GENDER DIFFERENCES IN SEEKING CHALLENGES:
The Role of Institutions

Muriel Niederle and Alexandra H. Yestrumskas*

April 20, 2007

Abstract

We examine whether women and men of the same ability differ in their decision to seek challenges. In the laboratory, we create an environment in which participants will turn out to be either of high or low performance level, where a high performance level participant has on average higher earnings from solving a hard rather than an easy task, and vice versa. We identify each participant’s performance level before they choose the difficulty level (easy or hard) for the next two tasks (only one of which will be chosen for payment). Although there are no gender differences in performance, or beliefs about relative performance, men choose the hard task 50 percent more than women, independent of the performance level. Gender differences in preferences for characteristics of the tasks cannot account for this gender gap. When we allow for a flexible choice and therefore changes choices of risk averse individuals, or individuals that are uncertain about their ability, then high performing women choose the hard task significantly more often, at a rate now similar to the decision of men. This highlights the role of institutions in affecting choices of women and men, and the resulting gender differences in representation in challenging tasks.

* Muriel Niederle: Department of Economics, Stanford University and NBER: www.stanford.edu/~niederle. Alexandra Yestrumskas: ahy@stanfordalumni.org. We thank Lynnea Mills and Carmit Segal. Muriel Niederle thanks the NSF for generous support, and the Institute for Advanced Study at Princeton and the economics department at Harvard for its hospitality. The experiments in this paper are part of Alexandra Yestrumskas honors thesis at Stanford (Yestrumskas 2004).
I. INTRODUCTION

Even though women have made large advances in terms of catching up economically with men, gender differences in wages and in representation in high profile jobs remain (e.g. Bertrand and Hallock 2001). The most common hypotheses for the gender disparity are discrimination, and gender differences in abilities and in preferences for types of jobs (in terms of both area, as well as workload).\(^1\) The psychological literature suggests that women and men may differ in other dimensions that affect economic decisions. Women and men seem to differ in their self-perception of ability in many domains (Beyer 1990, and Beyer and Bowden 1997). Furthermore, these perceptions of competence are intimately tied to expectancies, aspirations, persistence and preference for challenging tasks (e.g. Boggiano, Main and Katz 1988, Cutrona et al 1994, Elliot and Dweck 1988 and Harackiewicz and Elliot 1993). Hence, women are found to have lower expectancies of future performance than males in many areas of achievement (e.g. Beyer 1990, Elliot & Harackiewicz 1994). Women are not only often less certain about their abilities, they are also found to be more risk averse, and less willing to explore and test their ability (see also Dweck 2000 and Byrnes, Miller and Shafer 1999). It follows that if women and men have different perceptions about their own abilities of performance in new environments, they are likely to make different choices.

If women shy away from more challenging tasks, then they may be underrepresented given their actual abilities, which in turn may result in gender differences in economic outcomes. In this paper, we study whether for a given ability women and men differ in their preference to perform in a more challenging task. We study the impact of these differences on economic outcomes, and place special emphasis on understanding underlying causes. Finally, we also investigate which changes in institutions can affect the choices of women and men, such that choices reflect the participants’ performance level rather than their gender.

To study gender differences in preferences for harder tasks, we want to eliminate other factors that are presented as causes why women may shy away from challenging tasks. These are in general issues of greater time commitment of challenging tasks, or

differences in ability. We therefore use a laboratory experiment in which individuals choose between task difficulties in an environment in which performance is measured objectively and time commitments are the same in both difficulty levels.

We create an environment with an easy and a hard task, such that the hard task is harder for each participant and such that high performing (or more able or motivated) participants perform better than low performing participants in each task. Finally, in our environment high performing participants have higher earnings from the hard task rather than the easy task (with the appropriate incentive schemes), while it is the other way round for low performing participants. To be able to analyze the choices of women and men between hard and easy tasks we not only need meaningful labels of hard and easy, we also make participants aware of that. In order to predict money maximizing choices of participants, we measure their performance level before they make their choice. In the experiment, participants solve a real task, namely mazes on paper for 10 minutes.

The first treatment checks this calibration. Participants perform an easy version of the task, followed by another easy and then a hard task. Given the incentive schemes, participants with a task 1 performance in the top 40% are of high performance level (i.e. have higher expected earnings from the subsequent hard rather than the subsequent easy task), while others are low performing (i.e. have higher expected earnings from the easy task). This is true for both women and men, who perform similarly in the initial easy task. Furthermore, women and men have similar beliefs, more specifically, similar point predictions about their relative performance.

We therefore have an environment in which we can predict money-maximizing choices of any participant, and in which there is no gender difference in performance, nor in the money-maximizing task difficulty for any given performance level. We therefore created a leveled field in which we can evaluate the choices of task difficulty of women and men.

In the main treatment, participants first perform in the easy task, which allows us to predict their money maximizing choices. Participants are then informed of the calibration, but not their performance level. They subsequently choose simultaneously the

2 This implies that the hard and easy task do not involve completely different sets of skills, rather participants are either good at both or not.

3 This task was earlier used by Gneezy, Niederle and Rustichini (2003).
difficulty level for the next two tasks of which only one will be randomly chosen to be payoff relevant.

Despite there being no gender differences in performance, men choose the hard task fifty percent more often than women do. This gender difference persists when we compare choices of women and men of equal performance. Compared to expected payoff maximizing choices, high performing women choose the hard task too seldom, while low performing men choose the hard task too often.

In the remainder of the paper, we tease apart different explanations for this gender difference, and study how institutional changes affect the choices of women and men. One possible explanation for the gender gap in choosing the hard task is that women and men simply differ in how much they enjoy performing in a challenging task. Another possibility is that the preferences for the tasks are driven by preferences to receive feedback about one’s relative performance. Only by performing in each task once, and comparing respective earnings can participants receive feedback about their performance level. Finally, it could be that gender differences in choices are driven by gender differences in risk aversion, or uncertainty in one’s ability to perform in more challenging tasks.

To assess the effect of pure task preference, we change the environment so that the potential influence of other factors such as risk or feedback aversion on the choice of task difficulty is minimized. In the feedback treatment, we provide participants with perfect feedback, that is, we tell them not only about the task calibration, but in addition also what performances in the first easy task constitute a high performance level. We find that after participants receive feedback on their performance level, they largely choose the task that is appropriate with a payoff maximizing choice. That is we do not find a strong evidence for gender differences in preferences for challenging tasks as such.

A remaining possible explanation rests on the properties of the task, it remains possible that women and men differ in their preferences to receive feedback about their relative performance. Since all participants in the experiment perform in the easy task, they can receive feedback about their performance level by performing in the hard task at least once. Furthermore, the payoff in the challenging task is more variable, and as such may provide more feedback about one’s performance level. Therefore, gender differences
in preferences for feedback can cause women and men to seek out challenges at a different propensity.

A second possible explanation is that women and men differ in how certain they are in their beliefs about their ability to perform well in harder tasks. Furthermore, even for given beliefs about one’s performance, risk averse participants may choose the familiar task, the task with more certain payoffs (such as the easy task in our experiment) at a higher rate than the task with more variable payoffs (such as the hard task in our experiment).

In the last treatment, we want to tease this explanation, which we will summarize as risk aversion, and the explanation of feedback aversion apart. Now, participants decide upon the task difficulty as in the initial choice treatment but under a reduced commitment. They choose the difficulty level for the second task only, perform, and only afterwards decide on the difficulty level for the third task. That is, their second choice of task difficulty in the third performance can be influenced by information they receive from their performance in the second task, which was not the case in the initial choice treatment. We changed the environment in a way that participants whose task choice is largely driven by preferences over feedback are not affected. On the other hand, the change in institution may affect the choices of participants whose decision is influenced by risk preferences, or their (lack of) certainty in their ability to perform in challenging environments.

We find that in the reduced commitment treatment both high performing men and women choose the hard task. We conclude that for high performing women, risk aversion or greater uncertainty in their ability to perform well in the hard task is a major driving force leading to easy choices in the initial choice treatment. The initial gender gap in choices is not due to gender differences in feedback aversion or preferences for hard tasks per se.

Another purpose of this last treatment is to find a not too invasive institutional change that affects the decisions of women and men. The provision of perfect feedback already resulted in a change in choices such that not only high performing men and low performing women, but all participants, made payoff maximizing choices. However, it is
not often possible to provide such perfect feedback and forecast the productivity in various tasks.

We start with a brief discussion of the factors that may cause women and men to choose different difficulty levels. We then present our experimental design, followed by the results from the calibration treatment. The main results are presented in sections V to VIII. In section IX we compare our results to other findings in the literature, notable gender differences in competitive attitudes. We then conclude and report on broader implications and other empirical evidence outside of the laboratory that support our findings.

II. THEORY

To determine why women and men may not choose the same difficulty levels, we consider four different explanations.

Explanation 1: Task Preferences: Men, more than women, prefer the hard task.

