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Limits on the ability of time-resolved X-ray scattering
(TRXS) to observe harmonic motion of amplitude,
A and frequency, ω0, about an equilibrium position,
R0, are considered. Experimental results from a
TRXS experiment at the LINAC Coherent Light
Source are compared to classical and quantum
theories that demonstrate a fundamental limitation
on the ability to observe the amplitude of motion.
These comparisons demonstrate dual limits on the
spatial resolution through Qmax and the temporal
resolution through ωmax for observing the amplitude
of motion. In the limit where ωmax ≈ω0, the smallest
observable amplitude of motion is A = 2π/Qmax.
In the limit where ωmax ≥ 2ω0, A ≤ 2π/Qmax is
observable provided there are sufficient statistics.

This article is part of the theme issue ‘Measurement
of ultrafast electronic and structural dynamics with
X-rays’.

1. Introduction
Time-resolved X-ray and electron scattering (TRXS and
TRES) have the potential to track nuclear and even
electronic motion in molecules with atomic-level spatial
and temporal resolution [1–3]. In TRXS experiments, the
common current practice is to acquire nuclear positions
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by fitting scattering data to a theoretical model [4–6]. This reliance on theory presents a challenge
when working to interpret published experimental data. For example, a model fit might resolve
periodic motion with an amplitude of 0.005 Å in an experiment with 1.8 Å of diffraction limited
resolution [6]. When is such a result statistically valid? Nuclear positions can also be obtained
via de novo methods, i.e. by directly inverting the time-dependent X-ray scattering measured
in momentum space into real space [2,3,7–9]. These methods raise additional questions. For
example, the signal-to-noise ratio of an experiment can limit the fidelity of reconstructed nuclear
positions, and incomplete information in the X-ray scattering pattern can lead to artefacts in
the reconstructed real-space movies of nuclear motion. When interpreting TRXS results using
these two approaches, we require a rule analogous to the diffraction limit for static imaging
(d ≥ 2π/Qmax) to determine if a result is reasonable or significant. Some prior work has been
done to place limits on the ability of TRXS to resolve motion. For example, Budarz et al. [4]
discuss the blurring of the scattering pattern due to the finite scattering length of the sample
cell, and Kirrander & Weber [10] discuss the limited resolution that arises due to the nature of the
excited molecular wavepacket as opposed to the limitations of TRXS itself. Here we investigate
the physical limits imposed by the measurement method itself. The goal is to establish criteria for
the resolving power of TRXS to measure periodic motion with amplitude, A, about an equilibrium
position, R0.

2. Experiment and theory
The experiments under consideration are scattering from homonuclear diatomic molecules in
the gas phase. Photoexcitation of molecular iodine, I2, is a particular focus for which we have
collected data to compare with our findings. Perhaps the simplest motion that we can study
is the coherent oscillation of molecular iodine in its ground electronic state following Raman
excitation with 800 nm light as shown in figure 1. The ground state of I2 has been well-
characterized by spectroscopy to have an equilibrium separation of 2.666 Å and a harmonic
period of 155.5 fs [11–13], and pump-probe spectroscopies have directly observed vibrational
wavepackets on the ground state [14]. We have studied the ground state motion of molecular
iodine in the gas phase using the TRXS apparatus depicted in figure 2. The 800 nm pump
pulse induces coherent motion (�v ± 1 [15]) of the individual iodine molecules, then the X-ray
probe pulse arrives at variable delay, τ = t − t0, and scatters onto the two-dimensional (x, y)
detector as shown schematically in figure 3 and discussed in detail in appendix A. In any TRXS
experiment, the direct observable is the delay-dependent scattered X-ray intensity, I(x, y, τ ), on
the two-dimensional detector as shown in figure 4. The molecular scattering factor, S(x, y, τ ), is
extracted from I(x, y, τ ) as described in appendix B. S(x, y, τ ) is the key observable for determining
interatomic distances in a TRXS experiment. To obtain interatomic distances, the pixel coordinates
(x, y) at the detector must be mapped onto the momentum transfer, Q = k0 − ks, which is done
using the scattering angle, γ , shown in figure 3, to find Q = 2k0 sin(γ /2). Here the molecular
scattering factor is angularly integrated at Q to obtain the isotropic scattering factor, S(Q, τ ).

The isotropic molecular scattering factor is related to the nuclear probability density, ρ(R, τ ),
through a spatial transform, i.e.

