that the failure probability, or
the chance constraint, is below the target threshold ∆:

maximize
π

V π(b0) = Eπ

[ ∞∑

t=0

γtRb(bt, at) | b0
]

(1)

subject to Fπ(b0) = Pπ

[ ∞
ł

t=0

(
(st, at) ∈ F

)
| b0

]
≤ ∆ (2)

The failure probability Fπ(bt) is often called the execution
risk of the policy π computed from the belief bt.

Therefore, the CC-POMDP is defined as the tuple
⟨S,A,O,F , T,R,O, γ,∆⟩. Our work casts the CC-POMDP
to a chance-constrained belief-MDP (CC-BMDP). The CC-
BMDP tuple ⟨B,A, Fb, Tb, Rb, γ,∆⟩ extends BMDPs with
an immediate failure probability function Fb : B×A → [0, 1]

and a failure probability threshold ∆. The immediate failure
probability is computed using the failure set F as:

Fb(b, a) =

∫
s∈S
b(s)1

{
(s, a) ∈ F

}
ds (3)

3 Approach
ConstrainedZero follows the BetaZero [Moss et al., 2024a]
policy iteration steps of policy evaluation and policy improve-
ment while also collecting failure event indicators to train the
failure probability network head. During policy evaluation, n
parallel ∆-MCTS executions are run and a data set D is col-
lected. The data set D =

{
{bt,πt, gt, et}Tt=1

}n

j=1
is a tuple

of the belief at episode time step t denoted bt, the tree policy
πt, the return gt =

∑T
i=t γ

(i−t)ri based on the observed re-
ward ri and discount factor γ, and the failure event indicator
et, where gt and et are computed at the end of the trajectory
for all time t ≤ T . The failure event is computed as the dis-
junction of all state and action pairs of the CC-POMDP in
the execution trajectory to ensure that if a trajectory failed at
some point the full trajectory is marked as a failure:

et = 1
{

ŽT
i=t

(
(si, ai) ∈ F

)}
(4)

During policy improvement, the neural network is trained
to minimize the MSE or MAE loss LVθ

(gt, vt) to regress the
value function vt = Vθ(b̃t), minimize the cross-entropy loss
LPθ

(πt,pt) to imitate the tree policy pt = Pθ(b̃t), and ad-
ditionally minimize the binary cross-entropy loss LFθ

(et, pt)

to regress the failure probability function pt = Fθ(b̃t), with
added regularization using the L2-norm of the weights θ. The
failure probability head of the neural network includes a fi-
nal sigmoid layer to ensure the output can be interpreted as a
probability in the range [0, 1].

3.1 Adaptive Safety Constraints in ∆-MCTS
When using online MCTS for CC-BMDP planning, two con-
siderations have to be addressed: 1) how to estimate the ob-
served failure probability in the tree search, and 2) how to
select actions constrained by this failure probability.

At each belief-state and action node (b, a), the immedi-
ate failure probability p is computed using p = Fb(b, a).
An estimate of the future failure probability p′ can be com-
puted using rollouts, which may be expensive, thus we use the
trained neural network head for failure probability estimation
p′ = Fθ(b̃

′). Similar to the Q-value, we must compute the
full failure probability of the trajectory from the immediate
time step to the horizon, termed the F -value. The probabil-
ity of a failure event E between the current time t and the
horizon T is given by P (Et:T ) = p + (1 − p)p′, assuming
independence in the derivation. A discount δ is applied to
control the influence of the future failure probability, result-
ing in p = p+ δ(1− p)p′. Unlike Carpin and Thayer [2022],
who backup F -values based on the best-case, we backpropa-
gate the F -values up the tree similar to Q-values:

F (b, a) = F (b, a) +
p− F (b, a)

N(b, a)
(5)
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Figure 2: ConstrainedZero online Monte Carlo tree search with failure threshold adaptation (∆-MCTS).

