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Studying and doing Market Economics

In “Jonathan Strange and Mr. Norrel”, Susanna Clarke describes
an England around 1800, with magic societies, though not a lot of
magic.
When asked why there is not more magic, the president of the
York society of magicians replies that the question was wrong,
“It presupposes that magicians have some sort of duty to do magic
- which is clearly nonsense. [...] Magicians,.., study magic which
was done long ago. Why would anyone expect more?”

Market design expects of economists more than just studying
economics, rather the aim is to do economics.



Market Design

Design is both a verb and a noun, and we’ll approach market design
both as an activity and as an aspect of markets that we study.

Design also comes with a responsibility for detail. Designers can’t
be satisfied with simple models that explain the general principles
underlying a market; they have to be able to make sure that all the
detailed parts function together. Market design papers often have
a detailed description of the market’s unique and distinguishing
features in their paper



Matching as part of Market Design

Responsibility for detail requires the ability to deal with complex
institutional features that may be omitted from simple models.

Game theory, the part of economics that studies the “rules of the
game,” provides a framework with which design issues can be
addressed.

But dealing with complexity will require new tools, to supplement
the analytical toolbox of the traditional theorist (Computations,
Experiments).



Game Theory, experimentation, and computation, together with
careful observation of historical and contemporary markets (with
particular attention to the market rules), are complementary tools
of Design Economics.

Computation helps us find answers that are beyond our current
theoretical knowledge.

Experiments play a role

� In diagnosing and understanding market failures, and successes
� In designing new markets
� In communicating results to policy makers



The Economist as Engineer

A rough analogy may help indicate how the parts of this course
hang together. Consider the design of suspension bridges. Their
simple physics, in which the only force is gravity, and all beams are
perfectly rigid, is beautiful and indispensable.

But bridge design also concerns metal fatigue, soil mechanics, and
the sideways forces of waves and wind. Many questions concerning
these complications can’t be answered analytically, but must be
explored using physical or computational models.

These complications, and how they interact with that part of the
physics captured by the simple model, are the concern of the
engineering literature. Some of this is less elegant than the simple
model, but it allows bridges designed on the same basic model to
be built longer and stronger over time, as the complexities and how
to deal with them become better understood.



A Flash overview of some topics
Lessons from market failures and successes

To achieve efficient outcomes, marketplaces need make markets
sufficiently

� Thick

Enough potential transactions available at one time

� Uncongested

Enough time for offers to be made, accepted, rejected. . .

� Safe

Safe to act straightforwardly on relevant preferences

Some kinds of transactions are repugnant. . .
This can be an important constraint on market design



� Medical labor markets
� NRMP in 1995 (thickness, congestion, incentives)
� Gastroenterology in 2006 (thickness, incentives)

� Is reneging on early acceptances repugnant?

� School choice systems:
� New York City since Sept. 2004 (congestion & incentives)
� Boston since Sept. 2006 (incentives)

� Repugnant: exchange of priorities (particularly sibling
priorities)

� American market for new economists
� Scramble ((thickness)
� Signaling (congestion)

� Kidney exchange (thickness, congestion, incentives)
� New England and Ohio (2005)
� National US (2007?)

� Repugnant: monetary markets



Introduction to the theory of Two-Sided Matching

To see which results are robust, we’ll look at some increasingly
general models. Even before we look at complex design problems,
we can get a head start at figuring out which are our most
applicable results by doing this sort of theoretical sensitivity
analysis.
Discrete models

� One to one matching: the “marriage” model
� many to one matching (with simple preferences) : the
“college admissions” model

� many to one matching with money and complex (gross
substitutes) preferences

These lectures follow the Roth and Sotomayor book, and thoerems
are numbered as in the book.



These lectures follow the Roth and Sotomayor book, and thoerems
are numbered as in the book.

Other resources on the web: Al Roth: Market Design Blog:
http://marketdesigner.blogspot.com/



One to One Matching: the Marriage Model

Players: Men: M = {m1, ..,mn}, Women: W = {w1, ..,wp}.
The market is two-sided: Man mi can only have preferences over
the set of W ∪ {mi}.
Similarly for women’s preferences.

