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ABSTRACT

When a vision system creates an interpretation of some input data, it
assigns truth values or probabililics to internal hypotheses about the
world. We present a non-deterrninistic method for assigning truth
values that avoids many of the problems cncountered by cxisting
relaxation methods. Instead of representing probabilitics with real-
numbers, we use a more direct encoding in which the probability
associated with a hypothesis is represented by the probnbilily that it is
in onc of two statcs, truc or false, We give a particular non-
deterministic operator, based on statistical mechanics, for updating the
truth values of hypotheses. The operator ensurcs that the probability
of discovering a particular combination of hypotheses is a simple
function of how good that combination is. We show that there is a
simple rclationship between this operator and Bayesian inference, and
we describe a learning rule which allows a parallel system to converge

on a sct of weights that optimizes its perceptual inferences.

Introduction

One way of interpreting images is to formulate hypotheses about parts
or aspects of the image and then decide which of lhcs;: hypotheses are
likely to be correct. The probability that each hypothesis is correct is
determined partly by its fit to the image and pardy by its fit to other
hypotheses that are taken to be correct, so the truth®value of an
individual hypothesis cannot be decided in isolation. One mecthod of
scarching for the most plausible combination of hypothescs is to use a
rclaxation process in which a probability is associated with cach
hypothesis, and the probabilitics are then iteratively modified on the
basis of the fit to the image and the known relationships between
hypotheses. An attractive property of rclaxation methods is that they
can be implemented in parallel hardware where onc computational
unit is uscd for cach possible hypothesis, and the intcractions between
hypothescs are implemented by direct hardware connections between
the units, '

Many variations of the basic relaxation idea have been suggested.r™

However, all the current methods suffer from onc or more of the
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following problems:

1. They converge slowly.

2. Itis hard to analyse what computation is being performed by the
relaxation process. For example, in some versions of relaxation
there is no explicit global measure which is being optimized.

3. They are unable to integrate, in a principled way, two kinds of
decision.  Some systems use rclaxation to make discrete
decisions (e.g. which kind of 3-D cdge a line dcpicts) and the
numbers that are modificd during rclaxation then represent
probabililics.’ Other systems choose the most likcly values of
continuous physical paramcters (c.g.  the’ local surface
oricntation) and the numbers that are modified then represent
current cstimates of these par:tmc(crs."7 No system intcgratcs
both kinds of decision and still guarantces convergence to the-
optimal interpretation.

4. Systems designed to make discrete decisions do not always
converge to a state in which all probabilities for discrete
hypotheses are 1 or 0, so a subscquent stage is nceded to choose
a specific perceptual interpretation,

.There is no obvious way for most systems to learn the
appropriate values for the weighting coefficients that determine
how the probabilities of related hypothceses affect cach other.

\

w

In this paper we present a parallel search technique which overcomes
these difficulties by using a different representation for probabilities.
All the current mcthod; use rcal numbers to represent the
probabilities associated witﬁ hypotheses., Our method uscs '5 more
dircct encoding in which probabilitics are represented by prubablilil'ics.
If a hypothcsis has a probability of two thirds of being correct, the unit
representing it will have a probability of two thirds of being found in
the “truc” state and a probability of one third of being in the “false”
state. We first show that this dircct cncoding allows the probability of
one hypothesis to determine the probabilitics of other related
hypotheses even though nonc of the hypothesis units ever has enough
information to allow it, for cxample, to print out its associated
probability. We then describe a scarch method, using this cncoding.,
that finds plausible combinations of hypotheses. Next we show that,

using-our scarch technique, there is a Bayesian interpretation of the

. weights that determine the cfTects of one hypothesis on another, and



thut the interpretation does not require the usual assumption of

independence of multiple sources of evidence.