Men, more than women, may have an urge to perform at the highest level and seek out challenges. Nurture as well as nature may cause such differences. First, we tend to raise boys and girls differently. Boys are in general encouraged to be assertive, while girls are raised to be egalitarian, and show empathy (Ruble, Martin and Berenbaum 2006). Furthermore, there exist gender differences in self-presentational style resulting in women exhibiting modesty and men displaying bravado (see Daubman 1992). A woman may therefore be less inclined to select the hard task, which would be a clear display of self-confidence, for fear of appearing arrogant or overconfident. Conversely, a man may seek to avoid looking unconfident or incompetent and be therefore more inclined to select hard mazes even when such a choice is not based on his actual beliefs about his ability or performance. Another possibility is that women, compared to men, may be more subject to being stigmatized. If a stigma exists that women are inferior in challenging tasks, then women may internalize this stigma, and, to protect their self-esteem, in turn avoid and disengage from situations in which this stigma applies (Crocker and Major 1989). That is, women may prefer not to opt into the challenging task.
Evolutionary psychology brings forth explanations that focus on the fact that a man’s death does not influence his current success, while a woman’s death causes the loss of her current offspring. These differences in parental care and reproductive success may make women less eager to enter challenging environments. These evolutionary explanations are also used to explain why men are more confident in their relative performance and less risk averse. Such gender differences may also influence the decision to enter challenging environments.

Explanation 2: Feedback Aversion: Women are more averse to receiving feedback about their relative performance than men are. Women and men may differ in their preference to receive feedback. In our experimental environment the hard task is not only more challenging, but may also provide more feedback. To receive feedback about their performance level, participants need to compare their earnings in the hard and easy task. Since all participants perform in the easy task anyway, choosing the hard task provides more feedback. Furthermore, more challenging tasks may in general provide more feedback. Mobius, Niederle, Niehaus and Rosenblat (in progress) in a large-scale experiment directly show a gender difference in preferences for feedback. The psychology literature suggests that women and men may respond differently to feedback, which may lead to gender differences in seeking feedback. There is evidence that women incorporate negative feedback more than men (Roberts and Nolen Hoeksama 1989, 1994). Furthermore, women more than men may view a negative signal as more indicative of their self-worth rather than simply their specific performance (see e.g. Dweck 2000). If participants care for holding positive beliefs about themselves, these factors may contribute to women shying away from feedback, and as such from situations and tasks that provide such feedback.

Explanation 3: Average Beliefs: Women have lower beliefs about their relative ability. A substantial psychological literature suggests that men are more overconfident than women (who are often also overconfident, just less so), see e.g. Lichtenstein, Fischhoff and Phillips (1982), Beyer (1990), and Beyer and Bowden (1997). Niederle and Vesterlund (forthcoming), confirm this pattern, though they find a substantially larger
gender gap in beliefs about relative performance in a competitive task than a noncompetitive task (see also Niederle, Segal and Vesterlund, 2007).

Explanation 4: Risk Aversion & Certainty: Women are less certain about their ability to perform in the hard task, or are more risk averse, that is derive a larger disutility from this uncertainty than men do. There are several reasons for this gender difference. First, women may be more risk averse than men, and so, for the same belief about relative ability may opt to not choose the hard task. In the experiment, the payment of the hard task varies much more with the performance level than the payment of the easy task, and as such is more risky. Furthermore, participants have not experienced the hard task, which may also contribute to the hard choice being more risky. Studies on gender differences in risk attitudes over monetary gambles find that either women are more risk averse than men, or that there is no gender difference. Eckel and Grossman (2002) summarize the experimental literature in economics and conclude that women exhibit greater risk aversion in choices. Byrnes, Miller and Shafer (1999) provide a meta-analysis of 150 risk experiments in the psychology literature, and show that while women in some situations are significantly more averse to risk, many studies find no gender difference. They find larger and more reliable differences when studying the engagement in risky behavior, rather than choices over lotteries.

A second possibility is that women and men may differ in how certain they are of their estimate whether they are able to perform well in the hard task (e.g. Beyer 1990 and Elliot & Harackiewicz 1994). Psychological studies suggest that women compared to men seem to attribute positive outcomes, in this case the chance that a high initial performance signifies a high performance level, more to luck than actual underlying ability. This could simply be driven by the fact that women have lower expectations about their performance. In the psychology literature, Deaux (1984) argued that performance that is consistent with expectations leads to attributions to stable causes (e.g. ability), whereas performances that are inconsistent with expectations lead to attributions to unstable causes (e.g. luck). From the psychology literature (see also e.g. Beyer 1990) it is not clear whether this is true above and beyond differences that would be observed due to Bayesian updating. There remains however, the possibility that women are more
uncertain about their abilities, and this may be exacerbated when it comes to harder tasks (see also Dweck 2000). We will summarize explanation 4 as risk aversion, though at the end of the paper we will review the different driving factors for that difference, such as differences in certainty in one’s ability.

Our experiment is designed to shed light on the role played by these alternative explanations. Specifically, we want to investigate whether choices of task difficulty of women and men can be explained by the characteristics of the tasks (hypotheses 1 and 2). In that case, gender differences in choices may not pose a great concern, and there may not be a strong urge to investigate changes in institutions that affect the choices of women and men, and align them with money-maximizing choices. If, however, gender differences in confidence or risk aversion (hypotheses 3 and 4) drive the gender gap in challenging tasks, then changes in the institutions may help both women and men to move towards money-maximizing choices. Our goal is therefore to both, evaluate the importance of alternative hypotheses, and, in case, provide institutional changes that affect the choices of women and men.

III. THE EXPERIMENT

We aim to establish an environment in which we can evaluate the choices of men and women concerning the difficulty level of the task in which they perform. We use a task that is available in several difficulty levels, and in which high performing participants receive higher earnings from the hard task, while low performing participants from the easy task. A high correlation in performance among these different tasks allows us to (i) identify the performance level (high or low) of participants after they performed in only one (the easy) task, and (ii) predict the participants’ money maximizing choice, that is, address to what extent the choice of task difficulty is driven by actual performance levels. We are not merely interested whether women choose the hard and challenging task more or less often than men. Rather, we want to assess whether men and women with the same performance differ in their choices, and why.
The task we use is mazes to be solved on paper. Mazes are either “Easy” mazes or “Hard” mazes. In each treatment, we have three rounds of performance in which participants have 10 minutes to solve as many mazes as they can. If participants, when marking their way through the maze, made a mistake, they could cross out the portion that was incorrect and continue again from the point where they had gone wrong (An example was included in the instructions). Participants could skip up to three mazes (which they had to cross out with an X) during the 10-minute period. They were paid only for entirely solved mazes in which they did not cross any of the maze boundary lines.

We conducted the experiment at Stanford University with students recruited through emails sent to dorm announcement lists and fliers posted in public places on campus. We used 308 participants, 151 men and 157 women, where everyone participated only once. The experiment lasted just under an hour. Subjects participated in the experiment in groups with an average size of ten. Overall, we conducted 30 sessions. Participants received $5 as a show up fee, and average earnings were $14.23 including the show up fee.

Participants could ask questions at the start of each of the three tasks and raise their hand for questions during the 10 minute performance, they were not allowed to talk to one another for the duration of the experiment. Each 10-minute segment was timed, and participants were told when they had five minutes left, one minute left, and when time was up. The general design of all four treatments is the following:

Task 1: Easy Mazes: Participants solve “Easy” mazes for 10 minutes, and receive $0.25 per completed maze. At the end of the task, participants can count the number of mazes they completed.

4 The mazes were printed from http://games.yahoo.com/games/kidszmz.html. “Easy” mazes were the easiest mazes offered and “Hard” mazes were the hardest offered. These mazes have first been used in Gneezy, Niederle and Rustichini (2003).
5 Participants received 30 mazes (one per page) for Easy mazes, and 15 for Hard mazes. Only two participants who both solved Hard mazes raised their hand to ask for more mazes.
6 Gender was not emphasized during recruitment and not mentioned during the experiment. Participants ranged in age from 18 to 23 years old, and all were university students.
Task 1 provides us with a benchmark measure of performance for each participant. We will show that the performance on this task is a very good predictor whether a participant has higher expected earnings from the easy or the hard task. We can therefore compare the actual choices of women and men with their predicted money maximizing choices.

While all participants are paid for task 1, they were paid for only either task 2 or task 3. The task for which they are paid was randomly determined at the end of the experiment by a coin flip. This reduces the possibility to use the decision and performance of task 3 to hedge against the decision and outcome of the former task 2.

There are two versions of task 2 and task 3, easy and hard. Whenever participants choose the difficulty level of mazes to complete in tasks 2 and 3, they had at their disposal two sample mazes: one easy maze and one hard maze. Furthermore, participants were told that, based on previous performances in the experiment, participants with a performance in Task 1 in the top 40% were more likely to achieve higher monetary earnings from hard mazes, while others from easy mazes. This is the result of treatment 1, the first treatment we ran, and therefore true at the time we make the statement. However, in general participants do not know whether their performance was in the top 40%. Participants had one minute to make the decision, that is, they could not actually experience completing a difficult maze before selecting their level(s) of difficulty.

Task 2 and Task 3: Easy Mazes: Participants solve “Easy” mazes for 10 minutes. If the task is selected for payment, they receive $0.50 per maze. At the end of the task, participants can count the number of mazes they completed.

Task 2 and Task 3: Hard Mazes: Participants solve “Hard” mazes for 10 minutes. If the task is selected for payment, they receive $0.25 per maze for the first four mazes, and $3.50 for each maze completed past the fourth. At the end of the task, participants can count the number of mazes they completed.
While hard mazes are more difficult to solve than easy mazes, as they are more complex, we made it even more difficult to receive high earnings from hard mazes, by introducing a kinked payment scheme.

While the structure in terms of remuneration for each task difficulty is the same in each treatment, there are differences in whether and how participants decide upon the task difficulty, and whether they receive feedback about their performance before their choice of task difficulty.

