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Outline of today’s class

 NYC Schools: design of a centralized high
school allocation procedure (implemented in
2003-04, for students entering Sept. '04)

* Boston Schools: redesign of a school
allocation procedure (implemented for students

entering K, 6, and 9 in Sept. 20006)

 New game theory problems and results
— Generic indifferences (non-strict preferences)

— Complete and incomplete information/ ex post
versus ex ante evaluation of welfare/ restrictions

on domains of preferences ?
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Market design for school choice

* Thickness
— In both NYC and Boston, the market for public school
places was already quite thick.
« Congestion

— In NYC, congestion was the most visible problem of
the old system, which let to problems of safe
participation (and thickness)

— In Boston there was already a centralized mechanism
In place
« Safety

— In NYC, there were both participation problems and
incentive problems about revealing preferences.

— In Boston, the big problem was about revealing
preferences



Matching students to schools—overcoming
congestion in New York City

* Old NYC high school choice system
— Decentralized application and admission
— congested: left 30,000 kids each year to be
administratively assigned (while about 17,000 got
multiple offers)
Waiting lists run by mail
Gaming by high schools; withholding of capacity
 The new mechanism is a centralized
clearinghouse that produces stable matches.

— We now have enough data to begin to say
something about how it is working.



Old NYC High School Match
(Abdulkadiroglu, Pathak, Roth 2005)

Overview: Congestion

Over 90,000 students enter high school each year in
NYC

Each was invited to submit list of up to 5 choices

Each student’s choice list distributed to high schools on
list, who independently make offers

— Gaming by high schools—withholding of capacity—only recently
recentralized school system.

— Gaming by students: first choice is important

Only approx. 40% of students receive initial offers, the
rest put on waiting lists—3 rounds to move waiting lists...

Approx. 30,000 students assigned to schools not on their

choice list.
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Issues in old (2002) system

e Schools see rank orders

Some schools take students’
rankings into account & consider
f only those that rank their school

irst



From 2001

http://nymaqg.com/urban/articles/schools01/

“How hard is it to get in? Preference is given to students who
live in District 3. Only students who list Beacon as their first
choice are considered for admission. Last year, 1,300 kids
applied for 150 spots in the ninth grade.

“Only students who list Townsend Harris as their first
choice and who meet the cutoff and have an exceptionally high
grade-point average are considered. Students living anywhere
in New York City may apply.

Young Women'’s Leadership School: Students who want to
be considered for admission must list the school as their first
choice.

Open to any student living in Brooklyn; students living in a
specified zone around the school have priority. Applicants
must list Murrow as their first choice to be considered.

Applicants may list Midwood as their first or second choice to
be considered.



Making it safe to reveal preferences

 Redesign of the Boston Public Schools
choice mechanism

The old centralized assignment system tried to
give as many people as possible their first
choice: this made it unsafe to reveal true
preferences.

Some parents acted on these strategic incentives,
others did not (and suffered).
Replace the existing mechanism in 2006 (for
entry into grades K, 1, 6, 9) with a clearinghouse

that lets parents safely list their true preferences
9



Issues in old (2002) system

Students need to strategize. The 2002-03
Directory of the NYC Public High Schools

. “determine what your competition is for
a seat in this program”

* Principals concealed capacities
Deputy Chancellor (NYT 11/19/04).

“Before you might have had a situation
where a school was going to take 100
new children for 9" grade, they might
have declared only 40 seats and then

placed the other 60 children outside the
process.”

