Imaging Genetics of Depression

Matthew D. Sacchet, Lara C. Foland-Ross, and Ian H. Gotlib

Stanford University

Introduction

Major depressive disorder (MDD) is typified by aberrations in cognitive, emotional, and behavioral functioning, including the hallmark characteristics of depressed mood and loss of interest or pleasure (anhedonia). MDD is a particularly burdensome disorder. In 2004, depression was identified as the third largest contributor to global disease burden, and it is predicted to be the leading contributor by 2030 (World Health Organization 2008). Three hundred and fifty million people worldwide are estimated to suffer from depression (World Health Organization 2012), and an estimated 20% of the US population will experience a clinical episode of depression during their lifetimes (Kessler and Wang 2009). Depression is also highly recurrent, with 75% of depressed individuals having more than a single episode of depression and often relapsing within two years of recovery (Boland and Keller 2009).

MDD has been posited to have a genetic component, with heritability estimated to be between 31% and 42% (Sullivan, Neale, and Kendler 2000). Given this high heritability, there has been considerable interest in candidate genes related to neural phenotypes of depression. It is important to recognize, however, that the genetic underpinnings of depression are complex; genes do not uniquely encode for the diagnosis of MDD or for depression-related symptoms. Not surprisingly, therefore, scientific investigation has been slowed by inconsistent and small effect sizes (Meyer-Lindenberg and Weinberger 2006).

Imaging genetics is a rapidly developing field in which investigators use neuroimaging to elucidate variations in brain structure and function as they relate to genotype (Hariri and Weinberger 2003). Recently, investigators have applied this
approach to the study of MDD (for reviews of the imaging genetics of depression, see Savitz and Drevets 2009; Scharinger, Rabl, Sitte, and Pezawas 2010; Northoff 2013). Indeed, despite the complexity of the genetic basis of mood disorders, findings from imaging genetics studies have been important in supporting the formulation that candidate genes influence emotional processing at the neural systems level (Scharinger et al. 2010), and that these gene-related variations contribute to the hallmark characteristics of MDD.

In this chapter, we present an overview of neuroimaging genetics research in the context of MDD. We begin by reviewing well-documented associations between candidate genes and susceptibility to depression, the course of MDD, cognitive and emotional aspects of this disorder, and the treatment response of depressed individuals. Specifically, we describe findings from investigations of three of the most widely studied genetic polymorphisms related to the psychobiology of depression: in the serotonin transporter (5-HTT) coding gene (SLC6A4), catechol-O-methyltransferase gene (COMT), and brain-derived neurotrophic factor gene (BDNF). We then review recent research documenting the utility for neuroimaging in depression of moving beyond a single-gene research approach, including gene-gene, gene-environment, and polygenic methodologies. Finally, we offer what we believe are important directions for future research in the field of imaging genetics in depression.

5-HTT

Due in part to the effectiveness of selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, genetic variation in the serotonin transporter (5-HTT) coding gene (SLC6A4) has become a focal theme for neuroscientists interested in the genetic
substrates of major depression. Indeed, the single most studied variant involves a variable repeat sequence in the promoter region (5-HTTLPR) of SLC6A4; whereas the long (l) allele in this region is associated with increased concentrations of 5-HTT messenger RNA and increased serotonin (5-HT) uptake, the lower-expressing short (s) allele is linked with decreased 5-HT reuptake (Lesch et al. 1996). A single nucleotide polymorphism (SNP; A to G [denoted lG] substitution) that occurs within the l allele (rs25531; Hu et al. 2005; Wendland, Martin, Kruse, Lesch, and Murphy 2006) also renders a phenotype that similar to the s variant in transcriptive efficacy.

A decade ago, researchers became enthusiastic about the role of 5-HTTLPR in the pathophysiology of major depression. This excitement came in part from studies documenting that s-allele carriers have a greater likelihood than do homozygous l-allele carriers of developing MDD in the context of environmental adversity (Caspi et al. â2003), and from findings linking the s allele with a tendency to exhibit temperamental traits associated with increased risk for MDD, such as anxiety and neuroticism (Lesch et al. 1996; Munafò, Clark, Roberts, and Johnstone â2006). In addition, a reduction of available 5-HT levels, either induced through tryptophan depletion or occurring naturally through genetic polymorphisms of 5-HTTLPR, has been found to be associated with cognitive difficulties similar to those found in depressed adults, including reduced specificity of autobiographical memory (Alhaj et al. 2012) and enhanced encoding of and attention to negatively valenced emotional material (Murphy, Smith, Cowen, Robbins, and Sahakian 2002; Beevers, Wells, Ellis, and Fischer 2008; Roiser et al. 2009; Wang et al. 2009).

