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Abstract
We are interested in data efficient black-box vali-
dation techniques to assess autonomous vehicle
(AV) risk. We falsify an AV policy in a noisy envi-
ronment using a reinforcement learning technique
called adaptive stress testing. Once we collect
a supervised dataset of failures (i.e., a collision
with another vehicle), we learn models to be later
used in a more data efficient failure search. Given
a feature input of the distance to the other agent
and the closure rate, the models predict whether
the current scenario will result in a failure, which
we can use to augment the reward function to
bias the search towards failures. We use two
types of Gaussian discriminant analysis, namely
linear discriminant analysis and quadratic dis-
criminant analysis. We also compare against a
support-vector machine classifier. Results sug-
gest that including a signed additive prediction of
risk to the reward function leads to much higher
failure rates, thus resulting in more data efficient
falsification. The learned generative models are
then compared to an empirical cost distribution to
perform AV policy risk assessment.

1. Motivation
To assess the risk of autonomous vehicle (AV) policies,
we would like to be able to do two important things: (1)
efficiently find trajectories that led to a collision with another
vehicle (i.e., a failure) and (2) compute the distribution of
failures over the input features x for later risk assessment. In
our case, the input features consist of the distance between
the ego vehicle and the other agent, and the closure rate
with the other agent (i.e., a measure of the cost/severity of
collision). We restrict ourselves to these input features as
they are already provided given the adaptive stress testing
(AST) formulation, thus keeping the black-box assumption
(where AST requires a “miss distance” to the failure to guide
its search, and the rate value is derived from this distance).
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To collect a large dataset of failure and non-failure AV tra-
jectories, we will use AST (Lee et al., 2020) to control
sensor noise to search for failures using reinforcement learn-
ing. The AST approach formulates the black-box validation
problem as a Markov decision process (MDP) with a reward
function that guides towards both failures (often called fal-
sification) and high-likely failures (Corso et al., 2020). A
benefit of our approach is that we can automatically collect
a supervised dataset using AST as the collection method,
but we could have also been given a dataset and used that
to train the models instead. Given the dataset generated by
AST, we discuss how to efficiently find more failure exam-
ples and how we can compute the distribution of failures to
assess AV risk. We apply generative modeling techniques
to act as a critic that predicts failures and that can compute
failure distributions for later risk assessment.

2. Related Work
The problem of black-box validation of safety-critical sys-
tems has been studied extensively (Corso et al., 2020). Fail-
ure predictions in autonomous vehicles have been primarily
studied to predict imminent disengagements to be used to
safety pass control back to the human drivers (Hecker et al.,
2018; Kuhn et al., 2020)—which differs from our proposed
work to use risk predictions for more efficient falsification.
Hecker et al. (2018) train a supervised approach using re-
current neural networks given video frames of impending
failures. Their approach focuses on “scene drivability” to
assess whether a particular scene is too complex for the AV
policy to operate correctly, but requires a large amount of
specified visual training data containing both normal and
unsafe operations. Another similar approach from Kuhn
et al. (2020) use LSTM-based models to predict future dis-
engagements while treating the car as a black box, yet they
still require state information which, under certain defini-
tions, violates the black-box assumption. Despite this, their
approach focuses on the use of the failure prediction to be
integrated into the AV stack during driving, as opposed to us-
ing the prediction in simulation for validation. Actor-critic
methods have been proposed for the purpose of develop-
ing safe AV policies (Gupta et al., 2020) rather than using
actor-critic methods for the validation task itself.

The motivation to preserve the black-box assumption is
driven by the rise of complex methods used in the devel-
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Figure 1. Validation scenario: A stopped vehicle on a three-lane
highway. The red vehicle is the ego vehicle (i.e., AV policy) and
the yellow vehicle is the “other” agent. The purple vehicles show
the positional beliefs based on added noise disturbances. This
figure is showing the terminal state when a collision occurred.

opment of AV policies, such as neural network-based con-
trollers (Kiran et al., 2021). Strickland et al. (2018) explore
a deep learning-based approach to predict AV collisions in
simulation for better autonomous vehicle risk assessment.
Their work keeps the black-box assumption to extend to
other AV policies, yet they rely on large neural networks
trained on images to predict the collisions.