(think “blocking pairs”)
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Issues in old (2002) system

1. “5” choices

52% of kids rank five choices—> constraint binding

Congestion, nevertheless (Roth and Xing, 1997): Not
enough offers and acceptances could be made to clear
the market

Only about 50,000 out of 90,000 received offers initially.
About 30,000 assigned outside of their choice

2. Multiple offers—are they good for some

kids?

about 17,000 received multiple offers
Students may need time to make up their mind, especially
if we want to keep desirable students from going to private
school
Only 4% don’t take first offer in 02-03 at the cost of over
30,000 kids not getting any offer
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NYC School System (in 2002)

# of Programs

Unscreened (no preferences) 86
Screened & Auditioned 188
Specialized HS 6
Educational Option (no preferences for half seats) 252

4 In Brooklyn, Bronx, Manhattan, Staten Island,
and Queens

 Unscreened capacity largest

1 Roughly 25,000 kids take Specialized High
School Test .



NYC School System

Ed-Opt Schools — based on city or state
standardized reading test score grade 7

(preferences for only half the seats)

Educational Option Program Student Selection Breakdown

school
selects
50% of
students by
this criteria

lower performers
oy
g
middle performers

top performers

g9t computer
middle performers | sefects

34%

top performers
B%

34% 50% of
students by
this criteria

lower performers
a8%
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Are NYC Schools a two-sided market?

Two facts:
1. Schools conceal capacities
l.e. principals act on instabilities

2. Principals of different EdOpt schools
have different preferences, some
preferring higher scores, some
preferring better attendance records

14



Recall our (too) simple basic model

PLAYERS: Schools = {f,,..., f.} Students = {w;,..., w}
# positions d4,---,0n

PREFERENCES (complete and transitive):
P(f) = ws, W, ... f ... [w; P(f) w,] (not all strict)
P(w;) =y, T4, ... w; ...

An OUTCOME of the game is a MATCHING:

u. FOW > FOUW
such that p(f) = w iff u(w) = f, and for all f and w |u(f)| < g;, and
either u(w) is in F or p(w) = w.

A matching p is BLOCKED BY AN INDIVIDUAL Kk if k prefers being single to
being matched with p(k) [kP(K) n(k)]

A matching p is BLOCKED BY A PAIR OF AGENTS (f,w) if they each prefer
each other to pu:

[w P(f) w' for some w' in u(f) or w P(f) fif |u(f)] <qg;]and fP(w) p(w)]

A matching p is STABLE if it isn't blocked by any individual or pair of agents.



Basic Deferred Acceptance
(Gale and Shapley 1962)

Step 0.0: students and schools privately submit preferences
Step 0.1: arbitrarily break all ties in preferences

Step 1: Each student “proposes” to her first choice. Each
school tentatively assigns its seats to its proposers one at a
time in their priority order. Any remaining proposers are
rejected.

Step k: Each student who was rejected in the previous step
proposes to her next choice if one remains. Each school
considers the students it has been holding together with its
new proposers and tentatively assigns its seats to these
students one at a time in priority order. Any remaining
proposers are rejected.

The algorithm terminates when no student proposal is
rejected, and each student is assigned her final tentative 5
assignment.



Theorems (for the simple model)

. The outcome that results from the student proposing
deferred acceptance algorithm is stable, and (when
preferences are strict) student optimal among the set of
stable matchings (Gale and Shapley, 1962)

. The student proposing outcome is weakly Pareto
optimal for students (Roth, 1982)

. The SPDAA makes it a dominant strategy for students
to state their true preferences. (Dubins and Friedman
1981, Roth, 1982, 1985)

. There is no mechanism that makes it a dominant
strategy for schools to state their true preferences.
(Roth, 1982)

. When the market is large, it becomes unlikely that
schools can profitably misrepresent their preferences.
(Immorlica and Mahdian, 2005, Kojima and Pathak,
2009)
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The New (Multi-Round) Deferred
Acceptance Algorithm in NYC

 We advised, sometimes convinced, the NYC
DOE

« Software and the online application process has
been developed by a software consulting
company

 The new design adapted to the regulations and
customs of NYC schools

18



Some (Imperfectly Resolved)

Design issues
(It's important to choose your fights:)

19



Strategic Risks for Students

« Tradition: Top 2% students are
automatically admitted to EdOpt
programs of their choice if they rank
them as their first choice

— Strategic risk to the decisions of top 2%
students

20



Partial incentive compatibility for top 2%-ers

* Proposition: In the student-proposing deferred
acceptance mechanism where a student can
rank at most k schools, if a student is
guaranteed a placement at a school only if she
ranks it first, then she can do no better than

— either ranking that program as her first choice,
and submit the rest of her preferences
according to her true preference ordering, or

— submitting her preferences by selecting at
most k schools among the set of schools she
prefers to being unassigned and ranking them
according to her true preference ordering.