5-HTTLPR and Brain Function
Similar to the literature documenting the cognitive effects of 5-HTTLPR, imaging genetics studies of this polymorphism have found that non-disordered individuals who carry at least one copy of the lower expressing s allele demonstrate patterns of brain activation that have been reported to be characteristic of depressed individuals. For example, in one of the earliest studies to examine associations between 5-HTTLPR and neural activation, Hariri et al. (2002) found that individuals who carry the s allele exhibited greater amygdala activation while they were viewing fearful stimuli than did individuals homozygous for the l allele. This pattern of increased amygdala responsivity to negative stimuli in 5-HTTLPR s-allele carriers has been replicated by a number of investigators (e.g., Heinz et al. 2004; Hariri et al. 2005; Pezawas et al. 2005) and suggests that activity in this region, which has been found both to be hyperactive in major depression (Sheline et al. 2001; Siegle, Steinhauer, Thase, Stenger, and Carter 2002) and to be central to the generation and experience of negatively valenced affective states, is uniquely sensitive to genetically based alterations in serotonergic neurotransmission.

Building on this work, convergent evidence from neuroimaging studies indicates that 5-HTTLPR s-allele carriers have volumetric anomalies in the amygdala and aberrations in functional connectivity between the amygdala and distinct subregions of the frontal cortex (e.g., anterior cingulate cortex [ACC], ventromedial prefrontal cortex [vmPFC]; Heinz et al. 2004; Pezawas et al. 2005)—areas that have been implicated in the control of negative emotional states through influencing, in part, activation in the amygdala (Ochsner et al. 2004; Urry et al. 2006; Wager, Davidson, Hughes, Lindquist, and Ochsner 2008). For example, Pezawas et al. (2005) found significantly lower volume of the perigenual ACC and the amygdala in s-allele carriers than in l-allele homozygotes.
S-allele carriers in this study also showed a reduction in the strength of negative functional connectivity between the amygdala and the ACC—particularly in the subgenual region—during the perceptual processing of fearful and threatening facial expressions (see also Hariri and Holmes 2006). Consistent with the view that these reductions are related to reduced cortical regulation of the amygdala, levels of functional connectivity in this investigation were found to predict 30% of the variance in level of harm avoidance, a personality trait that is related to vulnerability to anxiety and depression. Other studies document that s-allele carriers also show increased positive functional connectivity between the amygdala and the vmPFC (Heinz et al. 2004; Pezawas et al. 2005), which has been posited to reflect a compensatory effort for the impaired control function of the subgenual ACC (Hariri and Holmes 2006). Again, this anomalous functional connectivity is consistent with the neural hallmarks of major depression (Drevets et al. 1997; Mayber et al. 1999; Drevets et al. 2002) and supports the formulation that 5-HTTLPR-associated increases in the susceptibility for MDD occur through a primed, hyper-responsive limbic system (Pezawas et al. 2005).

Importantly, several neuroimaging studies have now been conducted examining the influence of 5-HTTLPR on amygdala function in MDD. These investigations generally find that, relative to their l/l counterparts, depressed individuals who carry at least one copy of the s allele exhibit increased amygdala activation, both at rest (Brockmann et al. 2011) and in response to negatively valenced stimuli (Dannlowski et al. 2007a; Dannlowski, Ohrmann, Bauer, Kugel, et al. 2007b; Costafreda et al. 2013). While the specific clinical implications of this association are unclear, Dannlowski et al. (2007a) found that s-allele-related increases in amygdala reactivity to masked emotional
faces were related to chronicity of depression, as indexed by number of hospitalizations. Further delineating relations among prognosis, treatment, and 5-HTTLPR-related variation in amygdala function in depressed individuals is an important direction for future research.

Only two studies have examined the impact of 5-HTTLPR genotype on prefrontal cortical function in individuals with major depression. In the first, Friedel et al. (2009) found that, whereas an increase in the number of lower-expressing s alleles was associated with an increase in vmPFC activation during the processing of negatively valenced images in non-depressed individuals, this effect was absent in participants with MDD. Further, while healthy controls in this study exhibited a greater positive correlation between activity in the vmPFC and amygdala with an increasing number of s alleles, MDDs demonstrated the opposite pattern. Thus, greater vmPFC activation, seen in healthy carriers of 5-HTT low-expression alleles but not in their depressed counterparts, may reflect a protective mechanism that breaks down in MDD. In the second study, Brockmann et al. (2011) found that depressed s-allele carriers exhibited high resting-state activity in the vmPFC. Thus, the precise influence of 5-HTTLPR on prefrontal function in individuals with MDD is inconclusive. It is important to note, however, that whereas Brockmann et al. (2011) sampled from participants who were treated with a variety of mood-stabilizing medications, depressed individuals in Friedel et al.’s (2009) investigation were untreated. It is possible, therefore, that associations between 5-HTTLPR and prefrontal function in MDD vary as a function of medication. This possibility is consistent with findings reported by Neumeister et al. (2006) indicating that, whereas perturbation of the serotonin system using tryptophan depletion influenced
resting-state activity in the amygdala, hippocampus, and the subgenual ACC of l-allele carriers, this association was not evident in carriers of the risk (s or l(c)) alleles.

