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Let K be an algebraic number field of degree n = nK over Q with r1 real embeddings
and r2 conjugate pairs of complex embeddings. Let D = DK be the absolute value of the
discriminant of K. The Dedekind zeta function of K is

ζK(s) =
∑
a

Na−s =
∏
p

1

1−Np−s
, (0.1)

and the generalized Riemann hypothesis (GRH) for K is the conjecture that every zero of
ζK(s) inside the critical strip 0 < Re s < 1 is on the critical line Re s = 1

2 . We write γ for
the Euler-Mascheroni constant lim

n→∞

(∑n
k=1

1
k − log n

)
≈ 0.57721.

The purpose of these notes is to bound D in terms of r1 and r2. The first such bound was
found by Minkowski. Using the geometry of numbers, Minkowski showed that every ideal
class of K contains an integral ideal of norm at most

√
D
(

4
π

)r2 n!
nn . Since every ideal has

norm at least 1, it follows that

D ≥
(π

4

)2r2
(
nn

n!

)2

. (0.2)

(In particular, D > 1 for n > 1, so there are no unramified extensions of Q.) By Stirling’s
approximation n! =

(
n
e

)n
e−o(n) and the relation n = r1 + 2r2, we find

D ≥ Ar1B2r2eo(n) with A = e2 and B = e2π

4
, (0.3)

and it is bounds of this type that we will begin by considering.

Since Minkowski, much progress has been made in improving the constants A and B. Ini-
tially, most of the papers used geometry of numbers methods, culminating in the work
of Rogers and Mulholland for totally real and totally complex fields, respectively. In the
1970’s Stark introduced analytic methods, which were extended by Odlyzko to eventually
give substantial improvements on previous lower bounds. Using the Guinand–Weil explicit
formulas, Serre provided a general approach for proving such bounds, which led to im-
provements still, and provided insight for determining the best possible bounds that can
be proved in this way. See Table 1 and the survey paper [9] for details.
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Result A B

Minkowski (1891) [4] e2 ≈ 7.39 e2 π
4 ≈ 5.80

Rogers-Mulholland (1960) [5, 10] 32.56 15.77

Stark (1974) [12] 4πeγ ≈ 22.38 2πeγ ≈ 11.19

Odlyzko (1975) [6] 50.66 19.96
with GRH 94.69 28.76

Odlyzko (1976) [7] 55 21
with GRH 136 34.5

Odlyzko (1977) [8] 60 22
with GRH 188 41

Serre (1975) [11] 4πe1+γ ≈ 60.84 4πeγ ≈ 22.38

with GRH 8πeπ/2+γ ≈ 215.33 8πeγ ≈ 44.76

Table 1: Constants A and B for which D ≥ Ar1B2r2eo(n)

In this paper, we will introduce Stark’s analytic method and give an overview of Serre’s
approach to proving lower bounds. We will also show how to use methods in group co-
homology to exhibit fields with small discriminants, and therefore give upper bounds as
well.

1 Stark’s analytic method

Stark’s use of analytic techniques in the study of discriminant lower bounds began with
the following explicit formula.

Proposition 1.1. We have

logD = r1

(
log π − Γ′

Γ

(s
2

))
+ 2r2

(
log 2π − Γ′

Γ
(s)

)
− 2

s
− 2

s− 1
+ 2
∑
ρ

′ 1

s− ρ
− 2

ζ ′K
ζK

(s),

where ρ runs over the zeroes of ζK(s) in the critical strip, and
∑′

ρ indicates that the terms
ρ and ρ are to be taken together.

Proof. Consider the completed zeta function

ΛK(s) = s(s− 1)Ds/22−r2sπ−ns/2Γ(s/2)r1Γ(s)r2ζK(s), (1.1)

which is an entire function of order 1 and satisfies the functional equation ΛK(1 − s) =
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ΛK(s). By the Hadamard factorization theorem, we may write

ΛK(s) = eα+βs
∏
ρ

(
1− s

ρ

)
es/ρ (1.2)

for some α, β ∈ C, where the product is over the non-trivial zeroes ρ of ζK(s). Taking the
logarithmic derivative, we find