Treatment 1: Benchmark Treatment: Participants, after performing in task 1, cannot choose the difficulty levels for tasks 2 and 3; they perform the easy task 2 and the hard task 3.

The performances of women and men in tasks 2 and 3 will serve as a benchmark of potential earnings under each task difficulty for a given task 1 performance. The results of this treatment also confirm the calibration of high and low performance levels.

Treatment 2: Choice (with Commitment): Participants, after task 1, have to decide at once the difficulty levels for both task 2 and task 3, namely easy or hard. That is, participants can choose among four possibilities: easy-easy, easy-hard, hard-easy, and hard-hard. Participants are reminded that they make their decision for the next two rounds and will be unable to change their decisions after completing Task 2.

Treatment 2 will establish whether, for a given task 1 performance, women and men differ in their choices of task difficulty. We only pay either task 2 or task 3 to reduce incentives for participants to hedge and choose a mixture of task difficulty.

To understand the role of explanation 1 – gender differences in preferences for hard tasks per se – and see whether it can account for the gender gap in choices of challenging tasks, we change the environment such that explanations 2, 3 and 4 (that is gender differences
in feedback aversion, confidence and risk aversion respectively) are not relevant. We achieve this by providing participants with perfect feedback, that is, any uncertainty about their performance level, or any aversion (or preference for) receiving feedback about their relative performance has no impact on the decision of task difficulty.

Treatment 3: Feedback: In addition to all statements made in the choice treatment, participants in the feedback treatment are told that based on previous participants, those completing 11 or more easy mazes in Task 1 were in the top 40% of performers, while those completing 10 or fewer mazes in Task 1 were not. This gave participants feedback on their performance level. They too had to decide on the difficulty level for the next two tasks at once.

For the last treatment, we have two objectives. The first is to assess the role of feedback aversion versus risk aversion, that is, we want to tease apart explanations 3 and 4. A second objective stems from the possibility that gender differences in choices of task difficulty may not reflect preferences that pertain to the underlying characteristics of the task (in terms of both the actual task, and the amount of feedback the task provides). Differences may rather be driven by the fact that women are less certain about their capacity to perform in the hard task, or more risk averse than men. In this case, we aim to find a simple change in the institution that would allow women and men to improve the quality of their choices.

While providing feedback is an institution that helped both women and men, there are some drawbacks: A first, practical concern is that it may often not be possible to provide perfect feedback. Rarely may there be such a good predictor on how women and men would perform on the next, more difficult level. Furthermore, in this experiment, participants took that “perfect test” without knowing what it was, and results may be different in case they were aware that they were taking a test that is predictive of their underlying abilities. Indeed, Claude Steele in a series of papers shows that the performance of minorities, who may suffer from a stereotype that they should not

7 When running the experiment, we ran this treatment last, to ensure that there is no risk of information leaking to other participants about the cutoff performance that determines the performance level and leads to higher expected earnings from the hard task.
perform so well, differs in a test described as predictive of abilities rather than a random test (Steele (1997), Steele and Aaronson (1995), and Spencer, Steele & Quinn (1999). This may especially be the case if women are feedback averse, and employ some self-handicapping techniques (Keller 2002). We therefore opt for an institutional change that may be feasible to implement, while still possibly having a large impact on participants’ choices.

Treatment 4: Choice with Reduced Commitment: The instructions are similar to those in the choice treatment. However, participants now do not choose the task difficulty level for both tasks 2 and 3 at once. Rather, participants choose a difficulty level for task 2, and only after they performed do they choose the difficulty level for task 3.

A simple analysis confirms that a participant who is uncertain about her ability may choose the easy task twice in the choice (with commitment) case, but choose a first hard task in the choice with reduced commitment treatment.⁸ In the treatment with reduced commitment, choosing the hard mazes in task 2 gives the additional benefit of providing feedback and information about which task leads to higher earnings for the third choice. Therefore choosing the hard task has an additional value than simply the expected earnings from performing in the hard task. This additional value is not present in the choice treatment (treatment 2). That is, if gender differences in hard task choices are driven by uncertainty, then they may be reduced by this institutional change. However, if choices are largely driven by preferences for feedback, then the choices should be similar to those in treatment 2.

⁸ For a very simple stylized model, let \(p \) be the probability with which a participant believes that the performance is in the top 40%. Let \(x \) be the expected payoff from choosing the easy task. If the participant chooses the hard task, the monetary earnings are \(x+y \) if the participant is actually of high performance, and \(x-y \) otherwise. Furthermore, assume that a choice of the hard task reveals the participants type (high or low performing) perfectly, while the easy task provides no further information, since a participant already knows how they perform in the easy task. A participant that makes a once and for all decision about the task difficulty prefers the hard task if \(p u(x+y)+(1-p)u(x-y) \geq u(x) \) that is if \(p \geq [u(x)-u(x-y)]/[u(x+y)-u(x-y)] \). In case the participant decides for a first task, and then a second task based on the information received from the first task, the participant prefers the first task to be the hard iff \(p^2 u(x+y)+(1-p)u(x-y) \geq 2u(x) \), that is \(p \geq [u(x)-u(x-y)]/[2u(x+y)-u(x)-u(x-y)] \). This second boundary for \(p \) is strictly lower than the former one, if \(u(x+y) > u(x) \).
IV. THE BENCHMARK TREATMENT

IV.A. Performance

The goal of this treatment is to verify that we have an environment in which we have a correlation in performance (and earnings) between the easy and hard task such that we can group performances of participants into high and low level performances using the easy task 1 performance. Furthermore, low performing participants (should) have higher earnings from subsequent easy tasks, while high performing participants from hard tasks. In this treatment, we collected the performances of 32 women and 30 men.

In task 1, the first round of easy mazes, men solve on average 10.03 mazes (with a standard deviation of 2.98), while women solve 9.25 mazes (s.d.of 2.86). There is no significant gender difference in performance, a two-sided Mann-Whitney test comparing the performance distributions of the 30 men to the 32 women yields \(p = 0.37 \).\(^9\) Table I shows the number of easy mazes completed by men and women in task 1 (roughly by performance quartiles).

<table>
<thead>
<tr>
<th></th>
<th>8-</th>
<th>9,10</th>
<th>11,12</th>
<th>13+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Women</td>
<td>15</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Task 1 performances of 32 women and 30 men in the Benchmark treatment.

In Task 2, the second round of easy mazes, men solve on average 12.4 (s.d. 3.89) mazes, while women solve 11.4 (s.d. 3.05). The difference is not significant, a two-sided Mann Whitney test yields \(p = 0.44 \).\(^10\) Both genders significantly increase their performance by about 2.2 (in each case a one sided t-test yields \(p \)-values less than 0.01).\(^11\)

In Task 3, where participants completed hard mazes, men solve on average 5.4 mazes (s.d. 1.75), while women solve 4.6 (s.d. 1.72). This difference is on the verge of being significant: A two-sided Mann Whitney test yields \(p = 0.108 \), a two-sided t-test yields \(p = 0.08 \).

The performance of participants exhibits a strong correlation. Spearman rank correlations are of the order of 0.8 (comparing task 1 performance to either task 2 or task 3).

\(^9\) A two sided t-test yields \(p = 0.30 \).
\(^10\) A two sided t-test yields \(p = 0.30 \).
\(^11\) There is no significant gender difference in the increase in performance, a Mann Whitney test yields \(p = 0.89 \).
3 performance, for both men and women), with \(p \)-values less than 0.01 when testing for independence.

Table II summarizes the average earnings of participants from the easy mazes and hard mazes they completed in tasks 2 and 3 respectively, grouped by the number of easy mazes completed in task 1. The rows in bold indicate levels at which participants had higher earnings from the hard than the easy mazes. This group consists approximately of the top 40\% \((26/62)\) of all participants, those who completed 11 or more mazes in task 1. In fact, of the 62 participants in the benchmark treatment, 61 follow the pattern that participants with a task 1 performance of 11 or higher have higher future earnings from a hard rather than an easy task, while it is the other way round for participants who solve 10 or less mazes in task 1.\(^{12}\) While women differed from men in their performance in the hard task, the last two columns show that nonetheless women follow the same earnings pattern as men. Table II also shows the average difference in payoffs between the hard and easy task.

