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Abstract

Before safety-critical autonomous systems are deployed into the real-world, we must first ensure
their validity. One common approach for validation is to stress test these systems in simulation.
This thesis proposes several techniques to aid in efficient stress testing of black-box systems, es-
pecially when those systems are computationally expensive to evaluate. We first introduce novel
variants of the cross-entropy method for stochastic optimization used to find rare failure events.
The original cross-entropy method relies on enough objective function calls to accurately estimate
the optimal parameters of the proposal distribution and may get stuck in local minima. The vari-
ants we introduce attempt to address these concerns and the primary idea is to use every sample to
build a surrogate model to offload computation from an expensive system under test. To test our
approach, we created a parameterized test objective function with many local minima and a single
global minimum, where the test function can be adjusted to control the spread and distinction of
the minima.

To find failure events and their likelihoods in computationally expensive open-loop systems, we
propose a modification to the black-box stress testing approach called adaptive stress testing. This
modification generalizes adaptive stress testing to be broadly applied to episodic systems, where
a reward is only received at the end of an episode. To test this approach, we analyze an aircraft
trajectory predictor from a developmental commercial flight management system. The intention of
this work is to find likely failures and report them back to the developers so they can address and
potentially resolve shortcomings of the system before deployment. We use a modified Monte Carlo
tree search algorithm with progressive widening as our adversarial reinforcement learner with the
goal of finding potential problems otherwise not found by traditional requirements-based avionics
testing.

When validating a system that relies on a static validation dataset, one could exhaustively
evalute the entire dataset, yet that process may be computationally intractable especially when
validating minor modification to the system under test. To address this, we reformulate the problem
to intelligently select candidate validation data points that we predict to likely cause a failure, using
knowledge of the system failures experienced so far. We propose an adaptive black-box validation
framework that will learn system weaknesses over time and exploit this knowledge to propose
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validation samples that will likely result in a failure. To further reduce computational load, we use
a low-dimensional encoded representation of inputs to train the adversarial failure classifier, which
will select candidate failures to evaluate.

A motivating principle of this work is a committement to open-source software. We believe
everyone benefits when we treat ideas for black-box validation as collaborative and non-competitive;
thus resulting in a net safety increase for all. The core software for each of the introduced techniques
have been developed as Julia packages and publically released under the MIT license. We introduce
the software and their usages at a high level and discuss alternative applications from both a research
and industrial perspective.
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Chapter 1

Introduction

With the expanding use of artificial intelligent algorithms to solve complex safety-critical problems,
there is an increasing need to ensure the validity of such systems. It may be challenging to exhaus-
tively validate a complex system due to the continuous nature of systems deployed in the real-world.
Therefore, to validate such systems, we need to rely on simulation. As with all simulations, we
model the real-world through a series of approximations, yet despite these approximations, it may
still be computationally difficult to find system failures efficiently. The validation problem becomes
even more challenging when failures are extremely rare and where a simple random search may
severely underestimate the probability of failure (or even estimate it as zero). This work purposes
several methods to try and efficiently search for likely failures in safety-critical systems, modeling
the system as a black box.

The term black box refers to a software system for which we pass inputs and only have access to
the provided outputs (i.e., the internals of the black-box system are unknown to us). Framing the
problem around black-box systems enables these techniques to be broadly applied to existing sys-
tems without the need to gain access to the internal code itself. Techniques that require knowledge
of the system internals are termed white box, which are not the focus of this work. However, we may
use the term gray box when we need access to information that’s part of the simulation environment
in which the system is operating in (e.g., access to transition probabilities in the environment).

The validation problem can be split into falsification (i.e., finding failures) and most-likely
failure analysis (i.e., finding likely failures). We provide several approaches to falsification and
build off the adaptive stress testing [42] problem formulation for finding likely failures in black-box
systems. We consider two types of systems we want to validate: open-loop systems with episodic
rewards (i.e., a controller that selects a sequence of actions without feedback from the output) and
classification systems (e.g., a hand-written digit classifier). Each type has their own respective
challenges to consider. Confronted with computationally expensive systems, we introduce methods
to intelligently select when we execute the system to reduce unnecessary evaluations.

1



Contributions 2

1.1 Contributions

The contributions of this thesis are primarily algorithmic with accompanying open-source software
tools. Most of this work has been published in conferences [50], open-source journals [49], or is
available online [48]. Section 6.1 provides a more detailed description of the contributions of this
thesis, but the main contributions can be summarized as follows:

• Two stochastic optimization algorithms called the cross-entropy surrogate method and the
cross-entropy mixture method designed for finding rare failure events using fewer objective
function evaluations. We also introduce a novel optimization test function called sierra with
user-defined control over the spread of local minima and a distinct global minimum.

• A modification to the reinforcement learning-based adaptive stress testing problem formu-
lation that is more broadly applicable for episodic-based, open-loop sequential systems (i.e.,
systems that only receive a reward signal at the end of an episode). We apply this technique to
stress test an aircraft trajectory predictor in a developmental commercial flight management
system—intended to be complementary to requirements-based avionics testing.

• An adaptive framework for validation of large, static datasets using adversarial weakness
recognition to intelligently select candidate inputs that are predicted to be likely failures.

• Open-source software tools to apply general black-box adaptive stress testing (POMDP-
StressTesting.jl),1 the cross-entropy method algorithm variants (CrossEntropyVariants.jl),2

and adversarial weakness recognition (FailureRepresentation.jl).3

1.2 Outline

Chapter 2 provides background for the cross-entropy method algorithm and details the develop-
ment of several novel variants applied to a rare-event simulation. Chapter 3 introduces adaptive
stress testing and proposes a reformulation of the problem around sequential systems with episodic
rewards, applying the proposed technique to find likely aircraft trajectory prediction failures as
part of a developmental commercial flight management system. Chapter 4 introduces a framework
for intelligently selecting candidate failure cases from a large, static dataset used to validate a neu-
ral network-based classification system. Chapter 5 details the open-source software developed to
support this thesis, and chapter 6 provides a detailed summary of the contributions and extensions
for future work.

1https://github.com/sisl/POMDPStressTesting.jl
2https://github.com/mossr/CrossEntropyVariants.jl
3https://github.com/sisl/FailureRepresentation.jl

https://github.com/sisl/POMDPStressTesting.jl
https://github.com/sisl/POMDPStressTesting.jl
https://github.com/mossr/CrossEntropyVariants.jl
https://github.com/sisl/FailureRepresentation.jl
https://github.com/sisl/POMDPStressTesting.jl
https://github.com/mossr/CrossEntropyVariants.jl
https://github.com/sisl/FailureRepresentation.jl


Chapter 2

Cross-Entropy Surrogate Method

The cross-entropy (CE) method is a probabilistic optimization approach that attempts to iteratively
fit a distribution to elite samples from an initial proposal distribution [55, 54]. The goal is to
estimate a rare-event probability by minimizing the cross-entropy between the two distributions
[17]. The CE-method has gained popularity in part due to its simplicity in implementation and
straightforward derivation. The technique uses importance sampling which introduces a proposal
distribution over the rare-events to sample from then re-weights the posterior likelihood by the
likelihood ratio of the true distribution over the proposal distribution.

There are a few key assumptions that make the CE-method work effectively. Through random
sampling, the CE-method assumes that there are enough objective function evaluations to accu-
rately represent the objective. This may not be a problem for simple applications, but can be
an issue for computationally expensive objective functions. Another assumption is that the initial
parameters of the proposal distribution are wide enough to cover the design space of interest. For
the case with a multivariate Gaussian distribution, this corresponds to an appropriate mean and
wide covariance. In rare-event simulations with many local minima, the CE-method can fail to find
the global minimum especially with sparse objective function evaluations.

This work aims to address the key assumptions of the CE-method. We introduce variants of the
CE-method that use surrogate modeling to approximate the objective function, thus updating the
belief of the underlying objective through estimation. As part of this approach, we introduce eval-
uation scheduling techniques to reallocate true objective function calls earlier in the optimization
when we know the covariance will be large. The evaluation schedules can be based on a distribution
(e.g., the Geometric distribution) or can be prescribed manually depending on the problem. We
also use a Gaussian mixture model representation of the prior distribution as a method to explore
competing local optima. While the use of Gaussian mixture models in the CE-method is not novel,
we connect the use of mixture models and surrogate modeling in the CE-method. This connection
uses each elite sample as the mean of a component distribution in the mixture, optimized through

3



Related Work 4

a subroutine call to the standard CE-method using the learned surrogate model. To test our ap-
proach, we introduce a parameterized test objective function called sierra. The sierra function is
built from a multivariate Gaussian mixture model with many local minima and a single global
minimum. Parameters for the sierra function allow control over both the spread and distinction of
the minima. Lastly, we provide an analysis of the weak areas of the CE-method compared to our
proposed variants.

2.1 Related Work

The cross-entropy method is popular in the fields of operations research, machine learning, and
optimization [31, 32]. The combination of the cross-entropy method, surrogate modeling, and
mixture models has been explored in other work [7]. Bardenet and Kégl [7] proposed an adaptive
grid approach to accelerate Gaussian-process-based surrogate modeling using mixture models as
the prior in the cross-entropy method. Unsurprisingly, they showed that a mixture model performs
better than a single Gaussian when the objective function is multimodal. Our work differs in that
we augment the “elite” samples both by an approximate surrogate model and by a subroutine call
to the CE-method using the learned surrogate model. Other related work use Gaussian processes
and a modified cross-entropy method for receding-horizon trajectory optimization [60]. Their cross-
entropy method variant also incorporates the notion of exploration in the context of path finding
applications. An approach based on relative entropy, described in section 2.2.1, proposed a model-
based stochastic search that seeks to minimize the relative entropy [2]. They also explore the use of
a simple quadratic surrogate model to approximate the objective function. Prior work that relate
cross-entropy-based adaptive importance sampling with Gaussian mixture models show that when
using mixture models, fewer objective function calls are required relative to a naïve Monte Carlo
or standard unimodal cross-entropy-based importance sampling method [37, 63].

2.2 Background

This section provides necessary background on techniques used in this work. We provide introduc-
tions to cross-entropy and the cross-entropy method, surrogate modeling using Gaussian processes,
and multivariate Gaussian mixture models.

2.2.1 Cross-Entropy

Before understanding the cross-entropy method, we first must understand the notion of cross-
entropy. Cross-entropy is a metric used to measure the distance between two probability distribu-
tions, where the distance may not be symmetric [17]. The distance used to define cross-entropy
is called the Kullback-Leibler (KL) distance or KL divergence. The KL distance is also called the
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relative entropy, and we can use this to derive the cross-entropy. Formally, for a random variable
X = (X1, . . . , Xn) with a support of X , the KL distance between two continuous probability density
functions f and g is defined to be:

DKL(f || g) = Ef

[
log f(X)

g(X)

]
=

∫
x∈X

f(x) log f(x)dx−
∫

x∈X

f(x) log g(x)dx

We denote the expectation of some function with respect to a distribution f as Ef . Minimizing the
KL distance DKL between our true distribution f and our proposal distribution g parameterized
by θ, is equivalent to choosing θ that minimizes the following, called the cross-entropy:

H(f, g) = H(f) +DKL(f || g)

= −Ef [log g(X)] (using KL distance)

= −
∫

x∈X

f(x) log g(x;θ)dx

where H(f) denotes the entropy of the distribution f (where we conflate entropy and continuous
entropy for convenience). This assumes that f and g share the support X and are continuous with
respect to x. The minimization problem then becomes:

minimize
θ

−
∫

x∈X

f(x) log g(x;θ)dx (2.1)

Efficiently finding this minimum is the goal of the cross-entropy method algorithm.

2.2.2 Cross-Entropy Method

Using the definition of cross-entropy, intuitively the cross-entropy method (CEM or CE-method)
aims to minimize the cross-entropy between the unknown true distribution f and a proposal dis-
tribution g parameterized by θ. This technique reformulates the minimization problem as a prob-
ability estimation problem, and uses adaptive importance sampling to estimate the unknown ex-
pectation [17]. The cross-entropy method has been applied in the context of both discrete and
continuous optimization problems [54, 36].