Λ′K
ΛK

(s) = β +
∑
ρ

(
1

s− ρ
+

1

ρ

)
, (1.3)

with the sum converging absolutely. By the functional equation
Λ′
K

ΛK
(s) = −Λ′

K
ΛK

(1− s), we
have

β +
∑
ρ

(
1

s− ρ
+

1

ρ

)
= −β −

∑
ρ

(
1

1− s− ρ
+

1

ρ

)
, (1.4)

and since 1− ρ is a zero whenever ρ is, we obtain β = −
∑

ρ
′ 1
ρ . Altogether, we find

Λ′K
ΛK

(s) =
∑
ρ

′ 1

s− ρ
. (1.5)

On the other hand, by the definition of ΛK(s), we have

Λ′K
ΛK

(s) =
1

s
+

1

s− 1
+

1

2
logD − r2 log 2− n

2
log π +

r1

2

Γ′

Γ

(s
2

)
+ r2

Γ′

Γ
(s) +

ζ ′K
ζK

(s). (1.6)

Combining (1.5) and (1.6) completes the proof.

Stark’s observation was that terms in this explicit formula which are difficult to estimate,

namely
∑

ρ
′ 1
s−ρ and

ζ′K
ζK

(s), can actually be ignored. Indeed, for s = σ > 1, we have

−
ζ ′K
ζK

(σ) =
∑
p

∞∑
m=1

logNp

Npmσ
> 0 and

∑
ρ

′ 1

σ − ρ
=
∑
ρ

1

2

(
1

σ − ρ
+

1

σ − ρ

)
=
∑
ρ

σ − Re ρ

|σ − ρ|2
> 0.

(1.7)

Therefore, we find

logD ≥ r1

(
log π − Γ′

Γ

(s
2

))
+ 2r2

(
log 2π − Γ′

Γ
(s)

)
− 2

s
− 2

s− 1
. (1.8)

Letting s = 1 +n−1/2, so that Γ′

Γ

(
s
2

)
= −γ− log 4 + o(1) and Γ′

Γ (s) = −γ+ o(1), we obtain
the following bound.
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Corollary 1.2 (Stark). D ≥ (4πeγ)r1(2πeγ)2r2eo(n).

In a series of papers [6, 7, 8], Odlyzko improved on this bound using subtler estimates
drawn from the explicit formula in Proposition 1.1 and its derivatives (see Table 1).

2 Serre’s reformulation

In this section, following Serre, we use a special case of the Guinand–Weil explicit formulas
to generalize Proposition 1.1 and obtain improved discriminant lower bounds.

Let F : R → R be a differentiable function such that F (−x) = F (x), F (0) = 1, and for
some constants C, ε > 0, we have the decay condition

|F (x)|, |F ′(x)| ≤ Ce−(1/2+ε)|x|. (2.1)

Define the Mellin transform

Φ(s) =

∫ ∞
−∞

F (x)e(s−1/2)xdx, (2.2)

and note that Φ(s) = Φ(1− s). In this setting, we have the following explicit formula.

Theorem 2.1. We have

logD = r1
π

2
+ n(γ + log 8π)

− r1

∫ ∞
0

1− F (x)

2 cosh(x/2)
dx− n

∫ ∞
0

1− F (x)

2 sinh(x/2)
dx− 2Φ(0)

+
∑
ρ

′
Φ(ρ) + 2

∑
p

∞∑
m=1

logNp

Npm/2
F (m logNp).

Before proving this, let us see how it implies lower bounds for the discriminant. If we
choose F so that F (x) ≥ 0 and Re Φ(ρ) ≥ 0 for all zeroes ρ of ζK(s), then we may ignore
the last two terms in the equation above and obtain the inequality

logD ≥ r1

(π
2

+ γ + log 8π − I1 − I2

)
+ 2r2 (γ + log 8π − I2)− 2Φ(0)

where I1 =

∫ ∞
0

1− F (x)

2 cosh(x/2)
dx and I2 =

∫ ∞
0

1− F (x)

2 sinh(x/2)dx
.

(2.3)

(If we have information about the factorization of primes in K or the distribution of the
zeroes of ζK , then we can do even better.)

First, let us assume the generalized Riemann hypothesis. Note that the Fourier transform
F̂ (ξ) =

∫∞
−∞ F (x)e−ixξdx is simply Φ(1

2 − iξ), so it suffices to choose F such that F and F̂
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are both positive on the real line. If we take F (x) = e−(x/b)2 , with b chosen appropriately
in terms of n (e.g. b =

√
log n), then we may guarantee that I1 = o(1), I2 = o(1), and

Φ(0) = o(n). Using (2.3), we have therefore proven the following.

