
Adversarial Weakness Recognition
for Efficient Black-Box Validation

Robert J. Moss
Computer Science

Stanford University
mossr@cs.stanford.edu

Abstract

When validating a black-box system, exhaustively evaluating over the entire vali-
dation dataset may be computationally intractable. The challenge then becomes to
intelligently automate selective validation given knowledge of the system failures
experienced so far. We propose an adaptive black-box validation framework that
will learn system weaknesses over time and exploit this knowledge to propose vali-
dation samples that will likely result in a failure. We use a low-dimensional encoded
representation of inputs to train an adversarial failure classifier to intelligently select
candidate failures to evaluate. Experiments were run to test our approach against a
random candidate selection process and we also compare against full knowledge of
the true system failures. We stress test a black-box neural network classifier trained
on the MNIST dataset. Results show that using our framework, the adversarial
failure classifier selects failures about 3 times more often than random.

1 Introduction

Finding failures in a validation dataset may be computationally expensive if we search over the entire
dataset. Then the challenge becomes how to intelligently select candidate inputs that are likely to lead
to failures. We are also interested in finding failures in black-box systems, i.e. systems where we can
only pass inputs and observe outputs—without any knowledge of the inner-workings of the system.
The motivation to find such candidate failure inputs is to reduce the need to exhaustively evaluate an
entire validation dataset, especially for black-box systems that may be computationally expensive
to call. Each input sample in the dataset may also be high-dimensional, therefore we also want to
learn a low-dimensional representation of the dataset and use that representation to learn features
that caused failures. An adversarial failure classifier will input the low-dimensional representation
and determine if a sampled input will likely result in a failure. Our proposed framework combines
the components of a dataset encoder, an adversarial failure classifier, and a candidate failure selector
to propose dataset inputs that will likely result in failure, all to reduce the computational cost of
evaluating the system under test and to focus only on evaluating predicted failures. The framework is
available online.1

1.1 Related Work

Current approaches to validate black-box systems focus their search over input disturbances to find
failures [Corso et al., 2020]. A black-box reinforcement learning approach known as adaptive stress
testing (AST) has recently been used to find the most likely failures in aircraft collision avoidance
systems [Lee et al., 2015, 2018], aircraft flight management systems [Moss et al., 2020], and
autonomous vehicles [Koren et al., 2018, Koren and Kochenderfer, 2019]. An underlying assumption

1https://github.com/sisl/FailureRepresentation.jl

CS230: Deep Learning, Autumn 2020, Stanford University, CA. (LATEX template borrowed from NIPS 2017.)

https://github.com/sisl/FailureRepresentation.jl


of the AST problem formulation is that the system under test can be modeled as a sequential
decision making process with explicitly defined states. This assumption limits the application of
AST for validation over a dataset and ultimately creates more data to validate due to applying input
disturbances. Other approaches use model-based clustering to efficiently sample large datasets,
but rely on tuned initialization parameters for good performance [Wehrens et al., 2004]. Bayesian
methods have been used to efficiently sample data from large hierarchical datasets using techniques to
fit clusters over randomly partitioned subsets of the data [Huang and Gelman, 2005]. To be effective,
these techniques assume hierarchical structure in the data. Compression-based approaches have also
been applied to reduce data size without loss of useful information [Ferrari et al., 2013], but are
generally domain specific. The most straightforward approach is to evaluate the system exhaustively
over the entire validation dataset, which may be expensive and is the main motivation of our proposed
framework.

2 Dataset and Features

We are using the MNIST handwritten digit dataset [LeCun et al., 2010] as our collection of inputs we
want to selectively sample. We chose MNIST because it is a well-known machine learning dataset
with many benchmarks, and is small enough to quickly iterate our framework without worrying about
computational concerns. The MNIST training data contains 60,000 gray-scale images of handwritten
digits, each represented as 28×28 pixels. The test dataset contains 10,000 gray-scale images with the
same 28× 28 pixel dimensions. For feature extraction, we left that up to the autoencoder described
in Section 3.1.

2.1 Black-Box System Under Test

Figure 1: Example
failure (i.e. misclas-
sification) which
classified this image
as a 1 instead of a 7.