The initial goal is to estimate the probability

` = Pθ(S(x) ≥ γ)

where S can the thought of as an objective function of x, and x follows a distribution defined by
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g(x;θ). We want to find events where our objective function S is above some threshold γ. We can
express this unknown probability as the expectation

` = Eθ

[
1{S(x) ≥ γ}

]
(2.2)

where 1 denotes the indicator function. A straightforward way to estimate eq. (2.2) can be done
through Monte Carlo sampling. But for rare-event simulations where the probability of a target
event occurring is relatively small, this estimate becomes inadequate. The challenge of the min-
imization in eq. (2.1) then becomes choosing the density function for the true distribution f(x).
Importance sampling tells us that the optimal importance sampling density can be reduced to

f∗(x) = 1{S(x) ≥ γ}g(x;θ)
`

thus resulting in the optimization problem:

θ∗
g = arg min

θg

−
∫

x∈X

f∗(x) log g(x;θg)dx

= arg min
θg

−
∫

x∈X

1{S(x) ≥ γ}g(x;θ)
`

log g(x;θg)dx

Note that since we assume f and g belong to the same family of distributions, we get that f(x) =
g(x;θg). Now notice that ` is independent of θg, thus we can drop ` and get the final optimization
problem of:

θ∗
g = arg min

θg

−
∫

x∈X

1{S(x) ≥ γ}g(x;θ) log g(x;θg)dx (2.3)

= arg min
θg

−Eθ[1{S(x) ≥ γ} log g(x;θg)]

The CE-method uses a multi-level algorithm to estimate θ∗
g iteratively. The parameter θk at

iteration k is used to find new parameters θk′ at the next iteration k′. The threshold γk becomes
smaller that its initial value, thus artificially making events less rare under X ∼ g(x;θk).

In practice, the CE-method algorithm requires the user to specify a number of elite samples melite

which are used when fitting the new parameters for iteration k′. Conveniently, if our distribution
g belongs to the natural exponential family then the optimal parameters can be found analytically
[32]. For a multivariate Gaussian distribution parameterized by µ and Σ, the optimal parameters
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for the next iteration k′ correspond to the maximum likelihood estimate (MLE):

µk′ =
1

melite

melite∑
i=1

xi

Σk′ =
1

melite

melite∑
i=1

(xi − µk′)(xi − µk′)
>

The cross-entropy method algorithm is shown in algorithm 1 [32] For an objective function S

and input distribution g, the CE-method algorithm will run for kmax iterations. At each iteration,
m inputs are sampled from g and evaluated using the objective function S. The sampled inputs are
denoted by X and the evaluated values are denoted by Y. Next, the top melite samples are stored in
the elite set e, and the distribution g is fit to the elites. This process is repeated for kmax iterations
and the resulting parameters θkmax are returned. Note that a variety of input distributions for g

are supported, but we focus on the multivariate Gaussian distribution and the Gaussian mixture
model in this work.

Algorithm 1 Cross-entropy method.
function CrossEntropyMethod(S, g,m,melite, kmax)

for k ∈ [1, . . . , kmax]
X ∼ g( · ;θk) where X ∈ R|g|×m . draw m samples from g
Y← S(x) for x ∈ X . evaluate samples X using objective S
e← store top melite from Y . select elite samples output from objective
θk′ ← Fit(g( · ;θk), e) . re-fit distribution g using elite samples

return g( · ;θkmax)

2.2.3 Mixture Models

A standard Gaussian distribution is unimodal and can have trouble generalizing over data that is
multimodal. A mixture model is a weighted mixture of unimodal component distributions used to
represent continuous multimodal distributions [31]. Formally, a Gaussian mixture model (GMM)
is defined by its parameters µ and Σ and associated weights w where

∑n
i=1wi = 1. We denote that

a random variable X is distributed according to a mixture model as X ∼ Mixture(µ,Σ,w). The
probability density of the GMM then becomes:

p(X = x | µ,Σ,w) =
n∑

i=1

wiN (x | µi,Σi)

To fit the parameters of a Gaussian mixture model, it is well known that the expectation-
maximization (EM) algorithm can be used [18, 5]. The EM algorithm seeks to find the maximum
likelihood estimate of a dependent latent variable using observed data. Intuitively, the algorithm
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alternates between an expectation step (E-step) and a maximization step (M-step) to guarantee
convergence to a local minima. We refer to [18, 5] for further reading on the EM algorithm.

2.2.4 Surrogate Models

In the context of optimization, a surrogate model Ŝ is used to estimate the true objective function
and provide less expensive evaluations. Surrogate models are a popular approach and have been
used to evaluate rare-event probabilities in computationally expensive systems [45, 44]. The sim-
plest example of a surrogate model is linear regression. In this work, we focus on the Gaussian
process surrogate model. A Gaussian process (GP) is a distribution over functions that predicts the
underlying objective function S and captures the uncertainty of the prediction using a probability
distribution [32]. This means a GP can be sampled to generate random functions, which can then
be fit to our given data X. A Gaussian process is parameterized by a mean function m(X) and
kernel function K(X,X), which captures the relationship between data points as covariance values.
We denote a Gaussian process that produces estimates ŷ as:

ŷ ∼ N
(
m(X),K(X,X)

)
where

m(X) =
[
m(x1), . . . ,m(xn)

]

K(X,X) =


k(x1, x1) · · · k(x1, xn)

... . . . ...
k(xn, x1) · · · k(xn, xn)


Note that we use the zero-mean function m(xi) = 0, which is generally conventional. For the
kernel function k(xi, xi), we use the squared exponential kernel with variance σ2 and characteristic
scale-length `, where larger ` values increase the correlation between successive data points, thus
smoothing out the generated functions. The squared exponential kernel is defined as:

k(x, x′) = σ2 exp

(
−(x− x′)>(x− x′)

2`2

)

We refer to [32] for a detailed overview of Gaussian processes and different kernel functions.
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2.3 Algorithms

We can now describe the cross-entropy method variants introduced in this work.1 This section
will first cover the main algorithm introduced, the cross-entropy surrogate method (CE-surrogate).
Then we introduce a modification to the CE-surrogate method, namely the cross-entropy mixture
method (CE-mixture). Lastly, we describe various evaluation schedules for redistributing objective
function calls over the iterations.

2.3.1 Cross-Entropy Surrogate Method

The main CE-method variant we introduce is the cross-entropy surrogate method (CE-surrogate).
The CE-surrogate method is a superset of the CE-method, where the differences lie in the evaluation
scheduling and modeling of the elite set using a surrogate model. The goal of the CE-surrogate
algorithm is to address the shortcomings of the CE-method when the number of objective function
calls is sparse and the underlying objective function S has multiple local minima.

The CE-surrogate algorithm is shown in algorithm 2. It takes as input the objective function S,
the distribution M parameterized by θ, the number of samples m, the number of elite samples melite,
and the maximum iterations kmax. For each iteration k, the number of samples m are redistributed
through a call to EvaluationSchedule, where m controls the number of true objective function
evaluations of S. Then, the algorithm samples from M parameterized by the current θk given the
adjusted number of samples m. For each sample in X, the objective function S is evaluated and
the results are then stored in Y. The top melite evaluations from Y are stored in e. Using all of the
current function evaluations Y from sampled inputs X, a modeled elite set E is created to augment
the sparse information provided by a low number of true objective function evaluations. Finally,
the distribution M is fit to the elite set E and the distribution with the final parameters θkmax is
returned.

Algorithm 2 Cross-entropy surrogate method.
function CE-Surrogate(S, M, m, melite, kmax)

for k ∈ [1, . . . , kmax]
m,melite ← EvaluationSchedule(k, kmax) . number of evaluations from a schedule
X ∼M( · ;θk) where X ∈ R|M|×m . draw m samples from M
Y← S(x) for x ∈ X . evaluate samples X using true objective S
e← store top melite from Y . select elite samples output from true objective
E←ModelEliteSet(X,Y,M, e,m,melite) . find model-elites using a surrogate model
θk′ ← Fit(M( · ;θk),E) . re-fit distribution M using model-elite samples

return M( · ;θkmax)

1Code available at https://github.com/mossr/CrossEntropyVariants.jl

https://github.com/mossr/CrossEntropyVariants.jl
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The main difference between the standard CE-method and the CE-surrogate variant lies in
the call to algorithm 3, ModelEliteSet. The motivation is to use all of the already evaluated
objective function values Y from a set of sampled inputs X. This way, the expensive function
evaluations—otherwise discarded—can be used to build a surrogate model of the underlying ob-
jective function. First, a surrogate model Ŝ is constructed from the samples X and true objective
function values Y. We used a Gaussian process with a specified kernel and optimizer, but other
surrogate modeling techniques such as regression with basis functions can be used. We chose a
Gaussian process because it incorporates probabilistic uncertainty in the predictions, which may
more accurately represent our objective function, or at least be sensitive to over-fitting to sparse
data. Now we have an approximated objective function Ŝ that we can inexpensively call. We
sample 10m values from the distribution M and evaluate them using the surrogate model. We then
store the top 10melite values from the estimates Ŷm. We call these estimated elite values emodel the
model-elites. The surrogate model is then passed to SubEliteSet, which returns more estimates
for elite values. Finally, the elite set E is built from the true-elites e, the model-elites emodel, and
the subcomponent-elites esub. The resulting concatenated elite set E is returned.

Algorithm 3 Modeling elite set using a surrogate objective.
function ModelEliteSet(X,Y,M, e,m,melite)

Ŝ ← GaussianProcess(X,Y, kernel, optimizer) . fit a surrogate model to the samples
Xm ∼M( · ;θk) where Xm ∈ R|M|×10m . draw 10m samples from M
Ŷm ← Ŝ(xm) for xm ∈ Xm . evaluate samples Xm using surrogate objective Ŝ
emodel ← store top 10melite from Ŷm . select model-elite samples from surrogate objective
esub ← SubEliteSet(Ŝ,M, e) . generate sub-elite samples using surrogate Ŝ
E← {e} ∪ {emodel} ∪ {esub} . combine all elite samples into an elite set
return E

To encourage exploration of promising areas of the design space, the algorithm SubEliteSet
focuses on the already marked true-elites e. Each elite ex ∈ e is used as the mean of a new mul-
tivariate Gaussian distribution with covariance inherited from the distribution M. The collection
of subcomponent distributions is stored in m. The idea is to use the information given to us by
the true-elites to emphasize areas of the design space that look promising. For each distribution
mi ∈ m, we run a subroutine call to the standard CE-method to fit the distribution mi using the
surrogate model Ŝ. Then the best objective function value is added to the subcomponent-elite set
esub, and after iterating the full set is returned. Note that we use θCE to denote the parameters
for the CE-method algorithm. In our case, we recommend using a small kmax of around 2 so the
subcomponent-elites do not over-fit to the surrogate model but have enough CE-method iterations
to tend towards optimal.
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Algorithm 4 Subcomponent elite set.
function SubEliteSet(Ŝ,M, e)

esub ← ∅
m← {ex ∈ e | N (ex,M.Σ)} . create set of distributions centered at each true-elite sample
for mi ∈ m

mi ← CrossEntropyMethod(Ŝ,mi; θCE) . run CE-method over each new distribution
esub ← {esub} ∪ {Best(mi)} . append best result into the sub-elite set

return esub

2.3.2 Cross-Entropy Mixture Method

We refer to the variant of our CE-surrogate method that takes an input mixture model M as the
cross-entropy mixture method (CE-mixture). The CE-mixture algorithm is identical to the CE-
surrogate algorithm, but calls a custom Fit function to fit a mixture model to the elite set E.
The input distribution M is cast to a mixture model using the subcomponent distributions m as
the components of the mixture. We use a default uniform weighting for each mixture component.
The mixture model M is then fit using the expectation-maximization algorithm, and the resulting
distribution is returned. The idea is to use the distributions in m that are centered around each
true-elite as the components of the casted mixture model. Therefore, we would expect better
performance of the CE-mixture method when the objective function has many competing local
minima. Results in section 2.4.3 aim to show this behavior.

Algorithm 5 Fitting mixture models (used by CE-mixture).
function Fit(M,m,E)

M← Mixture(m)

θ̂← ExpectationMaximization(M,E)
return M( · ; θ̂)

2.3.3 Evaluation Scheduling

Given the nature of the CE-method, we expect the covariance to shrink over time, thus resulting
in a solution with higher confidence. Yet if each iteration is given the same number of objective
function evaluations m, there is the potential for elite samples from early iterations dominating the
convergence. Therefore, we would like to redistribute the objective function evaluations throughout
the iterations to use more truth information early in the process. We call these heuristics evaluation
schedules. One way to achieve this is to reallocate the evaluations according to a Geometric dis-
tribution. Evaluation schedules can also be ad-hoc and manually prescribed based on the current
iteration.