<table>
<thead>
<tr>
<th>E1</th>
<th>E2 Payoff Female</th>
<th>E2 Payoff Female</th>
<th>H3 Payoff Male</th>
<th>H3 Payoff Female</th>
<th>H3 – E2 Payoff Female</th>
<th>H3 – E2 Payoff Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>- (3) -</td>
<td>3</td>
<td>(0.75) -</td>
<td>0.75</td>
<td>-2.25</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>- (3.13) -</td>
<td>(4) -</td>
<td>(0.69) -</td>
<td>(0.63) -</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>3.25</td>
<td>5</td>
<td>0.63</td>
<td>0.5</td>
<td>-3.28</td>
<td>-2.63</td>
</tr>
<tr>
<td>6</td>
<td>3.67</td>
<td>4</td>
<td>0.92</td>
<td>0.5</td>
<td>-3.05</td>
<td>-2.75</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5.14</td>
<td>4.5</td>
<td>1.82</td>
<td>-4.13</td>
<td>-0.50</td>
</tr>
<tr>
<td>8</td>
<td>5.17</td>
<td>4.5</td>
<td>2</td>
<td>2.63</td>
<td>-3.83</td>
<td>-3.17</td>
</tr>
<tr>
<td>9</td>
<td>5.25</td>
<td>5.25</td>
<td>2.75</td>
<td>1.88</td>
<td>-3.20</td>
<td>-2.50</td>
</tr>
<tr>
<td>10</td>
<td>6.88</td>
<td>6</td>
<td>4.5</td>
<td>4.5</td>
<td>-2.20</td>
<td>-2.38</td>
</tr>
<tr>
<td>11</td>
<td>6.33</td>
<td>6.33</td>
<td>10.33</td>
<td>9.17</td>
<td>3.40</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>7.17</td>
<td>10.1</td>
<td>9.17</td>
<td>2.70</td>
<td>3.10</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>7.25</td>
<td>11.5</td>
<td>9.75</td>
<td>2.90</td>
<td>3.50</td>
</tr>
<tr>
<td>14</td>
<td>8.5</td>
<td>8.25</td>
<td>11.5</td>
<td>8</td>
<td>0.70</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>8.5</td>
<td>- (8.5) -</td>
<td>11.5</td>
<td>- (11.5) -</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>9.5</td>
<td>- (9.5) -</td>
<td>15</td>
<td>- (15) -</td>
<td>5.50</td>
<td>5.50</td>
</tr>
</tbody>
</table>

In parentheses are values that are obtained through interpolation, or by using the outcome of the other gender.

\(^{12}\) Only one participant, a woman, completed 14 easy mazes in Task 1, 18 easy mazes in Task 2, and 5 hard mazes in Task 3, meaning that she actually would have earned more money with the easy mazes ($9) than the hard mazes ($4.50), which is opposite to the pattern exhibited by all other participants.
We will use these results in further treatments, to provide a crude estimate for the expected earnings in an easy and a hard task conditional on the participants’ task 1 performance. That is, we will assume that a male participant, who solved, say, 12 easy mazes in task 1, would earn $7 when choosing easy mazes and $10.1 when choosing hard mazes in tasks 2 and 3.

Note that the earnings difference between the hard and the easy task are dependent only on whether the participant is of a high or low performance level, but not on the actual task 1 performance within that category. Specifically, a linear regression on the earnings difference across tasks as a function of task 1 performance yields coefficients not significantly different from zero, for both high and low performing participants, and for both genders joint or separately.\(^{13}\)

IV.B: Confidence

While women and men have similar performances, and we prescribe the same choice of task difficulty for any given task 1 performance to maximize the participant’s earnings, it could be that women and men hold different beliefs about their relative performance. To measure their beliefs participants guessed at the end of the experiment how their performance compared to past participants (in performance quartiles), with 1 being among the top 25% and 4 indicating a performance in the bottom 25%.\(^{14}\)

<table>
<thead>
<tr>
<th></th>
<th>Guess</th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimal</td>
<td>Guess</td>
<td>Wrong</td>
<td>Optimal</td>
<td>Guess</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>29</td>
<td>16</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

\(^{13}\) A regression of the earnings difference between task 2 and task 3 yields a constant of 3.36 \((p = 0.02)\) and a coefficient on the task 1 performance of -0.09 \((p = 0.62)\) for the 36 low performing men and women. For the 20 women only, the coefficients are 4 \((p = 0.02)\) and -0.14 \((p = 0.50)\), and for the 16 men they are 2.35 \((p = 0.33)\) and 0.01 \((p = 0.98)\) respectively. Similarly, for all 26 high performing participants, the coefficients are -3.88 \((p = 0.54)\) and 0.08 \((p = 0.87)\), while for the 12 women they are -11.13 \((p = 0.33)\) and 0.74 \((p = 0.41)\) and for the 14 men they are -1.94 \((p = 0.81)\) and -0.13 \((p = 0.84)\).

\(^{14}\) One man did not fill out this questionnaire properly and is hence absent from our data.
Table III shows for women and men the optimal guess, that is, the most optimistic possible guessed performance quartile that is correct given their performance, their guessed relative performance, and the number of wrong guesses.15 There is no gender difference in the distribution of guesses, a Fisher’s exact test yields a \(p \)-value of 0.72.16 Furthermore, an ordered probit regression shows that the believed relative performance is correlated with performance for both men and women without any significant gender difference.17

Finally, we also tried to estimate whether participants thought the task favored one gender. We asked the last 66 participants of the experiment (they were part of the Feedback treatment), whether among the first 200 participants, they thought there were more women or men were among those who solved 11 easy mazes in task 1, and hence had a high performance level. In total 22/66 (33\%) guessed that men had done better, while 44/66 thought women had done better.18

To summarize, we found a task in which the performance in the first, easy task predicts the participants’ performance level, high or low. Approximately the top 40\% performers in the first easy task, all those who solve 11 or more mazes, are of high performance. Furthermore, the performance level predicts whether earnings are maximized with a subsequent hard task (for high performing participants) or a subsequent easy task (for low performing participants). Finally, there is no gender difference in performance in the first easy task, or in the classification into high or low performance levels.19 Therefore, for both, women and men, the following are true statements. “Based on all the people who have previously participated in this experiment, if you perform in

15 The optimal guesses (and whether a guess is right or not) have been calculated given the whole sample, which is not necessarily what participants were paid for, as they were paid based on the cumulative sample. However, to have comparability across treatments, we use the full sample to account for whether guesses are right or not.

16 Men and women do not differ in their optimal guesses, a Fisher’s exact test of independence of the two distributions yields \(p = 0.50 \).

17 An ordered probit regression on the guessed rank as a function of performance yields coefficients of -0.3 (\(p = 0.00 \)) for 28 men and -0.21 (\(p = 0.02 \)) for 29 women. Furthermore, a combined ordered probit regression on guessed ranks yields coefficients -0.25 (\(p = 0.00 \)) on task 1 performance, and 0.18 (\(p = 0.55 \)) on a male dummy (for 57 women and men with a guessed rank of 1 to 3). Similar results are obtained when we include all guesses, or code guesses of the third and fourth quartile into one category.

18 In fact, among the first 200 participants, 46 women and 34 men completed more than 11 easy mazes in Task 1. That is, women was the correct answer and participants who had guessed women each received $1 for guessing correctly.

19 Among all 308 participants, 118 (38\%) have a task 1 performance of 11 or higher. Among the 159 women, there are 64 (40.2\%) high performing participants, and among the 149 men there are 54 (36.2\%).
the top 40% of all people completing mazes, you are likely to make more money by selecting the Hard mazes, while if you are not in the top 40% of participants, you are likely to make more money by selecting the Easy mazes.”

Participants do also not exhibit any gender difference in beliefs about their relative performance. We also found no evidence of any overall belief that men have a higher chance to have a high performance level.

V. CHOOSING THE HARD TASK

In this second treatment, we evaluate whether men and women differ in their propensity to choose the hard (and easy) task. In the choice (with commitment) treatment, participants, after performing in task 1, simultaneously choose the difficulty levels of task 2 and task 3. Only one of the two tasks is randomly selected for payment at the end of the experiment. Before choosing the difficulty levels, participants are informed that the top 40% performers in the first task have on average higher earnings from choosing the hard task, while others from choosing the easy task. While participants know their absolute task 1 performance, they are not informed of their performance level. We have 42 women and 43 men.

V.A: Task 1 Performance

In Task 1, men solve on average 9.81 (s.d. 2.61) mazes, while women solve 10.19 (s.d. 2.39) mazes. The difference is not significant (a two-sided Mann-Whitney test delivers \(p = 0.17 \)), though the proportion of high performing women is significantly higher than that of high performing men (though this is not true in the total sample, see footnote 19). Table IV shows the number of easy mazes completed by men and women in Task 1.

<table>
<thead>
<tr>
<th></th>
<th>8-</th>
<th>9,10</th>
<th>11,12</th>
<th>13+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>13</td>
<td>19</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Women</td>
<td>10</td>
<td>9</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

Task 1 performances of 42 women and 43 men in the Choice treatment

20 Given that only either task 2 or task 3 are reimbursed, there is no room for participants to use a mixed choice Easy-Hard, or Hard-Easy as a means of insurance.

21 A two-sided t-test yields \(p = 0.49 \). Furthermore, there is no difference in Task 1 performance between the two treatments, as a whole or for each gender separately.
V.B: Choosing the Hard Task

Results from the benchmark treatment predict that all participants who solve 11 or more mazes in the first task (which corresponds to roughly 40% of all participants) have higher earnings by choosing hard mazes, while others should choose the easy task. Given the performance in Task 1, we expect 23/42 women (54.8%) and 11/43 men (25.6%) to choose the hard task. We find that 90.7% of men make at least one hard choice, compared to 61.9% of women, a significant difference (a two-sided Fisher exact test delivers $p = 0.00$). Similarly, 58.1% of men make all hard choices compared to 38.1% of women (a two-sided Fisher exact test delivers $p = 0.08$). Figure I shows for various task 1 performances the proportion of hard choices in tasks 2 and 3 for women and men separately.

\begin{center}
\textbf{FIGURE I}
\end{center}

For various task 1 performances, the proportion of hard choices of the 42 women and 43 men in the choice treatment.

To estimate the impact of the performance level on choices we code the variable choice as 0 for a choice of Easy-Easy; 1 for a choice of either Easy-Hard or Hard-Easy; and 2 for a choice of Hard-Hard. Furthermore, we use a dummy variable, high, that is 1 for participants of a high performance level and is 0 otherwise.