Taken together, although the literature on the relation between 5-HTTLPR and prefrontal function is equivocal, investigators have found more consistently that allelic variations in 5-HTTLPR contribute to increased amygdala response in MDD. Further, given data demonstrating that depressed s-allele carriers show a greater bias toward anxious stimuli than do their l/l counterparts (Beevers, Gibb, McGeary, and Miller 2007), it is possible that the associations between 5-HTTLPR and amygdala hyper-reactivity are secondary to genetic influences on attention. Thus, whether 5-HTTLPR-related alterations in amygdala activity occur directly, or are influenced indirectly, through 5-HTTLPR-related alterations in cognition, remains to be determined. Moreover, we have reviewed evidence that clinical aspects of MDD (e.g., medication) may affect associations between 5-HTTLPR genotype and brain function (e.g., Neumeister et al. 2006). Thus, the potential role of clinical factors in mediating 5-HTTLPR-related neural effects in MDD warrants further investigation. And finally, as we discuss in further detail later in this chapter, although several studies have found a significant interaction among 5-HTTLPR, stress, and depression (e.g., Caspi et al. 2003; Karg, Burmeister, Shedden, and Sen 2011), no investigations have examined the relation among these factors in the context of brain function in MDD. It is important, therefore, that future studies consider these issues in increasing our understanding of the genetic mechanisms of neural dysfunction in major depression.

5-HTTLPR and Brain Structure
In addition to identifying associations between 5-HTTLPR and brain function in MDD, researchers have begun to address whether 5-HTTLPR polymorphisms might be associated with depression-related anomalies in brain structure. Given accumulating evidence of reduced hippocampal structure in the pathophysiology of MDD (Koolschijn, van Haren, Lensvelt-Mulders, Hulshoff Pol, and Kahn 2009), genetic neuroimaging studies of MDD have focused largely on the gray and white matter volume of this region. The results of studies in this area are mixed. While two early reports documented smaller hippocampal volumes among depressed individuals who were homozygous for the l allele compared to s-allele carriers (Frodl et al. 2004; Frodl et al. 2008), a third study found smaller hippocampal volumes among depressed individuals who were homozygous for the s allele (Eker et al. 2011), and a fourth investigation did not find any effects of 5-HTTLPR polymorphism on hippocampal structure (Hickie et al. 2007). Although the reasons for these inconsistencies are not clear, they may be related to specific illness characteristics. For example, Taylor et al. (2005) found that depressed individuals who were homozygous for the s allele had smaller hippocampi than did l-allele carriers when the onset of depression occurred early in life. This pattern was reversed, however, in individuals who reported a later onset of depression (i.e., larger hippocampi were found in s/s homozygotes), suggesting that the effects of 5-HTTLPR on hippocampal volume are dependent on the timing of MDD.

Few investigations have documented associations between 5-HTTLPR and gray matter structure in other areas of the brain in depressed individuals. Hickie et al. (2007) found that s-allele carriers with late-life depression had smaller caudate volumes than did depressed l/l homozygotes, a pattern that was not present in never-depressed controls. In
a second study, Frodl et al. (2008) found that whereas healthy controls carrying the s or lG allele had less gray matter in the dorsolateral prefrontal cortex (dLPCF), left ACC, left amygdala, and right hippocampus than did l/l homozygotes, this association was not found in depressed participants. Instead, individuals with MDD showed reductions in gray matter of these regions overall compared to never-depressed control participants, suggesting that morphological anomalies in the depressed individuals were more sensitive to the presence of disorder than to genetic polymorphisms.

Taken together, the literature examining associations between 5-HTTLPR and brain structure in depression has been largely inconclusive, suggesting that other factors related to disease course (e.g., early life stress, medication, chronicity of depression) exert a stronger influence on brain structure than does 5-HTTLPR genotype. It is also possible, however, that these factors interact with genotype to influence morphology. For example, Frodl et al. (2010) found that depressed individuals who carried the s allele and had a history of emotional neglect had smaller hippocampal volumes than did depressed patients who only had one risk factor (environmental or genetic). Further, childhood stress in this study resulted in larger prefrontal volumes in depressed subjects who carried the l allele, suggesting preventive effects of this polymorphism. These findings are important in indicating that stress represents a mechanism by which illness risk and outcome might be genetically mediated and, together, provide neurobiological support for an interaction among early life stress, 5-HTTLPR polymorphism, and the likelihood of developing depression (e.g., Caspi et al. 2003; Karg, Burmeister, Shedden, and Sen 2011). Again, however, studies are needed that explicitly assess interactions among stress, genetics, and neural function and structure.
The COMT enzyme is involved in monoamine (including dopamine [DA]) catabolism. Consequently, COMT has been posited to play a role in the neurobiological and clinical manifestations of psychiatric disorders that involve anomalies in DA systems, such as MDD (Craddock, Owen, and O’Donovan 2006). Located on chromosome 22q11, a common G-to-A polymorphism of the COMT gene results in a valine (Val) to methionine (Met) substitution. Met-allele homozygotes have been found to have three to four times lower COMT enzyme activity than do Va homozygotes and, therefore, less breakdown of monoamines, including DA and norepinephrine; heterozygotes exhibit activity that is intermediate (Weinshilboum, Otterness, and Szumlanski 1999). Given the consequences of catecholamine catabolism (e.g., the role of DA in cognition and affect regulation; Lelli-Chiesa et al. 2010), investigators have studied the relation between the Val/Met substitution and psychiatric phenotypes (Bilder, Volavka, Lachman, and Grace 2004). We review findings from this literature in the following sections.