We provide the evaluation schedule we use that follows a Geometric distribution with parameter
p in algorithm 6. We denote G ∼ Geo(p) to be a random variable that follows a truncated Geometric
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distribution with the probability mass function pG(k) = p(1− p)k for k ∈ {0, 1, 2, . . . , kmax}. Note
the use of the integer rounding function (e.g., bxe), which we later have to compensate for the final
iterations. Results in section 2.4.3 compare values of p that control the redistribution of evaluations.

Algorithm 6 Evaluation schedule using a Geometric distribution.
function EvaluationSchedule(k, kmax)

G ∼ Geo(p)
Nmax ← kmax ·m
m← bNmax · pG(k)e
if k = kmax

s←
kmax−1∑
i=1

bNmax · pG(i)e

m← min(Nmax − s,Nmax −m)

melite ← min(melite,m)
return (m,melite)

2.4 Experiments

In this section, we detail the experiments we ran to compare the CE-method variants and evaluation
schedules. We first introduce a test objective function we created to stress the issue of converging
to local minima. We then describe the experimental setup for each of our experiments and provide
an analysis and results.

2.4.1 Test Objective Function Generation

To stress the cross-entropy method and its variants, we created a test objective function called
sierra that is generated from a mixture model comprised of 49 multivariate Gaussian distributions.
We chose this construction so that we can use the negative peeks of the component distributions
as local minima and can force a global minimum centered at our desired µ̃. The construction of
the sierra test function can be controlled by parameters that define the spread of the local minima.
We first start with the center defined by a mean vector µ̃ and we use a common covariance Σ̃:

µ̃ = [µ1, µ2], Σ̃ =

σ 0

0 σ


Next, we use the parameter δ to control the clustered distance between symmetric points:

G =
{
[+δ,+δ], [+δ,−δ], [−δ,+δ], [−δ,−δ]

}
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Figure 2.1: Example test objective functions generated using the sierra function.

We chose points P to fan out the clustered minima relative to the center defined by µ̃:

P =
{
[0, 0], [1, 1], [2, 0], [0, 2], [3, 1], [1, 3]

}
The vector s is used to control the ± distance to create an ‘s’ shape comprised of minima, using the
standard deviation σ: s = [+σ,−σ]. We set the following default parameters: standard deviation
σ = 3, spread rate η = 6, and cluster distance δ = 2. We can also control if the local minima clusters
“decay”, thus making those local minima less distinct (where decay ∈ {0, 1}). Using the parameters
〈µ̃, Σ̃,G,P, s, η, decay〉, we can define the sierra mixture model with the set of component means
µS , component covariances ΣS , and weights wS as:

µS =
{

g + spi + µ̃ | g ∈ G, s ∈ s,pi ∈ P
}

(component means)

ΣS =
{
Σ̃ · idecay/η | i ∈ {1, . . . , |P|}

}
(component covariances)

wS =
{
1/m | m = |G| · |s| · |P|+ 1

}
(uniform component weights)

We add a final component to be our global minimum centered at µ̃ and with a covariance scaled
by ση. Namely, the global minimum is x∗ = E

[
N (µ̃, Σ̃/(ση))

]
= µ̃. We can now use this constant

mixture model with 49 components and define the sierra objective function S(x) to be the negative
probability density of the mixture at input x with uniform weights (where m = 49 denotes the
number of components in the mixture model):

S(x) = −p(x) = − 1

m

n∑
j=1

N (x | µj ,Σj) (2.4)
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An example of six different objective functions generated using the sierra function are shown in
fig. 2.1, sweeping over the spread rate η, with and without decay.

2.4.2 Experimental Setup

Experiments were run to stress a variety of behaviors of each CE-method variant. The experiments
are split into two categories: algorithmic and scheduling. The algorithmic category aims to com-
pare features of each CE-method variant while holding common parameters constant (for a better
comparison). While the scheduling category experiments with evaluation scheduling heuristics.

Because the algorithms are stochastic, we run each experiment with 50 different random number
generator seed values. To evaluate the performance of the algorithms in their respective experi-
ments, we define three metrics. First, we define the average “optimal” value b̄v to be the average
of the best so-far objective function value (termed “optimal” in the context of each algorithm).
Again, we emphasize that we average over the 50 seed values to gather meaningful statistics. An-
other metric we monitor is the average distance to the true global optimal b̄d =‖bx − x∗‖, where bx

denotes the x-value associated with the “optimal”. We make the distinction between these metrics
to show both “closeness” in value to the global minimum and “closeness” in the design space to the
global minimum. Our final metric looks at the average runtime of each algorithm, noting that our
goal is to off-load computationally expensive objective function calls to the surrogate model.

For all of the experiments, we use a common setting of the following parameters for the sierra
test function (shown in the top-right plot in fig. 2.1):

(µ̃ = [0, 0], σ = 3, δ = 2, η = 6, decay = 1)
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Experiment 1A: CE-method (k = 5)

(a) The cross-entropy method.
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(b) The cross-entropy surrogate
method.
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Experiment 1A: CE-mixture (k = 5)

(c) The cross-entropy mixture
method.

Figure 2.2: Iteration k = 5 illustrated for each algorithm. The covariance is shown by the contours.
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Algorithmic Experiments

We run three separate algorithmic experiments, each to test a specific feature. For our first algo-
rithmic experiment (1A), we want to test each algorithm when the user-defined mean is centered
at the global minimum and the covariance is arbitrarily wide enough to cover the design space.
Figure 2.2 illustrates experiment (1A) for each algorithm. Let M be a distribution parameterized
by θ = (µ,Σ), and for experiment (1A) we set the following:

µ(1A) = [0, 0] Σ(1A) =

200 0

0 200


For our second algorithmic experiment (1B), we test a mean that is far off-centered with a wider

covariance:

µ(1B) = [−50,−50] Σ(1B) =

2000 0

0 2000


This experiment is used to test the “exploration” of the CE-method variants introduced in this work.
In experiments (1A) and (1B), we set the following common parameters across each CE-method
variant:

(kmax = 10, m = 10, melite = 5)(1A,1B)

This results in m · kmax = 100 objective function evaluations, which we define to be relatively low.
For our third algorithmic experiment (1C), we want to test how each variant responds to an

extremely low number of function evaluations. This sparse experiment sets the common CE-method
parameters to:

(kmax = 10, m = 5, melite = 3)(1C)

This results in m · kmax = 50 objective function evaluations, which we defined to be extremely low.
We use the same mean and covariance defined for experiment (1A):

µ(1C) = [0, 0] Σ(1C) =

200 0

0 200


Scheduling Experiments

In our final experiment (2), we test the evaluation scheduling heuristics which are based on the
Geometric distribution. We sweep over the parameter p that determines the Geometric distribution
which controls the redistribution of objective function evaluations. In this experiment, we compare
the CE-surrogate methods using the same setup as experiment (1B), namely the far off-centered
mean. We chose this setup to analyze exploration schemes when given very little information about
the true objective function.
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2.4.3 Results and Analysis

Figure 2.3a shows the average value of the current optimal b̄v for the three algorithms for experiment
(1A). One standard deviation is plotted in the shaded region. Notice that the standard CE-method
converges to a local minima before kmax is reached. Both CE-surrogate method and CE-mixture
stay below the standard CE-method curve, highlighting the mitigation of convergence to local
minima. Minor differences can be seen between CE-surrogate and CE-mixture, differing slightly
towards the tail in favor of CE-surrogate. The average runtime of the algorithms along with the
performance metrics are shown together for each experiment in table 2.1.
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(a) Average optimal value for experiment (1A) when the
initial mean is centered at the global minimum and the
covariance sufficiently covers the design space.
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(b) Average optimal value for experiment (1B) when the
initial mean is far from the global minimum with a wide
covariance.
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(c) Average optimal value for experiment (1C) when we
restrict the number of objective function calls.

Figure 2.3: Cross-entropy method variant experiment results.

An apparent benefit of the standard CE-method is in its simplicity and speed. As shown in
table 2.1, the CE-method is the fastest approach by about 2-3 orders of magnitude compared to
CE-surrogate and CE-mixture. The CE-mixture method is notably the slowest approach. Although
the runtime is also based on the objective function being tested, recall that we are using the same
number of true objective function calls in each algorithm, and the metrics we are concerned with in
optimization are to minimize b̄v and b̄d. We can see that the CE-surrogate method consistently out



Discussion 17

performs the other methods. Surprisingly, a uniform evaluation schedule performs the best even in
the sparse scenario where the initial mean is far away from the global optimal.

When the initial mean of the input distribution is placed far away from the global optimal,
the CE-method tends to converge prematurely as shown in fig. 2.3b. This scenario is illustrated in
fig. 2.4. We can see that both CE-surrogate and CE-mixture perform well in this case.

Given the same centered mean as before, when we restrict the number of objective function
calls even further to just 50 we see interesting behavior. Notice that the results of experiment (1C)
shown in fig. 2.3c follow a curve closer to the far away mean from experiment (1B) than from the
same setup as experiment (1A). Also notice that the CE-surrogate results cap out at iteration 9
due to the evaluation schedule front-loading the objective function calls, thus leaving none for the
final iteration (while still maintaining the same total number of evaluations of 50).

Table 2.1: Experimental Results.

Exper. Algorithm Runtime b̄v b̄d

1A
CE-method 0.029 s −0.0134 23.48
CE-surrogate 1.47 s −0.0179 12.23
CE-mixture 9.17 s −0.0169 16.87

1B
CE-method 0.046 s −0.0032 138.87
CE-surrogate 11.82 s −0.0156 18.24
CE-mixture 28.10 s −0.0146 33.30

1C
CE-method 0.052 s −0.0065 43.14
CE-surrogate 0.474 s −0.0156 17.23
CE-mixture 2.57 s −0.0146 22.17

2
CE-surrogate, Uniform — −0.0193 8.53
CE-surrogate, Geo(0.1) — −0.0115 25.35
CE-surrogate, Geo(0.2) — −0.0099 27.59
CE-surrogate, Geo(0.3) — −0.0089 30.88

−0.0220 ≈ x∗

2.5 Discussion

We presented variants of the popular cross-entropy method for optimization of objective functions
with multiple local minima. Using a Gaussian process-based surrogate model, we can use the same
number of true objective function evaluations and achieve better performance than the standard
CE-method on average. We also explored the use of a Gaussian mixture model to help find global
minimum in multimodal objective functions. We introduce a parameterized test objective function
with a controllable global minimum and spread of local minima. Using this test function, we
showed that the CE-surrogate algorithm achieves the best performance relative to the standard
CE-method, each using the same number of true objective function evaluations.
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Experiment 1B: k = 1

Figure 2.4: First iteration of the scenario in experiment (1B) where the initial distribution is far
away form the global optimal. The red dots indicate the true-elites, the magenta dots with black
outlines indicate the “non-elites” (i.e., all others) evaluated from the true objective function, and
the white dots with black outlines indicate the samples evaluated using the surrogate model. Notice
the trend of the white dots (those from the surrogate) that can help guide the proposal distribution
towards the area of interest (in the top right).



Chapter 3

Episodic Adaptive Stress Testing

We now consider black-box validation of an open-loop sequential system, namely components of an
aircraft flight management system (FMS). A primary function of an FMS is to provide guidance in
the form of navigational waypoints between origin and destination airports. A trajectory predictor
is the subsystem that provides trajectories to the guidance subsystem that commands the autopilot.
Failures within the trajectory prediction system can occur if the output waypoints are unreachable
given the physical limitations of the aircraft, or if there are problems with the implementation or
design of the software. The goal of this work is to find likely failure cases before system deployment
so that the engineers can resolve or address potential problems in the system.

Traditionally, large-scale Monte Carlo testing is used to generate these failure cases [11]. How-
ever, Monte Carlo testing can be inadequate for large input spaces with rare failure events [28].
We investigate the use of adaptive stress testing (AST), an advanced black-box stress testing ap-
proach that has been successfully applied to find failures in safety-critical systems [40, 34, 43, 39].
Adaptive stress testing is a method that uses reinforcement learning to adversarially search for rare
failure events in sequential decision making systems [38]. This work applies the AST approach to
trajectory prediction systems to efficiently find failure events and their likelihoods.