22 There are 10 women and 14 men who choose two different tasks. While it is unclear why they made these choices, any tendency for probability matching would yield participants to diversify (for a review on the probability matching literature see e.g. Vulkan 2000).

23 A participant who chooses the hard task for both tasks made 100% hard choices, while one who chose one hard and one easy task has only 50% of hard choices.
The results in table V show that neither the choices of women, nor the choices of men are highly dependent on their performance level. However, there is a significant gender difference in choosing the hard task, even when we control for performance levels. Gender differences in choices are significant for both performance levels. In all cases, men choose the hard task more often than women do. When we use the actual task 1 performance, e1, instead of a high performance dummy, the results are very similar.24

Table VI shows the proportion of participants who chose at least one hard task and then the proportion of hard choices. It confirms that, whichever measure is chosen, men choose the hard task significantly more often.25 Among both, high and low performing participants, men choose the hard task about 30% to 60% more often than women.

24 The only difference is that the men’s decision to choose the hard task depends on their task 1 performance, and more so than the decision of women, which does not respond to the task 1 performance. The result seems to be driven by the very high performing men, who all select the challenging task. The regression for men yields a task 1 performance coefficient of 0.25 (p = 0.02). In the All 1 regression the coefficient on task 1 is 0.09 (p = 0.105), the coefficient on male is 0.75 (p = 0.00). In the All 2 regression, the coefficients are 0.00 (p = 1.00) on task 1, -1.41 (p = 0.25) on male and 0.23 (p = 0.08) on the task 1 * male interaction. We obtain virtually the same results when we consider only the decision of the second or only of the third task.

25 When we condition on either only the first choice, or only the second choice, gender differences in choice of task difficulty are significant for low performing participants, those solving 10 or less mazes in task 1. For high performing participants differences are only marginally significant, though they are significant at conventional levels for participants that solve 12 or more mazes in task 1. Fisher exact tests for each decision separately, reveal a significant gender difference of 0.07 or less for the choice in both task 2 and task 3 for participants with a task 1 performance of 10 or less and 12 or more. In the case of 11 and more, the p-values for task 2 and task 3 choice are 0.11 and 0.14 respectively. For performances of 9 and less, the p-values are 0.05 and 0.12 respectively.
TABLE VI
Proportion of Hard Choices

<table>
<thead>
<tr>
<th></th>
<th>At least 1 hard choice</th>
<th>Percent of hard choices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All 9 - 10 - 11 + 12 +</td>
<td>All 9 - 10 - 11 + 12 +</td>
</tr>
<tr>
<td>Men</td>
<td>90.7 88 87.5 100 100 74.4</td>
<td>70 70 86 93.8</td>
</tr>
<tr>
<td>Women</td>
<td>61.9 56.2 58 65 41.7 50 40.6 42 57 37.5</td>
<td></td>
</tr>
<tr>
<td>Fisher exact</td>
<td>0.00 0.03 0.04 0.03 0.02</td>
<td></td>
</tr>
</tbody>
</table>

Compared to predicted money maximizing choices, low performing men choose the hard task too often, while high performing women do not choose the hard task often enough. In fact, men always choose the hard task more often than women, which means men and women differ in how their choices do not conform to predicted money maximizing choices.

Before we try to understand the underlying causes of this behavior, we want to confirm that the choices of women and men do not reflect some unobserved private information about their performances in easy and hard tasks.

V.C: Economic Consequences of Choices

We estimate the effect of choices on monetary payments and seek to confirm that high performing participants (i.e. e1>10), receive, on average, higher earnings when selecting the hard task, while others from the easy task. That is, we want to confirm that the observed non-conforming choices of participants do not reflect performances that deviate from the pattern we found in the benchmark treatment.

Table VIIA shows the mean difference between the earnings for the chosen task and the average earnings for the other, not chosen task difficulty (as predicted by the benchmark treatment), for each gender separately. The table shows means, standard errors in parenthesis and finally the p-value of the one sided t-test. For 7 of the 8 cases we find significantly higher earnings for the task that confirms with the prescribed choice and significantly lower earnings for the opposite task. The only exception is in the case of low performing participants who chose the hard task in task 3 instead of the easy task, where the difference, while negative, is not significant. Therefore, we find as predicted

26 We restrict attention to performances between 3 and 16, because there we have data from the benchmark treatment.
that, compared to earnings estimates based on the benchmark treatment, almost all participants who choose the task that does not conform to their performance level incur significant losses, in the order of 15 to 20% of their total earnings for the experiment. That is, it does not seem that participants who choose the alternate task difficulty are especially good at performing at this level, compared to the average participant in the benchmark treatment. Similarly, participants have significant gains from choosing the task that corresponds to the prescription based on the benchmark treatment.

To check that the selection into task difficulties is not due to extraordinary performance patterns, we can also compare the performance of participants who choose a specific difficulty level to the performance of participants who were assigned that difficulty level in the benchmark treatment. In all the eight cases of Table VIIA, apart from low performing participants who choose the hard task in task 3, we find that the performance of participants is not significantly different from those that were assigned the chosen difficulty level in the benchmark treatment.27

One possibility why women and men may overall gain from choosing the non-prescribed task difficulty is that there could be large learning effects when performing in the same task twice. For example, it could be that low performing participants who choose the hard task twice have such a high performance the second time they perform, that in expectation, it outweighs the losses from the first performance, even if only one of the two tasks is payoff relevant. Note that this additional learning possibility was not present in the benchmark treatment, as task 2 and task 3 were of different task difficulty.

27 The differences in earnings between participants who chose a difficulty level, and those of the participants in the benchmark treatment who were assigned that difficulty level are in six instances less than 0.40 (with one-sided p-values of t-tests of 0.24 and higher). Among high performing participants who choose the hard task, the differences are not significant, though higher in magnitude (for task 2: 1.05 (s.e. 1.37, p = 0.45) for the one sided t-test, and for task 3 -0.64 (s.e. 0.79, p = 0.43), that is, high performing participants in the choice treatment who choose the hard task for task 2 earn on average one dollar more than high performing participants in the benchmark treatment, though they earn 0.67 dollar less in task 3. Low performing participants in the choice treatment who choose the hard task in task 3, earn on average $1.74 more than low performing participants in the hard task in the benchmark treatment, a difference that is significant (s.e. 0.84, p = 0.05 of the one sided t-test).
The tables show means, standard errors in parenthesis and finally the \(p \)-value of the one sided t-test. The number of observations \(N_1/N_2 \) is read as \(N_1 \) observations for the top cell and \(N_2 \) observations for the lower cell in each column.

To account for this possibility, table VIIB shows for participants who choose the same task twice, the average difference of actual earnings to the predicted earnings for the alternate task, for women and men separately. We find for all participants that choosing the same task twice does not change the predicted earnings pattern. In all cases (apart for low performing women, for which we do not have many data points) we estimate that participants receive significant gains from choosing the task corresponding to the performance level, and significant losses from choosing the alternate task. The exception consists of low performing women who choose the hard task twice. While they incur losses, they are not significant, but there are only 5 such women.\(^{28}\)

We have a final test to address whether non-confirming choices are driven by unusual performance patterns. We want to show that the choice of the hard task for low

\(^{28}\) Of these five women are 4 have losses compared to the expected earnings delivered by the benchmark treatment.
performing men, and the choice of the easy task for high performing women do not result in higher earnings than those from the prescribed difficulty level. We can compare earnings across tasks of participants who chose two different difficulty levels. Low performing participants who chose two different difficulty levels earn significantly more from the easy than the hard task (on average 2.97, with a standard error of 0.48 and a p-value of a one sided t-test of 0.00).\(^{29}\) High ability women who choose the hard and the easy task ($n = 4$) make on average 1.38 more from the hard task (s.e. 4.09, $p = 0.38$).\(^{30}\)

Therefore, we found a task in which women and men perform equally well, and have similar beliefs about their relative performance. Nonetheless, when simultaneously choosing the task difficulty for the next two tasks, men choose the hard task significantly more often than women, for each performance level. Compared to predicted money maximizing choices (the easy task for low performing participants and the hard task for high performing participants), high performing women do not choose the hard task often enough, while low performing men choose it too much. Furthermore, we provided evidence that the choices that do not follow the prescribed pattern often result in significant monetary losses (about 15 to 20% of total earnings) and do not seem to reflect private information about unusual performance patterns.

This finding is very much in the spirit of the findings in the literature on gender differences in entering competitive environments (see Niederle and Vesterlund, forthcoming), even though in this case, the choices are between more and less challenging tasks (see the conclusions for a general review of the literature).

\(^{29}\) For the 11 men only, the numbers are 3.07; s.e. 0.56; $p = 0.00$; for the 6 women only they are 2.79, s.e. 0.95, $p = 0.02$.

\(^{30}\) The only group that does not follow the predicted pattern are high performing men. Those who choose the hard task and the easy task ($n = 3$) lose 4.16 from the hard task. Indeed, every one of the three men who have an el performance of 11, 11 and 12 respectively and choose once the hard and once the easy task make losses from the hard task, with a payoff difference of 3, 2.5 and 7. However, the sample is very small and in general high performing men choose the hard task a lot, and on average have very high earnings from the hard task. The choices of men that require an explanation are rather the low performing men who choose the hard task (not the few high performing men who choose sometimes an easy task).
VI. ARE GENDER DIFFERENCES IN CHOICE DRIVEN BY PREFERENCES?