Corollary 2.2. Assuming the generalized Riemann hypothesis for K,

D ≥ (8πeπ/2+γ)r1(8πeγ)2r2eo(n).

No other choice of F can give a better main term, but it is possible to improve the error
term. Among those functions of the form F (x) = G(x/b) with b depending on the signature
(r1, r2) of K, it turns out that the best choice for G is the function

G(x) =

{
(1− |x|) cos(πx) + 1

π sin |πx| if |x| ≤ 1,

0 otherwise
(2.4)

considered by Odlyzko.

Let us now consider the question of what can be shown without assuming the Riemann
hypothesis for K. We must choose F so that F (x) ≥ 0 and Re Φ(s) ≥ 0 for all s in the
critical strip 0 ≤ Re s ≤ 1. Since Re Φ(s) is harmonic and Φ(s) = Φ(1 − s), Re Φ(s) is
positive in the critical strip if and only if it is positive on the line Re s = 1. If we let
f(x) = F (x) cosh(x/2), then

f̂(ξ) =

∫ ∞
−∞

F (x)
e(1/2−iξ)x + e(−1/2−iξ)x

2
dx =

Φ(1− iξ) + Φ(−iξ)
2

= Re Φ(1− iξ), (2.5)

so we may choose any function f such that f and f̂ are both positive and let F (x) =
f(x/b)

cosh(x/2) . For the appropriate choice of b in terms of n, we may obtain

I1 =

∫ ∞
0

1− f(x/b)/ cosh(x/2)

2 cosh(x/2)
dx =

∫ ∞
0

1− 1/ cosh(x/2)

2 cosh(x/2)
dx+ o(1) =

π

2
− 1 + o(1),

I2 =

∫ ∞
0

1− f(x/b)/ cosh(x/2)

2 sinh(x/2)
dx =

∫ ∞
0

1− 1/ cosh(x/2)

2 sinh(x/2)
dx+ o(1) = log 2 + o(1),

(2.6)
and Φ(0) = o(n). Combining this with (2.3), we have the following bound.

Corollary 2.3. D ≥ (4πe1+γ)r1(4πeγ)2r2eo(n).

Again, the leading term here is optimal among all choices of F , but the error term can be
improved. In particular, Tartar showed that among a certain class of functions of the form
g(x/b), the best choice of g is

g(x) =
9

x6
(sinx− x cosx)2. (2.7)
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In practice, for fields of small degree, the estimates given by this choice of g are very close
to the actual minimum value of D. The estimates assuming GRH are even closer.

We conclude with the proof of the explicit formula.

Proof of Theorem 2.1. For any T > 0 such that both T and −T avoid the imaginary part
of any zero ρ = a+ ib of ΛK , we have∑

|b|<T

Φ(ρ) =
1

2πi

∫
RT

Φ(s)
Λ′K
ΛK

(s)ds, (2.8)

where RT is the boundary of the rectangle (−δ, 1+δ)×(−T, T ) for some choice of δ ∈ (0, ε)
(recall that Φ(s) is holomorphic on −ε < Re s < 1 + ε by (2.1)). On the horizontal lines

of RT , we have |Φ(s)| = O( 1
T ) and

∣∣∣Λ′
K

ΛK
(s)
∣∣∣ = O( 1

log T ), so we may let T →∞ and use the

functional equations Φ(s) = Φ(1− s) and ΛK(s) = ΛK(1− s) to find

∑
ρ

′
Φ(ρ) =

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)

Λ′K
ΛK

(s)ds. (2.9)

We will split up
Λ′
K

ΛK
(s) as

Λ′K
ΛK

(s) =

(
1

s
+

1

s− 1

)
+

(
1

2
logD − r2 log 2− n

2
log π

)
+

(
r1

2

Γ′

Γ

(s
2

)
+ r2

Γ′

Γ
(s)

)
+

(
ζ ′K
ζK

(s)

)
.

(2.10)

and evaluate the integral with respect to each of these four summands in turn.

First,
1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)

(
1

s
+

1

s− 1

)
= Φ(0) + Φ(1) = 2Φ(0) (2.11)

by Cauchy’s theorem and the functional equation Φ(s) = Φ(1− s).