The trajectory prediction system is treated as a black-box simulator and AST controls the
selection of waypoints and other environmental input parameters. Monte Carlo tree search (MCTS)
with progressive widening is used to explore the possible trajectories and a notion of “miss distance”
to a failure event is used to help guide the search. Transition probabilities between states are also
used to guide the search towards the most likely failures. In traditional AST formulations, a
sequential decision making problem is assumed, but our open-looped trajectory predictor does not
provide a sequence of decisions, but rather generates trajectories based on complete flight plans.
We regard each waypoint in the flight plan as a (hidden) step in the sequence. Although we can
forcibly fit the problem to a strict sequential framework by calling the system with partial flight
plans, this is prohibitively expensive and unnecessary. Instead, we collect the intermediate states

19
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and actions and only evaluate the system at the end of a simulated rollout, then back-propagate
the reward to unevaluated parts of the tree. We can do this due to the structure of our proposed
AST reward function. Therefore, this work extends the AST approach to be applied more generally
to sequential decision making problems with episodic reward (i.e., rewards accumulated at the end
of an episode with intermediate rewards of zero).

We analyze a trajectory predictor from a developmental commercial FMS which takes as input
winds aloft, origin and destination airports, and a collection the lateral waypoints. The trajectory
predictor outputs the discrete-time controls that determine translational motion which would be
input to the FMS. Within the FMS, the trajectories are passed to the guidance subsystem which
determines how to command the autopilot. Although we focus on arc length discrepancies as the
primary failure mode (described in section 3.5), this work can be easily extended to other failure
events (see appendix A). The performance of AST is compared to two baselines: direct Monte
Carlo simulation (i.e., random search) and the cross-entropy method. Current failure assessment is
performed exhaustively over a navigational database of predefined aircraft routes defined by lateral
waypoints. This testing method is used during development while requirement-based testing is
used for final system certification following RTCA DO-178C [53]. The intention of testing during
development is to find failures otherwise not covered by requirements-based tests. As a comparison
of developmental testing approaches, we sample routes from the navigational database as another
baseline to relate the simulation-based approach to the standard navigational database approach.
Experiments were run to generate likely failure events that are provided to the developers of the
trajectory predictor to analyze and resolve potential shortcomings of the system.

3.1 Prior Work

AST has been successfully applied to safety-critical systems such as aircraft collision avoidance
systems [40, 43] and autonomous vehicles [34]. Lee et al. [41] applied AST to trajectory planning
systems, but as will be discussed further in section 3.3.1, that problem had access to the full FMS,
thus fitting the model of traditional AST. They looked at runtime behavior of the FMS on a
simulated aircraft, where the disturbances were added as sensor noise. In our work, we do not rely
on simulating aircraft dynamics and use input waypoints as the disturbances.

Other work has been proposed to efficiently search for failures in black-box cyber-physical
systems [14]. Norden, O’Kelly, and Sinha [51] propose an importance sampling approach to find
rare failure events to assess autonomous vehicle safety. Their work is similar to AST but relies
on an accurate importance distribution. Other approaches formulate the problem of falsification
as an optimization problem and solve it using Bayesian optimization [3], simulated annealing [1,
4], or rapidly-exploring random trees [61]. Each of these approaches are formulated as a classical
optimization problem and use different techniques to search the input space for failures—although
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there is no likelihood estimation for a given falsifying input. A different approach altogether uses an
existing set of falsifying inputs to bootstrap the search for neighboring failures [20]. That work relies
on existing counterexamples to base the neighboring search upon. Our work addresses falsification
of sequential systems with episodic reward and includes most likely failure analysis.

The remainder of this chapter is organized as follows. Section 3.2 provides necessary background
of AST and commercial aircraft FMS. Section 3.3 describes how this work extends existing AST
approaches and modifications made to the MCTS algorithm. Section 3.4 details the implementation
of this work using the Julia programming language and provides a description of the interface
for AST to interact with black-box systems. Section 3.5 describes the simulation environment
constructed for the FMS application and the failure events we are searching for. Section 3.6
describes the experiments and discusses the analysis of the results, and section 3.7 provides a
discussion on the conclusions from this work.

3.2 Background

This section describes background of the adaptive stress testing problem formulation and flight
management systems, particularly the trajectory prediction subsystem.

3.2.1 Adaptive Stress Testing

Adaptive stress testing (AST) is a black-box approach to find rare failure events in cyber-physical
systems [40, 42]. The AST problem is formulated as a Markov decision process (MDP) and can
be solved using reinforcement learning algorithms to guide the search towards likely failure events.
AST can also be formulated more generally as other sequential decision making processes, such as
a partially observable Markov decision process (POMDP) [40, 34, 41].

Simulator S̄

Environment System
Under Test

Reinforcement
Learner

Reward
Function

seed ā

reward r terminal τ ,
transition probability p,
event e, miss distance d

Figure 3.1: Adaptive stress testing formulation.

Figure 3.1 illustrates how the AST concept is formulated. The system under test (SUT) is
treated as a black box while the simulator S̄ is treated as a gray box that passes the transition
probability p, event indicator e, miss distance d, and termination state indicator τ to the reward
function. The AST problem is solved using an adversarial reinforcement learner that selects a
random number generator seed ā to indirectly control the SUT through the simulator. In other
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types of simulators, AST could directly control input disturbances rather than seeds. In prior work,
MCTS and deep reinforcement learning have been used to solve the MDP [40, 34]. The output of
the AST process is a set of state trajectories deterministically controlled by a set of seeds. These
seeds are used to deterministically playback the simulation starting from an initial state.

A necessary clarification is differentiating what is black-box with respect to the AST problem.
Given that the simulator must provide 〈p, e, d, τ〉 to the AST reward function, the output needs
access to the transition probabilities p and terminal indication τ from the environment, but can
determine the event indication e and miss distance d from the output of the SUT. Thus, depending
on the problem, the environment may be required to be white-box but the SUT is strictly black-box.

The standard AST reward function is designed to guide the search towards failure events and
to maximize the likelihoods of those events. It is also affected by the notion of miss distance d:
a measure of “closeness” to a particular event. The miss distance helps guide the search towards
failures to search efficiently. The standard reward function is given by:

R(p, e, d, τ) =


RE if τ ∧ e

−d if τ ∧ ¬e

log(p) otherwise

(3.1)

The non-negative constant reward for finding an event is given by RE and is generally set to 0. The
boolean e indicates when an event has been found and the boolean τ indicates that the simulation
is in a terminal state. If the simulation terminates without finding an event, then the negative miss
distance −d is awarded to guide the search towards failure. Otherwise, the log-likelihood of each
state transition is used, denoted by log(p). This term is used to maximize the likelihood of the
overall trajectory and is designed to guide the search towards likely failures. Recall that the goal
of reinforcement learning is to maximize the expected sum of rewards [59]. Using log-likelihood
means we can maximize the summations, which is equivalent to maximizing the product of the
likelihoods.

3.2.2 Flight Management Systems

Aircraft flight management systems (FMS) have been a critical part in reducing workload of pilots
in commercial aircraft by contributing to in-flight automation [52]. Major components of FMS
include flight planning, navigation, guidance, performance optimization, and trajectory prediction
[46]. This work focuses on the subsystem of the FMS that generates the aircraft trajectory given
a flight plan. This subsystem, called the trajectory predictor, provides deterministic trajectories
based on an operator-defined input flight plan and estimates of environmental conditions. Inputs
include winds aloft, origin and destination airports, aircraft weight, cost index (a balance between
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`3
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Figure 3.2: Lateral packets output by the trajectory predictor. Lateral packets consist of latitude
and longitude points that describe straight line segments `i and turning arc segments starting at
si. Straight segments are optional which can result in multiple turn segments sequenced together,
as seen at s3 and s4.

cost of fuel and time of arrival), and a set of navigational waypoints that define the lateral route.
For our purposes, we focus on the winds aloft, origin and destination airports, and the placement of
the lateral waypoints. The trajectory predictor outputs the discrete-time controls that determine
translational motion (i.e., both vertical and horizontal motion) which become input to the guidance
subsystem of the FMS. The trajectories may be processed before being passed to the guidance in
the cases where a change in the lateral or vertical trajectory needs to be anticipated and controlled
towards. Therefore, the trajectory predictor is not a strictly sequential decision making problem
because the full sequence of lateral paths are deterministically constructed based solely on the
inputs. The outputs of the trajectory predictor are illustrated in fig. 3.2.

3.3 Approach

Several modifications were made to adapt AST for open-loop sequential systems with episodic
reward. Modifications to the standard reward function were made to guide the search towards
severe failures as well as likely failures. Modifications to the Monte Carlo tree search algorithm are
also described; adapting the search algorithm for efficient SUT evaluations and to use progressive
widening with a single deterministic next state.

3.3.1 Adaptive Stress Testing for Episodic Reward Problems

Traditionally, AST is used to steer sequential decision making systems towards likely failures by
controlling the seed used to sample environmental variables within the simulator at each time step
(as seen in fig. 3.1). The issue with applying this formulation directly to the trajectory predictor
is that this system does not rely on sequential feedback to generate the trajectory and solely relies
on its set of inputs. Therefore, we propose a modification to the AST formulation to abstract the
sequential nature of the problem to the simulation environment. In other words, we collect the state
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transitions during the search and evaluate the system at the end of the rollout. This distinction
can be seen in fig. 3.3. The transition probability p is output from the environment and the event
indication e, miss distance d, and terminal state indication τ are output from the black-box SUT,
i.e., the trajectory predictor. The 4-tuple 〈p, e, d, τ〉 is passed as input to the reward function and
the transition probability p and miss distance d are used to guide the search.

The standard AST reward function described in eq. (3.1) was modified to collect all rewards at
the termination state and to incorporate a severity measurement when a failure event occurs. Both
the log-likelihood and miss distance d are used throughout the search. A multiplicative bonus RE

is applied when a failure event occurs and we set RE = 100 for our experiments. The modified
reward function becomes:

R(p, e, d, τ) =


(log(p)− d)RE if τ ∧ e

log(p)− d if τ ∧ ¬e

0 otherwise

(3.2)

The transition probability p is given by the probability of sampling a set of waypoints from a
multivariate Gaussian distribution w ā∼ N (µ,Σ) composed of waypoint direction and distance
(relative to the previous waypoint) and wind direction and magnitude with mean vector µ and
covariance Σ, deterministically controlled by the seed ā. If an event is found, then the reward
is the negative miss distance combined with the log-likelihood and adjusted by the multiplicative
bonus RE . This modification is used to incorporate severity of an event gauged by the miss distance
when an event is found. If the simulation terminates without finding an event, no multiplicative
bonus is applied. This reward function may not be suitable for certain AST problem formulations,
but in section 3.5 we discuss how these modifications are applicable for the failure event and miss
distance we investigate.

Simulator S̄

Waypoint Distribution
w ā∼ N (µ,Σ)

Trajectory Predictor
(Black-box SUT)

Rollout(s, d)
then
Evaluate(w)transition probability p

event e, miss distance d, terminal τ

Monte Carlo Tree Search
with Progressive Widening

Reward Function

R(p, e, d, τ) =


(log(p)− d)RE if τ ∧ e

log(p)− d if τ ∧ ¬e
0 otherwise

seed ā

reward r

〈p, e, d, τ〉

Figure 3.3: Modified adaptive stress testing formulation for the trajectory predictor with episodic
reward. The simulation environment samples waypoints from a distribution and passes those way-
points as input to the SUT at the end of the rollout. The modified reward function is guided
by both the severity and likelihood of the failure event. Information on the dashed lines is only
provided to the reward function when the SUT is evaluated.
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Selection Expansion Rollout

Q

Backpropagation

Q

Figure 3.4: The four steps of the Monte Carlo tree search algorithm.

3.3.2 Modified Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is an anytime algorithm that uses rollouts of a random policy
to estimate the value of each state-action node in the tree [16, 31]. MCTS has found success in
recent years in the reinforcement learning field, notably playing games such as Go [58]. There are
four main stages in each simulation: selection, expansion, rollout (or simulation), and backpropa-
gation. Figure 3.4 illustrates these four steps. The algorithm is “anytime” because a policy can
be constructed after any single iteration, but the state-action value estimates become increasingly
accurate as more simulations are performed and the tree depth is expanded. The tree T is iter-
atively expanded and the policy improves over time as the algorithm balances exploration with
exploitation of the state and action spaces.