Finally we give a learning rule that allows an optimal (or near optimal)
sct of weights to be learnt from expericnce. This learning rule can be
used even in cases where the representations that the system should
usc have not been decided in advance. ‘The rule generates new
internal representations that make explicit the higher-order statistical

regularitics in the environment,

Representing probabilities

There are two very different senses of the phrase “communicate a
probability”.  In the strong sense, a unit has communicated a
probability to another unit if the sccond unit has reccived cnough
information to allow it to print out the probability. In this strong sense,
"t tkes a long time to communicate a probability using discrete
stochastic states. To decide whether a unit is adopting the truc state
100 times per second or only 90 times per second, it is necessary to
observe its state for a large [raction of a seccond. In a tenth of a second
there is only a difference of 1in the expected number of times the unit
is in the truc state in the two cases. So in this strong sense, a unit that
adopts truth values with a partcular probability can only
cornmunicate the probability very slowly (or very inaccurately). Even
il there is little physicnl transmission dclay, there is still a long
“decoding™ unit has

dclay before  another received  cnough

information to be ablc to make an accurate estimate of the probability,

‘The decoding delay can be reduced by using a large pool of cquivalent

' units, and by monitoring the outputs of all of them. If cach unit is
considered to be a Poisson process, a pool of units is a Poisson process
whose rate is just the sum of the individual rates, so the decoding delay
is inverscly proportional to the number of units in the pool. However,
the use of population averages is clearly cxpensive in terms of the
number of units and conncections required, and is therefore only worth
doing if there is no more economical alternative, :

Fortunatcly, for the kind of scarch we arc proposing it is not nccessary
to communicate probabilities in the strong sense of the term. What we
require is that the probability associated with unit B depends, in a
particular way, on the probability associated with unit A.If these
probabilites arc rclated by some arbitrary function, it is gencrally
necessary for unit A to communicate its probability to unit B in the
strong sensc of the term. But there is a spci:ial class of functions
relating the probabilitics of A and B that can be implemented without
the units ever having to "know"
print out) these probabilitics. The simplest inember of this class is the
identity function, If B simply adopts the samc state as A, its
probability will be exactly the same as A's, and there will be no
decoding delay. Whenever the probability associated with A changes,
the probability associated with B will change after a time cqual to the
transinission dclay alone. Another function that can be implemented
this way is a probabilistic disjunction. To make the probability that

(i.c. having cnough information to *
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unit C is in the truc state be cqual to the probability that cither A or B

is in the true state, it is sufficient to make C true if cither A or B is true.

Even though the states themselves are regarded as probabilistic, the
identity and disjunction functions involve a detenministic relationship
between the state of onc unit and the state of another. A non-
deterministic relationship can be used, for cxample, to make the
probability associated with B be half the probability associated with
A. The rule is simply that B adopts the truc state with a probability of
onc halfif A is in the true state. This is a "doubly-stochastic™ proccss
in which onc probability is a probabilistic function of another. We use.

’

such processes in our model of perceptual inference.

Searching for minimum enerqy states of a
network

Given a perceptual input derived from 'some particular world, each
possible combination of hypotheses has a particular probability of
being the correct interpretation of the input. We show laier that the
probability can be rclated to a potential cnergy function, so that the
most plausible combination of hypotheses is the onc with lowest
pétcnlial cnergy. First we give an cxpression for the “potential
cnergy” of a state of a nctwork and show how the processors have to
bekave in order to minimize the encrgy.

Hopﬁclda deseribes a system with a large number of binary units. The
units are ymmetrically connected, with tie strength of the connection

being the same in both dircctions. Hopficld has shown that there is an
cxpression for the “encigy” of a global state of the network, and with
the right assumptions, the individual units act so as to minimize the
global cnergy. We use a variation of Hopficld's system in which a
particular task is defined by suslaincdiﬁputs from outsidc the system,
and the interactions between units implement constraints between
hypotheses. ‘The energy of a state can then be interpreted as the extent
"(o which a combination of hypotheses fails to fit the input data and
violates the constraints between hypotheses, so in minimizing cnergy
the system is maximizing the extent to which a perceptual
interpretation fits the data and satisfics the constraints,

‘I'he global potential energy of the system is defined as

E==172)  wysis— 3 (=005 )
y i

where 7, is the external input to the i unit, wjj is the strength of

conncction (synaptic weight) from the #* to the i unit, sy is a boolean

truth value (0 or 1), and &; s a threshold.