21



still...tough choices

Sent: Friday, June 24, 2005 6:58 AM

... Briefly, my daughter Eliana xxx, who just graduated from IS 98 in
Brooklyn (with honors -- I'm a proud parent) exercised her "top 2%
option" during the High School Admissions process and selected
Leon M. Goldstein HS in Brooklyn. Her real choice -- which she
loved above all the many schools we visited -- was Beacon High
School in Manhattan. As you know, Beacon has a selection process
and we were advised by everyone consulted, in and outside the
Department of Education, not to take a chance and to absolutely
exercise the 2% option and not risk losing any choice. Eliana has been
restless and losing sleep every since. Mr. Dorosin, she is a steady 94%
Arista student, she just was awarded the medal for "Media
Communications" at graduation and we learned she scored a "perfect"
830 on the reading exam. Needless to say, it is distressing that she
may not have the opportunity to go to the High School of her choice
because of an error in our judgement.

We have since learned that she was indeed ranked by Beacon for
acceptance so this would not be an obstacle. | ask that you please
grant this request for a deserving student. Thank you very much.



Redesign: 12 choice constraint

« DOE thought this would be sufficient, we
encouraged more

Round
Round 1

Round 2

Round 3

New Process: Average Number of Rankings Each Round

Ranking

1 2 3 4 5 6 7 8 9 10 11 12

01,286 84,554 79,646 73,398 66,724 59,911 53,466 47,939 42684 37,897 31,934 22,629
100% 93% 87% 80% 73% 66% 59% 53% 47% 42% 35% 25%

87,810 81,234 76,470 70,529 64,224 57,803 51,684 46,293 41,071 35940 29,211 18,323
100% 93% 87% 80% 73% 66% 59% 53% 47% 41% 33% 21%
8,672 8139 7,671 7,025 6,310 5668 5032 4568 4,187 3,882 3,562 3,194
100% 94% 88% 81% 73% 65% 58% 53% 48% 45% 41% 37%
3,476 Specialized High Schools Students 23

91,286 Total students




Partial incentive compatibility for constrained

choosers
* Proposition (Haeringer and Klijn, Lemma 8.1.): In
the student-proposing deferred acceptance
mechanism where a student may only rank k
schools,

— if a student prefers fewer than k schools, then
she can do no better than submitting her true
rank order list,

— if a student prefers more than k schools, then
she can do no better than employing a strategy
which selects k schools among the set of
schools she prefers to being unassigned and
ranking them according to her true preference
ordering.



Multiple Rounds

Historical/legal constraints: difficult to change specialized
high school process/cannot force a student who gets an
offer from a specialized high school to take it

— Round 1: run algorithm with all kids in round 1, not just specialized
students; only inform specialized students

» Unstable if a specialized kid does not get a spot at a non-
specialized high school when considered at round 1, but could
get that spot in round 2

— May not a big problem if students with specialized high
schools offers are ranked high in all schools’
preferences, and/or if most students prefer to go to a
specialized school

* In old system, ~70% of kids with an offer from a specialized
program took it, 10% of kids went to private school and 14%
kids went to either their first or second choice from the other
schools.

— Potential instabilities among these 14% will not be large if they are
also considered highly desirable by the non-specialized schools
they apply to.

— ...(however, we do observe several hundred children who decling,;
a specialized school for their not-top-choice mainstream school...



Multiple Rounds

* Need to assign unmatched kids; unlike
medical labor markets everyone must go
to school

- Round 3

* “No time” for high schools to re-rank students in
round 3, so no new high school preferences
expressed

— Another place where random preferences are used for
some screened schools.
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Lotteries: Equity and perception

How should we rank students in schools that
do not have preferences over students?