Next, by Fourier inversion applied to the function F (x)e(1/2+δ)x, we find

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)ds =

1

π

∫ ∞
−∞

∫ ∞
−∞

F (x)e(1/2+δ+it)xdxdt = 2F (0) = 2, (2.12)
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For the third summand, we will have to do some real work. Let

ψ(s) =
Γ′

Γ
(s) = −

∫ ∞
0

(
e−xs

1− e−x
− e−x

x

)
dx, (2.13)

so that we have

ψ(1/2 + it) = −
∫ ∞

0

(
e−itx

2 sinh(x/2)
− e−x

x

)
dx,

ψ(1/4 + it/2) = −
∫ ∞

0

(
ex/2e−itx

sinh(x)
− e−2x

x

)
dx

= −
∫ ∞

0

(
ex/2e−itx

sinh(x)
− e−x

x

)
dx− log 2, and hence

ψ(1/4 + it/2)− ψ(1/2 + it) + log 2 = −
∫ ∞

0

e−itx

2 cosh(x/2)
dx.

(2.14)
In particular, we have the special values∫ ∞

0

(
1

2 sinh(x/2)
− e−x

x

)
dx = −ψ(1/2) = γ + 2 log 2 and∫ ∞

0

dx

2 cosh(x/2)
= −ψ(1/4) + ψ(1/2)− log 2 =

π

2
.

(2.15)

Therefore, we may compute

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)ψ(s)ds =

1

πi

∫ 1
2

+i∞

1
2
−i∞

Φ(s)ψ(s)ds

=
1

π

∫ ∞
−∞

Φ(1/2 + it)ψ(1/2 + it)dt

=
1

π

∫ ∞
−∞

F̂ (t)

∫ ∞
0

(
−e−itx

2 sinh(x/2)
+
e−x

x

)
dxdt

=
1

π

∫ ∞
0

1

2 sinh(x/2)

(∫ ∞
−∞

F̂ (t)(1− e−itx)dt

)
dx− 2(γ + 2 log 2)

= 2

∫ ∞
0

1− F (x)

2 sinh(x/2)
dx− 2γ − 4 log 2,

(2.16)
and similarly

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s) (ψ(s/2)− ψ(s) + log 2) ds = 2

∫ ∞
0

1− F (x)

2 cosh(x/2)
dx− π. (2.17)
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Altogether, using the relation

r1

2
ψ(s/2) + r2ψ(s) =

n

2
ψ(s) +

r1

2
(ψ(s/2)− ψ(s) + log 2)− r1

2
log 2, (2.18)

this gives

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)

(r1

2
ψ(s/2) + r2ψ(s)

)
ds = n

∫ ∞
0

1− F (x)

2 sinh(x/2)
dx+ r1

∫ ∞
0

1− F (x)

2 cosh(x/2)
dx

− nγ − 2n log 2− r1
π

2
− r1 log 2.

(2.19)

As for the final summand, we have
ζ′K
ζK

(s) = −
∑

p

∑∞
m=1

logNp
Npms . For each individual term

logNp
Npms , we have

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)

logNp

Npms
ds =

1

π
logNp

∫ ∞
−∞

1

Npm(1+δ+it)

∫ ∞
−∞

F (x)e(1/2+δ+it)xdx dt

=
1

π

logNp

Npm/2

∫ ∞
−∞

∫ ∞
−∞

F (u+m logNp)e(1/2+δ)ueitudu dt

= 2
logNp

Npm/2
F (m logNp),

(2.20)
with the second equality coming from the substitution u = x − m logNp and the third
coming from Fourier inversion applied to the function F (u+m logNp)e(1/2+δ)u. Summing
over p and m, we find

1

πi

∫ 1+δ+i∞

1+δ−i∞
Φ(s)

ζ ′K
ζK

(s)ds = −2
∑
p

∞∑
m=1

logNp

Npm/2
F (m logNp). (2.21)

Putting (2.11), (2.12), (2.19), and (2.21) together with (2.9) gives the equation∑
ρ

′
Φ(ρ) = 2Φ(0)

+ logD − 2r2 log 2− n log π

+ n

∫ ∞
0

1− F (x)

2 sinh(x/2)
dx+ r1

∫ ∞
0

1− F (x)