There are companies focused solely on efficient black-box
validation of autonomous systems, namely Trustworthy AI
(Norden et al., 2020). Their validation technique uses adap-
tive importance sampling methods to perform an unbiased
search for rare failure events in a commercial autonomous
system, namely Comma AI’s OPENPILOT. Although their
approach is shown to be more tractable than naive Monte
Carlo estimation, they use Markov chain Monte Carlo to es-
timate rare event probabilities which may be data inefficient
when consecutive iterations are far from each other in the
design space; thus, the conditional probability distributions
may not be wide enough to cross over at each iteration.

Other AV validation work that extends the AST method
have focused on efficiently finding likely failures (Koren &
Kochenderfer, 2019) and diversifying the types of failures
found (Corso et al., 2019). Koren & Kochenderfer (2019)
apply AST to the validation of an AV policy in simulation
to improve efficiency in black-box validation. They em-
ploy a recurrent neural network-based solution to the AST
problem formulation to find high-likely failures more ef-
ficiently while still maintaining the black-box assumption.
Their focus is more on the particular solvers used to find fail-
ures, while we propose an approach that augments the MDP
reward function itself (used by all of the solvers), which
potentially allows our method to be broadly applied to all
types of solvers to achieve more data efficient falsification.

3. Dataset and Features
We consider the scenario of a stopped vehicle on a three-
lane highway with an approaching ego vehicle from behind,
as illustrated in fig. 1. AST acts as an adversary and controls
the noise disturbances applied per time step to try and find
failures (Koren et al., 2019). Because we are operating in
a reinforcement learning setting, we treat training and test
datasets in a different manner. We run the standard AST

failure search (i.e., without any risk prediction) across 10
different RNG seeds to better assess the performance and to
gauge the failure rate and the highest likelihood of failure
with accompanying statistics. At the end of each simulation,
sometimes referred to as the terminal state, we collect the
distance d from the ego vehicle to the other vehicle and the
closure rate r (which is derived from the distance). We use
these two measurements as our input features x = [r, d] in
our models. We collect the supervised training dataset by
storing the features x measured at the terminal state and
the target y which is a binary value indicating a collision
occurred (i.e., a failure). We define the terminal state as
either when a collision occurs or when the simulation ends
(after 30 seconds). Note that we arbitrarily choose the final
seed to start our data collection for the training set; this way
we have a dataset representative of a single standard AST
failure search and not one that is a combination across many
simulations. Explained further in section 5, we also do this
to show that a useful model can be learned from a small
amount of failure data points.

For testing, we select 10 different RNG seeds than those
used in training—simply to remove any unintentional data
leakage in how the vehicle trajectories were sampled in
simulation. We employ the predictive risk estimate in the re-
ward function during these simulations and collect relevant
statistics for performance assessment, described in section 5.
It is also worth noting that we are using the Monte Carlo
tree search (MCTS) algorithm as our solver, which uses
stochasticity (Coulom, 2006), but emphasize that our pro-
posed method is agnostic to the particular type of solver due
to simply being an augmentation of the reward function.

4. Method
The main approach is illustrated in fig. 2. The first phase
(COLLECTION) runs the standard AST failure search and
collects the features x at the termination state into a
dataset D. Using this supervised dataset, the next phase
(LEARNING) trains a model to act as a critic C to predict
failures during future simulations (providing a signed magni-
tude value of how close the input features are to the decision
boundary). The final phase (EFFICIENT SEARCH) uses the
critic to augment the AST reward function by including
an additive penalty/reward based on the failure prediction
(where positive values indicate failure predictions). Lastly, a
failure distribution F is output and used for risk assessment.

AST failure search
(falsification)

COLLECTION PHASE

Train critic models
(supervised)

LEARNING PHASE

AST search using
predictive risk models

(bootstrapped)

EFFICIENT SEARCH PHASE

RISK ASSESSMENT

dataset D critic C

failure distribution F

Figure 2. Phased efficient validation using predictive risk.
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The use of generative models gives us the flexibility to com-
pute the distribution p(x | y = 1) where y = 1 indicates a
failure/collision occurred. Using different versions of Gaus-
sian discriminant analysis (GDA) (McLachlan, 1992), we
can model the outcome y ∼ Bernoulli(φ) with unknown
failure rate φ and the individual conditional distributions

x | y = 0 ∼ N (µ0,Σ0) (1)
x | y = 1 ∼ N (µ1,Σ1) (2)

as multivariate Gaussians. We can then solve for the optimal
parameters using maximum likelihood estimation (MLE).
We also use these models as discriminators to predict a
signed value of “closeness” to failure.