A commonly used extension of MCTS for large or continuous spaces is progressive widening
(PW) [13, 15, 26, 8]. We apply PW on the action space of seeds because there are an infinite
number of seeds. There is no need to apply PW to the state transitions, since a seed uniquely

s0

ā1

s1 ∼ G(s0, ā1)

ā3 ā4 ā5

Evaluate
(
[s0, s1, . . . ]

)
Rollout(s1, d)

ā2

s2 ∼ G(s0, ā2)

ā6 ā7

Figure 3.5: MCTS-PW with deterministic next states and SUT evaluated at the end of the rollout.
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determines the next state. This notion can be seen in fig. 3.5 where each action āi leads to a
single deterministic state si as its child node. The states are deterministically sampled from the
generative model G given the current state and action. We define the state s as a collection of all
preceding actions deterministically leading to that point in the simulation. Note that because the
state s is a sequence of seeds that uniquely determines the state of the simulator S̄, we may overload
the notation when calling Evaluate and IsTerminal for convenience. In our formulation, the
generative model samples state transitions and does not evaluate the underlying system (unlike
standard MCTS). This difference is in algorithm 9, Rollout, where new state transitions are
generated during the rollout and the system is only evaluated at the end. By default, actions are
uniformly selected from a random policy. However, to encourage exploration of promising actions,
the current best action ā∗ is used mid-rollout. The best action is updated at the end of the rollout
based on updated Q-values.

These modifications were made to MCTS-PW specifically for episodic reward problems. The
evaluation of our SUT is expensive so we limit the evaluations to the end of the rollout (rather
than at node creation and throughout the rollout). This way, we can reduce the number of external
system executions but still provide the search with information during tree expansion, namely
using back-propagated values of the transition probabilities and the miss distance from previously
finished rollouts. Choosing to evaluate at the end of the rollout provides the SUT with an expanded
set of waypoints which it evaluates once the rollout has reached its maximum depth. Generally
for AST problem formulations, the discount factor γ is set to 1. Algorithm 7 is the entry point of
MCTS-PW and algorithms 8 to 11 detail the sub-routines.

Algorithm 7 Top-level Monte Carlo tree search algorithm.
function MonteCarloTreeSearch(s, d)

loop
Simulate(s, d)

return arg maxā∈A(s) Q(s, ā)

3.4 Implementation

The AST implementation was written in the Julia programming language [10]. Implementation of
the simulation environment around the SUT was also written in Julia, but this section will focus
on the algorithms required for AST and MCTS-PW. Modifications to MCTS were implemented
and merged into the existing MCTS.jl1 Julia package.

1https://github.com/JuliaPOMDP/MCTS.jl

https://github.com/JuliaPOMDP/MCTS.jl
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Algorithm 8 Monte Carlo tree search simulation.
function Simulate(s, d)

if d = 0
return 0

if s 6∈ T
T ← T ∪ {s}
N(s)← N0(s)
return Rollout(s, d)

N(s)← N(s) + 1
ā← SelectAction(s) . selection
(s′, r)← DeterministicStep(s, ā) . expansion
q ← r + γSimulate(s′, d− 1) . simulation/rollout
N(s, ā)← N(s, ā) + 1

Q(s, ā)← Q(s, ā) + q−Q(s,ā)
N(s,ā) . backpropagation

return q

Algorithm 9 Modified rollout with end-of-depth evaluation.
function Rollout(s, d)

if d = 0
(p, e, d)← Evaluate(s)
τ ← IsTerminal(s)
ā∗ ← UpdateBestAction(s,Q)
return R(p, e, d, τ)

else if d = bdmax/2c
ā← ā∗ . exploit the best action

else
ā← SampleAction(s,Q)

(s′, r) ∼ G(s, ā)
return r + γ Rollout(s′, d− 1)

Algorithm 10 Action selection with progressive widening.
function SelectAction(s)

if |A(s)| ≤ kN(s)α

ā← SampleAction(s,Q)
(N(s, ā), Q(s, ā))← (N0(s, ā), Q0(s, ā))
A(s)← A(s) ∪ {ā}

return arg maxā∈A(s) Q(s, ā) + c
√

logN(s)
N(s,ā)

Algorithm 11 Single deterministic next state.
function DeterministicStep(s, ā)

if N(s, ā, ·) = ∅
(s′, r) ∼ G(s, ā)
SetCache(s, ā, s′, r)
N(s, ā, s′)← N0(s, ā, s

′)
else

(s′, r)← GetCache(s, ā)
N(s, ā, s′)← N(s, ā, s′) + 1

return (s′, r)
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3.4.1 Interface

To apply AST to a general black-box system, a user has to provide the interface defined in ta-
ble 3.1. The simulation object S̄ is the user-defined data structure that holds parameters for their
simulation. All of the following functions take the simulation object S̄ as input and can modify the
object in place. The Initialize function resets the simulation and the SUT to an initial state. The
Evaluate function executes the SUT and returns the transition probability p, a boolean indicating
an event occurred e, and the miss distance d. Three subroutines determine these output values:
Transition, MissDistance, and IsEvent (where all three subroutines are used by the Eval-
uate function, but may also be called individually). Finally, the IsTerminal function returns a
boolean τ to indicate if the simulation is in a terminal state.

Table 3.1: Adaptive Stress Testing Interface

Function Input 7→ Output

Initialize S̄ 7→ ∅
Evaluate S̄ 7→ 〈p, e, d〉

Transition S̄ 7→ p ∈ R
MissDistance S̄ 7→ d ∈ R
IsEvent S̄ 7→ e ∈ B

IsTerminal S̄ 7→ τ ∈ B

As an example, the functions in the above interface can either be implemented directly in Julia
or can call out to C++, Python, MATLAB® or run an executable on the command line. Typically,
implementing the MissDistance and IsEvent functions rely solely on the output of the SUT,
thus keeping in accordance with the black-box formulation.

3.4.2 Stress Testing Julia Framework

We have implemented the AST interface written in Julia as part of a new package called POMDP-
StressTesting.jl2 (see chapter 5). This package is inspired by work originally done in the Adap-
tiveStressTesting.jl3 package, but POMDPStressTesting.jl adheres to the MDP interface defined by
the POMDPs.jl4 package [22]. Thus, POMDPStressTesting.jl fits into the POMDPs.jl ecosystem,
which is why it can use the MCTS.jl package as an off-the-shelf solver. This design choice allows
other Julia packages within the POMDPs.jl ecosystem to be used; this includes solvers, simulation
tools, policies, and visualizations. The intention of the POMDPStressTesting.jl package is to pro-
vide the user with a virtual black-box interface they must define, and provide the necessary AST
algorithms to run the search. Future modifications will focus on inclusion of benchmark falsification
problems from the literature [23]. Section 5.1 provides more details about this new package.

2https://github.com/sisl/POMDPStressTesting.jl
3https://github.com/sisl/AdaptiveStressTesting.jl
4https://github.com/JuliaPOMDP/POMDPs.jl

https://github.com/sisl/POMDPStressTesting.jl
https://github.com/sisl/AdaptiveStressTesting.jl
https://github.com/JuliaPOMDP/POMDPs.jl


Application 29

3.5 Application

The primary goal of this work is applying the modified AST formulation to a trajectory predictor
in a developmental commercial FMS. The following sections will describe the input and output
specification of the trajectory predictor and detail the investigated failure event and the associated
miss distance. We will also describe the simulation environment constructed to run the SUT.

3.5.1 Trajectory Predictor

The inputs of the trajectory predictor controlled by AST are the origin and destination airports,
a set of intermediate waypoints, and the wind direction and magnitude at each waypoint. The
output of the trajectory predictor is a detailed flight path which provides predicted vertical data,
predicted lateral data (i.e., lateral packets, illustrated in fig. 3.2), and other flight path information
currently unused in this application. The following failure event and miss distance is calculated by
parsing the SUT output after each evaluation.

c

s

e

`1

r

`2

αr

β
α

Figure 3.6: Arc length β and calculated arc length αr, showing a failure in red.

Arc Length Failure

Arc length is defined as the distance traveled across the arc from the starting point s and ending
point e, shown in fig. 3.6. Failures can arise when the arc length β does not agree with the arc
length computed using the angular extent α and arc radius r. Angular extent is computed as

α = sign(r) · |zs − ze|+ 2π (3.3)

where zs is the azimuth from the center waypoint c to the starting waypoint s, and ze is the azimuth
from the center waypoint c to the ending waypoint e. The sign of r determines the turn direction,
where negative values represent left turns. A failure occurs when the calculated difference |β − αr|
is above the threshold h = 10 ft.
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The arc length miss distance is how close the arc length difference comes to the threshold h.
We transform this difference by scaling the log-ratio of the threshold h and the maximum miss
distance from that trajectory. This way, non-positive values indicate an event. Namely, we define
miss distance to be:

d = ρ log
(

h

max |β − αr|

)
(3.4)

We use a scale of ρ = 100 to match the expected range of the log-likelihood in our problem so that
the log-likelihood does not dominate the miss distance in the reward function.

3.5.2 Simulation Environment

A simulator was constructed to sample waypoint trajectories and evaluate the SUT. Starting from
an origin airport, waypoints were sampled from a multivariate Gaussian distribution of independent
normals that encodes waypoint direction and distance (relative to the previous waypoint) and wind
direction and magnitude, deterministically controlled by the seed ā:

w ā∼ N (µ,Σ) (3.5)

Mean and variance values for the waypoint direction and distance were set by a domain expert and
the values for winds aloft were learned from observational weather data.

µ = [180 °, 50nmi, −88.5°, 66.8 kts]

Σ =


45° 0 0 0

0 30 nmi 0 0

0 0 39.5° 0

0 0 0 24.4 kts


The simulator implements the interface defined in section 3.4.1 for the trajectory predictor. The

failure event and miss distance calculations described in section 3.5 were also implemented within
the simulator.

3.5.3 Navigational Database

In addition to the simulator, we have access to a navigational database of aircraft routing pro-
cedures. The routes are encoded as collections of waypoints describing departure, arrival, and
en-route airways. Exhaustively searching all combinations of the waypoints in the navigational
database is the current approach to finding failures during development. We employ the naviga-
tional database as a baseline by sampling the same allotted number of SUT evaluations to assess
the miss distance distribution and search for failures.
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3.6 Experiments

Experiments were run to test the AST approach using MCTS-PW against direct Monte Carlo
(MC) simulations as a naïve baseline and the cross-entropy method as an importance sampling
baseline. We also perform Monte Carlo sampling over the routes in the navigational database
as another baseline. Algorithm 12 describes the direct Monte Carlo simulation approach for n

episodes, starting at an initial state s0, with a rollout depth d. Note this rollout function does not
exploit the best action as described in section 3.3.2.

Algorithm 12 Direct Monte Carlo simulation.
function DirectMonteCarlo(s0, n, d)

for 1→ n
Initialize(S̄)
Rollout(s0, d) . without expoiting the best action

The cross-entropy method (CEM) is a probabilistic optimization algorithm that iteratively fits
a proposal distribution to elite samples (see section 2.2.2 in the previous chapter) [54, 55]. The
method uses importance sampling, which introduces a proposal distribution over rare events to
sample from then re-weights the posterior likelihood by the likelihood ratio of the true distribution
(w in our case) over the proposal distribution. The idea is to artificially make failure events less
rare under the newly fit proposal distribution. We set the proposal distribution to be the same as
the true distribution w, with the exception that the waypoint distance was reduced to µ = 1 nmi
and σ = 3 nmi to encourage smaller distances between the waypoints.