2 cosh(x/2)
dx− nγ − 2n log 2− r1

π

2
− r1 log 2

− 2
∑
p

∞∑
m=1

logNp

Npm/2
F (m logNp),

(2.22)
which rearranges to give the formula claimed.
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3 Upper bounds and Golod–Shafarevich

So far, we have studied inequalities of the form DK ≥ Ar1B2r2eo(n). In particular, if we let

dn be the minimum value of the root discriminant D
1/n
K over all number fields K of degree

n, then this implies lim inf
n→∞ dn ≥ min(A,B). For some time, it was conjectured that dn →∞

as n→∞. For example, the cyclotomic field Q(ζ`) given by adjoining a primitive `th root
of unity has root discriminant

D
1/φ(`)
Q(ζ`)

=
`∏

p|` p
1/(p−1)

≥
√
` ≥

√
φ(`), (3.1)

and it is known that the root discriminant tends to infinity for abelian extensions. However,
Golod and Shafarevich [1] showed, in their solution to the class field tower problem in 1964,
that lim inf

n→∞ dn is finite, and in fact bounded from above by
√

120120 ≈ 346.58, as we will
see. Using similar techniques, this was subsequently refined by Martinet [3] in 1978, who
showed

lim inf
n→∞

dn ≤ 23/2 114/5 231/2 ≈ 92.37, (3.2)

and Hajir and Maire [2] in 2001, who showed

lim inf
n→∞

dn ≤ 51/4 131/4 171/8 191/8 231/4 311/8 3311/4 ≈ 83.89. (3.3)

In this section, we will discuss the connection between the class field tower problem and
upper bounds for lim inf

n→∞ dn, and we will demonstrate Golod and Shafarevich’s approach to
proving such a bound.

As before, let K be a number field. Let K1 be the Hilbert class field of K, which is the
maximal unramified abelian extension of K. Recall that there is a natural isomorphism
between Gal(K1/K) and the class group ClK of K given by the reciprocity map from class
field theory, so in particular, the degree [K1 : K] is the class number of K. Let K2 be the
Hilbert class field of K1, and continue in this fashion to obtain a tower of fields

K ⊆ K1 ⊆ K2 ⊆ K3 ⊆ . . . (3.4)

for which each field is the Hilbert class field of its predecessor. Let K∞ =
⋃
nKn, which is

an extension of K of possibly infinite degree. The class field tower problem asks whether
this class field tower always stabilizes. In other words, it asks whether it is possible for
K∞ to have infinite degree over K.

Let p be a prime. Because p-groups are easier to understand than general solvable groups,
we will actually consider p-extensions, which are Galois extensions whose Galois group is a
p-group. The Hilbert p-class field Kp

1 of K is the maximal unramified abelian p-extension
of K, and we define the p-class field tower

K ⊆ Kp
1 ⊆ K

p
2 ⊆ K

p
3 ⊆ . . . (3.5)

9



and Kp
∞ =

⋃
nK

p
n as before. Note that Kp

n ⊆ Kn and Kp
∞ ⊆ K∞, so if the p-class field

tower is infinite, then so is the class field tower.

Example. Consider the field K = Q(
√
−30), for which the class field tower has length 2

and consists of the fields

K = Q(
√
−30),

K1 = Q(
√

2,
√
−3,
√

5), and

K2 = Q
(√

2,

√
−2 +

√
−3 +

√
5

)
= K∞.

(3.6)

Since each of these extensions is a 2-extension, this is also the 2-class field tower of K, and
in particular K2

∞ = K∞ = K2.

Usually, the class field tower of K is used for determining whether K can be embedded
in a number field with class number 1, but the connection between class field towers and
discriminant upper bounds comes from the following lemma.

Lemma 3.1. If L/K is an unramified extension of number fields, then D
1/[L:Q]
L = D

1/[K:Q]
K .

Proof. For any extension L/K of number field, the relative discriminant DL/K satisfies

DL = NK/Q(DL/K)D
[L:K]
K . If L/K is unramified, then DL/K = (1).

In particular, each field in the p-class field tower of K has the same root discriminant, so

if this tower is infinite, then lim inf
n→∞ dn ≤ D1/[K:Q]

K .

As an aside, together with the ideas from the preceding section, this gives one way of upper
bounding the class number. For example, if DK is small enough that all fields of higher
degree must have a larger root discriminant, then the Hilbert class field of K must be K
itself, so ClK must be trivial.