— For unscreened schools and in round 3
— A single lottery that applies to each school?
— Or a different lottery for every such school?

* A single lottery avoids instabilities that are
due to randomness (Abdulkadiroglu &
Sonmez, 2003)

27



| otteries, cont.:
Explaining and defending

NYC DOE argued that a more equitable approach would be
to draw a new random order for each school:

Here are some of the emails we got on the subject:

« “| believe that the equitable approach is for a child to
have a new chance... This might result in both students
getting their second choices, the fact is that each child
had a chance. If we use only one random number, and |
had the bad luck to be the last student in line this would
be repeated 12 times and | never get a chance. | do not
know how we could explain that to a student and parent.”

 “When | answered questions about this at training
sessions, (It did come up!) people reacted that the only

fair approach was to do multiple runs.”
28



Lottery, cont.

 Ran simulations. These simulations showed that the
efficiency loss due to multiple draws was considerable;
and increases with correlation in students’ preferences.

 We pushed hard on this one, but it looked like the
decision was going to go against us. But we did get the
NYC DOE to agree to run the algorithm both ways and
compare the results on the submitted preference lists.

 They agreed, and eventually decided on a single rank
order after seeing welfare gains on the submitted
preferences

29



Tie-breaking in Student-Proposing Deferred
Acceptance in the First Round 2003-04

Number Single M ultip le
Choice Ranking Tie-Breaking Tie-Breaking
(250 draws) (250 draws)
1 5,797 (6.7%) 21,038 (24.82%) 19,783 (23.34%)
2 4,315 (5.0%) 10,686 (12.61%) 10,831 (12.78%)
3 5,643 (6.6%) 8,031 (9.48%) 8,525 (10.06%)
4 6,158 (7.2%) 6,238 (7.36%) 6,633 (7.83%)
5 6,354 (7.4%) 4,857 (5.73%) 5,108 (6.03%)
6 6,068 (7.1%) 3,586 (4.23%) 3,861 (4.56%) No stochastic
7 5,215 (6.1%) 2,721 (3.21%) 2,935 (3.46%) dominance
8 4,971 (5.8%) 2,030 (2.40%) 2,141 (2.53%)
9 4,505 (5.2%) 1,550 (1.83%) 1,617 (1.91%)
10 5,736 (6.7%) 1,232 (1.45%) 1,253 (1.48%)
11 9,048 (10.5%) 1,016 (1.20%) 894 (1.05%)
12 22,239 (25.8%) 810 (0.96%) 372 (0.44%)
unassigned - 20,952 (24.72%) 20,795 (24.54%) 30




First Year of Operation

 Over 70,000 students were matched to one of
their choice schools

— an increase of more than 20,000 students compared
to the previous year match

 An additional 7,600 students matched to a
school of their choice in the third round

* 3,000 students did not receive any school they
chose

— 30,000 did not receive a choice school in the previous
year

31



First year, cont

Much of the success is due to

* relieving congestion

— Allowing many offers and acceptances to be
made, instead of only 3

— giving each student a single offer rather than
multiple offers to some students

* allowing students to rank 12 instead of 5
choices

* But more than that is going on...

32



First year results:

More students get top choices
(this is a chart prepared by NYCDOE, comparing
academic years 04-05 and 03-04)

Number of students matched at the end of Round Il

90,000
80,000 | « 21,000 more students
6th-12th choice; matched to a school of

o 70,000 A 10,735 . .

é 5th choice; 4,730 thelr ChOICe

) 60,000 7 4th choice; 6,532

e | 5th choice; 5,028 « 7,000 more students

g ’ U e Bhee? receiving their first

S 400007 choice

§ 30,000 -

E * 10,000 more students
20,0007 st choice: 31,556 | receiving one of their
10,000 - 1st choice; 24,226 tOp 5 ChOICGS

0 T
This year (2004-2005) Last year (2003-2004)
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The results show continued
improvement from year to year

* Even though no further changes have
been made in the algorithm...