A simple algorithm for finding a combination of truth values that is a
local minimum is to switch cach hypothesis into whichever of its two
states yiclds the lower total encrgy given the current states of the other
hypotheses.  If hardware units make their decisions asynchronously,
and.if transmission times are negligible, then the system always scttles
into a local cnergy minimum, "Because the conncctions are
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symmetrical, the diffcrence between the energy of the whole system
with the k" hypothesis false and its energy with the k™ hypothesis true
can be determined IocallyB by the k* unit, and is just

AEy= Z, wiis; =0y (2)
i . s

Therefore, the rule for minimizing the cnergy contributed by a unit is
1o adopt the true state if its total input from the other units and from
outside the system exceeds its threshold. This is the familiar rule for
binary threshold units, ‘

Using probabilistic decisions to escaoe
from local minima

The deterministic algorithm suffers from the standard -weakness of
gradicnt descent methods: It gets stuck at /ocal minima that are not
globally optimal. This is an inevitable conscquence of only allowing
jumps to states of lower cnergy. If, however, jumps to higher cnergy
states occasionally occur, it is possiblc to break out of local minima.
An algorithm with this property was introduced by Mclropolis et al?
to study avcrage propertics of thermodynamic systcms and has
recently been applicd to problems of constraint sausf’an:uonll We
adopt a form of the Metropolis algorithm that is suitable for parallel.
computation: If the energy gap between the true and falsc states of the
k'™ unit is AE, then regardless of the previous state set sp=1 with

probability

1

Pr= a+ e—AEk/T)

where T is a parameter which acts like tempergture (sce fig. 1).
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Figure 1

Probability p(AE) that a unit is in its "truc” state as a function of
its energy gap AE plotted for 7=1 (Eq. 3). As the tempcrature
is lowered to zero the sigmoid approaches a step function,

This parallel algorithm ensures that in thermal equilibrium the relative
probability of two global states.is determined solely by. their cnergy
difTerence, and follows a Boltzmann distribution.

Lo _ p(Ea-EpyT _ ).

Pp

o)

where P_is the probability of being in the ot global state, and E_ is
the encrgy of that state,

At low temperaturces there is a strong bias in favor of states with low
energy, but the time required to reach cquilibrium may be long. At
higher temperatures the bias is not so favorable but cquilibrium is
reached faster. A

Bayesian inference

Bayesian inference suggests a general paradigm for perceptual
interpretation problems. Suppose the probability associated with one
unit represents the probability that a particular hypothesis, A, is
correct. Suppose, also, that the "true” state of another unit is used to
represent the existence of some evidence, e. Bayes theorem prescribes
a way of updating the probability of the hypothesis p(k) given the
existence of new evidence e:

p(Rpel A
p(h)p(e| h) + p(R)p(elh)

) _p(R) p(elR)
=1/0+ZGIEEEL)

p(h) oldn)
~1/(1+e’(”' 2(R) +in P(dﬁ) Zan ) ) (5)

‘ p(h lc)—

where ki is the negation of h,

‘The Rayes rule has the same form as the decision rule in Eq (3) if we
idcntify the probability of the unit” with the probability of the
hypothesis. The threshold implements the a priori likelihood ratio, the
cexternal input implements the effect of the direct evidence in the
image, and the synaptic weights implement the effect of the cvidence
provided by the statcs of other hypotheses (assuming the temperature

. is fixed at 1):

\
2R k)

i o p(imagedatalh)
w)' © 7 pdh

p(image datalh)
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Bayesian inference with onc piece of cvidence can therefore be
implemented by units of the type we have been considering. There
are, however, scveral dificulties with this simple formulation,

‘1. It provides no way for the negation of the evidence ¢ to affect
the probability of A,

2. It does not lead to symmetrical weights when two units affect
cach other since p(elh)/p(elh) is gencrally not equal to
p(hle)/p(Hle).

3. Although it can easily be gencraliscd to cascs where there are
many independent picces of evidence, it is much harder to
generalise to cases where the picces of evidence not indcpendent
of cach other.