Algorithm 1 ∆-MCTS adaptation.
1 function ADAPTATION(∆, b, a)
2 l(b)← mina′∈A(b) F (b, a′) ▷ update bounds
3 u(b)← maxa′∈A(b) F (b, a′)
4 err← 1{F (b, a) > ∆(b)}
5 ∆(b)← clip

(
∆(b) + η(err− ∆0), l(b), u(b)

)

which is a running mean estimate where F (b, a) is initial-
ized using the initialization function F0(b, a) (noting the F0

subscript: which could either be zero, the immediate failure
probability Fb(b, a), or the bootstrapped value by taking ac-
tion a to get a new belief b′ and computing p based on the
p′ = Fθ(b̃

′) estimate).
Using the estimate F (b, a), a simple way to select ac-

tions that do not violate the safety constraint set by ∆ would
be to use the PUCT algorithm [Silver et al., 2018] with a
hard constraint on safety of only choosing actions such that
F (b, a) ≤ ∆ is satisfied. However, if the failure probabil-
ity threshold ∆ is too conservative, the action-selection pro-
cess may fail to find any action that satisfies the constraint.
Therefore, ∆-MCTS tracks an estimate of the threshold ∆(b)
for each belief node and updates it using adaptive confor-
mal inference (ACI) [Gibbs and Candes, 2021]. ACI is a sta-
tistical method that provides valid prediction intervals with-
out assumptions on how the time-series data was generated.
The adaptive threshold is initialized to the target tolerance
∆(b) = ∆0 where ∆0 = ∆. Each time the F -value is up-
dated (either by eq. (5) or initialization), the ADAPTATION
procedure is called to update the current acceptable safety
threshold.

In adaptation, the error term of err = 1{F (b, a) > ∆(b)}
indicates when to widen or restrict the estimated threshold
∆(b) based on whether the failure probability estimate of the
most recently explored belief-action node F (b, a) is above
or below the current threshold. The estimated threshold is
updated according to

∆(b) = ∆(b) + η(err −∆0) (6)

which will widen the threshold if the observed failure prob-
ability is outside the threshold (i.e., if the error is one), and
will tighten the threshold otherwise.

Intuitively, the update adjusts the threshold of acceptable
failure probability ∆(b) based on recent experience. If the
failure probability F (b, a) for a recent action is higher than
the current threshold ∆(b), this indicates a higher risk than
expected. Thus, the threshold is increased by η(1 −∆0) for
η > 0 to allow for more risk in future actions. Otherwise,
if F (b, a) is lower than the threshold, this means actions are
safer than expected and the threshold is decreased by η∆0

(favoring a more reactive increase than decrease of the thresh-
old). Notably, Gibbs and Candes [2021] prove that ∆(b) con-
verges exactly to the desired target over time.

We clip the final threshold to the lower and upper bounds of
the observed failure probability for a given belief b to restrict
the change in ∆(b) and, more importantly, to guarantee that at
least one action is available for selection (line 5, algorithm 1).

The resulting criterion selects actions that satisfy the adap-
tive constraint of F (b, a) ≤ ∆′(b) where the selection thresh-
old ∆′(b) = max{∆0,∆(b)} upper bounds the failure prob-
ability. Together, the ∆-MCTS exploration policy becomes:

πexplore(b) = argmax
a∈A(b)

Q̄(b, a) + c
(
Pθ(b̃, a)

√
N(b)

1+N(b,a)

)
(7)

s. t. F (b, a) ≤ ∆′(b) (8)

termed the chance-constrained PUCT criterion (CC-PUCT).
The constraint in eq. (8) is also used to select root actions.

The benefit of CC-PUCT is that when our explored sam-
ples satisfy the constraint ∆′(b) (defined over the belief rather
than both belief and action) we may explore new actions from
this belief which are both safe and have the potential for
higher reward. The key idea is that actions are chosen based
on the balance between safety and utility; ensuring that we do
not over-prioritize safety at the expense of potential rewards,
while not exploiting rewards without regarding the risk.