34



Students Matched to a Choice

First 4 years: March 23, 2007

Results at end of Round 2

(Schools have learned to change their reporting of capacities)

100% T tched Unmatched
Unm atehed Unmatched nimatcine Imatcne
i 11% 9% 9%
90% - 16% Gin-TZIh ChoICe 6th-12th choice
Bth-12th choice 8% 8%
80°%, - Gth-12th choice 12% 5th choice, 4% 5th choice, 5%
e 5th choice, 5% 4th choice, 7% Ath choice, 7%
o -
T0% 5th choice, 5% 4th choice, 8%
4th choice, 7%
60% -
50% -
40% -
30% -
1st choice 1st choice
20% 1st choice 1st choice 439, 499
3494 I7%
10% -
0%
2004 2005 2006 2007
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What happened in NYC after the algorithm was introduced

Mumber of Studants

40,000

35,000+

30,000+

258,000+

20,000

15,0004

10,000

5,000

in 2003-047?

Figure 1: Distribution of Choices Received in Round 1 or 2 by Year

0O 2003-04
W 2004-05
O 200506
O 200&-07

Choice Received

G+
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What is going on?

|t appears that schools are no longer withholding
capacity.

« Some high schools (even top high schools like
Townsend Harris) have learned to rank
substantially more than their capacity, because
many of their admitted students go elsewhere
(e.g. admissions to Townsend Harris provides
good leverage for bargaining over financial aid
with private schools).

* This allows more students to be accepted to
their top choice, second choice, etc. during the
formal match process. 37



Immediate Issue: Appeals

Just over 5,100 students appealed in the first
year

Around 2,600 appeals were granted

About 300 of the appeals were from students who
received their first choice

Designing an efficient appeals process—top

trading cycles?

— A dry run in year 2 showed that many students could
be granted appeals without modifying school
capacities.

* One 40-student cycle...

In 2006-08 TTC was used
— One 26 student cycle
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NYC--summary

Waiting lists are a congested allocation mechanism—
congestion leads to instabilities and strategic play.

NYC high schools—only recently re-centralized—are active
players in the system.

Information about the mechanism is part of the mechanism.
— Information dissemination within and about the mechanism is part of the
design

New mechanisms can have both immediate and gradual
effects.

Appeals may be a big deal
— when the preferences are those of 13 and 14 year olds

— When a nontrivial percentage of assigned places aren’t taken up
because of withdrawals from the public school system (moves, and
private schools)

Open question:

— How best to design appeals, in light of changing preferences of 13 year
olds, mobile school population, but to continue to give good incentiv&s in
the main match?



Changing the Boston school match:
A system with incentive problems

(Abdulkadiroglu, Pathak, Roth and Sonmez)

« Students have priorities at schools set by central
school system

« Students entering grades K, 6, and 9 submit
(strict) preferences over schools.

* In priority order, everyone who can be assigned
to his first choice is. Then 2"9 choices, etc.
— Priorities: sibling, walk zone, random tie-breaker

— There are lots of people in each priority class (non-
strict preferences)

 Unlike the case of NYC, in Boston, there weren’t
apparent problems with the system.

40



Incentives

* First choices are important: if you don’t get
your first choice, you might drop far down
list (and your priority status may be lost: all
2"d choices are lower priority than all 1st...).

* Gaming of preferences?—the vast
majority are assigned to their first choice

* Chen and Sonmez (2005): experimental
evidence on preference manipulation
under Boston mechanism (see also
Featherstone and Niederle 2008)
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Advice from the West Zone Parent’s Group:

Introductory meeting minutes, 10/27/03

“One school choice strategy is to find a school
you like that is undersubscribed and put it as a
top choice, OR, find a school that you like that
is popular and put it as a first choice and find a
school that is less popular for a “safe”

second choice.”