For the experiments, the San Francisco International Airport (KSFO) was used as an origin
airport and the Los Angeles International Airport (KLAX) was used as a destination airport.
Comparisons were run to assess the effectiveness of AST against CEM and direct MC in finding
high-likely severe failure events. Metrics include the number of failure events found NE , iteration
of first failure iFF , and statistics about the miss distance. We also report the mean log-likelihood of
failures found by each algorithm relative to the mean log-likelihood of failures found by the direct
MC approach. For a given algorithm, this is computed as:

rel-log(p) =
log(palg)

log(pMC)
(3.6)

Values larger than one indicate a higher relative likelihood.
All experiments were run with the MCTS hyperparameters listed in table 3.2. Sensitivity

analysis of the various hyperparameter values has been omitted from this chapter for brevity.
When controlling the parameters for progressive widening, to encourage widening let k → ∞ and
α→ 1. To discourage widening, let k → 1 and α→ 0.
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Table 3.2: Algorithm Hyperparameters

Hyperparameter Value

episodes * 5000
maximum tree depth dmax (i.e., number of waypoints) * 12
rollout depth d † 12
exploration constant c 10
progressive widening k 10
progressive widening α 0.3

* Used by all algorithms.
† Used by MCTS and direct Monte Carlo.

3.6.1 Results and Analysis

We first look at the performance of each approach over all episodes. An initial seed is set across
each experiment and we run each algorithm for 5000 episodes. For each of these approaches, the
number of episodes also corresponds to the number of SUT evaluation calls.

The first two plots in fig. 3.7 show the running mean and minimum miss distance over each
episode. Notice that the direct Monte Carlo approach applied to the navigational database baseline
converges quickly to a minimum miss distance that remains above the rest, and a running mean
that only outperforms the CEM approach. Evident from fig. 3.7 is the initial behavior that MCTS
and direct Monte Carlo share. Recall that MCTS balances exploration and exploitation, and
initially acts similar to direct Monte Carlo. This similarity is based on the choice of exploration
hyperparameters and the miss distance in the reward function. This behavior suggests that the
miss distance for this problem is a noisy measurement of the actual distance to a failure event. At
about episode 500, the MCTS approach starts to exploit found failures which can be seen as the
descent of the running mean passing the origin (i.e., the event horizon).

One goal of the AST approach using MCTS is to exploit known failures to maximize their like-
lihood. The bottom plot in fig. 3.7 shows the cumulative number of failure events which highlights
this behavior. Notice that each approach finds failures relatively early in the search, suggesting
that failure events may be common given the choice of simulation environment.

We are also interested in the distribution of the miss distances collected from each approach.
Recall that the miss distance d is a transformation of the arc length discrepancy relative to a
threshold, detailed in eq. (3.4). Thus, the value for d is unitless and non-positive values indicate an
event. The top plot of fig. 3.8 shows the miss distance distributions, indicating the event horizon
at the origin. The miss distance distribution from the navigational database is used as a proxy for
miss distance distributions we would expect in the real-world. The CEM approach converges to
a local minima and stays there, which is evident in the concentration of the CEM miss distance
distribution. MCTS and the direct MC approach share similar distributions to the left of the
event horizon (indicating non-failure events), further suggesting that the miss distance is a noisy
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Figure 3.7: Running miss distance mean, minimum miss distance, and log-scaled cumulative number
of failure events across episodes. One standard deviation is reported in the shaded regions.

measurement of the true distance to a failure. The spike to the right of the origin is the distribution
of failure events found by our AST approach using MCTS. The bottom plot in fig. 3.8 shows the
distribution of log-likelihoods filtered for the failure events, suggesting that AST finds failures with
higher likelihood than the CEM approach.

The collected aggregate results are shown in table 3.3. AST finds failures with relative likelihood
about an order of magnitude greater than that of direct Monte Carlo. The CEM approach finds a
small number of failures with very low relative likelihood. This is because CEM is using importance
sampling and after re-weighting the samples using the true distribution, we would expect to get
these extremely small likelihood values. AST has the lowest mean miss distance X̄d, noting the
large standard deviation which is a result of large differences between miss distances from failure
and non-failure events. Each approach finds their first failure early in the experiment, with AST

Table 3.3: Experimental Results

Algorithm* NE iFF X̄d min(d) rel-log(p)†

MCNavDB 0 — 560.21± 75.09 410.98 —
MC 5 128 407.44± 64.85 −1127.7 1.0
CEM 24 249 625.65± 97.80 −1077.3 4.5× 10−161

ASTMCTS 4394 61 −923.49± 497.4 −1147.9 13.1

* Hyperparameters listed in table 3.2.
† Mean log-likelihood relative to direct Monte Carlo.
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Figure 3.8: Distribution of negative miss distances for all episodes (where values to the right of the
origin are events) and distribution of log-likelihoods filtered by failure events.

finding failures the earliest. The effect of exploiting the best action midway through the rollout
accelerates finding these failures. Once found, AST will optimize the failures to maximize their
likelihood. We see that AST finds failures in about 88% of episodes (i.e., system executions), where
as standard MC and CEM find failures in about 0.1% and 0.48% of episodes, respectively.

3.6.2 Example Failure

Many of the failures are a result of two duplicate waypoints being generated in sequence. Based on
the defined environmental distributions, this is possible, but unlikely. We observed that duplicate
waypoints do not always cause failures and that certain assemblages of neighboring waypoints
affect whether a failure is caused by the duplicates. Despite failures arising from these duplicate
waypoints, certain failures found only by AST have waypoints close in range to each other—not
necessarily identical—which can also result in arc length failures. Figure 3.9a shows an example
failure trajectory and fig. 3.9b zooms in on the specific arc length failure. Refer to the figure captions
for further descriptions. A set of failure trajectories was generated and provided to the engineers
of the trajectory predictor. These failures are encoded in input files than can be deterministically
played back through the system.

Due to the nature of exploiting known failures, certain failure cases may only have minor
differences between them. To assess the impact of the trajectory predictor failures on broader flight
operations, each failure case would have to be evaluated on the full FMS in simulation. This would
include modeling aircraft dynamics, guidance systems, and control feedback. Full assessment of the
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(a) Full trajectory of an example arc length failure orig-
inating from KSFO. Red diamonds indicate the input
waypoints selected by MCTS and the yellow circles in-
dicate the output lateral packets from the SUT. The red
box shows where the failure occurs, shown in more detail
in fig. 3.9b.
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Example Arc Length Failure (Zoomed)

(b) Example arc length failure, zoomed in from fig. 3.9a.
Notice two almost identical red waypoint diamonds,
which are separated by about 0.08 nmi or about 486
ft (zoom in further for more detail). The arc length fail-
ure is shown as the extending arc after the center yellow
waypoint, which extends about 3 nmi past its intended
end waypoint. This extension is the negative miss dis-
tance.

Figure 3.9: Example failure found by adaptive stress testing.

trajectory predictor failures would help inform the system developers in their decision to mitigate
issues before deployment. Further extensions of this work include searching for other failure events
and stress testing other components of the FMS.

3.7 Discussion

Adaptive stress testing was extended for sequential systems with episodic reward to find likely
failures in FMS trajectory predictors. To improve search performance, we used Monte Carlo tree
search with progressive widening and modified the rollout with end-of-depth evaluations. We replace
the current with the best action midway through the rollout to encourage further exploration
of promising actions, resulting in exploiting failures to maximize their likelihood. A simulation
environment was constructed to evaluate the trajectory predictor, and a navigational database was
sampled to compare to existing methods of finding failures during development. Performance of
AST using MCTS-PW was compared against direct Monte Carlo simulations and the cross-entropy
method. Results suggest that the AST approach finds more failures with both higher severity
and higher relative likelihood. The failure cases are provided to the system engineers to address
unwanted behaviors before system deployment. In addition to requirements-based tests, we show
that AST can be used for confidence testing during development.



Chapter 4

Adversarial Weakness Recognition

Black-box systems are not always sequential decision making systems, and to validate non-sequential
systems we have to reformulate the problem. When validating a non-sequential black-box system,
exhaustively evaluating over the entire validation dataset may be computationally intractable.
Then the challenge becomes how to intelligently select candidate inputs that are likely to lead to
failures. The motivation to find such candidate failure inputs is to reduce the need to exhaustively
evaluate an entire validation dataset, especially for black-box systems that may be computationally
expensive to call. Each input sample in the dataset may also be high-dimensional, therefore we
also want to learn a low-dimensional representation of the dataset and use that representation to
learn features that caused failures. We propose an adversarial failure classifier that inputs the low-
dimensional representation and determines if a sampled input will likely result in a failure. Our
proposed framework combines the components of a dataset encoder, an adversarial failure classifier,
and a candidate failure selector to propose dataset inputs that will likely result in failure, all to
reduce the computational cost of evaluating the system under test and to focus only on evaluating
predicted failures. The framework is open sourced and available under the MIT license.1

4.1 Related Work

Current approaches to validate black-box systems focus their search over input disturbances to find
failures [14]. Adaptive stress testing—the black-box reinforcement learning approach described in
the previous chapter—has been used to find the most likely failures in aircraft collision avoidance
systems [40, 42], aircraft flight management systems [50], and autonomous vehicles [34, 33]. An
underlying assumption of the AST problem formulation is that the system under test can be
modeled as a sequential decision making process with explicitly defined states. This assumption
limits the application of AST for validation over a dataset and ultimately creates more data to
validate due to applying input disturbances. Other approaches use model-based clustering to

1https://github.com/sisl/FailureRepresentation.jl

36

https://github.com/sisl/FailureRepresentation.jl


Dataset and Features 37

efficiently sample large datasets, but rely on tuned initialization parameters for good performance
[64]. Bayesian methods have been used to efficiently sample data from large hierarchical datasets
using techniques to fit clusters over randomly partitioned subsets of the data [27]. To be effective,
these techniques assume hierarchical structure in the data. Compression-based approaches have
also been applied to reduce data size without loss of useful information [25], but are generally
domain specific. The most straightforward approach is to evaluate the system exhaustively over
the entire validation dataset, which may be expensive and is the main motivation of our framework.

4.2 Dataset and Features

We use the MNIST handwritten digit dataset [19] as our collection of inputs we want to selectively
sample. We chose MNIST because it is a well-known machine learning dataset with many bench-
marks, and is small enough to quickly iterate our framework without worrying about computational
concerns. The MNIST training data contains 60,000 gray-scale images of handwritten digits, each
represented as 28 × 28 pixels. The test dataset contains 10,000 gray-scale images with the same
28 × 28 pixel dimensions. For feature extraction, we left that up to the autoencoder described in
Section 4.3.1.

4.2.1 Black-Box System Under Test

Figure 4.1: Example
failure (i.e., misclassifi-
cation) which classified
this image as a 1 instead
of a 7.

To test our framework, we trained an MNIST classifier to be our black-
box system under test S. We are using the Julia machine learning pack-
age Flux.jl [29] for building the neural network model and training.
The black-box classifier S consists of two dense layers and a ReLU ac-
tivation, mapping the input size of 28× 28 = 784 to 32 activations, and
then an output layer of size 10 (for each digit class). We use the logit
cross-entropy loss, which is equivalent to the cross-entropy loss after
applying the softmax function to the predicted output ŷ:

LS(softmax(ŷ), y) = − 1

m

m∑
i=1

yi log(ŷi)

We trained the system over 20 epochs, with a mini-batch size of 1024, and using the Adam optimizer
[30] with a learning rate of α = 3e−4. This classifier achieves around 93.2% accuracy, so there
is room to find weaknesses to exploit failures, where we define a failure as a misclassification.
Figure 4.1 shows an example failure where the system misclassified a particular digit.
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t

D̃test
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A
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xc ← mapping(x̃c)

Candidate failures
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Evaluated candidate failures
yc = S(xc)
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Figure 4.2: Validation framework: a dataset autoencoder E is trained on the entire validation
dataset Dtest consisting of input samples x. Then m samples of encoded low-dimensional repre-
sentations of the inputs x̃ are selected for this iteration t, denoted x̃(1:m)

t for all m samples. The
low-dimensional representations are then split into a training and test dataset. The training dataset
D̃train is used to train an adversarial failure classifier A on the encoded representations. Then the
test dataset D̃test is used to select candidate failures x̃c as predicted by the adversary. Finally,
the candidate failures from the adversary x̃c are mapped back to the original inputs xc ⊆ x and
evaluated by the system under test S.