4 Experiments
For a fair comparison, ConstrainedZero was evaluated against
BetaZero using the same network and MCTS parameters. Be-
taZero uses a scalarized reward function to penalize failures,
while ConstrainedZero omits the penalty and plans using the
adaptive safety constraint instead. The BetaZero reward takes
the form R̄b(b, a) = Rb(b, a)−λC(b, a) with a cost C scaled
by λ. Three safety-critical CC-POMDPs were evaluated. The
first is the LightDark POMDP, a standard benchmark local-
ization task [Platt Jr. et al., 2010]. The next CC-POMDP is
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LightDark Collision Avoidance Spillpoint CCS
∆0 = 0.01 ∆0 = 0.01 ∆0 = 0.05

p(fail) ↓ returns ↑ p(fail) ↓ returns ↑ p(fail) ↓ returns ↑
ConstrainedZero 0.01±0.01 13.07±0.42 0.00±0.00 −0.74±0.03 0.05±0.02 2.62±0.12

No Adaptation∗ 0.66±0.05 27.47±3.90 0.03±0.02 −1.00±0.00 0.69±0.04 6.18±0.36

∆-MCTS (no fθ)† 0.01±0.01 1.86±0.20 0.32±0.05 0.00±0.00 1.00±0.00 6.87±0.50

Raw Policy Pθ 0.01±0.01 12.88±0.46 0.00±0.00 −0.86±0.02 0.06±0.02 2.45±0.11

Raw Value‡ Vθ 0.72±0.05 28.00±4.51 0.16±0.04 −0.20±0.04 0.38±0.05 4.27±0.30

Raw Failure‡ Fθ 0.80±0.04 0.05±0.04 0.00±0.00 −1.62±0.08 0.00±0.00 0.00±0.00

All results report the mean ± standard error over 100 seeds, evaluated using the argmax of the tree policy.
* Trained with the same parameters as ConstrainedZero without adaptation, i.e., only a hard constraint on ∆0.
† ∆-MCTS without the neural network for the value or failure probability and a random policy for CC-PUCT.
‡ One-step look-ahead over all actions using only the value or failure probability network head with 5 obs. per action.

Table 1: ConstrainedZero results. Bold indicates the best results within the ∆0 threshold.

the aircraft collision avoidance problem (CAS), modeled af-
ter ACAS X [Kochenderfer et al., 2012]. In the CAS problem,
the ownship aircraft attempts to avoid a near mid-air collision
(NMAC) with an intruding aircraft while minimizing the alert
and reversal rates. Lastly, we study safe carbon capture and
storage (CCS) [Corso et al., 2022]. A challenge of CCS is
safely injecting CO2 into the subsurface while mitigating risk
of leakage and earthquakes.

4.1 Empirical Results
Figure 3 compares ConstrainedZero against BetaZero, where
BetaZero uses different values of the penalty λ. The penal-
ties were swept between −10 and −1000 with −100 being
the standard for the LightDark POMDP (proportional to the
goal reward of 100). A target safety level of ∆0 = 0.01 was
chosen for ConstrainedZero. ConstrainedZero exceeds the
BetaZero Pareto curve and achieves the target level of safety
with a failure probability of 0.01± 0.01 computed over 100
episodes. BetaZero still achieves good performance but at the
cost of sweeping the penalty values without explicitly defin-
ing a safety threshold to satisfy.

Shown in table 1, an ablation study is conducted for Con-
strainedZero. Most notably, the adaptation procedure is cru-
cial to enable the algorithm to properly balance safety and
utility during planning (also shown in fig. 4a–4b). When
comparing ∆-MCTS without network approximators against
ConstrainedZero, it is clear that offline policy iteration al-
lows for better online planning. ConstrainedZero consistently
achieves the highest return within the satisfied safety target.

Compared to BetaZero, fig. 4a and fig. 4b highlight that
ConstrainedZero satisfies the safety constraint earlier dur-
ing policy iteration, while simultaneously maximizing returns
(shown for the CAS problem). The policy trained without
adaptation learns to maximize returns but fails to satisfy the
safety constraint. This is because without adaptation, the al-
gorithm will attempt to satisfy a fixed constraint, not taking
into account the outcomes of its actions. With adaptation,
ConstrainedZero adjusts the constraint in response to feed-
back from the environment, resulting in the algorithm becom-
ing more capable at optimizing its performance within the
bounds of the adaptive constraint. This demonstrates the im-
portance of adaptation, as a fixed constraint may be too con-
servative or too risky, leading to suboptimal decision-making.