1

A diagrammatic representation of the way to solve the first difficulty is




shown below. The diagram uses a c'onvcnli,on in which threshold terms
are implemented by weights of the opposite sign on a connection from

a permancntly true unit. This TRUE unit is just a hypothetical device

for allowing threshold terms to be treated in the same way as pairwise
intcractions. It simplifics the mathematics because it allows all terms in
the cnergy expression to be trcated as pairwise intcractions. (The
sustained external inputs that specify the particular data to be
interpreted can also be turned into pairwise terms by treating them as
weights on lines from units that are fixed in the true state for that
particular case). The effect of ¢ can be implemented by putting it into
the threshold term for A, and by subtracting an cqual amount from the
weighting cocfficient from ¢, so that when ¢ is in the true state the
effect of the threshold term on his cancelled out,

where w,,,-:lnﬁ(_ﬂ}ﬁ-
p(elk)

‘Mus the combined weight from e is:

Wiotal= Whe™ Whe

— p2Lelh)

o 1 pleh)
pldh) p(elh)
= g 2LeNL=p(e)=p(h) + p(e.h)] ol ©)

[p(e)=ple.h)lp(h)—p(e.h)]

Equation 6 is symmetrical in ¢ and A, so in solving the prbblcm of how
to make the ncgation of e have the correct effect on A& we have also
solved the sccond problem -- the required weights arc now
symmetrical, The more complicated weight in Eq. 6 docs not alter the
fact that the probability of a hypothesis has the form of the Boltzmann
distribution for a unit with two cncrgy states,

Systems which use Bayesian infercnce often make the assumption that
picces of evidence arc independent.!*!3 The main motivation for this
assumption is that too much mcmory'would be required to store all
the dependencics, even if they were known. The independence
assumption is hard tojustify and it is typically a poor approximation in
systems with many mutually inlcrdcbcndcm hypotheses. A much
better approximation, given some fixed set of variable weights, can be
achieved by wusing whatever weights give the best  overall
approximation to the correct- probabilitics for the various possible
combinations of hypotheses. At first sight, it is very hard to derive
these weights, since the correct valuc for qach wcight depends on all
the others. However, we now show that there are ways to hill-climb

towards the optimum combination of weights.
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Learning

When a system is allowed to reach thermal equilibrium using the
probabilistic decision rule in Eq 3, the probability of finding it in any
particular global state depends on the energy of that state (Eq 4), and
so the probability can be changed by modifying the weights so as to
change the energy of the state. In'* we describe a leaming rule which
assumes that in addition to the input data, the systcm is given the
desired probability ratios for pairs of global states. The rule is
guaranteed to converge on a set of weights that causcs the system to
behave in accordance with the desired probabilities (if any such set of
weights cxists). We now describe a mo.rc genceral learning rule that
docs not require any scparate source of information about the desired
probabilitics of global states. The rule lcads to continual
'unprbvcmcnts in the network's model of its environment,

Suppose that the environment directly and completely determines the
states of a subsct of the units (called the "visible™ units), but leaves the
network to determine the states'of the remaining, “hidden™ units.'The
aim of the lcarning is to usc the hidden units to create a model of the

“structure implicit in the ensemble of binary state vectors Umat the

cnvironment determines on the visible units.

We assume that cach of the environmentally determined state vectors
persists for long cnough to allow the rest of the network to' reach’

thermal equilibrium, and we ignore any structure that may cxist in the

sequence of environmentally determined vectors. The structure of the
cnvironment can then be spccified by giving the probability
distribution over all 2" states of the v visible units. The network will be
said to have a perfect model of the cnvironiment if it achieves exactly
the same probability distribution over these 2” states when it is
running freely at thermal equilibrium with no environmental input.

In gencral, it will be impossible to achieve a perfect model because the
1/2(v+h)2 :vtigth among the v visible and h hidden units are
insufficient to model the 2" probabilities of the cnvironmentally
determined states of the visible units, However, if there are regularitics
in the environment, and if the network uscs its hidden units to capture

these regularitics, it may achieve a good match to the environmental ",

)

probabilitics.