42



Formalizing what the WZPG knows

* Definition: A school is overdemanded if the
number of students who rank that school as their
first choice is greater than the number of seats
at the school.

* Proposition: No one who lists an
overdemanded school as a second choice will
be assigned to it by the Boston mechanism, and
listing an overdemanded school as a second
choice can only reduce the probability of
receiving schools ranked lower.
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But not everyone knows

* Of the 15,135 students on whom we
concentrate our analysis, 19% (2910)
listed two overdemanded schools as their
top two choices, and about 27% (782) of
these ended up unassigned.
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Costs of incentive problems

* Many preferences are “gamed,” and hence
we don’t have the information needed to
produce efficient allocations (and don't
know how many are really getting their first
choice, etc.)

— There are real costs to strategic behavior
borne by parents—e.g. West Zone Parents

group
— BPS can’t do effective planning for changes.

* Those who don't play strategically get hurts



Design issues for Boston Schools

* |s the market one-sided or two?

— Unlike NYC, no gaming by schools (Boston school
system has been centralized for a long time)

— Are priorities intended to facilitate parent choice, or do
they represent something important to the school
system?

— |f one sided, “stable” matches wouldn’t be Pareto
optimal: e.g. it would be Pareto improving to allow
students to trade priorities—top trading cycles.

» Other Pareto improvements may be possible (Kesten).

« “Pareto” optimality involves decisions about who are the
players...
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Recommendations for BPS

« Switch to a strategy-proof mechanism.

* We suggested two choices:

— Student Proposing Deferred Acceptance
Algorithm (as in NYC)

« Would produce “stable” assignments—no student
is not assigned to a school he/she prefers unless
that school is full to capacity with higher priority
students

— Top Trading Cycles

* Would produce a Pareto efficient match.
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Student Proposing Deferred
Acceptance

« Stable: no student who loses a seat to a
ower priority student and receives a less-
oreferred assignment

* Incentives: makes truthful representation a
dominant strategy for each student

« Efficiency: selects the stable matching that
Is preferred to any other stable matching by
all students—no “justified envy” (when
preferences are strict)

48



Top Trading Cycles (TTC)

If welfare considerations apply only to students, tension
between stability and Pareto efficiency

Might be possible to assign students to schools they
prefer by allowing them to trade their priority at one
school with a student who has priority at a school they
prefer

Students trade their priorities via Top Trading Cycles
algorithm

Theorems:

— makes truthful representation a dominant strategy for each
student

— Pareto efficient

49



A too simple 1-sided model:
louse allocation

Shapley & Scarf [1974] housing market model: n agents
each endowed with an indivisible good, a "house”.

Each agent has preferences over all the houses and there is
no money, trade is feasible only in houses.

Gale’s top trading cycles (TTC) algorithm: Each agent points
to her most preferred house (and each house points to its
owner). There is at least one cycle in the resulting directed
graph (a cycle may consist of an agent pointing to her own
house.) In each such cycle, the corresponding trades are
carried out and these agents are removed from the market
together with their assignments.

The process continues (with each agent pointing to her most
preferred house that remains on the market) until no agents

and houses remain. 0



Theorem (Shapley and Scarf): the
allocation x produced by the top
trading cycle algorithm is in the core
(no set of agents can all do better than
to participate)

* When preferences are strict, Gale’s TTC algorithm
yields the unique allocation in the core (Roth and
Postlewaite 1977).
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Theorem (Roth '82): if the top trading cycle
procedure is used, it is a dominant strategy for
every agent to state his true preferences.

* The idea of the proof is simple, but it takes
some work to make precise.

* When the preferences of the players are given
by the vector P, let N(P) be the set of players
still in the market at stage t of the top trading
cycle procedure.

* Achainin a set N, is a list of agents/houses a;,
a,, ...a, such that a;'s first choice in the set N, is
a.,.. (Acycleisa chain such that a=ay )

« At any stage t, the graph of people pointing to
their first choice consists of cycles and chains
(with the ‘head’ of every chain pointing to a
cycle...).