Our main result in this section is a criterion under which K has an infinite p-class field
tower. Given a group G, we define G/p to be the maximal abelian quotient of G of exponent
p, regarded as a vector space over Fp, and we let dpG = dimG/p.

Theorem 3.2. If K has a finite p-class field tower, then

dp ClK < 2 + 2
√

1 + dpo×K

where oK is the ring of integers of K.

Note that by Dirichlet’s unit theorem, o×K
∼= Zr1+r2−1 ×WK where WK is the group of

roots of unity in K, so

dpo×K =

{
r1 + r2 − 1 if ζp 6∈ K,
r1 + r2 if ζp ∈ K,

(3.7)
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where ζp is a primitive pth root of unity.

For example, consider the field K = Q(
√
D) with D < 0 a fundamental discriminant. Since

d2o×K = 1, K has an infinite class field tower so long as d2 ClK ≥ 2 + 2
√

2. By Gauss’s
genus theory, d2 ClK = t− 1 where t is the number of ramified primes in K, so letting

D = −8 · 3 · 5 · 7 · 11 · 13 = −120120, (3.8)

we obtain the following.

Corollary 3.3. lim inf
n→∞ dn ≤

√
120120.

Before embarking on the proof of Theorem 3.2, we will need some results about the ho-
mology of p-groups. Recall that for a group G and a Z[G]-module A, the homology groups
Hi(G,A) are characterized by the following properties.

i. H0(G,A) = A/IGA with IG the augmentation ideal ker(Z[G]→ Z) = 〈σ − 1 | σ ∈ G〉.

ii. For every short exact sequence 0 → A → B → C → 0, there is a natural exact
homology sequence

· · · −→ H1(G,A) −→ H1(G,B) −→ H1(G,C) −→ A/IGA −→ B/IGB −→ C/IGC −→ 0.

iii. If A is a direct summand of Z[G] ⊗Z X for some abelian group X on which G acts
trivially, then Hi(G,A) = 0 for all i ≥ 1.

From the short exact sequence 0→ IG → Z[G]→ Z→ 0, we find H1(G,Z) = H0(IG, G) =
IG/I

2
G. The map σ 7→ σ − 1 induces an isomorphism Gab → IG/I

2
G, so we also have

iv. H1(G,Z) = Gab.

Fix now a prime p and a finite p-group G. For convenience, we will write Hi(A) for the
group Hi(G,A). Recalling our notation from earlier, we let Z/p denote the cyclic group
of order p. The homology groups Hi(Z/p) are annihilated by p, and therefore may be
regarded as vector spaces over Fp, and we define dpiG = dimHi(Z/p). We first compute
dp1G and dp2G, and in particular show that this notation generalizes the notion of dpG from
before.

Lemma 3.4. We have

dp1G = dpG and

dp2G = dpG+ dpH2(Z).

Proof. The short exact sequence

0 −→ Z p−→ Z −→ Z/p −→ 0 (3.9)

11



induces the exact homology sequence

Hi(Z)
p−→ Hi(Z) −→ Hi(Z/p) −→ Hi−1(Z)

p−→ Hi−1(Z), (3.10)

and hence the short exact sequence

0 −→ Hi(Z)/p −→ Hi(Z/p) −→ Hi−1(Z)[p] −→ 0. (3.11)

Letting i = 1 and noting that H0(Z) = Z and H1(Z) = Gab, we find

H1(Z/p) = H1(Z)/p = G/p, (3.12)

which gives the first equality. Letting i = 2 and noting that dimA[p] = dimA/p for any
finite abelian group A, we obtain the second.

Example. Returning to the case where K = Q(
√
−30), we find that the Galois group

G = Gal(K2
∞/K) is isomorphic to the quaternion group of order 8. In this case, we have

H1(Z) = (Z/2)2, H1(Z/2) = (Z/2)2,

H2(Z) = 0, and H2(Z/2) = (Z/2)2.
(3.13)

Note that
d2

1G = 2 = d2G and d2
2G = 2 = d2G+ d2H2(Z), (3.14)

as in the lemma.

We now give non-commutative versions of Nakayama’s lemma and the Hilbert syzygy
theorem.