4.1. Linear discriminant analysis (LDA)

We predict a failure given a distance d to the other agent
(i.e., “how close are we to fail”) and a closure rate r (i.e.,
simply the change in distance over time: rt = dt−1 − dt).
We concatenate these features into our input x = [r, d]. If
we (incorrectly) assume the covariances are the same (i.e.,
Σ = Σ0 = Σ1), then we get linear discriminant analysis
(Ghojogh & Crowley, 2019):

δk(x) = x>Σ−1µk −
1

2
µkΣ−1µk + log(πk) (3)

and when δ0(x) < δ1(x), we classify as failure (i.e., class 1).
This gives us a “hard” decision boundary for classification
as seen in fig. 3(a). Note that πk is the prior on the failure
rate, where we set πk = 0.5 (i.e., a uniform prior). Setting
δ0(x) = δ1(x) and solving for δ(x) = 0, we get:

δ(x) =(x− µ0)>Σ−1(x− µ0)

− (x− µ1)>Σ−1(x− µ1) (4)

and if δ(x) > 0, then we classify as failure. This gives us a
“soft” decision boundary for classification (fig. 3(b)).

In our case, notice that when using LDA (fig. 3(a) and
fig. 3(b)), the assumption of a shared covariance does not
hold. Notably, the distribution of failure events has a thinner
spread than the non-failure events. Thus, we investigate the
case where the covariance matrices can be different which
leads us to quadratic discriminant analysis.

4.2. Quadratic discriminant analysis (QDA)

Quadratic discriminant analysis (Hastie et al., 2001), gives:

δk(x) = −1

2
µkΣ−1k µk + x>Σ−1k µk

− 1

2
x>Σ−1k x− 1

2
log |Σk| (5)

with separate covariances Σk, and when δ0(x) < δ1(x),
we classify as failure (i.e., class 1). This gives us a “hard”

decision boundary as seen in fig. 3(c). Setting δ0(x) =
δ1(x) and solving for δ(x) = 0, we get:

δ(x) =(x− µ0)>Σ−10 (x− µ0) + log |Σ0|
− (x− µ1)>Σ−11 (x− µ1)− log |Σ1| (6)

and when δ(x) > 0, we classify as failure (i.e., class 1)
to give us a “soft” decision boundary as seen in fig. 3(d).
Notice that QDA provides a better fit, and results in table 1
suggest it generally outperforms LDA.

The standard AST reward function R(st, at) for a state st
consisting of a collection of all noise samples up to time t
and action at of the noise itself, is described as follows:

R(s, a) =


0 if sT ∈ E
−d(s) if sT 6∈ E
log p(a | s) otherwise

(7)

where d(s) is the “distance to failure“ metric, log p(a | s)
is the log-likelihood of the noise disturbance, sT indicates
the terminal state, and E is the set of failure events. Thus,
this reward function guides the search towards failures by
minimizing d(s) when no failure is found, while maximiz-
ing the sum of the log-probabilities to find likely failures
(which is equivalent to maximizing the product of the prob-
abilities). We then take the failure prediction function δ(x)
(described in eq. (4) for LDA and eq. (6) for QDA) and use
the signed value given by δ(x) as a penalty/reward based on
the predictive risk to create the augmented reward function
R′(s, a, x) = R(s, a) + δ(x). Negative values of δ(x) indi-
cate a non-failure prediction (penalty) where positive values
of δ(x) indicate a failure prediction (reward).

5. Experiments, Results, and Discussion
Experiments were designed to test the performance of our
approach in a “non-restrictive” noisy scenario where failures
are common (around a nominal 14% failure rate, illustrated
in fig. 3) and in a “restrictive“ noisy scenario where failures
are rare (around a 0.4% failure rate, illustrated in fig. 4).
We do this to emphasize the effectiveness of our approach
when very little failure data is available during training. The
“non-restrictive” noisy scenario has xy-position disturbances
sampled from a zero-mean Gaussian with σ = 3, and the
“restrictive” noisy scenario sets σ = 2.

The GDA approaches are compared to an SVM classifier as
a baseline. Seeing that SVM predicts δ(x) = ŷ ∈ {−1, 1},
while the “soft” LDA/QDA provide a sign and magnitude,
we are interested in scaling factors C to hopefully achieve
better performance of SVM using Cδ(x) instead. Similarly,
the “hard” decision boundary of LDA (fig. 3(a)) and QDA
(fig. 3(c)) are also tested using different scale factors. We
swept values of C and a scale factor of C = 10,000 per-
forms well across all three algorithms; thus, we will use this
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Figure 3. Non-restrictive: Decision boundaries using LDA and QDA, including multivariate Gaussian fits and SVM boundary.
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(d) QDA: “Soft” boundary.