5 Conclusions
This work introduces ConstrainedZero, an extension of
the BetaZero POMDP planning algorithm to CC-POMDPs.
Along with neural network estimates of the value function
and action-selection policy, we include a network head that
estimates the failure probability given a belief. By framing
the safe planning problem as a CC-POMDP, we select a tar-
get level of safety to optimize towards, instead of tuning the
reward function to balance safety and utility. We develop an
extension to MCTS that includes an adaptation stage that ad-
justs the target level of safety during planning using adap-
tive conformal inference. The resulting ∆-MCTS algorithm
modifies MCTS for CC-POMDPs and addresses the issue of
overfitting to failure predictions.
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Figure 4: Results for the collision avoidance CC-POMDP. Figure 4d matches the “notch” behavior from Kochenderfer et al. [2012].



Acknowledgments
This research is funded by OMV and J.F. thanks the Karlsruhe
House of Young Scientists (KHYS) for travel grant funding.

References
[Busch, 1985] Allen C. Busch. Methodology for Establish-

ing A Target Level of Safety. Federal Aviation Administra-
ton Technical Center, 1985.

[Carpin and Thayer, 2022] Stefano Carpin and Thomas C.
Thayer. Solving Stochastic Orienteering Problems with
Chance Constraints Using Monte Carlo Tree Search. In
International Conference on Automation Science and En-
gineering (CASE), pages 1170–1177. IEEE, 2022.

[Corso et al., 2022] Anthony Corso, Yizheng Wang, Markus
Zechner, Jef Caers, and Mykel J. Kochenderfer. A
POMDP Model for Safe Geological Carbon Sequestration.
NeurIPS Workshop on Tackling Climate Change with Ma-
chine Learning, 2022.

[Flannery, 1989] Mark J. Flannery. Capital Regulation and
Insured Banks Choice of Individual Loan Default Risks.
Journal of Monetary Economics, 24(2):235–258, 1989.

[Gibbs and Candes, 2021] Isaac Gibbs and Emmanuel Can-
des. Adaptive Conformal Inference Under Distribution
Shift. Advances in Neural Information Processing Systems
(NeurIPS), 34:1660–1672, 2021.

[Kochenderfer et al., 2012] Mykel J. Kochenderfer, Jes-
sica E. Holland, and James P. Chryssanthacopoulos. Next-
Generation Airborne Collision Avoidance System. Lincoln
Laboratory Journal, 19(1), 2012.

[Kochenderfer et al., 2022] Mykel J. Kochenderfer, Tim A.
Wheeler, and Kyle H. Wray. Algorithms for Decision Mak-
ing. MIT Press, 2022.

[Lauri et al., 2022] Mikko Lauri, David Hsu, and Joni Pa-
jarinen. Partially Observable Markov Decision Processes

in Robotics: A Survey. IEEE Transactions on Robotics,
39(1):21–40, 2022.

[Moss et al., 2024a] Robert J. Moss, Anthony Corso, Jef
Caers, and Mykel J. Kochenderfer. BetaZero: Belief-
State Planning for Long-Horizon POMDPs using Learned
Approximations. Reinforcement Learning Journal (RLJ),
2024.

[Moss et al., 2024b] Robert J. Moss, Arec Jamgochian, Jo-
hannes Fischer, Anthony Corso, and Mykel J. Kochender-
fer. ConstrainedZero: Chance-Constrained POMDP Plan-
ning Using Learned Probabilistic Failure Surrogates and
Adaptive Safety Constraints. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 2024.

[Platt Jr. et al., 2010] Robert Platt Jr., Russ Tedrake, Leslie
Kaelbling, and Tomas Lozano-Perez. Belief Space
Planning Assuming Maximum Likelihood Observations.
Robotics: Science and Systems VI, 2010.

[Santana et al., 2016] Pedro Santana, Sylvie Thiébaux, and
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