To test our framework, we trained an MNIST classifier to be our black-box
system under test S . We are using the Julia machine learning package Flux.jl
[Innes et al., 2018] for building the neural network model and training. The
black-box classifier S consists of two dense layers and a ReLU activation,
mapping the input size of 28 × 28 = 784 to 32 activations, and then an
output layer of size 10 (for each digit class). We use the logit cross-entropy
loss, which is equivalent to the cross-entropy loss after applying the softmax
function to the predicted output ŷ:

LS(softmax(ŷ),y) = − 1

m

m∑
i=1

yi log(ŷi)

We trained the system over 20 epochs, with a mini-batch size of 1024, and using the Adam optimizer
[Kingma and Ba, 2017] with a learning rate of α = 3e−4. This classifier achieves around 93.2%
accuracy, so there is room to find weaknesses to exploit failures, where we define a failure as a
misclassification. Figure 1 shows an example failure where the system misclassified a particular digit.

3 Method

Our proposed framework consists of two major components: a dataset autoencoder, and an adversarial
failure selector. These components are iteratively called within a sampled validation loop. The dataset
autoencoder is used to sample m low-dimensional representations of the encoded input samples
x̃. We encode inputs into a lower-dimensional space for two reasons: 1) to reduce the potential
high-dimensionality of the inputs x and 2) to learn features in this low-dimensional space that likely
caused failures. We then split the m low-dimensional samples into a training set D̃train and test
set D̃test. The training set D̃train is passed to an adversarial agent that learns characteristics of the
low-dimensional feature representation that led to failures. We use a failure classifier as our adversary,
and then predict which inputs led to failures over the test data D̃test, then map the predicted failures
from the low-dimensional space back to the original representation, and then run the candidate inputs
expected to result in a failure through the system under test. Figure 2 illustrates each step of the
validation framework.

2



Dataset Autoencoder E

System
Under Test
S

Sampled Validation Iteration: Loop t ∈ T

Dataset
(x,y) ∈ Dtest

All samples
x Sample m encoded low-dimensional representations x̃(1:m)

t

D̃test

Candidate Failure Selector

Adversarial
Failure Classifier

A

x̃c = A(D̃test)≥0.5

xc ← mapping(x̃c)

Candidate failures
xc ⊆ x

Evaluated candidate failures
yc = S(xc)

D̃train

Figure 2: Validation framework—a dataset autoencoder E is trained on the entire validation dataset
Dtest consisting of input samples x. Then m samples of encoded low-dimensional representations of
the inputs x̃ are selected for this iteration t, denoted x̃

(1:m)
t for all m samples. The low-dimensional

representations are then split into a training and test dataset. The training dataset D̃train is used to train
an adversarial failure classifier A on the encoded representations. Then the test dataset D̃test is used
to select candidate failures x̃c as predicted by the adversary. Finally, the candidate failures from the
adversary x̃c are mapped back to the original inputs xc ⊆ x and evaluated by the system under test S .

3.1 Dataset Autoencoder

To get a low-dimensional representation of the inputs x, we used an autoencoder network [Kramer,
1991]. We trained the autoencoder E on the MNIST test dataset Dtest and sample from the low-
dimensional representation x̃ as inputs into our adversarial failure classifier. We use the MNIST test
set because this is our input validation set—thus, we want our autoencoder to only have information
about the validation set, without the need to have access to the training set used by the system under
test. The autoencoder network maps the 28× 28 input image x into a low-dimensional latent space of
size 64 using a LeakyReLU activation. Then the decoder will take the 64-dimensional representation
x̃, again using a LeakyReLU activation layer, and attempt to recover the original input x′. We
pre-trained the autoencoder over 20 epochs, with a mini-batch size of 1000, and tuned the network
parameters using the Adam optimizer with a learning rate of α = 1e−3. Training is unsupervised and
we use the mean squared error loss function:

LE(x
′,x) =

1

m

m∑
i=1

(x′
i − xi)

2

Figure 3a illustrates the autoencoder network architecture and Figure 3b shows samples of the true
inputs and their output after encoding/decoding.

3.2 Adversarial Failure Classifier

To learn the low-dimensional features that are likely to cause failures, we train an adversary A in the
validation loop to classify failures. The supervised adversary is trained on the partition D̃train of the
low-dimensional samples x̃ and outputs a prediction that a given input would lead to a system failure.
In order to get the target classifications y, we use the system S to run the true inputs associated to the
encoded inputs which are part of the training data D̃train. This gives us the targets we can now train
our adversary on. Our adversarial loss function is the binary cross-entropy loss:

LA(ŷ,y) = −
1

m

m∑
i=1

yi log(ŷi)− (1− yi) log(1− ŷi)

3



x

x̃

x′

(a) Dataset autoencoder architecture, with inputs x ∈
R28×28, encoded through a dense LeakyReLU layer
of size 28×28

2
to a low-dimensional representation x̃ ∈

R64, then decoded through a LeakyReLU layer of size
28×28

2
, outputting x′ ∈ R28×28.