S(Q, τ ) =
∫

dRR2 sinc(QR)ρ(R, τ ), (2.1)

where R is the internuclear separation and τ is the delay between the optical-pump and X-ray-
probe pulses.

The measured S(Q, τ ) following the 800 nm pump pulse is shown in figure 5. Following some
fast dissociation near t0, the dominant signal is a fast beat with a period of 155.9 ± 3.9 fs. The beat
period is consistent with the previously measured harmonic period of the ground state of iodine,
155.5 fs, from [11,12].
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Figure 1. A strong 800 nm pump drives the Raman transition from and back onto the ground X state of iodine creating a
vibrational wavepacket in the harmonic region of the X state. (Online version in colour.)
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Figure 2. Within an evacuated chamber the incident X-ray pulse passes through a holey mirror. The optical pump reflects from
the holey mirror and copropagates to the scattering cell alongside the X-ray pulse. The optical and X-ray pulses are focused
onto the I2 sample within the scattering cell. The X-rays scatter from the sample with an intensity profile which is sensitive to
the delay between the optical pump pulse and the incident X-ray pulse. The scattered X-rays then travel freely to the Cornell
Stanford Pixel Area Detector (CSPAD) through the output berrilium window. (Online version in colour.)

While S(Q, τ ) is the starting point for de novo methods and may be directly inverted like

ρ(R, τ ) =
∫

dQQ2 sinc(QR)S(Q, τ ) (2.2)

as shown in [9], the clear oscillations on the X state motivate an analysis of the temporal TRXS
spectrum. Simple harmonic motion like R(τ ) = R0 + A cos(ω0τ + φ) may be leveraged to invert
the scattering pattern by first taking a temporal Fourier transform of the measured scattering
pattern, i.e.

S̃(Q,ω) =
∫+∞

−∞
dτ e−iωτS(Q, τ ). (2.3)

From the measured TRXS, S(Q, τ ), the harmonic motion of iodine in its ground state may be
isolated by taking a temporal Fourier transform, S̃(Q,ω), as shown in figure 6. To gain insight
into the TRXS spectrum at the harmonic frequency of 40.3 ± 1.0 THz, a classical model for S̃(Q,ω)
using simple harmonic motion is now derived.

Classical isotropic time-resolved X-ray scattering may be expressed as

S(Q, t) = sinc QR(t), (2.4)
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Figure 3. Sketch of the scattering cell and the scattering geometry of the experiment. γmin and γmax are the minimum and
maximumscattering angles collected at the detector. Beyondγmin andγmax, themeasured intensity is attenuated relative to the
predicted intensity profile. (θ ,φ) is the relevant angular decomposition about the laser polarization axis, êy, as the molecules
align along this axis. k0 and kopt are the incident X-ray and optical wavevectors, respectively. Because the X-rays may scatter
anywhere within the cell, the obtained scattering image is blurred by�γ = 3.4◦ (i.e. 0.26 Å−1 in Q-space), see [4]. (Online
version in colour.)

Figure 4. Difference image at the X-ray detector (CSPAD) for a delay of approximately 100 fs after pumping with 800 nm light.

from [16]. The above equation may be rewritten as

S(Q, t) = 1
Q

∫Q

0
dQ′ cos

(
Q′R(t)

)

= 1
2Q

∫Q

0
dQ′

[
eiQ′R(t) + e−iQ′R(t)

]

= 1
2Q

(I+ + I−) . (2.5)

Then,

S̃(Q,ω) = 1
2Q

(
Ĩ+ + Ĩ−

)
, (2.6)
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Figure 5. Time-resolved X-ray scattering following photoexcitation by an 800 nm pump pulse. This is the isotropic component
of the molecular scattering factor. A fast 155.9 ± 3.9 fs beat is observed, corresponding to the harmonic period of the ground
state of iodine. The unpumped scattering signal, Su(Q), is subtracted from this image.
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Figure 6. Temporal Fourier transform of figure 5. We observe a strong frequency component at 40.3 ± 1.0 THz corresponding
to the harmonic frequency of the ground state of iodine. The lineout at this frequency may be used to obtain the equilibrium
separation of the atoms in motion as shown in figure 7.