52



Cycles and chains

[
4

O—0O



The cycles leave the system (regardless
of where i points), but i's choice set (the
chains pointing to i) remains, and can only
grow

54



Top Trading Cycles

Step 1: Assign counters for each school to track how many seats
remain available. Each student points to her favorite school and
each school points to the student with the highest priority. There
must be at least one cycle. (A cycle is an ordered list of distinct
schools and students (student 1 - school 1 - student 2 - ... - student
k - school k) with student 1 pointing to school 1, school 1 to student
2, ..., student k to school k, and school k pomtlng to student 1.) Each
student is part of at most one cycle. Every student in a cycle is
assigned a seat at the school she points to and is removed. The
counter of each school is reduced by one and if it reaches zero, the
school is removed.

Step k: Each remaining student points to her favorite school among
the remaining schools and each remaining school points to the
student with highest priority among the remaining students. There is
at least one cycle. Every student in a cycle is assigned a seat at the
school she points to and is removed. The counter of each school in
a cycle ijs reduced by one and if it reaches zero, the school is
removed.

The procedure terminates when each student is assigned a seat (0ks
all submitted choices are considered).



The choice? Boston School Committee

“Would anyone mind if two students who each
preferred the schools in the other student’s walk
zone were to trade their priorities and enroll in
those schools?”

« YES: transportation costs, externalities when
parents walk child to school, lawsuits when a
child is excluded from a school while another
with lower priority is admitted

— DAA
* NO: efficiency of allocation is paramount
— TTC
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Explaining and defending

* In the final weeks before a decision was
made, our BPS colleagues told us that
their main concern was their ability to
explain and defend the choice of (which)
new algorithm to the public and to Boston
politicians.

* \We came up with some simpler
descriptions of TTC in this process

— Lines in front of schools in priority order

57



Explaining and Defending: DA “FAQ”

Q: Why didn’t my child get assigned to his first choice,
school X?

A: School X was filled with students who applied to it and
who had a higher priority.

Q: Why did my child, who ranked school X first, not get
assigned there, when some other child who ranked
school X second did?

A: The other child had a higher priority at school X than
your child did, and school X became that other child’s
first choice when the school that he preferred became
full. (Remember that this assignment procedure allows
all children to rank schools in their true order of
preference, without risk that this will give them a worse

assignment than they might otherwise get.)
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TTC "FAQ”

Q: Why didn’t my child get assigned to his first choice,
school X?

A: School X was filled before your child’s priority (o be
admitted to school X or to trade with someone who had
priority at school X) was reached.

Q: Why did a child with lower priority at school X than my
child get admitted to school X when my child did not?

A: Your child was not admitted to school X because
there were more children with higher priority than yours
than the school could accommodate. One of these
children traded his priority with the child who had lower
priority at school X.
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The recommendation to the School
Committee: School Superintendent Payzant
Memorandum on 5/25/05 states:

“The most compelling argument for moving to a
new algorithm is to enable families to list their true
choices of schools without jeopardizing their
chances of being assigned to any school by doing

b

SO.

“The system will be more fair since those who
cannot strategize will not be penalized.”

Fairness rationale for strategy-proof mechanisms
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Further benefits of a strategy proof
mechanism

“A resulting benefit for the system is that this
alternative algorithm would provide the
district with more credible data about school
choices, or parent “"demand” for particular
schools. Using the current assignment
algorithm, we cannot make assumptions
about where families truly wish to enroll
based on the choices they make, knowing
many of those choices are strategic rather
than reflective of actual preference.”
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BPS’s Recommendation:

Deferred Acceptance

« The Gale-Shapley Deferred Acceptance Algorithm will
best serve Boston families, as a centralized procedure
by which seats are assigned to students based on both
student preferences and their sibling, walk zone and
random number priorities.

« Students will receive their highest choice among their
school choices for which they have high enough priority
to be assigned. The final assignment has the property
that a student is not assigned to a school that he would
prefer only if every student who is assigned to that
school has a higher priority at that school.

