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Some useful matrices

If X is a matrix, its transpose, X’ is the matrix with
rows and columns flipped so the 75th element of X
becomes the jith element of X'.

Matrix forms to recognize:

For vector x, 2’z = sum of squares of the elements of
x (scalar) I

For vector x, xz’ = N x N matrix with ijth element
LT j 1

A square matrix is symmetric if it can be flipped
around its main diagonal, that is, x;; = z;;. In other
words, if X is symmetric, X = X’. a2’ is symmetric. |

For a rectangular m x N matrix X, X’X is the

N x N square matrix where a typical element is the
sum of the cross products of the elements of row ¢
and column j; the diagonal is the sum of the squares
of row 7.



OLS

Let X be an N X k matrix where we have
observations on K variables for N units. (Since the
model will usually contain a constant term, one of the
columns has all ones. This column is no different than
any other, and so henceforth we can ignore constant
terms.) Let y be an n-vector of observations on the
dependent variable. |F € is the vector of errors and 3
is the K-vector of unknown parameters: I

We can write the general linear model as

y = X3+ e (1)
[
The vector of residuals is given by

e=y—XJ (2)

where the hat over 3 indicates the OLS estimate of (.
1

We can find this estimate by minimizing the sum of



squared residuals. Note this sum is e’e. Make sure
you can see that this is very different than ee’. |

e = (y — Xp3)(y — Xp) (3)
which is quite easy to minimize using standard

calculus (on matrices quadratic forms and then using
chain rule). I

This yields the famous normal equations
X'X3 =Xy (4)
or, if X’X is non-singular,
6= (X'X)"'Xy (5)
[

Under what conditions will X’X be non-singular (of
full rank)? 1

X'Xis K x K.

One necessary condition, based on a trivial theorem
on rank, is that N > K. T his assumptions is usually
met trivially, V is usually big, K is usually small. §



Next must have all of the columns of X be linearly
independent (this is why we did all this work), that is
no variable is a linear combination of the other
variables.

This is the assumption of no (perfect)
multicolinearity. I

Note that only linear combinations are ruled out,
NOT non-linear combinations.



Gauss-Markov assumptions

The critical assumption is that we get the mean
function right, that is F(y) = Xz.

The second critical assumption is either that X is
non-stochastic, or, if it is, that it is independent of e.

We can very compactly write the Gauss-Markov
(OLS) assumptions on the errors as

Q =% @

where €2 is the variance covariance matrix of the error
process,

Q = E(e€’). (7)

Make sure you can unpack this into i

Homoskedasticity

Uncorrelated errors



VCV Matrix of the OLS estimates

We can derive the variance covariance matrix of the
OLS estimator, 3. |

A

6= (X'X)"' X'y (8)
= (X'X) ' X' (X3 +€) ©
= (X'X)"'X'Xp + (X'X)"'X'e  (10)
= [+ (X'X) ' X'e. (11)

This shows immediately that OLS is unbiased so long
as either X is non-stochastic so that

E@B)=p+(XX)"'X'E(e)=5  (12)

or still unbiased if X is stochastic but independent of
€, so that F(Xe) =0. I

The variance covariance matrix of the OLS estimator



Is then

A

E((6-5)(6-p)) = E (XX)" ' X'e[(X'X)~ 1?8;]))
= (X'X)'X'E (e€') X(X'X)
(14)

and then given our assumption about the variance
covariance of the errors, Equation

= o?(X'X) 7! (15)



Robust (Huber or White) standard errors

Note how the second to last formulation makes sense
of both White's heteroskedasticity consistent standard
errors and my panel consistent standard errors.

Heteroskedasticity will lead to incorrect standard
errors insofar as

X'E (e€') X # 0%(X'X) (16)

We don't know the € but we do know the residuals, e.
Obviously the each individual residual is not a good
estimator of the corresponding €, but White showed
that X’ee’X is a good estimator of the corresponding
expectation term. |

Thus White suggested a test for seeing how far this
estimator diverges from what you would get if you
just used the OLS standard errors. This test is to
regress the squared residuals on the terms in X'X,
that is the squares and cross-products of the
independent variables. If the R? exceeds a critical



value (N R? is x3), then heteroskedasticity causes
problems. At that point use the White estimate. (By
and large always using the White estimate can do
little harm and some good.)



Partitioned matrix and partial regression
- the FWL theorem

In all the below, any matrix or submatrix that is
inverted is square, but other matrices may be
rectangular so long as everything is conformable and
only square matrices ended up being inverted. |

Direct multiplication tell us that

A ) e

Matrices like the above are called block diagonal. As
we shall see, this tells us a lot about when we can
ignore that we might have added other variables to a
regression. B

The situation is more complicated for a general
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matrix.