Figure 4. Restrictive: Decision boundaries using LDA and QDA, including multivariate Gaussian fits and SVM boundary.

value throughout the analysis. Note that this is a major draw-
back of the SVM and “hard” approaches as we have to tune
C accordingly. Table 1 also compares against a random pre-
diction of ŷ ∈ {−C,C} and surprisingly has higher failure
rate than nominal in the non-restrictive case (yet with large
variance and poor training performance) and lower in the
restrictive case, but the predictive models still significantly
outperform random. The increase in failure rate for the ran-
dom approach could be attributed to the non-restrictive case
being more likely to find failures (thus, random large re-
wards/penalties could help exploration), which is confirmed
when comparing to random in the restrictive case.

We collected a supervised dataset D of 1000 AV trajec-
tories over 10 different RNG seeds (for statistical signif-
icance and reproducibility) and we arbitrarily select the
collected data from the final run to train our predictive
model. The driving scenario is shown in fig. 1 and we use
the AutomotiveSimulator.jl1 Julia package for simula-
tions, POMDPStressTesting.jl2 for AST (Moss, 2021),
and the intelligent driver model (IDM) from Treiber et al.
(2000) as the AV policy we are validating. We test the per-
formance of our model through the EFFICIENT SEARCH
PHASE using 10 different RNG seeds than were used for
training/baselining. Finally, we perform risk assessment
using the failure distribution F learned by the generative
models, comparing to the empirical cumulative distribution
function (eCDF) computed directly from data.

Figure 5 shows a proxy for learning to find failures in simu-
lation (where we do not compare rewards or returns because
the predictive approach augments the reward function itself).
Comparing the QDA “soft” approach against standard AST,

1
https://github.com/sisl/AutomotiveSimulator.jl

2
https://github.com/sisl/POMDPStressTesting.jl

fig. 5 suggests that we are more effectively minimizing the
distance between the two vehicles, which we would expect
to translate into more failures. Table 1 shows that this as-
sumption is correct as the predictive approaches find about
3-5 times more failures in the “non-restrictive” case and
about 28-38 times more failures in the “restrictive” case, all
using the same number of episodes (with negligible com-
putational cost). Notice that we learn an effective model in
fig. 4 with only three failure data points.

5.1. Error Analysis

Figures 6(a) and 6(b) show the confusion matrices for the
two test cases using the QDA “soft” approach (refer to ta-
ble 1 for performance metrics). We compute these matrices
over all 10,000 episodes (i.e., 10 seeds × 1000 episodes).
These figures suggest that the learned models perform well.
This is also evident in the increased failure rate seen in ta-
ble 1. We include the standard deviations of each metric
across the RNG seeds to indicate the potential noisiness
in the performance and report the values computed on the
training dataset in parentheses. Results show the predictive
approaches outperform the nominal case across all metrics.
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Figure 5. Miss distance at episode termination (proxy for learning).
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Table 1. Performance metrics: Testing and (training).
EXPERIMENT APPROACH FAIL-RATE* max log(p)* PRECISION* RECALL* ACCURACY*

NOMINAL 0.14±0.01 8.15±0.09 — — —
RANDOM† 0.21±0.17 (0.086) 8.19±0.17 (7.87) 0.215±0.168 (0.149) 0.511±0.054 (0.524) 0.502±0.021 (0.504)

QDA “SOFT” 0.64±0.11 (0.60) 8.26±0.07 (8.24) 0.978±0.011 (0.899) 1.0±0.0 (1.0) 0.986±0.006 (0.984)

QDA “HARD”‡ 0.61±0.14 (0.77) 8.28±0.07 (8.38) 0.973±0.014 (0.899) 1.0±0.0 (1.0) 0.985±0.005 (0.984)

“NON-RESTR.” LDA “SOFT” 0.58±0.11 (0.75) 8.25±0.11 (8.29) 0.982±0.009 (0.900) 0.965±0.013 (0.818) 0.971±0.007 (0.961)

LDA “HARD”‡ 0.44±0.15 (0.54) 8.30±0.08 (8.43) 0.972±0.019 (0.900) 0.875±0.024 (0.818) 0.938±0.013 (0.961)

SVM‡ 0.64±0.11 (0.67) 8.28±0.08 (8.23) 0.992±0.004 (0.960) 1.0±0.0 (1.0) 0.995±0.002 (0.994)