Preferences: (complete and transitive):
P(mi ) = wk ,wl , ...,mi ,wj ... [wk �mi wl ]

If mi prefers to remain single rather than to be matched to wj , i.e.
if mi �mi wj , then wj is said to be unacceptable to mi .

If an agent is not indifferent between any two acceptable mates, or
between being matched and unmatched, we’ll say he/she has strict
preferences. Some of the theorems we prove will only be true for
strict preferences. Indifferences: P(mi ) = wk , [wl ,wm ], ...,mi ,
where mi is indifferent between wl and wm .



Stable Outcome
An outcome of the game is a matching μ : M ∪W → M ∪W
such that

� w = μ(m) ⇐⇒ μ(w) = m
� μ(w) ∈ M ∪ {w} and μ(m) ∈ W ∪ {m}. (two-sided).
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Stable Outcome
An outcome of the game is a matching μ : M ∪W → M ∪W
such that

� w = μ(m) ⇐⇒ μ(w) = m
� μ(w) ∈ M ∪ {w} and μ(m) ∈ W ∪ {m}. (two-sided).

A matching μ is

� blocked by an individual k : k prefers being single to being
matched with μ(k), i.e. k �k μ(k).

� blocked by a pair of agents (m,w) if they each prefer each
other to their current outcome, i.e.

� w �m μ(m) and m �w μ(w)

A matching μ is stable if it isn’t blocked by any individual or a pair
of agents.

A stable matching is efficient and in the core, and in this simple
model the set of (pairwise) stable matchings equals the core.
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Deferred Acceptance Algorithm
roughly the 1962 Gale-Shapley Version

� 0. If some preferences are not strict, arbitrarily break ties
� 1 a. Each man m proposes to his 1st choice (if he has any
acceptable choices).

� b. Each woman rejects any unacceptable proposals and, if
more than one acceptable proposal is received, "holds" the
most preferred (deferred acceptance).

. .

� k a. Any man who was rejected at step k − 1 makes a new
proposal to its most preferred acceptable mate who hasn’t yet
rejected him. (If no acceptable choices remain, he makes no
proposal.)

� b. Each woman holds her most preferred acceptable offer to
date, and rejects the rest.

� STOP: when no further proposals are made, and match each
woman to the man (if any) whose proposal she is holding.



Theorem 2.8(Gale and Shapley)
A stable matching exists for every marriage market.



Theorem 2.8(Gale and Shapley)
A stable matching exists for every marriage market.

Elements of the proof:

� the deferred acceptance algorithm always stops
� the matching it produces is always stable with respect to the
strict preferences (i.e. after any arbitrary tie-breaking),

� and with respect to the original preferences.



The Roommate Problem

Suppose the market is not two-sided, does a stable matching
always exist?

Agent 1: 2 � 3 � 1
Agent 2: 3 � 1 � 2
Agent 3: 1 � 2 � 3

All agents being alone is not a core matching.
Any matching with 2 students in a room is not stable either.



Stability is theoretically appealing, but does it matter in real life?

Roth (1984) showed that the NIMP algorithm is equivalent to a
(hospital-proposing) DA algorithm, so NIMP produces a stable
matching.



Priority matching (an unstable system)
Edinburgh, 1967
Birmingham 1966, 1971, 1978
Newcastle 1970’s
Sheffield 196x

All matches are no longer in use:
In a priority matching algorithm, a ’priority’ is defined for each
firm-worker pair as a function of their mutual rankings. The
algorithm matches all priority 1 couples and removes them from
the market, then repeats for priority 2 matches, priority 3 , etc.
E.g. in Newcastle, priorities for firm-worker rankings were
organized by the product of the rankings, (initially) as follows:

1-1, 2-1, 1-2, 1-3, 3-1, 4-1, 2-2, 1-4, 5-1...
After 3 years, 80% of the submitted rankings were pre-arranged
1-1 rankings without any other choices ranked. This worked to the
great disadvantage of those who didn’t pre-arrange their matches.