[All A12] o [A;11(1+ A1 FAp AT —AG AF

Ao Ay —FA5 AL F
(18)
where
F=(Ayp—AyA AL (19)
1

There are a lot of ways to show this, but can be done
(tediously) by direct multiplication. NOTHING DEEP
HERE. I

Why do we care? The above formulae allow us to
understand what it means to add variables to a
regression, and when it matters if we either have too
many or too few (omitted variable bias) variables. |

First note that if we have two sets of independent
variables, say X and X5 that are orthogonal to each
other, then the sums of cross products of the variables
in X with X5 are zero (by definition). Thus the
X’X matrix formed out of X; and X5 is block

diagonal and so the theorem on the inverse of block



diagonal matrices tells us that the OLS estimates of
the coefficients of the first set of variables estimated
separately is the same as what we would get if we
estimated using both sets of variables. I

What does it mean for the two sets of variables to be
orthogonal. Essentially, it means they are
independent, that is, one has nothing to do with the
other. So if we have regressions involving political
variables, and we think that hair color is unrelated to
any of these, then we can not worry about what
would happen if we included hair color in the
regression. But if we leave out race or party id, it will
make a difference. |

The more interesting question is what happens if the
two sets of variables are not orthogonal; in particular,
what happens if we estimate a regression using a set
of variables X; but omit relevant X5. That is,
suppose the “true” model is

y = X101 + X8 + € (20)

but we “mistakenly” omit the X5 variables from the
regression. B
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The true normal equation is:

A

[X’lxl X3X2]1 lxly] _ [@1] (21)
X5X1 X5Xs X2y B

Now we can use the results on partitioned inverse to
see that

By = (XiXy) ' Xy — (XX0) T IX X6 (22)

Note that the first term in this (up to the minus sign)
is just the OLS estimates of the 3; in the regression
of y on the X variables alone.

Thus it is only irrelevant to ignore “omitted” variables
if the second term, after the minus sign, is zero.

What is that term.

The first part of that term, up the B is just the
regression of the variables in X5 (done separately and

then put together into a matrix) on all the variables in
X;. 0
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This will only be zero if the variables in X4 are
linearly unrelated to the variables in X5 (political
variables and hair coloring). I

The second term will also be zero if Bg — 0, that is,
the X5 variables have no impact on y. |

Thus you can ignore all potential omitted variables
that are either unrelated to the variables you do
include or unrelated to the dependent variables. I

But any other variables that do not meet this
condition will change your estimates of (3; if you do
include them.

To study this further, we need some more matrices!
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The residual maker and the hat matrix

There are some useful matrices that pop up a lot.

Note that

e=y—Xp (23)
—y - X(X'X) X'y (24)
= (I - X(X'X)"'X")y (25)
— My (26)

where M = and M Makes residuals out of y. Note
that M is N x N, that is, big! I

A square matrix A is idempotent if A> = AA = A (in
scalars, only 0 and 1 would be idempotent). IM is
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idempotent.

MM = (I - X(X'X)"'X")(I - X(X'X)"'X")

(27)
= [? - 2X(X'X)"IX/ 4+ X(X'X) ' X'X(X'X) ' X!
(28)
=] - 2X(X'X)" X' + X(X'X)" X’
(29)
=M €

M his will prove useful §

A related matrix is the hat matrix which makes y, the
predicted y out of y. Just note that i

y=y—-e=|I-Mly=Hy (31)
where

H=X(X'X)"'X' (32)
i
Greene calls this matrix P, but he is alone. H plays an

important role in regression diagnostics, which you
may see some time.
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Back to comparing big and small
regressions

If we “uninvert” the normal equation (Equation )
we get

X/2X1 X/2X2 62 ng

and we can simplify the equation for Bl when all
variables are included (Equation '~ to I

B = (X X1) "' X (y — Xaf2) (34)

Direct multiplication for the second element in
Equation ~~ gives I

X5X 01 4+ X5 Xof2 = Xby (35)

and then substituting for 5, using Equation /' gives I

X5X (X5 X)Xy —X5X (X X)X X B+ X5 X 0
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Which simplifies to I

X5 — X1(X/1X1)_1X/1]X232 =
X5 — X1 (X1 X)Xy (37)

and then we get Bg by premultiplying both sides by
the inverse of the term that premultiplies G5.

Note that the term in brackets is the M matrix which
makes residuals for regressions on the X variables;
My is the vector of residuals from regressing y on
the X variables and M X5 is the matrix made up of
the column by column residuals of regressing each
variable (column) in X5 on all the variables in X;. |

Because M is both idempotent and symmetric, we
can then write

fa = (X5X5) ' X5y (38)
where X; = M1X2 and y* = Mly i
Note Equation = shows that Bg is just obtained from

regressing y* on X3 (get good at spotting
regressions, that is, (X'X)~ !X’y forms). |



But what are the starred variables. They are just the
residuals of the variables after regressing on the X4
variables. |

So the difference between regressing only on X5 and
both X5 and X variables is the latter first regresses
both the dependent variable and all the X5 variables
on the X variables and then regresses the residuals
on each other, while the smaller regression just
regresses y on the X5 variables.

This is what is means to hold the X; variables
“constant” in a multiple regression, and explains why
we have so many controversies about what variables
to include in a multiple regression.
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