An information thcorctic measure of the discrcpancy between the
network’s internal model and the environment is

a

G=Zf’(Va)ln7,[—);((—‘:-,“)T- . M

where P(V,) is the probability of the a' state of the visible units when
their states are determined by the environment, and P/(V,) is the
corresponding probability when the network is running freely with no
cr{vironmcnml‘input. The term P/(V,) depends on the weights, 'and 50
G can be altered by changing the weights. To perform gradiént
descent in G, it is necessary to know the pd}ﬁal derivative of G with

.



respect to cach individual weight. In most cross-coupled non-lincar
nctworks it is very hard to derive tis quantity, but because of the
simple relationships that hold at thermal cquilibrium, the partial
derivative of G is fairly simple to derive for our nctworks. The
probabilitics of global states are determined by their energies (Eq. 4)
and the encrgics are determined by the weights (Eq. 1). U-sing. these
cquations it can be shown that

56 =—}.— ZP,,:}':}' - Z P!, s] s]
4 - 7, s

i W,'j

where 57 is the state of the i unit in the #™ global state, 7, is the
probability of the Ly global state (defined over both the visible and
hidden units) when the network is being driven by the environment so
that the states of the visible units do not depend on the weights, and
P!, is the probability of the ar global state when the network is
running frecly.

To minimize G, it is therefore sufTicient to increment cach weight by
an amount proportional to the difference betweeh two frequencics.
The first is the frequency with which the two units that the weight
connccts are boLh‘on when the network is being driven by the
environment, and the second is the corresponding frequency when the
nctwork is running freely without cnvironmental input. Both
frequencies must be measured when the network is at thermal

cquilibrium. A surprising fecature of this rulc is that it usces only locally
available information. The change in a wcight depends only on the
behaviour of the two units it conncects, cven though the change
optimizes a global measure, and the best valu¢ for cach weight
depends on the valucs of all the other weights.

Once G has been minimized the network will be able to generate
plausible complctions when the cnvironment only dctermines the
states of sonite of the visible units, The network will have captured the
best regularitics in the environment and these regularities will be
enforced when performing completion,  One way to use this
complction ability would be to divide the visible units into two subscts
called “input” and "output”. During “training" ‘the environment
would consist of pairs of inputs and desired outputs. In minimizing G,
the network would then be finding weights that allowed it to predict

the output when given the input alone.

If there are no hidden units, the weight space is concave in G so
gradient descent will find the global minimum. When there arc hidden
units, the same learning rule still performs gradicnt descent in G, but
there are non-global minima in the weight space, and the sytem can
get stuck at onc of these sub-optimal values of G. This occurs when
the system is doing the best that it can given the representations it has
lcarnt in the hidden units. To do better it has to change these
representations which involves a temporary increase in G. Of course, if
the modifications to the weights are probabilistic so that G. can

.

sometimes increase, it is possible 1o cscape from local minima and
ensure that after enough learning there is a bias in favor of globally
optimal or ncar optimal scts of weights.

Potential energy and perceptual inference

In designing a parallel system for perceptual inference, the energy was
important for two rcasons. It represented the degree of violation of the
constraints between hypothescs, and it also determined the dynamics
of the scarch. From a few simple postulates about the cnergy it is
possible to derive the main properties of the probabilistic system.

Postulate 1: There is a “potential encrgy™ function vver states of the
whole system which is a function, {P,), of the probabilily of a state.
This is cquivalent to saying that, given any inpul, a particular

_ combination of hypotheses has exactly one probability. It docs not, for

452

cxample, have a probability of 0.3 and also a probability of 0.5.

Postulate 2: The potential energy is additive for independent systems.
Since the probability for a combination of states of independent
systems is multiplicative, it follows that f{Pg) -+ fTPg)= AP Pg). The
only function that satsfics this cquation is /{P,)=kIn(P,). To make
morc probable states have lower energy k must be negative.