4.3 Method

Our proposed framework, illustrated in fig. 4.2, consists of two major components: a dataset au-
toencoder, and an adversarial failure selector. These components are iteratively called within a
sampled validation loop. The dataset autoencoder is used to sample m low-dimensional represen-
tations of the encoded input samples x̃. We encode inputs into a lower-dimensional space for two
reasons: 1) to reduce the potential high-dimensionality of the inputs x and 2) to learn features in
this low-dimensional space that likely caused failures. We then split the m low-dimensional sam-
ples into a training set D̃train and test set D̃test. The training set D̃train is passed to an adversarial
agent that learns characteristics of the low-dimensional feature representation that led to failures.
We use a failure classifier as our adversary, and then predict which inputs led to failures over the
test data D̃test, then map the predicted failures from the low-dimensional space back to the original
representation, and then run the candidate inputs expected to result in a failure through the system
under test.
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(a) Dataset autoencoder architecture, with inputs x ∈
R28×28, encoded through a dense LeakyReLU layer of
size 28×28

2
to a low-dimensional representation x̃ ∈ R64,

then decoded through a LeakyReLU layer of size 28×28
2

,
outputting x′ ∈ R28×28.

(b) Sampled output from the MNIST autoencoder: true
input is on top and the recovered input on bottom.

Figure 4.3: Dataset autoencoder architecture and sample decoded output.

4.3.1 Dataset Autoencoder

To get a low-dimensional representation of the inputs x, we used an autoencoder network [35]. We
trained the autoencoder E on the MNIST test dataset Dtest and sample from the low-dimensional
representation x̃ as inputs into our adversarial failure classifier. We use the MNIST test set because
this is our input validation set—thus, we want our autoencoder to only have information about the
validation set, without the need to have access to the training set used by the system under test.
The autoencoder network maps the 28×28 input image x into a low-dimensional latent space of size
64 using a LeakyReLU activation. Then the decoder will take the 64-dimensional representation
x̃, again using a LeakyReLU activation layer, and attempt to recover the original input x′. We
pre-trained the autoencoder over 20 epochs, with a mini-batch size of 1000, and tuned the network
parameters using the Adam optimizer with a learning rate of α = 1e−3. Training is unsupervised
and we use the mean squared error loss function:

LE(x′, x) = 1

m

m∑
i=1

(
x′i − xi

)2
Figure 4.3a illustrates the autoencoder network architecture and Figure 4.3b shows samples of the
true inputs and their output after encoding/decoding.

4.3.2 Adversarial Failure Classifier

To learn the low-dimensional features that are likely to cause failures, we train an adversary A in
the validation loop to classify failures. The supervised adversary is trained on the partition D̃train of
the low-dimensional samples x̃ and outputs a prediction that a given input would lead to a system
failure. We train the adversary on the low-dimensional representation for computational efficiency,
rather than using the potentially high-dimensional input. To get the target labels y, we run the
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system S using the true inputs associated to the encoded inputs which are part of the training data
D̃train. This gives us targets we can now train our adversary on using the binary cross-entropy loss:

LA(ŷ, y) = −
1

m

m∑
i=1

yi log(ŷi)− (1− yi) log(1− ŷi)

The adversarial network architecture consists of 3 dense layers which map the low-dimensional
representation of x̃ ∈ R64 through a ReLU layer of size 128, another ReLU layer of size 64, and
finally an output sigmoid layer to map the predictions to a probability. For each sampled validation
iteration t (shown in Figure 4.2), we retrain the adversary A for 20 epochs using the Adam optimizer
with learning rate α = 3e−5. Notice that our learning rate is very small, this is so we do not overfit
to early iterations in t and can generalize across different samples of the low-dimensional space.
The adversary will use the test data partition D̃test to select the encoded input that it predicted
would lead to a failure. We use the threshold of A(x̃) ≥ 0.5 to indicate the input x̃ ∈ D̃test ⊂ (x̃, y)
led to a failure. All encoded inputs in the test dataset that led to a failure are considered candidate
failure scenarios, and we denote them as x̃c. We use a mapping from the encoded inputs x̃c to the
original inputs xc ⊆ x, and finally pass the failure candidates to the true system S for evaluation.

4.4 Experiments and Results

To evaluate our approach, we ran T = 10 sampled validation iterations, sampling m = 500 random
encodings and partitioning these samples in half into D̃train and D̃test for the adversary. Because
the failure rate for our system under test is about 0.0677, we augment the training dataset by
duplicating known failures 10 times after running each training set through the system to get the
true outputs ytrain. We use precision and recall to evaluate the performance of the adversary.
During each iteration t, we save off the current adversary At and evaluate the area under the ROC
curve (AUC) as shown in Figure 4.4a. The ROC curve highlights incremental improvement of
the adversary after each iteration. Note that we retrain the new adversary At starting from the
network weights learning by the previous adversary At−1. To balance these metrics, we swept over
the prediction threshold to determine which threshold to use (see Figure 4.4b). From the tuning
sweep, we chose a threshold of ŷ ≥ 0.5 to indicate a positive failure prediction by the adversary.

Table 4.1: Evaluation Metrics

Failure Selector Precision* Recall* Sampled Precision† Sampled Recall†

Adversary A 0.2441 0.2260 0.2374± 0.11 0.3244± 0.17
Random 0.0647 0.4712 0.0618± 0.04 0.0910± 0.07

* Run over Dtest only calculated for the “failure” class.
† Calculated from T = 10 iterations of the sampled validation loop.
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Figure 4.4: ROC curve and evaluation metrics.

During each iteration t, the adversary selects k candidate inputs predicted to be likely failures.
For comparison, we employ a random selection of k candidates and evaluate the precision and recall
metrics of the random scheme. This allows us to compare our adversarial learning approach to a
baseline and test that our approach is better than guessing randomly. Table 4.1 quantifies the
evaluation metrics for the adversary and random candidate selector.

4.5 Analysis and Discussion

Shown by the confusion matrix in Figure 4.6a, the adversarial failure classifier achieves about 0.24

in precision and 0.23 in recall. Compared to random, the precision rate is about 3 times better
using the adversary. Random recall—as expected—is around 0.5. These results show that our
approach learned the low-dimensional representation of a failure over the validation set, and based
on this information it selected candidate failures to be evaluated. To see which element of the low-
dimensional feature vector contributed the most to a likely failure as predicted by the adversary,
we encoded a one-hot vector over R28×28 (i.e., the input space) and plotted the output likelihood
of failure for each of the pixels, shown in Figure 4.6b.

(a) Adversarial true positives. (b) Adversarial false negatives.

Figure 4.5: MNIST failure predictions from the adversary.

Figure 4.5 compares the failures classified by the adversary. For the true positives in Figure 4.5a,
the top row of digits are the 10 digits with the highest predicted failure likelihood that were
true failures, the middle row shows the feature that had the strongest influence on the failure
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classification (decoding a one-hot vector representation of the maximum of a softmax over low-
dimensional inputs), and the bottom row shows the reconstructed digits after passing through the
autoencoder. Similarly for the false negatives in Figure 4.5b, the top row are the 10 digits with
the lowest predicted failure likelihood that were true failures, the middle row shows the strongest
influential feature, and the bottom row shows the output of the autoencoder. Notice that certain
features in the middle row are shared among the other digits, indicating features that play a larger
role in classifying failures.
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Figure 4.6: Failure classifier performance and predictions.

4.6 Discussion

To avoid exhaustively searching an entire validation set for failures, we show that an iterative
framework that uses an adversarial failure classifier trained on low-dimensional representations
of the inputs can select failures about 3 times more likely than randomly choosing candidates
to evaluate. To extend this framework, we could investigate different adversarial architectures,
particularly around deep reinforcement learning. We could also explore how to take the true failures
found, automatically improve the system under test, and then in a continual learning approach we
could rerun this validation loop to use prior knowledge of previous system failures to find new
system failures.



Chapter 5

Open Source Tools for Validation

This chapter discusses open-source software tools built and used in the previous chapters. These
tools were designed for general applications of this work and were written in the scientific comput-
ing language Julia [10]. Open-source software is important for safety validation as it encourages
reproducibility and enables others to apply these methods to different applications. More impor-
tantly, we view the field of validation as collaborative and non-competitive because ultimately safer
systems benefit us all. We first discuss the adaptive stress testing package built for chapter 3,
then provide quick usage examples of the optimization package built for chapter 2 and the weak-
ness recognition framework built for chapter 4. All software packages described in this section are
publicly available under the MIT license.

5.1 POMDPStressTesting.jl Summary

POMDPStressTesting.jl1 is a package that uses reinforcement learning and stochastic optimiza-
tion to find likely failures in black-box systems using adaptive stress testing [39]. The POMDP-
StressTesting.jl package is written in Julia [10] and is part of the wider POMDPs.jl ecosystem [22],
which provides access to simulation tools, policies, visualizations, and—most importantly—solvers.
We provide different solver variants including online planning algorithms such as Monte Carlo tree
search [16] and deep reinforcement learning algorithms such as trust region policy optimization
(TRPO) [57] and proximal policy optimization (PPO) [56]. Stochastic optimization solvers such
as the cross-entropy method [54] are also available and random search is provided as a baseline.
Additional solvers can easily be added by adhering to the POMDPs.jl interface.

1https://github.com/sisl/POMDPStressTesting.jl
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5.1.1 Interface and Related Software

The AST formulation treats the falsification problem (i.e., finding failures) as a Markov decision
process (MDP) with a reward function that uses a measure of distance to a failure event to guide
the search towards failure. The reward function also uses the state transition probabilities to guide
towards likely failures. Reinforcement learning aims to maximize the discounted sum of expected
rewards, therefore maximizing the sum of log-likelihoods is equivalent to maximizing the likelihood
of a trajectory. A gray-box simulation environment steps the simulation and outputs the state
transition probabilities, and the black-box system under test is evaluated in the simulator and
outputs an event indication and the real-valued distance metric (i.e., how close we are to failure).
To apply AST to a general black-box system, a user has to implement the following Julia interface:

# GrayBox simulator and environment

abstract type GrayBox.Simulation end

function GrayBox.environment(sim::Simulation)::GrayBox.Environment end

function GrayBox.transition!(sim::Simulation)::Real end

# BlackBox.interface(input::InputType)::OutputType

function BlackBox.initialize!(sim::Simulation)::Nothing end

function BlackBox.evaluate!(sim::Simulation)::Tuple{Real, Real, Bool} end

function BlackBox.distance(sim::Simulation)::Real end

function BlackBox.isevent(sim::Simulation)::Bool end

function BlackBox.isterminal(sim::Simulation)::Bool end

Our package builds off work originally done in the AdaptiveStressTesting.jl package [39], but
POMDPStressTesting.jl adheres to the interface defined by POMDPs.jl and provides different ac-
tion modes and solver types. Related falsification tools (i.e., tools that do not include most-likely
failure analysis) are S-TaLiRo [6], Breach [21], and FalStar [65]. These packages use a combina-
tion of optimization, path planning, and reinforcement learning techniques to solve the falsification
problem. The tool most closely related to POMDPStressTesting.jl is the AST Toolbox in Python
[34], which wraps around the gym reinforcement learning environment [12]. The author has con-
tributed to the AST Toolbox and found the need to create a similar package in pure Julia for better
performance and to interface with the POMDPs.jl ecosystem.

5.1.2 Statement of Need

Validating autonomous systems is a crucial requirement before their deployment into real-world
environments. Searching for likely failures using automated tools enable engineers to address po-
tential problems during development. Because many autonomous systems are in environments with
rare failure events, it is especially important to incorporate likelihood of failure within the search
to help inform the potential problem mitigation. This tool provides a simple interface for general
black-box systems to fit into the adaptive stress testing problem formulation and gain access to
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solvers. Due to varying simulation environment complexities, random seeds can be used as the AST
action when the user does not have direct access to the environmental probability distributions or
when the environment is complex. Alternatively, directly sampling from the distributions allows
for finer control over the search. The interface is designed to easily extend to other autonomous
system applications and explicitly separating the simulation environment from the system under
test allows for wider validation of complex black-box systems.

5.1.3 Research and Industrial Usage

POMDPStressTesting.jl has been used to find likely failures in aircraft trajectory prediction sys-
tems (chapter 3) [50], which are flight-critical subsystems used to aid in-flight automation. This
software was used to stress test a development commercial FMS so that the system engineers could
mitigate potential issues before system deployment. In addition to traditional requirements-based
testing for avionics certification [53], this work is being used to find potential problems during
development. There has also been research on the use of POMDPStressTesting.jl for assessing the
risk of autonomous vehicles and determining failure scenarios of autonomous lunar rovers.