(b) Sampled output from the MNIST autoencoder: true
input is on top and the recovered input on bottom.

Figure 3: Dataset autoencoder architecture and sample decoded output.

The adversarial network architecture consists of 3 dense layers which map the low-dimensional
representation of x̃ ∈ R64 through a ReLU layer of size 128, another ReLU layer of size 64, and
finally an output sigmoid layer to map the predictions to a probability. For each sampled validation
iteration t (shown in Figure 2), we retrain the adversary A for 20 epochs using the Adam optimizer
with learning rate α = 3e−5. Notice that our learning rate is very small, this is so we do not overfit to
early iterations in t and can generalize across different samples of the low-dimensional space. The
adversary will use the test data partition D̃test to select the encoded input that it predicted would lead
to a failure. We use the threshold of A(x̃) ≥ 0.5 to indicate the input x̃ ∈ D̃test ⊂ (x̃,y) led to a
failure. All encoded inputs in the test dataset that led to a failure are considered candidate failure
scenarios, and we denote them as x̃c. We use a mapping from the encoded inputs x̃c to the original
inputs xc ⊆ x, and finally pass the failure candidates to the true system S for actual evaluation.

4 Experiments and Results

To evaluate our approach, we ran T = 10 sampled validation iterations, sampling m = 500 random
encodings and partitioning these samples in half into D̃train and D̃test for the adversary. Because
the failure rate for our system under test S is about 0.0677, we augment the training dataset by
duplicating the known failures 10 times after running each training set through the system S to get the
true outputs ytrain. We use two main metrics to evaluate the performance of the adversary: precision
and recall. During each iteration t, we save off the current adversary At and evaluate the area under
the ROC curve (AUC) as shown in Figure 4a. The ROC curve highlights incremental improvement
of the adversary after each iteration. Note that we retrain the new adversary At starting from the
network weights learning by the previous adversary At−1. To balance between precision and recall,
we swept over the prediction threshold to determine which threshold value to select (see Figure 4b).
Based on this tuning sweep, we chose a threshold of ŷ ≥ 0.5 to indicate a positive failure prediction
by the adversary.

During each iteration t, the adversary selects k candidate inputs predicted to be failures. For
comparison, we employ a random selection of k candidates and evaluate the precision and recall
metrics of the random scheme. This allows us to compare our adversarial learning approach to a
baseline. Table 1 quantifies the evaluation metrics for the adversary and random candidate selector.

Table 1: Evaluation Metrics

Failure Selector Precision* Recall* Sampled Precision† Sampled Recall†

Adversary A 0.2441 0.2260 0.2374± 0.11 0.3244± 0.17
Random 0.0647 0.4712 0.0618± 0.04 0.0910± 0.07

* Run over Dtest only calculated for the “failure” class.
† Calculated from T = 10 iterations of the sampled validation loop.

4



0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

po
si

tiv
e

ra
te

Receiver operating characteristic (ROC) curve per iteration t ∈ T

AUC1 = 0.608

AUC2 = 0.641

AUC3 = 0.64

AUC4 = 0.668

AUC5 = 0.691

AUC6 = 0.664

AUC7 = 0.696

AUC8 = 0.684

AUC9 = 0.716

AUC10 = 0.705

(a) ROC curve and AUC for each adversary At.

0.0 0.2 0.4 0.6 0.8 1.0

prediction threshold: ŷ ≥ threshold

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n
an

d
re

ca
ll

Prediction threshold sweep: precision and recall

Precision
Recall

(b) Tuning prediction threshold.

Figure 4: ROC curve and evaluation metrics.

5 Analysis and Discussion

not failure failure
predicted failures

no
tf

ai
lu

re
fa

ilu
re

tr
ue

fa
ilu

re
s

8849 474

524 153

Confusion matrix for adversary A

2000

4000

6000

8000

Figure 5: Confusion matrix.

Shown by the confusion matrix in Figure 5, the adversarial failure
classifier achieves about 0.24 in precision and 0.23 in recall. Com-
pared to random, the precision rate is about 3 times better using
the adversary. Random recall—as expected—is around 0.5. These
results show that our approach learned the low-dimensional rep-
resentation of a failure over the validation set, and based on this
information it selected candidate failures to be evaluated. To see
which element of the low-dimensional feature vector contributed the
most to a likely failure as predicted by the adversary, we encoded
a one-hot vector over R28×28 (i.e. the input space) and plotted the
output likelihood of failure for each of the pixels, shown in Figure 6.