where

Ĩ± = 1
2π

∫Q

0
dQ′

∫+∞

−∞
dt e±iQ′R(t)−iωt. (2.7)
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Laser initiated periodic motion may be expressed as a piece-wise function, where R(t) = R0
for t ≤ t0 and R(t) = R0 + A cos(ω0t + φ) for t> t0. To obtain an analytic solution, the time-
range of motion must be extended from (t0, ∞) to (−∞, ∞). Using R(t) = R0 + A cos(ω0t + φ) for
t ∈ (−∞, ∞),

Ĩ± = 1
2π

∫Q

0
dQ′ e±iQ′R0

∫+∞

−∞
dt e±iQ′A cos(ω0t+φ)−iωt. (2.8)

In the limit QA 	 1, the exponential expands to first order as

e±iQ′A cos(ω0t+φ) ≈ 1 ± iQ′A cos(ω0t + φ). (2.9)

Ignoring the addition of 1 as it only contributes to DC, equation (2.9) evaluates as follows:

Ĩ± ≈ ±iA
4π

∫Q

0
dQ′Q′ e±iQ′R0

∫+∞

−∞
dt
(

eiω0t+iφ−iωt + e−iω0t−iφ−iωt
)

≈ ±iA
2

∫Q

0
dQ′Q′ e±iQ′R0

(
eiφδ(ω − ω0) + e−iφδ(ω + ω0)

)

≈ ±iA
2

[
− 1

R2 + e±iQR0

(
1

R2
0

∓ iQ
R0

)](
eiφδ(ω − ω0) + e−iφδ(ω + ω0)

)
, (2.10)

where cos(ω0t + φ) was expanded as an addition of exponentials and the definition for the Dirac
delta function was used to solve the integral. The evaluation of Ĩ± goes into equation (2.6) to find

S̃(Q,ω= ±ω0) = A
2R0

(cos QR0 − sinc QR0) , (2.11)

where S̃(Q,ω) is zero for all other non-zero ω. The above equation is the classical model for S̃(Q,ω)
from a diatomic undergoing simple harmonic motion.

Equation (2.11) has a notable feature. The amplitude of motion, A, does not contribute a
spatial beat in S̃(Q,ω) for A 	 1/Qmax, and the prefactor A/2R0 is indistinguishable from the
overall excitation fraction of this state. This suggests that Qmax ≥ 1/A is required to observe
the amplitude of motion, and that experiments in the limit of low Q, i.e. Qmax 	 1/A, do not
observe the amplitude of motion. To confirm the classical model, the discussion now returns to
the experimental data.

For a Raman excitation, an amplitude of motion on the order of 0.2 Å is anticipated within
the harmonic region of the potential. This would require Qmax ≥ 5 Å−1 to observe according to
the classical model, so if the experiment is insensitive to the amplitude of motion, it should
match the classical model. The classical model is compared to the measurement in figure 7.
Between 1.81 and 4 Å−1, the model and measurement agree to within the experimental error.
The statistical experimental error is calculated by finding the mean X-ray intensity, I(x, y, τ ), at
each pixel and across each pump-probe shot for that time-delay, and the variance of I(x, y, τ ). This
is then propagated through our analysis as described in appendix C. Below 1.81 Å−1, the signal is
attenuated due to a physical beam block as shown in figure 3, and above 4 Å−1, the signal is not
statistically significant due to few photon counts. This comparison supports the validity of the
classical model and the existence of a limit on the ability to observe motion in a TRXS experiment
analogous to the static limit of d ≥ 2π/Qmax. The comparison does not, however, inform us as to
the Qmax required to observe the amplitude of motion.

To investigate the required Qmax, the quantum description for the nuclear probability density
is now considered. Consider the nuclear probability density generated by the overlap of the two
low lying vibrational states of iodine, ψv and ψv+1. These produce a charge density given by

ρ(R, τ ) =
∣∣∣aψv(R) e−iEvτ/h̄ + bψv+1(R) e−iEv+1τ/h̄−iφ

∣∣∣2
= a2 |ψv(R)|2 + b2 ∣∣ψv+1(R)