Theorem 2.12 (Gale and Shapley)

When all men and women have strict preferences, there always
exists an M-optimal stable matching (that every man likes at least
as well as any other stable matching), and a W -optimal stable
matching.

Furthermore, the matching μM produced by the deferred
acceptance algorithm with men proposing is the M-optimal stable
matching. The W -optimal stable matching is the matching μW
produced by the algorithm when the women propose.
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When all men and women have strict preferences, there always
exists an M-optimal stable matching (that every man likes at least
as well as any other stable matching), and a W -optimal stable
matching.

Furthermore, the matching μM produced by the deferred
acceptance algorithm with men proposing is the M-optimal stable
matching. The W -optimal stable matching is the matching μW
produced by the algorithm when the women propose.

Terminology:
Woman w is achievable for m if there is some stable μ such that
μ(m) = w .



Sketch of Proof:

Inductive step: suppose that up to step k of the algorithm, no m
has been rejected by an achievable w , and that at step k w rejects
m (who is acceptable to w) and (therefore) holds on to some m’.

We show: w is not achievable for m.



Sketch of Proof:

Inductive step: suppose that up to step k of the algorithm, no m
has been rejected by an achievable w , and that at step k w rejects
m (who is acceptable to w) and (therefore) holds on to some m’.

We show: w is not achievable for m.
Consider μ with μ(m) = w , and μ(m’) achievable for m’. Can’t
be stable: by the inductive step, (m’,w) would be a blocking pair.
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at least one man having a strict preference.
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Let μ �M μ′ denote that all men like μ at least as well as μ’, with
at least one man having a strict preference.

Then �M is a partial order on the set of matchings, representing
the common preferences of the men. Similarly, define �W as the
common preference of the women.

Theorem 2.13(Knuth)
When all agents have strict preferences, the common preferences
of the two sides of the market are opposed on the set of stable
matchings: Let μ and μ’ be stable matchings. Then μ �M μ′ if
and only if μ′ �W μ.
Proof: immediate from definition of stability.

The best outcome for one side of the market is the worst for the
other.



For any two matchings μ and μ’, and for all m and w , define ν=
μ ∨M μ′ as the function that assigns each man his more preferred
of the two matches, and each woman her less preferred:

� ν(m) = μ(m) if μ(m) �m μ′(m) and ν(m) = μ′(m)
otherwise.

� ν(w) = μ(w) if μ(w) ≺w μ′(w) and ν(w) = μ′(w)
otherwise.

Define ν= μ ∧M μ′ analogously, by reversing the preferences.
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Theorem 2.16 Lattice Theorem (Conway):
When all preferences are strict, if μ and μ’ are stable matchings,
then the functions
ν= μ ∨M μ′ and ν= μ ∧M μ′ are also stable matchings.



So if we think of ν as asking men to point to their preferred mate
from two stable matchings, and asking women to point to their
less preferred mate, the theorem says that

� No two men point to the same woman (this follows from the
stability of μ and μ’)
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less preferred mate, the theorem says that

� No two men point to the same woman (this follows from the
stability of μ and μ’)

� Every woman points back at the man pointing to her;
� ν(m) = w =⇒ ν(w) = m : follows easily from stability.
� ν(w) = m =⇒ ν(m) = w : takes a bit more work. (We’ll
come back to this when we prove the Decomposition Lemma,
see next slide).

� And the resulting matching is stable. : immediately from the
stability of μ and μ’.
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Let μ, μ’ be stable matchings, and for some
m,w = μ(m) �m μ′(m) = w ′.
Stability of μ’ implies μ′(w) �w μ(w) = m.
But how about w ′?

The Decomposition Lemma (Corollary 2.21, Knuth):
Let μ and μ’ be stable matchings in (M,W ,P), with all
preferences strict. Let M(μ) (W (μ)) be the set of men (women)
who preferμ to μ’, and let M(μ′) (W (μ′)) be those who prefer μ’.
Then μ and μ’ map M(μ′) onto W (μ) and M(μ) onto W (μ′).