0 7 14 21 28

x-pixel

0

7

14

21

28

y
-l

ab
el

Failure likelihood per pixel

0.1

0.2

0.3

0.4

Figure 6: Failure likelihood.

Figure 7 compares the failures classified by the adversary. For the
true positives in Figure 7a, the top row of digits are the 10 digits
with the highest predicted failure likelihood that were true failures,
the middle row shows the feature that had the strongest influence on
the failure classification (decoding a one-hot vector representation
of the maximum of a softmax over low-dimensional inputs), and the
bottom row shows the reconstructed digits after passing through the
autoencoder. Similarly for the false negatives in Figure 7b, the top
row are the 10 digits with the lowest predicted failure likelihood that
were true failures, the middle row shows the strongest influential
feature, and the bottom row shows the output of the autoencoder.
Notice that certain features in the middle row are shared among the
other digits, indicating features that play a larger role in classifying
failures.

6 Conclusion and Future Work

(a) Adversarial true positives.

(b) Adversarial false negatives.

Figure 7: MNIST failure pre-
dictions from the adversary.

To avoid exhaustively searching an entire validation set for failures,
we show that an iterative framework that uses an adversarial failure
classifier trained on low-dimensional representations of the inputs
can select failures about 3 times more likely than randomly choosing
candidates to evaluate. To extend this framework, we could inves-
tigate different adversarial architectures, particularly around deep
reinforcement learning. We could also explore how to take the true
failures found, automatically improve the system under test, and
then in a continual learning approach we could rerun this validation
loop to use prior knowledge of previous system failures to find new
system failures.

5



7 Contributions

Robert Moss consulted regularly with Bernard Lange, who is taking CS330 Meta Learning, regarding
the project ideas. Originally, Bernard and Robert were going to collaborate on this project but took
different directions as the quarter progressed. All of the work seen here (literature review, framework
design, coding, training, analysis, plotting, and writing) was completed solely by Robert Moss.

References
Anthony Corso, Robert J. Moss, Mark Koren, Ritchie Lee, and Mykel J. Kochenderfer. A survey of

algorithms for black-box safety validation, 2020.

Ritchie Lee, Mykel J Kochenderfer, Ole J Mengshoel, Guillaume P Brat, and Michael P Owen. Adap-
tive stress testing of airborne collision avoidance systems. Digital Avionics Systems Conference
(DASC), 2015.

Ritchie Lee, Ole J. Mengshoel, Anshu Saksena, Ryan Gardner, Daniel Genin, Joshua Silbermann,
Michael Owen, and Mykel J. Kochenderfer. Adaptive stress testing: Finding likely failure events
with reinforcement learning, 2018.

Robert J. Moss, Ritchie Lee, Nicholas Visser, Joachim Hochwarth, James G. Lopez, and Mykel J.
Kochenderfer. Adaptive stress testing of trajectory predictions in flight management systems.
Digital Avionics Systems Conference (DASC), 2020.

Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J Kochenderfer. Adaptive stress testing for
autonomous vehicles. In IEEE Intelligent Vehicles Symposium (IV), pages 1–7. IEEE, 2018.

Mark Koren and Mykel J Kochenderfer. Efficient autonomy validation in simulation with adaptive
stress testing. In IEEE International Conference on Intelligent Transportation Systems (ITSC),
pages 4178–4183. IEEE, 2019.

Ron Wehrens, Lutgarde MC Buydens, Chris Fraley, and Adrian E Raftery. Model-based clustering
for image segmentation and large datasets via sampling. Journal of Classification, 21(2):231–253,
2004.

Zaijing Huang and Andrew Gelman. Sampling for Bayesian computation with large datasets.
Available at SSRN 1010107, 2005.

Carlotta Ferrari, Giorgia Foca, and Alessandro Ulrici. Handling large datasets of hyperspectral
images: Reducing data size without loss of useful information. Analytica chimica acta, 802:29–39,
2013.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso, Neethu Mariya
Joy, Tejan Karmali, Avik Pal, and Viral Shah. Fashionable modelling with Flux. CoRR,
abs/1811.01457, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991.

6


	Introduction
	Related Work

	Dataset and Features
	Black-Box System Under Test

	Method
	Dataset Autoencoder
	Adversarial Failure Classifier

	Experiments and Results
	Analysis and Discussion
	Conclusion and Future Work
	Contributions