∣∣2 + 2ab cos(ω0τ + φ)ψvψv+1, (2.12)
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Figure 7. Lineout of figure 6 as compared to the classical theory for scattering from a vibrating diatomic. The error bars arise
from a shot-by-shot statistical analysis and do not account for systematic effects. The statistical error increases at high Qwhere
themeasured intensity is low. Below the dashed line at 1.81 Å−1, the signal is attenuated due to a physical beamblock as shown
in figure 3. (Online version in colour.)
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Figure 8. We showψv (R)ψv+1(R) using v = 2 and v= 3. There are three notable spatial features of this wave function:
the central position R0, the amplitude of oscillation A and the wavelength between nodes, λI . Only R0 impacts the structure
of scattering at low Q as shown in figure 9. Note that (v = 2, v + 1= 3) are chosen for discussion not because they may be
fingerprinted in the experimental data but becauseψ2(R)ψ3(R) clearly highlights the difference between A andλI .

where a2 and b2 are the excitation fractions, Ev and Ev+1 are the eigenenergies, ω0 = (Ev+1 − Ev)/h̄,
and φ is the relative phase of the states. Plugging equation (2.12) into equations (2.1) and (2.3), we
find that

S̃(Q,ω=ω0) =
∫

dRR2 sinc(QR)ψv(R)ψv+1(R). (2.13)

This shows that TRXS spectrum is simply the momentum-space transform of ψv(R)ψv+1(R). (The
coherent and incoherent contribution of different choices of v and v + 1 states, e.g. (v= 1, v +
1 = 2) versus (v = 2, v + 1 = 3), does not change the observed scattering at Q< 5 Å−1 as only R0
impacts the scattering at low Q. Above this threshold, the interference of these terms is evident.)

Depending on the range of Q, S̃(Q,ω=ω0) may obtain information on the equilibrium position,
the amplitude of oscillation, or the width of the distribution as shown in figure 8. We observe
in figure 9 that the classical and the quantum results agree in the limit of Q< 5 Å−1, and we
observe in figure 10 that the amplitude of motion is embedded in the high Q limit. In particular,
we observe nodes at Q = 2π/A and Q = 4π/A for A ≈ 0.2 Å. Therefore, the analogy to the static
limit, d ≥ 2π/Qmax, for resolving harmonic motion of amplitude, A, is A ≥ 2π/Qmax.
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Figure 9. Comparison of the classical theory for S̃(Q,ω=ω0) (dashed line) and the quantummechanical model for the same
system (solid line). We observe that the classical model has an artefact below 1 Å−1 due to the Dirac delta representation.
Otherwise the two models agree up to about 7 Å−1 at which point we begin to observe changes that can only be attributed to
the amplitude of motion and fine structure of the wavepacket as shown in figure 10.
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Figure 10. Extended range of S̃(Q,ω=ω0) for the wave function shown in figure 8. Nodes exist at 2π/A and 4π/A, where
A≈ 0.2 Å.

3. Discussion and conclusion
This does not rule out measuring an amplitude of A ≤ 2π/Qmax, but to do so requires observing
higher multiples of the fundamental frequency. The classical theory suggests these are small in
the limit Q 	 1/A. The quantum theory shows that scattering from ψv−1(R)ψv+1(R), i.e. the 2ω0
signal, is no stronger than 25% of the ψv(R)ψv+1(R) signal below 4 Å−1 as shown in figure 11,
and that is before accounting for the relative excitation fractions of the states which would only
further reduce the relative signal. That said, there is evident impact of the amplitude of motion on
the scattering at low Q for states ψv−1(R)ψv+1(R), so with sufficient time-resolution and statistics
even small oscillatory motions might be observable with TRXS.

This suggests that there are dual requirements on both ωmax and Qmax to observe the
amplitude of oscillatory motion. For example, an experiment like the one described here with
approximately 40 fs of temporal resolution measuring motion with a 155 fs period requires Qmax >

2π/A of resolution to measure the amplitude of motion. If instead the experiment had sufficient
time resolution to measure the 2ω0 beat, the amplitude of motion might have been resolvable with
the Qmax = 4.0 Å−1 of the experiment. It is in this second limit that our colleagues Biasin et al. [6]
found themselves. While they had insufficient max Q to resolve the fine structure of the molecular
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Figure 11. S̃(Q,ω= 2ω0) generated fromψ1(R)ψ3(R) and scaled relative to figure 10. Below 4 Å−1 (dashed line), the 2ω0

signal is no more than 25% of the scattering signal, but is clearly impacted by the amplitude of motion due to aπ phase shift
relative to theω0 signal in figure 10. The node (dotted line) is at 3π/A for this state.

state directly at the harmonic frequency, their time-resolution of ≈30 fs as compared to a period of
330 fs was such that the small amplitude of motion, 0.005 Å, may have been resolvable as shown.