COMT and Brain Function

While researchers have not yet examined the impact of COMT on brain function in MDD specifically, a number of studies assessing non-disordered individuals suggest that the study of the Val/Met COMT substitution in MDD is an important research direction. Indeed, investigators have found associations between COMT and neural function in many of the same brain regions that are involved in depression, including the amygdala, ACC, orbitofrontal cortex (OFC), and hippocampus, although findings have not been entirely consistent (Scharinger et al. 2010). For example, studies have linked the COMT Met allele with both increased (Smolka et al. 2005; Smolka et al. 2007) and decreased
(Kempton et al. 2009) responsivity of the amygdala. Further, Drabant et al. (2006) found no associations between the Val/Met COMT polymorphism and amygdala activity.

Similar inconsistencies have been observed in the frontal cortices (Scharinger et al. 2010). COMT Met-allele carriers have shown decreased activity in the ACC relative to Val-allele homozygotes (Smolka et al. 2007; Williams et al. 2010); the reverse has also been found (Pomarol-Clotet et al. 2010). Moreover, Val-carrier status has been associated with both increased (Bishop, Cohen, Fossella, Casey, and Farah 2006; Pomarol-Clotet et al. 2010) and decreased OFC activity (Dreher, Kohn, Kolachana, Weinberger, and Berman 2009). Findings related to function of the hippocampus have been more consistent, with a majority of studies finding that Val homozygosity is related to decreased hippocampal activity (Smolka et al. 2005; Drabant et al. 2006; Smolka et al. 2007; Krach et al. 2010).

In attempting to understand the reasons for these inconsistencies, researchers have suggested that gender dimorphism may explain the ambiguous relations between COMT and brain function (Harrison and Tunbridge 2007; Scharinger et al. 2010). For example, the Val/Met polymorphism has been found to be related to obsessive-compulsive disorder in men but not in women, and to anxiety-related phenotypes in women but not in men (for review, see Harrison and Tunbridge 2007). Another factor that might lead to deviations in the association between COMT genotype and brain function involves gene-gene interactions. For example, Smolka et al. (2007) found that the combined effects of COMT and 5-HTTLPR polymorphisms accounted for approximately 40% of BOLD signal variance in amygdala, hippocampus, and related limbic cortical regions and, further, that these effects were greater than the effects for either genotype individually.
Thus, the influence of COMT on brain activation may vary as a function of 5-HTTLPR status. We discuss the involvement of gene-gene interactions, and the relation of these factors in MDD, in greater detail later in this chapter.

COMT and Brain Structure

Similar to studies of brain function, a large body of literature has examined the influence of the Val/Met *COMT* polymorphism on brain structure in non-disordered adults (Scharinger et al. 2010). Findings from this research document that Met-allele carriers are characterized by decreases in OFC volume (Cerasa et al. 2008), increases in amygdala volume (Taylor et al. 2007b; Cerasa et al. 2008; Ehrlich et al. 2010) and increases in hippocampal volume (Taylor et al. 2007b; Cerasa et al. 2008; Honea et al. 2009; Ehrlich et al. 2010), although some investigators have failed to replicate these findings (Ohnishi et al. 2005; Zinkstok et al. 2006). Several studies have also been conducted attempting to relate structural brain differences in depression to the Val/Met substitution (Pan et al. 2009; Seok et al. 2013). Given known cortico-subcortical network abnormalities related to this disorder (Mayberg 2003; Kempton et al. 2011) that include white matter disturbances of frontal-limbic networks (Sexton, Mackay, and Ebmeier 2009; Liao et al. 2013), Seok et al. (2013) examined the relation between frontal-to-limbic structural connectivity and the Val/Met *COMT* substitution in MDD. These investigators found that depressed Val homozygotes had lower fractional anisotropy (FA; an index of white matter integrity) of this network, specifically in the middle temporal gyrus, right middle frontal gyrus, and right cingulum bundle, than did depressed individuals carrying one or no copies of this allele. Thus, the *COMT* Val/Met polymorphism may exacerbate depression-related brain abnormalities.
In a second study, Pan et al. (2009) examined interactions of the COMT Val/Met polymorphism, polymorphisms of a gene coding for methylenetetrahydrofolate reductase (MTHFR; an enzyme that aids the conversion of homocysteine to methionine that has been implicated in MDD; Folstein et al. 2007), and volume of the basal ganglia, an important target in understanding depression given its strong connections with both the limbic system and the prefrontal cortex (Steffens, Tupler, Ranga, and Krishnan 1998). Pan et al. (2009) found an interaction of diagnosis and gene such that bilateral putamen volume in depressed MTHFR C/C participants decreased as the number of COMT Val alleles increased, and left putamen volumes decreased in the COMT Met/Met depressed participants as the number of MTHFR T alleles increased. These findings suggest that COMT Val/Met and MTHFR C/T interact to affect putamen volumes in depression, with neither gene individually controlling putamen volume.