There are several reasons why women and men may choose different difficulty levels of the task in which they perform, even in an environment in which there is no gender difference in performance or in beliefs about relative performance.

A first possibility is that women and men may simply have different preferences concerning the characteristics of the task in which they want to perform (hypothesis 1). That is, participants may not (want to) only maximize monetary earnings, but derive some (dis)utility from performing in specific tasks. Specifically, women may have a cost of performing at the harder mazes, while men may get a kick out of it. In this case the different choices of men and women do not pose a very great reason for concern for their welfare. There is no small change in the institution that would affect the choices of women and men if they reflect their true underlying preferences for various tasks. Therefore, we want to address the importance of preferences for performing in different tasks in accounting for gender differences in the choice treatment.

Note however that our participant pool consists of Stanford undergraduate students, and hence finding that women prefer easy over hard tasks would be quite devastating in terms of trying to promote and engage high performing women in difficult tasks. Similarly, of course, we want to show that men do not simply try the hard task, no matter how high their performance level actually is.

VI.A. Design of the Feedback Treatment

The feedback treatment is designed such that in this environment gender differences in choice reflect gender differences in preferences for the hard and easy task per se. To achieve this we eliminate other possible explanations for choices of task difficulty by providing participants with feedback about their relative performance, that is telling them their performance level and hence which task maximizes their future earnings. In the former choice treatment, before choosing the difficulty level for tasks 2 and 3, participants were informed that high performing participants on average received higher earnings from the hard task, while others from the easy task. In the feedback treatment, participants are in addition informed which task 1 performance is among the
top 40% performances, and hence represents a high performance level (namely performances of 11 or more).

By providing participants with this feedback, gender differences in choices of task difficulty cannot be due to (possible) gender differences in feedback aversion (hypothesis 2), gender differences in beliefs about relative performance (hypothesis 3) or gender differences in risk aversion (hypothesis 4). Basically, a choice that does not conform with the recommendation reflects a preference for the other task. We have 47 women and 35 men in the feedback treatment.

Men completed on average 10.29 (s.d. 2.79) easy mazes in Task 1, while women completed 8.70 easy mazes (s.d. 2.83). Unlike in the two previous groups, we find that this difference is significant, with men performing significantly better than women do (a Mann Whitney test yields \(p = 0.02 \)).\(^{31}\) However, the proportion of high performing men is not significantly different than that of high performing women (\(p = 0.22 \) of a two-sided Fisher exact test).

<table>
<thead>
<tr>
<th></th>
<th>8-</th>
<th>9,10</th>
<th>11,12</th>
<th>13+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>9</td>
<td>13</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Women</td>
<td>20</td>
<td>16</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Task 1 performances of 47 women and 35 men in the Feedback treatment.

VI.B: Hard Choices after Feedback

Figure II shows the proportion of hard choices for various task 1 performances, for women and men separately. After receiving feedback, women and men choose the hard task when they are in the top 40% (a performance of 11 and more), and the easy task otherwise.

\(^{31}\)A two sided t-test yields \(p = 0.01 \). From the data it appears that this significant difference was substantially caused by the extremely low performance of 5 females out of the total 47, all of whom completed 5 or fewer easy mazes in Task 1. Overall, across all four treatments, we had 9 women perform at 5 or lower, more than half of which are in this treatment. Furthermore, overall, there is no significant gender difference in task 1 performance. The average performance of men is 10.11 compared to 9.60 of women, a Mann Whitney test yields \(p = 0.41 \) and a two-sided t-test yields \(p = 0.13 \).
There are no significant gender differences in task choice. An ordered probit regression of task choice yields a high performance level dummy coefficient of 2.26 ($p = 0.00$) and a male coefficient of 0.14 ($p = 0.63$).\footnote{An ordered probit regression shows that for women the high performance level dummy is a significant predictor of a hard task choice, the coefficient is 1.85 ($p = 0.00$). We cannot run the same regression for men, as all high performing men choose the hard task twice, so, there is no variation.}

![Figure II](image)

Proportion of hard choices of women and men in the feedback treatment.

Table IX shows the proportion of hard task choices for different task 1 performances. There are no gender differences to be found, neither in the proportion of participants who choose the hard task at least once, nor for the proportion of overall hard task choices.

Table IX

<table>
<thead>
<tr>
<th>Proportion at least 1 Hard Choice</th>
<th>Proportion of Hard choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 9 - 10 - 11 + 12 + All 9 - 10 - 11 + 12 +</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>57.1</td>
</tr>
<tr>
<td>Women</td>
<td>55.3</td>
</tr>
<tr>
<td>Fisher exact</td>
<td>1.00</td>
</tr>
</tbody>
</table>

When participants choose the task difficulty level after having received information about their relative performance, men and women do not make different choices, and their choices of task difficulty largely correspond to money maximizing choices. That is, it does not appear that gender differences in choice of difficulty level are driven by large gender differences in preferences for performing in the hard or easy task per se.
VII. REDUCED COMMITMENT

There are two kinds of remaining explanations for the gender gap in hard task choices. The first has to do with the characteristics of the task. While the feedback treatment ruled out that there is a large gender difference in preferences over performing in either of the two tasks per se, there can still be gender differences in preferences over receiving feedback about one’s performance level. All participants are told that those whose task 1 performance is in the top 40% have on average higher earnings from the hard rather than the easy task, and the other way round. Since all participants perform in the easy task (task 1), choosing the hard task (at least once) can provide feedback about one’s relative task 1 performance. If there is a gender difference in preferences for feedback (hypothesis 2), this can account for both the gender gap in choices of task difficulty in the choice treatment and the lack of one in the feedback treatment.

A second remaining explanation for the results so far is that women differ from men in their risk attitudes. Specifically, women may be more risk averse, and hence prefer the task for which earnings are more certain and have a lower variance (hypothesis 4). Alternatively, women may be less certain in their beliefs about their ability to perform in the harder tasks. We summarize all these explanations as differences in risk aversion. The aim of this treatment is to distinguish between these two classes of explanations, hypothesis 2 versus hypothesis 4.

If the choices of women and men represent preferences over the characteristics of the tasks (e.g. providing more or less feedback about one’s relative performance), then the fact that the choices of women do not maximize monetary earnings may not be a cause for great concern. If, however, choices do not reflect preferences over the tasks per se, but rather are driven by other gender differences and institutional restrictions, there are potential welfare gains from institutional changes. And while providing feedback is such an institutional change, it may often be very difficult to provide such clear feedback, on one’s ability to perform in new and more difficult tasks.
VII.A: The Design of the Reduced Commitment treatment

In the reduced commitment treatment, women and men did not have to decide simultaneously which task difficulty they preferred for their next two performances, but rather decide for each task one at a time. Overall, in this treatment, participants could make one of four possible choices, which are the same as in the choice treatment, namely easy/easy, hard/hard, easy/hard, or hard/easy. The only difference is the degree of commitment with which participants had to make their decisions. In the reduced commitment treatment, participants could try out one difficulty level and then, upon experiencing it, decide whether to continue at the same level of difficulty. If preferences for hard and easy tasks are driven largely by preferences for feedback, this change should not affect the choices. If uncertainty about the ability to perform well in the hard task, or a gender difference in the willingness to tolerate this uncertainty is major driving factors for the gender differences in entering challenging tasks, then a reduced commitment can affect both the choices of women and men.

We have 38 women and 41 men who perform in this treatment. In Task 1, men solve on average 10.34 (s.d. 3.62) easy mazes, while women solve 10.34 (s.d. 3.36), this difference is not significant, a Mann Whitney test yields $p=0.58$ (t-test: 1.00). Table X shows the number of easy mazes completed by men and women in Task 1.

<table>
<thead>
<tr>
<th></th>
<th>8-</th>
<th>9,10</th>
<th>11,12</th>
<th>13+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Women</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Table X

Task 1 performances of 38 Women and 41 Men in the Reduced Commitment treatment.

VII. B: Hard task choices

Figure III shows the proportion of hard task choices for various performance levels (which roughly correspond to performance quartiles), for men and women separately.
For various task 1 performances, the proportion of hard choices of the 37 women and 41 men in the reduced commitment treatment.

Figure III suggests that both high performing women and high performing men mostly choose the hard task. However, only low performing women choose the easy task. An ordered probit regression on the choice of task difficulty as a function of a high performance level dummy confirms that while there is a gender difference in choices among low performing participants, there is no such difference among high performing participants. Furthermore for women, but not for men, does the performance level predict the choice of task difficulty, see Table XI.33

TABLE XI

Ordered probit on the hard task choice in the reduced commitment treatment

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>All 1</th>
<th>All 2</th>
<th>E1<11</th>
<th>E1>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>0.35</td>
<td>1.51</td>
<td>0.95</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.77</td>
<td>1.23</td>
<td>1.24</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High*Male</td>
<td>-0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>41</td>
<td>38</td>
<td>79</td>
<td>79</td>
<td>45</td>
<td>34</td>
</tr>
</tbody>
</table>

Ordered probit on the hard task choice as a function of performance and gender. Coefficient and p-values

33 We obtain similar results if we use the actual task 1 performance, compared to a high performance dummy. The differences are: In the All 2 regression, the coefficient on task 1 is 0.23 (p = 0.00), on male is 2.07 (p = 0.04) and on task 1 * male is -0.13 (p = 0.17). We obtain virtually the same results when we consider only the decision of the second or only the third task.
Table XII shows the proportion of hard task choices for different task 1 performances, for women and men separately. We confirm a gender gap in choosing the hard task among low performing participants, but not among high performing participants.