Lemma 3.5. If A is a G-module with pA = 0, then the minimal number of generators of
A as a G-module is dimH0(A). More precisely, {ai} generate A as a G-module if and only
if their images in A/IGA generate A/IGA as a vector space.

Proof. Suppose {ai} generate A/IA, and let B be the G-submodule of A generated by
{ai}. The short exact sequence

0 −→ B −→ A −→ A/B −→ 0 (3.15)

induces the exact homology sequence

H0(B) −→ H0(A) −→ H0(A/B) −→ 0. (3.16)

The map H0(B) → H0(A) is the same as the map B/IGB → A/IGA, which is surjective,
so H0(A/B) = 0. It follows that A = B because otherwise, Hom(A/B,Z/p) would be non-
zero, and hence so would HomG(A/B,Z/p) since G is a p-group, but HomG(A/B,Z/p) is
the dual of H0(A/B) = 0.
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Lemma 3.6. If A is a G-module with pA = 0, then there exists a resolution

· · · −→ Y2
∂−→ Y1

∂−→ Y0 −→ A −→ 0

with each Yn free of rank dimHi(A) over Z[G]/p and ∂Yi+1 ⊆ IGYi.

Proof. By the previous lemma, there is a free module X of rank dimH0(A) over Z[G] and
a surjection X → A, which induces a surjection X/p → A since pA = 0. Let Y0 = X/p,
and note that Hi(Y0) = 0 for i ≥ 1. Let B be the kernel of Y0 → A, so that we have the
exact homology sequence

· · · −→ Hi+1(Y0) −→ Hi+1(A) −→ Hi(B) −→ Hi(Y0) −→ · · · , (3.17)

and hence
Hi+1(A) = Hi(B) for i ≥ 1. (3.18)

For i = 0, we have the exact sequence

0 −→ H1(A) −→ H0(B) −→ H0(Y0) −→ H0(A) −→ 0. (3.19)

Since H0(Y )→ H0(A) is a surjective map of Z/p-modules of the same dimension, it is an
isomorphism, so (3.18) also holds for i = 0, and the map H0(B)→ H0(Y0) is the zero map,
which means B ⊆ IGY0.

Applying the same process to B, we obtain a free module Y1 of rank dimH0(B) =
dimH1(A) over Z[G]/p and a surjection Y1 → B with kernel C such that C ⊆ IGY1

and
Hi(C) = Hi+1(B) = Hi+2(A) for i ≥ 0. (3.20)

Letting Y1
∂−→ Y0 be the composition Y1 → B → Y0, we have ∂Y1 ⊆ Y0. Continuing in this

fashion, we obtain the lemma by induction.

In particular, applying the lemma to A = Z/p, we find that there is an exact sequence

Y2
∂−→ Y1

∂−→ Y0 −→ Z/p −→ 0 (3.21)

with Yi free of rank dpiG over Z[G]/p and ∂Yi+1 ⊆ IGYi. The kernel of Y0 → Z/p is
contained in IGY0, which is of codimension 1 since Y0/IGY0 = H0(Y0) = Z/p, and is
therefore equal to IGY0. As a consequence, we actually have an exact sequence

Y2
∂−→ Y1 → IGY0 → 0, (3.22)

with Yi free of rank dpiG over Z[G]/p and ∂Y2 ⊆ IGY1, and it is this exact sequence which
we will need.

Our goal now is to prove the following theorem, which we will see is the group-theoretic
form of Theorem 3.2.
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Theorem 3.7. For any finite p-group G,

dp2G >
1

4
(dp1G)2.

For the proof, we will require the notion of the Poincaré polynomial of a finite G-module
A with pA = 0, which is defined by

PA(t) =

∞∑
n=0

cn(A)tn where cn(A) = dim InGA/I
n+1
G A. (3.23)

(Since A is finite, cn(A) = 0 for n� 0, so PA(t) is indeed a polynomial.) Note that

PA(t)
1

1− t
=

∞∑
n=0

sn(A)tn where sn(A) = dimA/In+1
G A. (3.24)

Example. With G once again the quaternion group, a (somewhat lengthy) computation
shows that the Poincaré polynomial of Z[G]/2 is 1 + 2t+ 2t2 + 2t3 + t4.