NOMINAL 0.004±0.002 8.58±0.74 — — —
RANDOM† 0.002±0.001 (0.003) 8.26±1.13 (8.45) 0.003±0.002 (0.004) 0.642±0.393 (0.667) 0.496±0.015 (0.487)

QDA “SOFT” 0.13±0.14 (0.38) 9.35±0.73 (9.96) 0.972±0.050 (1.0) 0.997±0.006 (1.0) 0.997±0.003 (1.0)

QDA “HARD”‡ 0.15±0.20 (0.47) 9.23±0.59 (9.74) 0.932±0.140 (1.0) 0.999±0.002 (1.0) 0.998±0.002 (1.0)

“RESTRICTIVE” LDA “SOFT” 0.15±0.20 (0.40) 9.26±0.93 (9.89) 0.911±0.157 (0.600) 0.930±0.210 (1.0) 0.997±0.003 (0.998)

LDA “HARD”‡ 0.11±0.14 (0.11) 9.07±0.80 (9.81) 0.830±0.179 (0.600) 0.968±0.068 (1.0) 0.994±0.005 (0.998)

SVM‡ 0.13±0.18 (0.48) 9.03±0.99 (10.00) 0.885±0.198 (1.0) 1.0±0.0 (1.0) 0.996±0.003 (1.0)

* Training results shown in parentheses. † Random prediction of ŷ ∈ {−C,C}. ‡ With scale factor C = 10,000.
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Figure 6. Confusion matrices, the empirical cost distribution compared to the model, and the modeled CVaR error.

5.2. Risk Assessment

The use of generative models not only gives us predictions
we can use for efficient falsification but also provides a
distributional model F of the cost of failure (where we use
the closure rate at time of collision as a measure of cost).
We isolate the univariate Gaussian of the rate dimension r
conditioned on y = 1 from eq. (2) to get the distributional
model F(r) := N

(
r | µ(1)

1 ,Σ
(11)
1

)
, where the superscripts

are the indices of the rate component. We use this cost model
to derive risk metrics associated with failures and compare
it to the empirical cumulative distribution function (eCDF)
as shown in fig. 6(c). Common risk metrics used in the
financial and robotics communities are expected cost, value
at risk (VaR), conditional value at risk (CVaR), and the
worst case cost (Majumdar & Pavone, 2017). The industries
have shifted their primary focus to use CVaR as a measure
of risk as it can be shown to be the most robust (Majumdar &
Pavone, 2017). CVaR is defined as the expected cost under
the conditional distribution set by a risk tolerance α (where
we are willing to accept α fraction of the highest risk).
Sweeping α, we compute CVaR from the eCDF and from
the learned QDA “soft” model F sampled 1000 times, then
compare their difference in fig. 6(d), where values above
zero are an overestimation from the model. Notice that
both scenarios accurately capture CVaR, where the mean
CVaReCDF across values of α is about 0.417 with a mean
error of 0.0006 (i.e., an error of 0.14% for the non-restrictive
case) and the mean CVaReCDF is about 0.276 with a mean
error of 0.024 (i.e., an error of 8.7% for the restrictive case).
Thus, the models could be used to further assess AV risk.

6. Conclusions and Future Work
The simplicity of the learned models is a major benefit of
this predictive approach. We are able to more efficiently find
failures, even when minimal failure data is present in the
initial simulations. The addition of a signed risk prediction
measurement in the AST reward function serves as another
way to guide the search towards likely failures. We use
input features of distance and rate that are available to us
in simulation, thus keeping the AST black-box assumption;
allowing this approach to extend to other systems to more
efficiently falsify. Through our experiments, we have shown
that the predictive methods can increase failure rate by about
3-38 times relative to the nominal AST failure search. SVMs
are also shown to be effective, but the GDA-based generative
models can be used for both prediction and risk assessment
by outputting a cost distribution of failures.

Future work could investigate the input features to see if
both distance and rate are necessary. Omitted from this work
for brevity is the investigation of using the full trajectory
of features instead of only collected at the terminal state.
Preliminary results suggest that collecting features at the
terminal state provides higher failure rates in most cases,
but further work could explore ways to incorporate tempo-
ral features throughout the simulation. Fitting a Gamma
distribution to the rate at collision may also provide better
performance in risk estimation simply due to observations
that the cost distribution closely follows a Gamma distribu-
tion. We would also like to test this approach across many
different driving scenarios to see how well it generalizes.
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