<table>
<thead>
<tr>
<th></th>
<th>Proportion at least 1 Hard Choice</th>
<th>Proportion of Hard choices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All 9 - 10 - 11 + 12 +</td>
<td>All 9 - 10 - 11 + 12 +</td>
</tr>
<tr>
<td>Men</td>
<td>85.4 80.9 84 87.5 91.7</td>
<td>75.6 69 72 81.3 83.3</td>
</tr>
<tr>
<td>Women</td>
<td>60 30.8 35 88.9 86.7</td>
<td>52.6 23.1 27.5 80.6 76.6</td>
</tr>
<tr>
<td>Fisher exact</td>
<td>0.02 0.01 0.00 1.00 1.00</td>
<td></td>
</tr>
</tbody>
</table>

In the case of reduced commitment, participants of high performance level choose the hard task, and there are no gender differences in choices. That is, it does not appear that women shy away from the hard task because they do not want to receive feedback about their relative performance. Rather it appears that women are not certain enough about their ability to perform in the hard task, and therefore do not choose it when they do not have the option to change their choice.

On the other hand, a gender difference in choices remains among participants of a low performance level. Low performing men choose the hard task at a significant higher rate than low performing women. Of the 25 men of a low performance level, 21 (84%) choose the hard task for the task 2 performance. However, only 6 out of the 21 then switch to the easy task in the third performance round. If (low performing) men chose the hard task simply to receive some feedback on their performance, there would be no need to choose the hard task twice. That is, it does not appear that a strong preferences of men to receive feedback on their relative performance can account for the large proportion of low performing men that choose the hard task twice.

To more closely examine the reasons for the hard task choices of low performing men, we examine the feedback those participants receive from choosing the hard task. While participants know their earnings from the hard task (since they just performed in it), they have to estimate their earnings would they have chosen the easy task, or choose it for the next task, task 3. One estimate that is available to participants, is the number of easy mazes they solved in the first task, which was an easy task. They can multiply this number with $0.5 per maze, to form an estimate for their earnings in the easy task. We
can compare the earnings in the hard task to this earnings estimate in the easy task, for each of the 21 low performing men who chose the hard task. A total of 8 have lower earnings with the hard task, 5 have exactly the same earnings and 8 have higher earnings. Of the 13 men who did not increase their earnings, 5 (38%) changed to the easy task, and of the 5 men who have lower earnings by $2.5 or more, 3 changed their choice and choose the easy task for their third performance. That is, a fair number of men do take that information of somewhat lower earnings into account.\footnote{34}

Note, however, that this earnings difference is not the correct comparison to calculate which choice maximizes earnings. In the benchmark treatment, between the first and the second performance, men (and women) improve their performance, in a way that corresponds to $1.3 in a regime in which easy mazes are rewarded by $0.5 each. When we compare their earnings in the second task, to $0.5 times the number of mazes solved in task 1, only 2 of the 21 men increased their earnings by $2 or more, 3 by $1.5 and 16 by $1 or less. That is, the vast majority has expected losses from choosing the hard task, if their easy task performance would show an average improvement.\footnote{35}

That is, it appears that the feedback low performing participants who choose the hard task receive is noisy, and may not show strongly enough that participants actually have substantial losses from choosing the hard over the easy task.

\section*{VIII. The Effect of Institutions}

Figure IV shows the proportion of hard choices in each treatment, for high and low performing women and men. We see that in the initial choice treatment, the gap in hard choices between high and low performing participants is less than 20% for both women and men, and indeed, is not significant for each gender separately, though it is when we pool women and men.

\footnote{34}{However, the differences in proportions are not significant, two-sided Fisher exact tests yield p-values of about 0.33.}

\footnote{35}{The average increase of performance in the easy mazes for participants in the benchmark treatment with a task 1 performance of 10 and lower also corresponds to $1.2.$}
For each treatment, Choice (C), Feedback (F) and Reduced Commitment (RC), the proportion of hard choices, both among high (e1>10) and low (e1<11) performing women (first part, filled) and men (second part, hollow).

Compared to the initial choice treatment, providing perfect feedback results in a significant increase in the responsiveness of participants’ choices to their performance level.36 This is due to high performing women entering the hard task more often, while low performing men enter the hard task less often.37

When participants only receive noisy feedback after their second performance, in the reduced commitment treatment, high performing women still choose the hard task significantly more than women of a low performance level. The choices of task difficulty of women are very similar to the case in which they receive perfect feedback.38

36 An ordered probit regression of the hard task choice of the 89 women in the choice (C) and the feedback (F) treatment yields coefficients of 0.40 ($p = 0.26$) on a high performance level dummy, -0.41 ($p = 0.20$) on a dummy for the feedback treatment, and 1.35 ($p = 0.02$) on a high performance level and feedback interaction dummy. We cannot run the same regression on men, as all high performing men in the feedback treatment choose the hard task twice.

37 An ordered probit regression of the hard task choice of the 34 high performing women in the choice (C) and the feedback (F) treatment yields coefficients of 0.89 ($p = 0.06$) on a feedback treatment dummy. For the 54 low performing men the coefficient is -1.33 ($p = 0.00$), while it is not significant for the 55 low performing women (coefficient: -0.43, $p = 0.19$).

38 An ordered probit regression of the hard task choice on a feedback treatment dummy yields for the 56 low performing women in the feedback (F) and the reduced commitment (RC) treatment a coefficient of 0.04 ($p = 0.91$). For the 29 high performing women the coefficient is 0.19 ($p = 0.71$).
notably, high performing women choose the hard task significantly more than in the initial choice treatment.39

The choices of men in the reduced commitment treatment on the other hand mirror the decisions in the initial choice treatment, rather than the decision in case men have perfect feedback. Both high and low performing men choose the hard task with a high probability.40

We have seen that in the initial choice treatment, men and women both make choices that are not money-maximizing, the difference between men and women is however who makes those choices. It is the choices of high performing women and low performing men we may want to affect by a change in the institution. Note that simple policies, such as encouraging all participants to choose the hard task more or less often will fail one of the genders.

We found two more nuanced institutional changes, one of which resulted in choices that conformed to the performance level, namely providing participants with perfect feedback about their performance level, in essence prescribing a choice that they largely followed. This change is however very demanding, in that it requires that (i) a very good test of abilities in harder tasks exists, and (ii) administering the test to participants who know it is a diagnostic test, does not distort performance. Both requirements seem for many applications pretty implausible, the second largely for psychological reasons (see the discussion on stereotype threat from before).

A second institutional change was expected to affect participants who are risk averse or uncertain about their abilities to perform in different environments. We had participants make choices sequentially. That is, women, specifically, could try out the hard task, and then choose it once more if they prove to perform well. We found that this change had effects just like the “perfect feedback administered secretly”, high performing women choose the hard task at a very high rate. This institution failed to entice low

39 An ordered probit regression of the hard task choice on a reduced commitment dummy yields for the 41 high performing women in the choice (C) and the reduced commitment (RC) treatment a coefficient of 0.70 ($p = 0.07$). For the 39 low performing women the coefficient is -0.54 ($p = 0.24$).

40 An ordered probit regression of the hard task choice on a reduced commitment dummy yields for the 47 low performing men in the feedback (F) and the reduced commitment (RC) treatment a coefficient of -1.32 ($p = 0.00$). An ordered probit regression of the hard task choice on a reduced commitment dummy yields for the 57 low performing men in the choice (C) and the reduced commitment (RC) treatment a coefficient of 0.07 ($p = 0.82$).
performing men to change to the easy task, maybe though because the feedback of a low performing participant is harder to interpret.

IX. CONCLUSION AND DISCUSSION

This paper contributes to the growing literature that tries to uncover why women are underrepresented in many high profile jobs and across whole professions.\(^{41}\) Explanations that have been focused on so far, namely gender differences in preferences (over fields of study) and ability or discrimination are likely to play an important role. However, we argue that another reason may be that in many environments women and men respond differently to challenges, which leads to gender differences in self-selection for given abilities. As such, the paper is also part of the growing literature on the effect of non-cognitive skills and attitudes, and how gender differences in those affect economic outcomes.

Past research on gender differences in choice of task difficulty has shown that men choose harder tasks than women. Gneezy, Niederle and Rustichini (2003) provide an example in which women and men at a technical university in Israel (the Technion) decide between various levels of task difficulty, and in which men choose harder tasks than women. However, in that paper, the tasks were not calibrated, neither researchers, nor experimental participants knew whether harder tasks provided higher earnings for a specific participant than easier tasks, furthermore no attempt could be made to study whether these choices were money maximizing or to investigate underlying causes for these gender differences.