Proof. Tensoring (3.22) with Z[G]/In+1
G , we obtain the exact sequence

Y2/I
n+1
G Y2

∂−→ Y1/I
n+1
G Y1 −→ IGY0/I

n+2
G Y0 −→ 0. (3.25)

In fact, since ∂(InGY2) ⊆ InG(∂Y2) ⊆ In+1
G Y1, we even have the exact sequence

Y2/I
n
GY2

∂−→ Y1/I
n+1
G Y1 −→ IGY0/I

n+2
G Y0 −→ 0. (3.26)

Comparing dimensions, we find

sn(Y1) ≤ sn−1(Y2) + sn(IGY0), (3.27)

and hence

PY1(t)
1

1− t
≤ PY2(t)

t

1− t
+ PIGY0(t)

1

1− t
for 0 < t < 1. (3.28)

Let d = dp1G, r = dp2G, and P (t) = PY0(t), and note that

PIGY0(t) =
P (t)− 1

t
because c0(Y0) = dimH0(Y0) = 1,

PY1(t) = dP (t) because Y1 = Y d
0 , and

PY2(t) = rP (t) because Y2 = Y r
0 .

(3.29)
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Multiplying (3.28) by (1− t) and rewriting in terms of P (t), we find

dP (t) ≤ rtP (t) +
P (t)− 1

t
for 0 < t < 1, (3.30)

or equivalently,
1 ≤ P (t)(rt2 − dt+ 1) for 0 < t < 1. (3.31)

Since P (t) has positive coefficients, we conclude

0 < rt2 − dt+ 1 for 0 < t < 1. (3.32)

By Lemma 3.4, d ≤ r < 2r, so we may substitute t = d
2r to find r > 1

4d
2, as claimed.

With the homological legwork taken care of, we may now deduce Theorem 3.2 from class
field theory.

Proof of Theorem 3.2. Suppose K has a finite p-class field tower, and let G = Gal(Kp
∞/K),

which is a finite p-group. Since Gab is the Galois group of Kp
1/K, which is the p-Sylow

subgroup of ClK , we find dpG = dp ClK , and hence our goal is to show

dpG < 2 + 2
√

1 + dpo×K . (3.33)

Rearranging, this inequality gives

1

4
(dpG)2 − dpG < dpo×K . (3.34)

By Lemma 3.4 and Theorem 3.7, we know

1

4
(dpG)2 − dpG =

1

4
(dp1G)2 − dpG < dp2G− d

pG = dpH2(Z), (3.35)

so it suffices to show
dpH2(Z) ≤ dpo×K . (3.36)

Indeed, this follows from class field theory. For convenience, write L for Kp
∞. Let CL =

A×L/L
× be the idéle class group of L, and let

UL = {α ∈ A×L | αp ∈ o×L,p for all finite primes p} (3.37)

be the group of idéle units. Since L/K is unramified, UL is cohomologically trivial, and
since L is its own Hilbert p-class field, the ideal class group ClL is cohomologically trivial.
Therefore, the exact sequences

1 −→ o×L −→ UL −→ UL/o
×
L −→ 1 and 1 −→ UL/o

×
L −→ CL −→ ClL −→ 1 (3.38)
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imply
Ĥ i(o×L ) = Ĥ i−1(UL/o

×
L ) = Ĥ i−1(CL). (3.39)

Tate’s theorem of cohomology in class field theory states Ĥ i−1(CL) = Ĥ i−3(Z), so letting
i = 0 and recalling that Ĥ−3(Z) = H2(Z), we find

H2(Z) = Ĥ0(o×L ) = o×K/NL/Ko×L , (3.40)

and hence dpH2(Z) ≤ dpo×K , as claimed.

Altogether, we have now shown

22.38 ≤ lim inf
n→∞

dn ≤ 346.58. (3.41)

For our upper bound, we made use of a tower of fields, each with the same root discriminant,
and necessarily with highly composite degrees. In fact, it is still unknown whether dp →∞
as p→∞ with p prime.

Another natural question to ask is what happens for discriminants of polynomials rather
than number fields. More precisely, let d′n be the minimum value of the root discriminant

D
1/n
f over all monic integral polynomials f of degree n. If θ is a root of f , then

Df = DZ[θ] = [oK(θ) : Z[θ]]2DK(θ), (3.42)

which means d′n ≥ dn and all the lower bounds for dn apply to d′n as well. However, it is
still not known whether d′n →∞ as n→∞.
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