In conclusion, the above considerations on ωmax and Qmax provide an analogy for the
static imaging limit, d ≥ 2π/Qmax. For simple harmonic motion moving with frequency, ω0,
and amplitude, A, about an equilibrium position, R0, A ≥ 2π/Qmax is the smallest observable
amplitude of motion for experiments with ωmax ≈ω0. For experiments with ωmax ≥ω0, even
smaller amplitudes of motion may be observable.
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Appendix A. Experimental detail
The experimental data were recorded at the LCLS at the X-Ray Pump Probe (XPP) end station [18]
with an experimental setup that has already been described in detail elsewhere [4,5,7], and is
shown diagrammatically in figure 2. An 800 nm optical laser with a pulse length of 70 fs, a
bandwidth of 28 nm FWHM, and a focal intensity of >1013 W cm−2 was focused into a gas cell
containing 100 ◦C iodine (50 torr, [19]). The gas cell had a holey mirror to collinearly combine the
laser with 9 keV, 40 fs, 2 mJ, 30 µm FWHM X-rays from the LCLS. The forward scattered X-rays
had a usable angular range of 23–58.2◦ [4] which corresponds to a Q-range of 1.81–4.43 Å−1 as
shown in figure 3. The scattered photons were detected using the large area Cornell Stanford
Pixel Area Detector (CSPAD) [18] located behind the cell. The XPP beamline’s optical/X-ray cross
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correlator was used to get timing jitter below 15 fs root-mean-squared [20]. The optical pump
delay was varied with respect to the X-rays using an encoded continuously moving translation
stage moving delay back and forth between −0.5 ps and 2 ps delay to help average over slow
fluctuations in experimental parameters such as beam pointing, position, X-ray intensity, etc.

The high intensity 800 nm laser was likely able to multi-photon ionize some of the iodine,
and near t0 in the observed TRXS shown in figure 5, there is indication of the subsequent rapid
dissociation in excess of 30 Å ps−1, see [7,21] for representative images of strong dissociation
in TRXS). The estimate for the dissociation velocity arises from examination of the sloped line
in figure 6, where the velocity should go as v =�ω/�Q. Some of the iodine were observed
to undergo Raman transitions to higher lying vibrational states. The periodic motion in the
observed X-ray scattering pattern is centred about the mean ground state iodine separation of
R0 = 2.666 Å and oscillates with a period of 155.9 ± 3.9 fs as demonstrated in figures 6 and 7. These
observations are consistent with previous experiments which have measured an equilibrium
separation of 2.666 Å and a harmonic period of 155.5 fs [11–13].

Appendix B. General theory of time-resolved X-ray scattering fromhomonuclear
diatomics
In the limit of impulsive scattering, the time-dependent X-ray scattering intensity may be
expressed as

dI
dΩ

= dσTh

dΩ

∫
dkI(k)

ω

ωs
〈ψ(τ )|F̂(Q)|ψ(τ )〉, (B 1)

where dσTh/dΩ is the Thomson scattering cross-section, I(k) is the incident X-ray flux, |ψ(τ )〈 is
the state of the molecule at pump-probe delay τ = t − t0, k is the incident X-ray momentum, ks is
the scattered X-ray momentum, Q = k − ks is the momentum transfer and F̂(Q) =∑

j,l eiQ·(rj−rl) is
the scattering operator, where rj,l are the electronic coordinates [22].

For scattering within the pulse bandwidth (ω≈ωs) and collimated beam input I0,
equation (B 1) reduces to the product of three factors:

dI
dΩ

= dσTh

dΩ
I0〈F(Q, τ )〉, (B 2)

where 〈F(Q, τ )〉 is a time- and angle-dependent polarization-corrected scattering probability.
〈F(Q, τ )〉 may subsequently be expressed as an incoherent sum of the scattering from each
electronic state because the coherent cross-terms between electronic states in X-ray scattering
are smaller than the incoherent contributions by several orders of magnitude (e.g. [23]). The
incoherent contribution 〈FN(Q, τ )〉 from each electronic state N is simplified considerably by the
independent atom approximation so that the scattering probability for a homonuclear diatomic
molecule becomes a simple function of the atomic separation R [24]:

〈FN(Q, τ )〉 = 2|fA(Q)|2
(

1 + Re
{∫

dRρN(R, τ ) eiQ·R
})