Postulate 3: The part of the potential energy contributed by a single unit
can be computed from infonnation available to the unit. Only potential
cnergics symmetrical in all pairs of units have this property, since in
this casc a unit can "deduce™ its cfTect on other units from their cffect

on it.

Discussion

We have given a bricf and condensed description of a new relaxation
mcthod that overcomes many of the drawbacks of current mcthods.
There is ‘not space for a detailed discussion of the many. interesting
questions faised by the new method, and so we shall just mention a

few of the more important issues here.

We have ignored the difficult question of how long it takes the system
to reach equilibrium. The cfTiciency of the whole mcthod depends on
equilibrium being rcached fairly rapidly, so this is a crucial issuc.
Scveral methods of speeding the approach to I.cq'ui]ibn'um are
described bricfly in* but more rescarch is needed. A group at Brown
University (Geman, private communication)’ have independently
discovered the value of this kind of non-deterministic scarch as a
modcl of parallcl computation, and they arc deriving bounds on the

rate of approach to cquilibrium,

It may scem disadvantageous to haye a system which docs not always
find the most probable interpretation of the perceptual input, but
instcad produces interpretations with a probability that. equals their
probability of being correct. However, a system that integrates many
different kinds of constraints will almost always pick the correct
interpretation of a natural scene because with enough information the



correct interpretation is‘ovcrwhclmingly morc likely than any other.”®
Also, by lowering the temperature and running the system for longer it
is possible to cxaggerate the probability with which the most plausible
interpretation will be selected.

The natural way to represent continous parameters for our rclaxation
method is to divide their ranges into a number of overlapping intervals
and 1o sct aside a unit for cach interval®®, The truth-value of a unit
then indicates whether the continous parameter lics within its interval.
Dy using large overlapping intervals, this representation can be made
both accurate and cfficient for encoding multidimensional variables.)’
An advantage of using this "mosaic” cncoding is that it allows
decisions about discrete and continuous variables to be integrated into

asingle scarch in a principled way.

We have ignored the fact that at finite temperature the system will -

incvitably scttle into a “degencrate” minimum in which it fluctuates
among a collection of similar states. This is actually an advantage since
the proportion of the time a unit is truc within the degencrate
minimum allows it to convey more information about the solution

than asingle truth value.

We have assumed that the connections are all symmetrical in order to
simplify the analysis. This assumption, however, can be rclaxed.

Given the symmatry of the potential cnergy function, it is not

nccessary o have two-way conncctions in the parailel hardware, If a
symimctrical nctwork is degraded by removing onc of the dircctions
for cach pairwise link, its behavior will still apprpximulc the behavior
of the original network provided cach unit has a large number of
inputs, and the choice of which direction to remove for cach link is
random relative to the potential encrgy function, If these conditions
hold, a unit can get a good, unbiased estimate of what its total input
would have been if all the conncections had been symmectrical,

A very common misconception about our relaxation method is that it
is just a noisy version of continuous rclaxation mecthods which
associate a real-number with cach unit. According to this view, it is the
time average of the truth valucs that is important in the computation,
and this time average can be represented by an approximate real-
number.  ‘This view is wrong for several rcasons.
computation is performed by the non-equilibrium process of reaching
cquilibrium, and during this process there are major differences
between the ensemble average (taken over a collection of identical
non-deterministic machines) and the time average (taken over time for
a single machine). For example, probabilitics can be accurately
defined over very short time periods using ensemble averages and they
can also change very rapidly.
ensemble of identical machines éontaining binary units cannot be
mcdclled adequatcly by a single machine that contains real-valucd
units whose values represent the fraction of the corresponding units

that are on in the cnsemble. The single rcal-valued machine Jooscs

First, the

Sccond, the bchaviour of a large
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information about the higher-order statistics of the ensemble. In a case
like the Necker cube, for cxample, there may be two alternative
collections of hypotheses that form cqually plhusiblc interpretations,
and a probabilistic binary machine may occasionally flip between
these collections. A real-valued machine would assign a valuc of 0.5 to
cach hypothesis in cither collection, and would thus fail to represent
which hypothesis goes with which. .
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