Although research explicitly examining the effects of COMT on brain structure in depression is limited, associations between COMT and neural structure have been found in brain regions related to depression (e.g., Pan et al. 2009; Seok et al. 2013). Clearly, future research is necessary to replicate and extend these studies, and to continue to explicate the role of COMT on depression-related brain structure and function. Moreover, given promising results assessing the interaction of COMT and MTHFR on brain volume (Pan et al. 2009), future research is likely to benefit from assessing additional gene-gene relations to brain structure.

BDNF

Neurotrophins are a family of proteins that are centrally involved in the regulation of neural development, maintenance, function, survival, and plasticity in the vertebrate
nervous system (for a review, see Huang and Reichardt 2001). The neurotrophin hypothesis of depression (Duman and Monteggia 2006; Groves 2007) posits that reduced levels of neurotrophins contribute to the pathogenesis of MDD through neuronal atrophy and cell loss in integral brain areas associated with this disorder. Further, this hypothesis posits that the restoration of neurotrophins is integral to the effectiveness of antidepressant medications.

Brain-derived neurotrophic factor (BDNF), coded by the BDNF gene, represents one type of neurotrophin that is likely to be involved in the neural underpinnings of depression. A common single nucleotide polymorphism (SNP; rs6265) leads to a non-conservative valine (Val) to methionine (Met) amino acid alteration in the BDNF coding exon at position 66 (Val66Met). In rodents, the Met allele has been related to altered intracellular trafficking and activity-dependent release of the BDNF protein (Egan, Kojima, Callicott, & Goldberg, 2003; Chen et al. 2004). In humans, association studies have documented relations between the Val and the Met variants and anxiety (Sen et al. 2003; Jiang, Xu, Hoberman, Tian, and Marko et al. 2005; Lang et al. 2005). Sen et al. (2003) found that BDNF Val66Met was related to neuroticism, a strong marker of depression vulnerability (Duggan, Sham, Lee, Minne, and Murray 1995).

These findings, as well as a possible role of BDNF in the pathophysiology of MDD, have stimulated research examining the relation of this gene to brain function and structure in depression (Castrén 2005; Berton et al. 2006; Krishnan et al. 2007). This literature is reviewed in the following section.

BDNF and Brain Function
A growing body of literature has examined the impact of BDNF on brain function in healthy humans (e.g., Egan et al. 2003; Hariri et al. 2003; Montag, Reuter, Newport, Elger, and Weber 2008; for review, see Hong, Liou, and Tsai 2011). In the earliest imaging genetics studies of BDNF, Met-allele carriers, compared with Val-allele homozygotes, exhibited increased bilateral caudal hippocampal activity (as assessed by functional magnetic resonance imaging [fMRI]) during an N-back working memory task (Egan et al. 2003). In another seminal neuroimaging genetics study examining the role of BDNF on hippocampal activity during a declarative memory task, Hariri et al. (2003) found that while all participants activated the posterior hippocampal formation bilaterally during both encoding and retrieval, hippocampal activations occurring during the encoding and retrieval epochs were stronger in individuals who were homozygous for the Val-allele than for Met-allele carriers. Importantly, Met-allele carriers in this study also had a high number of recognition errors; in fact, 25% of the variance in recognition memory performance was explained by the interaction of BDNF genotype and hippocampal activity during encoding. Thus, consistent with the known function of BDNF in hippocampal plasticity, BDNF modulation of hippocampal activity appears to be important for information encoding (Poo 2001; Tyler, Alonso, Bramham, and Posso-Miller 2002) and, therefore, could underlie impairments in memory that have been documented in depressed individuals (Burt, Zembar, and Niederehe 1995).

The effects of the BDNF Val66Met polymorphism on emotional processing have also been studied using fMRI in non-disordered individuals. In an investigation of unselected adults, Montag et al. (2008) had participants complete an affective auditory startle reflex task in which startle probes were administered binaurally as participants
viewed pleasant, unpleasant, and neutral images. The *BDNF* Met polymorphism (relative to Val-allele homozygosity) was associated with greater activation in the right amygdala during the processing of positive and negative stimuli. Interestingly, in a subsequent study, Gasic et al. (2009) found that Val-allele homozygotes exhibited greater amygdala activation than did Val/Met heterozygotes. This discrepancy in the findings of these two studies may be due to gender differences in the studies; whereas 45% of the participants in Gasic et al.’s (2009) study were female, 100% of the subjects Montag et al.’s (2008) study were female. Indeed, a recent meta-analysis of 14 studies suggests that the *BDNF* Val66Met polymorphism has a differential impact on males and females (Verhagen et al. 2010).