. (B 3)

Here fA(Q) is the atomic scattering factor and ρN(R, τ ) is the ensemble-averaged nuclear
probability density of electronic state N at pump-probe delay τ . The exponential function in
equation (B 3) can be rewritten using the spherical Bessel expansion:

eiQ·R =
∑

l

il(2l + 1)Pl(cos θ )jl(QR), (B 4)

where jl(QR) is the lth spherical Bessel function. The X-ray diffraction pattern projects onto
Legendre polynomials that describe the target probability density [9,25]. For inversion-symmetric
systems, e.g. the nuclear probability density following a dipole excitation, only even Legendre
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polynomials contribute:

SN(Q, θ , τ ) =
∑

l = 0,2,...

√
2π

2l + 1
Pl(cos θ )SN,l(Q, τ ). (B 5)

Only the isotropic contribution is considered in this manuscript as given by

FN,0(Q, τ ) = 2
∣∣fA(Q)

∣∣2 (1 +
∫

dRR2 sinc(QR)ρN(R, τ )
)

. (B 6)

In particular, the molecular scattering factor is discussed,

SN,0(Q, τ ) = FN,0

2
∣∣fA(Q)

∣∣2 − 1 =
∫

dRR2 sinc(QR)ρN(R, τ ). (B 7)

The subscripts have been dropped in the manuscript such that

S(Q, τ ) =
∫

dRR2 sinc(QR)ρ(R, τ ) (B 8)

is written for brevity.
To analyse the experimental data, these theoretical considerations are applied. The measured

time-dependent X-ray scattering intensity on the CSPAD, I(x, y, τ ), is used to generate the
molecular scattering factor up to a scaling factor and DC offset via

F(x, y, τ ) = I(x, y, τ )
(dσTh/dΩ)(x, y)

(B 9)

and

S(x, y, τ ) = F(x, y, τ )

2
∣∣fI(x, y)

∣∣2 . (B 10)

The isotropic component of S(x, y, τ ) as given by S(Q, τ ) is obtained by angularly integrating the
data at fixed Q = 2k0 sin γ /2 with respect to the angle, θ , about the laser polarization axis, êy.
(These angles are depicted in figure 3.) The angular integration is done by projecting the data
onto the zeroth-order Legendre function, i.e. P0(cos θ ) = 1.

Appendix C. Error propagation
For each shot, the pump-probe delay, τ ′

i , is measured and then binned into some time bin, τj ±�τ .
This allows the generation of the mean molecular scattering pattern

S(x, y, τj) = 1
Nj

∑
i

S(x, y, τ ′
i ), (C 1)

where (x, y) indicates each pixel on the CSPAD detector. The variation at each pixel position is
generated by

σ 2(x, y, τj) = Var
(
S(x, y, τj)

)= 1
Nj

∑
i

∣∣S(x, y, τ ′
i ) − S(x, y, τj)

∣∣2 . (C 2)

The variation is then propagated through the analysis as follows.
For both the isotropic projection of S(x, y, τ ) onto S(Q, τ ) and the temporal Fourier transform

of S(Q, τ ) onto S̃(Q,ω), a χ2-minimization is used. To perform the transforms

χ2 =
∑

l

(pi − si)2

σ 2
i

, (C 3)

is minimized, where pi is the fitted function, si is the data, and σ 2
i is the variance. For a linear

model, the fitted function may be expressed as pi =∑
j xjfj(Qi), where xj are the model coefficients.
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Then the solution to the χ2-minimization is

xk =
∑

i

Akisi

σ 2
i

, (C 4)

where A = (f Tσ−2f )−1f . The associated error for the solution, xk, is then

σk ≤
∑

j

∣∣∣Akjσ
−1
j

∣∣∣ , (C 5)

as shown in [26].
For the isotropic projection of S(x, y, τ ) onto S(Q, τ ), the fitted function is fj(θi) = Pj(cos θi),

where j = 0, 2, 4 are used to find a reduced χ2 of about 1. The obtained result is xj(Q, τ ) = Sj(Q, τ ),
where j = 0 is the desired isotropic contribution, denoted S̃(Q,ω) in the main text.

For the temporal Fourier transform of S(Q, τ ) into S̃(Q,ω), the fitted function is fj(τi) = cos(ωjτi),
where ωj ∈ (0,π/�τ ) and �τ = 30 fs was used in this analysis.
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