The contribution of this paper is to create an environment in which (i) participants are of one of two performance levels, low or high, each of which corresponds (empirically) to a specific money-maximizing choice (easy tasks for low performing participants, and hard tasks for the others). (ii) We can measure the participants’ performance level before they choose the task difficulty in a way that does not reveal the performance level to the participants. (All participants who had a task 1 performance of 11 or higher, and hence were among the top 40% performers in task 1, had a high performance level, while it was low for the other participants.) Finally, participants were

\(^{41}\) For a general survey on gender differences in economic settings, see e.g. Croson and Gneezy (2005).
aware of the calibration, that is the labels hard and easy were meaningful, but participants did not necessarily know their performance level when choosing the task difficulty. This set-up allows us to show that women and men of equal performance react differently when being given a choice to enter tasks that are more difficult: Women avoid challenges, while men are drawn to them. We find that simple preferences for the characteristics of the task (including the feedback participants can receive about their ability level from performing in various tasks) cannot account for the choices of women and men. Gender differences in preferences for challenging tasks rather are driven by differences in certainty in one’s ability to perform in more challenging environments or differences in attitudes toward that specific risk or uncertainty in general.

Another recent string of papers investigated a specific way in which women may be more averse to a particular challenge than men: Women and men may differ in their propensity to engage in competitive tasks. The results of Gneezy, Niederle and Rustichini (2003) and Gneezy and Rustichini (2004) suggest that women may not be as adept as men in performing in competitive environments. Furthermore, women may also be less prone to enter gender balanced competitive environments compared to men (see Gneezy and Rustichini (2005), Datta, Poulsen and Villeval (2005), and Gneezy, Leonard and List (2006)). Niederle and Vesterlund, forthcoming, show that men and women who perform similarly in both a competitive and a non-competitive environment differed in their choice to enter a subsequent tournament. Men entered the tournaments more than women, for any performance level. The major explanations for this gender gap in the propensity to compete are gender differences in preferences for competitive environments per se, but also gender differences in confidence, and only to some extent gender differences in risk and feedback aversion. Their gender differences can also be due to differences in beliefs about future performance.

In this paper, we tested whether gender difference in beliefs about one’s ability to perform in various tasks, and in risk and feedback aversion, have an impact in economic environments beyond competitions. We found that greater female risk aversion, or greater uncertainty in one’s ability to perform in the challenging task is a major factor in accounting for the high performing women not selecting the challenging task.
Using various incentive schemes, Dohmen and Falk (2005) showed similarly that women prefer environments in which there is no uncertainty about the earnings participants can achieve.

Overall, the literature shows the importance of understanding non-cognitive motives in self-selections into various tasks and environments. Only by understanding gender differences can we start to design institutions that will accommodate both genders. The papers show furthermore that simple changes in institutions can have a big effect on the self-selection of women and men.

The paper enhances the spectrum and applicability of the research on gender as it is often easier to think of some tasks as harder and more challenging than others, without necessarily having an extremely competitive element. For example, a major in “hard” sciences is often viewed as a more difficult major than English or comparative literature. However, in a sense, one could argue that a Ph.D. in many humanities is more competitive than say, in Economics, as there are much less jobs per student. On the other hand, such Ph.D.’s could be viewed as less competitive, as the ranking among students may be less clear, less obvious, and as such, the daily competitive aspect may feel very different. We showed that women and men differ in their propensity to choose to perform challenging tasks that have competitive no aspect.

Second, this paper proposes a change in the institution, reduced commitment, that, in theory of course helps all participants who make choices, but especially helps high performing women to move into the hard and challenging task.

While several laboratory studies replicate our general finding, there is also evidence to suggest that gender differences in behavior under competition may extend to other domains. For example, Babcock and Laschever [2003] explore the possibility that gender differences in labor market outcomes may arise because women are poor negotiators and generally dislike and avoid the process of negotiating. To the extent that a negotiation can be seen as a more challenging task than simply accepting a wage offer, their results appear consistent with our findings.

42 And as every economist that presented at seminar or conference in which there were not only economists but also historians, psychologists or philosophers can attest, economics seminars or seminar participants are more lively, i.e. there are more questions, question underlying assumptions or the interest of the paper at hand, in a way to often shock the participants from other fields, who would say that the seminars are more “aggressive” rather than more “lively”.

37
Furthermore, we predict that gender differences should be reduced when the environment allows for participants to try out various tasks, without a strong initial commitment. A report of the NSF (1996) shows that women, who in the years 1991-95 account for approximately one-third of all science and engineering doctorates holders are more likely than their male colleagues to have had their undergraduate education at baccalaureate colleges. In the sciences the proportion is 20% of female doctorates compared to 16% of male doctorates, while in engineering, 7% of female doctorates compared to 4% of male doctorates come from baccalaureate colleges. The differences of liberal arts colleges is that they offer a more balanced education, less specialized classes and so may make it easier to ease into science without a total initial commitment.

It is generally agreed that ability alone cannot explain the absence of women in male dominated fields. In natural settings, issues such as discrimination, the amount of time devoted to the profession, and the desire for women to raise children may provide some explanation for the choices of women. However, in this paper we have examined an environment where women and men perform equally well, and where issues of discrimination, or time spent on the job do not have any explanatory power. Nonetheless, we find large gender differences in the propensity to choose challenging tasks. It appears that these differences are driven by gender differences in risk aversion, and certainty in how well they would perform in a harder and new task.

A novel feature of this paper is that we not only document gender differences, but directly address which institutional changes would enhance the decisions of women and reduce gender differences.
REFERENCES

Daubman, Kimberly A., “Gender and the Self-Presentation of Academic Achievement,” *Sex Roles,* v. 27, no. 3-4, (1992), 187-204.

Mobius, Markus, Muriel Niederle, Paul Niehaus and Tanya Rosenblat, “Do women react differently to feedback than men?”, work in progress.

APPENDIX: Example of an Easy maze

Example of a Hard maze
Sample INSTRUCTIONS

Welcome

In the experiment today you will be asked to complete four different tasks. None of these will take you more than 10 minutes. Before each task we will describe in detail how your payment is determined.

Your total earnings from the experiment depend on your performance during the experiment, and you will also receive a $5 show-up fee. At the end of the experiment you will be asked to come to a side room where you will be paid in private.

Task 1—Easy Mazes

For Task 1 you will be asked to correctly complete as many mazes of difficulty level “easy” as you can in 10 minutes. To complete a maze, you must begin at the beginning on the left-hand side and draw a continuous line to the finish on the right-hand side of the maze without crossing any of the maze boundary lines. If you make a mistake, you may cross out the portion of the line that is incorrect and begin again at the point where you went wrong. An example of how to cross out your mistake will be shown to you before you begin. When you complete a maze, you may immediately proceed to the next maze and continue completing mazes until time has expired and you are asked to stop working. Your answers to the mazes are anonymous.

You are allowed to skip up to three mazes during the 10 minutes. If you decide to skip a maze, draw an X through the entire maze. You will not be paid for these mazes.

You will receive $0.25 per maze you solve correctly in the 10 minutes.

Please do not talk to one another for the duration of the experiment. If you have any questions, please raise your hand.

ARE THERE ANY QUESTIONS BEFORE WE BEGIN?

Task 2- Easy Mazes

As in Task 1, in Task 2 you will once again be asked to correctly complete as many “easy” mazes as you can in 10 minutes. At the end of Task 2, time will be called and you are to stop working. The same rules about crossing out your mistakes apply as before. You may skip up to three mazes. If you skip a maze, draw a large X through the entire maze. Again, your responses will remain anonymous.
At the end of the experiment, you will be paid either for the mazes you completed in Task 2 or Task 3. The task for which you will be paid will be randomly determined at the end of the experiment. If Task 2 is the one randomly selected, you will receive $0.50 per maze you complete correctly.

Please do not talk to one another. If you have any questions, please raise your hand.

ARE THERE ANY QUESTIONS BEFORE WE BEGIN?

Task 3- Hard Mazes

In Task 3 you are asked to correctly complete as many mazes as you can in 10 minutes. This time the mazes will be difficult. At the end of Task 3, time will be called and you are to stop working. The same rules about crossing out your mistakes apply as before. You may skip up to three mazes. If you skip a maze, draw a large X through the entire maze. Again, your responses will remain anonymous.

At the end of the experiment, you will be paid either for the mazes you completed in Task 2 or Task 3. The task for which you will be paid will be randomly determined at the end of the experiment. If Task 3 is the one randomly selected, you will receive $0.25 per maze for the first 4 mazes you complete correctly, and $3.50 for each maze you complete past the fourth.

Please do not talk to one another. If you have any questions, please raise your hand.

ARE THERE ANY QUESTIONS BEFORE WE BEGIN?
Decision

You have just completed a round of easy mazes. There are two rounds of mazes remaining. Before we continue, you are asked to make a choice. You must choose the level of difficulty you would prefer for the next two rounds of mazes.

At the end of the experiment, you will be paid either for the mazes you completed in Task 2 or Task 3. The task for which you will be paid will be randomly determined at the end of the experiment. If you have completed Easy mazes in the task that is selected, you will be paid $0.50 per maze. If you have completed Hard mazes in the task that is selected, you will be paid $0.25 per maze for the first 4 mazes you complete correctly, and $3.50 for each maze you complete past the fourth.

Based on all the people who have previously participated in this experiment, if you perform in the top 40% of all people completing mazes, you are likely to make more money by selecting the Hard mazes, while if you are not in the top 40% of participants, you are likely to make more money by selecting the Easy mazes.

Remember, at this time you are being asked to make your decision for both Task 2 and Task 3. After completing Task 2, you are not allowed to change your choice.

Please select one of the following choices with an X:

- Task 2: EASY Task 3: EASY
- Task 2: HARD Task 3: HARD
- Task 2: EASY Task 3: HARD
- Task 2: HARD Task 3: EASY