Only one study to date has examined the effects of the *BDNF* Val66Met polymorphism on functional activation in a sample of depressed individuals. Lau et al. (2010) extended previous findings of *BDNF*-related effects on hippocampus and amygdala activation during emotional processing in healthy adults, by examining Val66Met-mediated neural activation to emotional faces in depressed and anxious adolescents. These investigators found an interaction of diagnosis and genotype: whereas in the depressed and anxious adolescents, Met-carriers showed greater neural response than did Val-homozygotes in bilateral amygdala and bilateral anterior hippocampus during processing of emotional faces, this genotype-activity relation was not observed in the control group. Thus, *BDNF* genotype may account for variations in brain function subserving emotional processing in MDD. Clearly, however, more studies are needed to support his hypothesis.

BDNF and Brain Structure
The relation of BDNF to brain structure, in particular the hippocampus, has received considerable research attention, with a majority of studies in healthy populations documenting an association between the Met allele and decreased hippocampal volume (for a review, see Scharinger et al. 2010). Examining the effect of this genotype in MDD, Frodl et al. (2007) found that the Met allele was associated with reduced hippocampal volumes in both depressed and nondepressed participants. More recently, however, Gonul et al. (2011) found that, while there was a main effect of diagnosis on hippocampal volume within Val-allele homozygotes, with the left hippocampus smaller in depressed than in non-depressed Val/Val individuals, no depression-associated effect was found for individuals who carried a Met allele. In another study, Kanellopoulos et al. (2011) found increased right hippocampal volumes in elderly depressed Val-allele homozygotes compared to their non-depressed counterparts; again, there was no difference between depressed and healthy Met-allele carriers. We should note, however, that several other studies have failed to find significant effects of Val66Met on hippocampal size in depression (Jessen et al. 2009; Benjamin et al. 2010; Cole et al. 2011).

In attempting to understand the reasons for these discrepancies, researchers have implicated the complexity of the hippocampus, positing that BDNF-related neurotrophic effects may differentially affect specific hippocampal subfields (e.g., dentate gyrus, Cornu Ammonis areas), or regions (e.g., head, body, tail). Therefore, future studies in which scanning is conducted at resolutions sufficient to examine specific hippocampal subfields or regions may help to clarify the observed inconsistencies (Molendijk et al. 2012a).
Investigators have also examined the amygdala in the context of *BDNF* polymorphisms. In non-depressed individuals, Montag, Weber, Fliessbach, Elger, and Reuter (2009) found the Met allele to be associated with decreased amygdala size. Most other studies, however, have failed to observe this association (Pezawas et al., 2004; Nemoto et al. 2006; Matsuo et al. 2009; Schofield, Williams, Paul, and Gatt 2009), including a study of depressed individuals (Frodl et al. 2007).

Other studies of the association of *BDNF* with brain structure have focused on white matter of the uncinate fasciculus, a primary white matter tract connecting limbic (hippocampus and amygdala) with prefrontal regions that is posited to subserve emotional-cognitive processing, declarative memory, and self-awareness (Levine et al. 1998; Taylor, MacFall, Gerig, and Krishnan 2007a; Mabbott, Rovet, Noseworthy, Lou Smith, and Rockel 2009). Importantly, one study found reduced FA of the uncinate fasciculus in depressed participants who carried a Met allele compared to both healthy Met-allele carriers and depressed individuals who were homozygous for the Val allele (Carballedo et al. 2012). Thus, *BDNF* polymorphisms may affect neural circuits not only through structure of anatomic subregions, but also by influencing the structural connections among these regions.

Summary: 5-HTT, COMT, and BDNF

Considered collectively, this literature suggests possible roles for 5-HTT, COMT, and *BDNF* in influencing the anomalous structure and function of limbic and prefrontal brain regions associated with depression. As we discussed earlier, given the inconsistency of findings relating these genes to brain structure and function in both healthy and depressed individuals, it is clear that further research is required to explicate more precisely the
specific roles of these genes in affecting neural characteristics and their relation to MDD. The equivocal results reviewed previously may be due to heterogeneity in the samples studied in these investigations with respect to gender composition, ethnicity, age, type of treatment, methods of diagnosis, and experimental approaches. Studies also differ in analytic procedures and the specific genetic polymorphisms assessed. For example, the Val66Met polymorphism that is targeted by neuroimaging genetics researchers is only one variant of the BDNF gene. While future research should systematically address these potential confounding factors, a number of other variables that are related to gene-brain associations must also be considered. We discuss these factors in the following section.