5.2 CrossEntropyVariants.jl Summary

The CrossEntropyVariants.jl2 package provides a general implementation of the algorithms intro-
duced in chapter 2. Specifically, we provide the following algorithms that take an objective function
S and initial proposal distribution M as input, and output an optimized distribution M′:

𝐌′ = cross_entropy_method(S, 𝐌) # standard CEM

𝐌′ = ce_surrogate(S, 𝐌) # surrogate−based CEM

𝐌′ = ce_mixture(S, 𝐌) # surrogate−based CEM using mixture models

To illustrate why we found Julia to be our language of choice, below we present a slightly cleaned-
up version of our actual implementation of algorithm 2 (i.e., the CE-Surrogate algorithm), noting
the direct translation of the pseudocode into executable Julia code:

function ce_surrogate(S, 𝐌; m, m_elite, k_max)

for k in 1:k_max

mₑ, m_elite = evaluation_schedule(k, k_max) # number of evaluations from a schedule

𝐗 = rand(𝐌, mₑ) # draw mₑ samples from 𝐌

𝐘 = map(S, eachcol(𝐗)) # evaluate samples 𝐗 using true objective S

𝐞 = 𝐗[:, sortperm(𝐘)[1:m_elite]] # select elite samples output from true objective

𝐄 = model_elite_set!(𝐗, 𝐘, 𝐌, 𝐞, m, m_elite) # find model−elites using a surrogate

𝐌 = fit(𝐌, 𝐄) # re−fit distribution 𝐌 using model−elite samples

end

return 𝐌

end

2https://github.com/mossr/CrossEntropyVariants.jl

https://github.com/mossr/CrossEntropyVariants.jl
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As an example, to run an simple optimization problem, consider the following code:

using CrossEntropyVariants

using Distributions

S = sierra # objective function

𝛍 = [0, 0] # initial mean

𝚺 = [200 0; 0 200] # initial covariance

𝐌 = MvNormal(𝛍, 𝚺) # proposal distribution

(𝐌, bestₓ, bestᵥ) = ce_surrogate(S, 𝐌)

Here we select the sierra test function described in section 2.4.1 and optimize a multivariate
Gaussian proposal distribution M using a call to ce_surrogate.

The performance of the surrogate models may be dependent on the underlying objective func-
tion. The default surrogate model is a Gaussian process with the squared exponential kernel
function, yet we provide other surrogate models including linear regression, polynomial regression,
and radial basis regression. As an example, to use radial basis regression instead of a Gaussian
process, you can specify a basis keyword input:

S = paraboloid # objective function

𝐌 = MvNormal([0, 0], [200 0; 0 200]) # proposal distribution

(𝐌, bestₓ, bestᵥ) = ce_surrogate(S, 𝐌; basis=:squared) # squared radial basis surrogate

Our package relies an other open-source Julia software including Distributions.jl [9], Gaussian-
Mixtures.jl,3 GaussianProcesses.jl [24], and Optim.jl [47]. Their own open-source contributions
enabled the quick prototyping of our software and we appreciate their effort and commitment
to open-source software. We were inspired by Kochenderfer and Wheeler [32] and borrowed the
cross_entropy_method algorithm from their work.

5.3 FailureRepresentation.jl Summary

The FailureRepresentation.jl4 package captures the work from chapter 4 primarily for reproducibil-
ity but can also be extended to other black-box systems aside from the MNIST neural network
classifier. This requires the user to define a predict(ℳ, x) function given their system M and
input x, replacing the SystemUnderTest module within the framework. We also provide experiment
code and pre-trained adversarial models produced from chapter 4.

A sample usage would load the user-defined system under test and the adversarial autoencoder,
then call the sampled_validation_iteration function illustrated in fig. 4.2.

3https://github.com/davidavdav/GaussianMixtures.jl
4https://github.com/sisl/FailureRepresentation.jl

https://github.com/davidavdav/GaussianMixtures.jl
https://github.com/sisl/FailureRepresentation.jl


Chapter 6

Conclusions

The applications of complex systems often built using artificial intelligence algorithms for use in
safety-critical domains is very promising and this work attempts to address how we can efficiently
validate these systems before they’re deployed. There are many challenges presented when dealing
with complex, black-box systems that require clever algorithms to solve the validation problem.
We present several approaches to validation of black-box systems, which were applied to open-loop
sequential systems, non-sequential classification systems, and general objective functions. Here
we reiterate the contributions of this thesis and discuss open questions in the field of black-box
validation.

6.1 Summary of Contributions

The main contributions of this thesis are algorithmic along with open-source tools to reproduce this
work and apply these methods to other applications. We first introduced surrogate model-based
extensions to the cross-entropy method algorithm used for stochastic optimization, particularly
with an interest in applying the algorithms to computationally expensive objective functions with
rare failure events. A byproduct of that work was an configurable test function with many local
minima and a single global minimum; providing an infinite number of objectives to test, with control
over their difficulty. We then propose a reformulation of the adaptive stress testing framework to
validate episodic-based systems (i.e., systems that only receive a reward signal at the end of an
episode) and apply this technique to stress test a developmental commercial flight management
system. Next, we consider how to intelligently select data points in a large static dataset to
validate black-box classification systems and develop a framework to apply this technique during
a system’s development cycle. Finally, we describe the open-source software developed for this
thesis—all publicly available under the MIT license—both to reproduce our work and to be applied
to other black-box validation applications.

47
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Cross-entropy method variants for expensive objective functions. In chapter 2, we in-
troduced variants of the popular cross-entropy method algorithm (CE-method) used for rare-event
optimization. Using a Gaussian process as our surrogate model, section 2.4.3 shows that we can
achieve better optimization performance than the standard CE-method while using the same num-
ber of true objective function evaluations. We achieve this by connecting ideas from the surrogate
modeling community and introduced novel sample-efficient algorithms. These algorithms—i.e.,
CE-surrogate (algorithm 2) and CE-mixture (algorithm 5)—use every sample to fit a surrogate
model, then for each true elite sample will create a sub-component distribution centered around
that sample, optimized through the standard CE-method using the surrogate objective. We tested
our method in a variety of experiments and introduced a novel test function called sierra (described
in section 2.4.1) to control the spread and distinction of the local and global minima, and provide
an analysis of the weak areas of the CE-method compared to our proposed variants.

Episodic adaptive stress testing applied to aircraft trajectory predictions. In chapter 3,
we extend the adaptive stress testing framework for sequential systems with episodic reward to find
likely failures in an aircraft trajectory prediction system. This work reported likely failure cases
back to the developers and engineers to mitigate potential shortcomings of the system before de-
ployment. Our extension improves search performance by collecting the state transitions during
the search, and evaluating the system at the end of a simulated rollout; enabled by our proposed
episodic AST reward function (eq. (3.2)). We modified the Monte Carlo tree search algorithm to
fit this formulation by employing progressive widening strictly on the action space (algorithm 10
and algorithm 11), collecting state transitions during the Simulate stage (algorithm 8), feeding
the best action midway through the rollout to encourage exploration of promising actions (algo-
rithm 9), and only evaluating the system (i.e., collect true reward signal) at the end of the rollout.
These modification of MCTS help exploit failures to maximize their likelihood. Performance of our
approach was compared to direct (random) Monte Carlo search and the cross-entropy method, and
section 3.6.1 shows that our approach finds more failures with both higher severity and higher rela-
tive likelihood. This work is complementary to requirements-based avionics testing (e.g., DO-178C
[53]) and is currently being used for confidence testing during system development.

Adversarial weakness recognition of black-box classification systems. In chapter 4, we
reframe the black-box validation problem around classification systems that are typically validated
across a large, static dataset. We proposed a framework that combines the components of a dataset
encoder (to reduce dimensionality, thus computation), an adversarial failure classifier (trained on
past failure experiences), and a candidate failure selector to propose inputs from the dataset that
will likely result in failure; all to reduce the computational cost of evaluating the system under test
and to focus only on evaluating predicted failures. Section 4.4 shows that our framework selects
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failures about 3 times more often than random, specifically when applied to a neural network
classifier trained on the MNIST dataset. The main contribution outlined in fig. 4.2 is a general
framework to efficiently apply this technique to other black-box classification systems.

Open source tools for validation. In chapter 5, we present the open-source software developed
to support this thesis. We hold a principle that open-source software, and more specifically repro-
ducibility, is vital in the field of validation. We view this field as collaborative and non-competitive;
everyone wins when critical software is safer. Our software contributions enable the adaptive stress
testing techniques described in chapter 3 to be broadly and quickly applied to other black-box sys-
tems (with or without the episodic restriction). We have also released the optimization algorithms
detailed in chapter 2 to be applied generally to other objective functions, along with a configurable
test function. Finally, we present the software used to define the framework from chapter 4, both
to reproduce the work and to allow users to extend to other black-box classification systems.

6.2 Future Work

Black-box validation presents interesting challenges and there are many ways the methods proposed
in this thesis could be improved. Finding the most likely failure is a difficult problem itself—aside
from strictly falsification. Improving the AST techniques to be more data efficient in its search
could drastically improve the failure likelihood estimate and speed-up falsification. This problem is
not necessarily specific to AST, but rather many data-efficient reinforcement learning and black-box
optimization algorithm improvements would directly transfer to the AST search. Data efficiency
extensions involving the rollout stage of MCTS could be explored to produce a (biased) trajectory
towards failures, rather than a random (unbiased) trajectory. The next steps in the validation
process need to assess the risk of the found failures, and researching methods for risk assessment
would close the loop on the full safety validation problem. Yet, in order to effectively assess risk
we must collect or estimate a distribution over failures. The work in this thesis could be used
as a means of collecting risk metrics during the search. Extensions in this space would enable
risk assessment and would allow this work to answer more concrete questions like how safe is the
system? and what areas of weakness were found and exploited?, among other interesting questions.



Appendix A

Alternative FMS Failure Events

This section details alternative failure events investigated and their associated miss distance calcula-
tions when stress testing the trajectory predictions in a flight management system (FMS) performed
in chapter 3. Ultimately, analysis of these failure events showed their inadequacy and arc length
failures were selected as the primary event.

A.1 Tangency Kinks

Tangency kinks arise when a small angle threshold is exceeded between the inbound straight segment
and the tangent of the turn segment at a given waypoint. The failure event occurs when this angle
difference θ is above the threshold τk = 0.001 rad.

c

p s

e

`1
θ

r

`2α

Figure A.1: Tangency kink failure event and miss distance.

Miss distance for the tangency kinks is calculated by first determining the azimuth angle z

between the start point of the arc s and the center point c. The azimuth is calculated using a
WGS84 Earth flattening leveraging the Geodesic.jl1 package which implements Vincenty’s formula
[62]. The tangency angle θ is then calculated for each ` ∈ L where L is the set of lateral packets
that each have a straight segment and a turn arc with radius r. The sign of the radius r indicates
the direction of turn, where left is negative and right is positive. The course-in angle of the straight
segment ` is denoted ∠`, which we then get a distance metric of:

d = τk − max
(`,r)∈L

∣∣∣∣z − ∠`+ sign(r)π
2

∣∣∣∣
1https://github.com/anowacki/Geodesics.jl
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A.2 Disconnections

Disconnected lateral packets occur when two sequential lateral packets are not connected end-to-
start, thus leaving a distance δ between them. A failure occured if this geodesic distance δ =

‖ei − pi+1‖ is above the threshold τd = 10 ft.

p1 s1

e1

p2s2

`1

δ
`2

Figure A.2: Disconnected failure event and miss distance.

Miss distance is calculated as the threshold τd minus the maximum distance between the end
points ei (or si if no arc is provided) and the initial point pi+1 of the next lateral packet:

d = τd − max
ei∈Li

pi+1∈Li+1

‖ei − pi+1‖

A.3 Course Directions

In-bound and out-bound course directions may deviate from one another and can be classified as
a failure event. Closely related to the disconnection failure event, the course direction failures can
arise when two sequential lateral packets are disconnected. This failure specifically looks for angle
differences between the course-out θout and course-in θin directions of the sequential lateral packets.
If this angle difference ω = |θout − θin| is above the threshold τc = 1° then it is classified as a failure.

p1 s1

e1

θout

p2s2

`1

θin
`2

ω

Figure A.3: Course direction failure event and miss distance.

Miss distance is calculated as how close to the threshold τc is the maximum wrapped angle
difference between the course-out angle and course-in angle denoted by ω, namely

d = τc − max
θout∈Li
θin∈Li+1

|θout − θin| .
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