Beyond Single Genes

Given the inconsistencies noted earlier in studies of neuroimaging and single-gene polymorphisms in depression, investigators have developed increasingly complex and sophisticated methods to elucidate gene-brain relations in major depression. This research extends prior work by assessing gene-gene and gene-environment interactions, as well as the association between neural measures and multiple genetic risk factors for depression, or polygenic burden. In the following section, we review findings from studies addressing interactions among 5-HTT, BDNF, and COMT, in addition to interactions of BDNF and 5-HTT with environmental stress. Finally, we discuss recent polygenic approaches to the neuroimaging genetics of depression.

Gene-Gene Interactions

Given the associations between single candidate genes (5-HTT, COMT, and BDNF) and the structure and function of prefrontal and limbic brain regions involved in the generation and regulation of emotion, investigators have begun to examine how these
genes interact to affect neural structure and function (Hariri, Drabant, and Weinberger 2006). Several studies have documented interactions of the COMT Val/Met substitution and 5-HTTLPR s allele in predicting brain function. Given the research that we reviewed earlier showing associations among single-gene polymorphisms, anxiety phenotypes, and amygdala-related processing of negative stimuli (Hariri et al. 2002; Heinz et al. 2004; Smolka et al. 2005), as well as anxiety-related phenotypes, Smolka et al. (2007) assessed the roles of COMT and 5-HTTLPR on brain activation during the processing of valenced stimuli. They found that a higher total number of COMT or 5-HTT risk variants (Met and s or lG, respectively) were related to increased neural activation in the amygdala, hippocampus, and limbic cortex and, further, that the combined effect of these COMT and 5-HTTLPR variants during the processing of aversive material was greater than either genotype individually. Moreover, risk variants of COMT and 5-HTTLPR explained 40% of the variance in brain function of limbic regions. Importantly, this estimate is considerably larger than the variance explained by these genes individually, and larger than their relation to personality traits documented in previous research (e.g., Lesch et al. [1996] found risk variants of 5-HTTLPR to explain 4% of the variance in anxiety scores).

Investigators have begun to examine the interaction of 5-HTTLPR and BDNF on brain structure and function. Importantly, 5-HT signaling has been found to mediate both neurotrophin-related synaptic plasticity (Castrén 2005; McEwen and Olié 2005; Martinowich and Lu 2007) and the modulation of BDNF expression (Nestler et al. 2002). Further, BDNF plays a role in the plasticity and function of serotonergic neurons and serotonergic-related emotional processing (Nestler et al. 2002; Murphy et al. 2003; de Foubert et al. 2004; Ren-Patterson et al. 2005; Martinowich and Lu 2007; Tan et al.
Pezawas et al. (2008) assessed the relation between \textit{BDNF} and \textit{5-HTTLPR} in the context of brain volume, with a particular focus on structures that have been found to be associated with depression (e.g., the amygdala). These researchers found that the \textit{BDNF} Met allele appears to protect against structural anomalies associated with the \textit{5-HTTLPR s} allele, such as decreased amygdala and ACC volume (Lesch et al. 1996; Caspi et al. 2003), and against reduced structural connectivity between these regions (Raz et al. 1997; Woodruff et al. 1997; Raz et al. 2004; Raz et al. 2005). These findings suggest that a critical link between serotonergic and neurotrophic systems that can be elucidated through the use of a neuroimaging genetics approach. Although no studies have yet been conducted examining gene-gene interactions predicting neural function or structure in MDD, it is clear that future conceptions of MDD will benefit from the study of these interactions as they relate to neural anomalies in depression.

\textbf{Gene-Environment Interaction}

Adverse life events have long been posited to relate to the development of depression (see Monroe, Slavich, and Georgiades 2009, for a review). In addition, the increased likelihood of developing depression in response to a stressful life event appears to be driven, at least in part, by genetic factors (Kendler et al. 1995; Kessler 1997; Kendler, Gardner, and Prescott 2002). Using a neuroimaging genetics approach to understanding this unique gene-environment interaction at the neurobiological level is important for identifying neural risk factors for depression, which could yield more effective treatments that target relevant neural mechanisms associated with the negative effects of stress in MDD (Gordon 2007; Kemp, Gordon, Rush, and Williams 2008).
Using functional neuroimaging, Canli et al. (2006) found that early life stress (ELS) interacts with the effect of 5-HTTLPR genotype on resting activity in the amygdala and hippocampus, both of which have been associated with stress and depression; more specifically, activation was positively correlated with ELS in the s-allele carriers and negatively correlated with ELS in the l-allele homozygotes. Thus, Canli et al.’s (2006) study may elucidate the mechanisms underlying the relations among 5-HTTLPR genotype, stress, and depression, and lays the foundation for future research examining processes involved in reduced resilience and the development of depression.

Given the neurotrophin hypothesis of depression, as well as data implicating ELS as a vulnerability marker for MDD (Gatt et al. 2008), Gatt et al. (2009) examined the interaction of BDNF and ELS in predicting anomalies in brain structure in regions that have been implicated in depression (e.g., hippocampus). Gatt et al. found that BDNF Met carriers who had experienced ELS had smaller hippocampus and amygdala volumes than did participants in the other gene-environment groups. Similarly, Gerritsen et al. (2011) found reduced volume in subgenual ACC in BDNF Met allele carriers who had experienced ELS, relative to individuals with Met-allele carriers without ELS and Val/Val homozygotes with ELS, a finding not obtained in the hippocampus, amygdala, or orbitofrontal prefrontal cortex. In contrast to these findings, however, in examining hippocampal structure, Molendijk et al. (2012b) did not find an interaction of genotype and childhood abuse. As we noted earlier, however, this negative finding may change with more sophisticated neuroimaging analysis techniques focusing on specific neuroanatomic subregions.
To date, investigators have generally examined separately the relations of genetic polymorphisms, stress, personality traits, and brain function and structure with depression. Moving forward, it will be important to conduct integrative studies of how stress and genes are related to neural aspects of MDD in order to gain a better understanding of the complex mechanisms that underlie this disorder.

Polygenic Burden

Although MDD has been documented to be a highly heritable disorder (Sullivan et al. 2000), and investigations of the effects of individual candidate genes have yielded promising results, so far investigators have found only weak relations between depression-related phenotypes and single genes (Meyer-Lindenberg and Weinberger 2006). This discrepancy has led to the formulation that a large set of allelic variants may have small effects individually, but may explain considerable variation collectively in cognitive, behavioral, and neural aspects of depression.

Building on this work, Holmes et al. (2012) examined the relation between neural structure and function and polygenic risk for depression. These investigators identified young adults via genome-wide association analysis who had polygenic risk for MDD ($n = 438$) and assessed gray matter volume in relation to this risk. Holmes et al. (2012) found that decreased mPFC thickness was related to greater polygenic risk for MDD, heightened negative affect, poorer social cognition, and lower performance on a facial emotion recognition task. While these are promising preliminary findings, it will be important in future research to examine larger and more diverse samples and denser SNP arrays, the effects of environmental influences (e.g., ELS), and neuroanatomic subregions (Whalen et al. 2001; Etkin et al. 2004). Elucidating the relations of gene-gene and gene-
environment interactions with depressive pathology is likely to provide insight about the complex neurogenetic mechanisms underlying MDD, as evidenced by the interactions among 5-HTT, COMT, BDNF, and ELS in predicting activation in neural structures and characteristics that have been implicated in depression.

Summary and Future Directions

Imaging genetics has begun to be widely applied. Investigators have now used single-gene, gene-gene, gene-environment, and polygenic approaches to examine whether and how genetic variation influences brain structure and function in the general population (Hariri and Weinberger 2003; Hariri et al. 2006) and, more recently, in depressed individuals (Savitz and Drevets 2009; Scharinger et al. 2010; Northoff 2013). Although at present it is not possible to elucidate the precise role of genetics in affecting neural structure and function in depression, particularly with respect to single-gene effects (e.g., 5-HTTLPR, COMT, BDNF), there is growing evidence suggesting that polygenic risk, in combination with environmental factors (e.g., ELS), may play a role in the development of depressive pathophysiology. Nevertheless, documented throughout this review are indications that replication is critical and that improved experimental controls are necessary before we can be confident about the role of genetics in explicating the biological and, in particular, the neural bases of MDD.

In order to delineate genetic influences on the development and course of depression, future research will benefit from the use of longitudinal designs that permit the assessment of the genetic impact on the trajectory of depressive disorder. Moreover, although there are many possible genetic mechanisms identified in studies of non-disordered individuals that may be implicated in MDD, it is important that a
neuroimaging genetics approach be extended to study individuals diagnosed with this disorder. Perhaps most important to increase our confidence in the reliability and validity of the findings obtained thus far, replications and larger sample sizes are required. This issue, of course, raises questions regarding feasibility, which may be at least partially addressed by large-scale endeavors to create databases of neural and genetic data for depression and other psychiatric disorders similar to the Alzheimer’s Disease Neuroimaging Initiative (http://adni.loni.ucla.edu). Finally, it is important that investigators consider the impact of cohort characteristics (e.g., gender, medication, age) in the imaging genetics of depression; these variables may differentially affect the expression and influence of genetic mechanisms involved in the development of depression and in the effectiveness of treatments for MDD. It is clear that considerably more research is required before we can draw strong conclusions about the ultimate value of imaging genetics of depression. Nevertheless, we believe that despite the difficulties inherent in this work, imaging genetics holds the potential to significantly increase our understanding of depression and to improve our efforts aimed at the prevention, assessment, and treatment of this debilitating disorder.
References

Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. *J Neurosci*. 24(18): 4401–4411.

No effect of 5HTTLPR or BDNF Val66Met polymorphism on hippocampal morphology in major depression. *Genes Brain Behav*. 10(7): 756–764.

Serotonergic genes modulate amygdala activity in major depression. *Genes Brain Behav*. 6(7): 672–676.

doi:10.1016/j.biopsych.2006.02.013

Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR. (2003). Brain-derived neurotrophic factor val66met polymorphism affects