« Regardless of what other students do, this assignment
procedure allows all students to rank schools in their
true order of preference, without risk that this will give
them a worse assignment than they might otherwise getk:



Why not top trading cycles?

“Another algorithm we have considered, Top Trading
Cycles, presents the opportunity for the priority for one
student at a given school to be "traded" for the priority of a
student at another school, assuming each student has
listed the other's school as a higher choice than the one to
which he/she would have been assigned. There may be
advantages to this approach, particularly if two lesser
choices can be "traded" for two higher choices. It may
be argued, however, that certain priorities -- e.g.,
sibling priority -- apply only to students for particular
schools and should not be traded away.

Moreover, Top Trading Cycles is less transparent-- and
therefore more difficult to explain to parents -- because of
the trading feature executed by the algorithm, which may
perpetuate the need or perceived need to "game the
system.”
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The Vote

* The Boston School Committee decided to
adopt a deferred acceptance algorithm

* |t was implemented for use starting
January 2006, for assignment of students
to schools in September, 2006.
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Boston: summary remarks

« Transparency is a virtue in a mechanism
— Both when it is used and for it to be adopted
— New mechanisms have to be explained and defended

« Strategy proofness can be understood in terms of
fairness/equal access

» Efficient allocation based on personal preferences
requires the preferences to be known

Atila Abdulkadiroglu, Atila, Parag A. Pathak, Alvin E. Roth,
and Tayfun Sonmez, “Changing the Boston School
Choice Mechanism: Strategy-proofness as Equal
Access” working paper, May 2006.
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New questions raised by school
choice

How to do tie breaking?

Tradeoffs between Pareto optimality,
stability, strategy proofness—what are the
‘costs’ of each?

» Evaluating welfare from different points in
time
» Restricted domains of preferences?
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Recent developments

* [|IPSC—the Institute for Innovation in
Public School Choice (run by Neil Dorosin,
former Director of HS Operations for
NYCDOE)

* \We have developed new school choice
systems in Denver and New Orleans

— New Orleans uses a version of top trading
cycles...
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Matching with indifferences

* \When we were mostly using matching
models to think about labor markets, strict

preferences didn't seem like too costly an
assumption

— Strict preferences might be generic

 But that isn’t the case with school choice

— We already saw that one of the first NYC

design decisions we faced in 2003 was how
to randomize to break ties.
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New Theoretical Issues

« Erdil, Aytek and Haluk Ergin, \What's the Matter
with Tie-breaking? Improving Efficiency in
School Choice , American Economic Review ,
98(3), June 2008, 669-689

* Abdulkadiroglu, Atila , Parag A. Pathak , and
Alvin E. Roth, " Strategy-proofness versus
Efficiency in Matching with Indifferences:
Redesigning the NYC High School Match ,"
American Economic Review, 99(5) December
2009, 1954-1978.

« Featherstone, Clayton and Muriel Niederle, “EX
ANTE EFFICIENCY IN SCHOOL CHOICE
MECHANISMS: AN EXPERIMENTAL




Other new issues we won't get to today...

Pathak, Parag and Tayfun Sonmez “Leveling the Playing
Field: Sincere and Strateqgic Players in the Boston
Mechanism” , American Economic Review, 98(4), 1636-52,
2008

Ergin, Haluk and Tayfun Sonmez, Games of School Choice
under the Boston Mechanism " , Journal of Public Economics
, 90: 215-237, January 2006.

Kesten, Onur On Two Kinds of Manipulation for School
Choice Problems March, 2011, forthcoming in Economic
Theory.

Kesten, Onur, “School Choice with Consent,” Quarterly
Journal of Economics 125(3), August, 2010; 1297-1348.

Abdulkadiroglu, Atila, Yeon-Koo Che, and Yosuke Yasuda, "
Resolving Conflicting Preferences in School Choice: The
‘Boston Mechanism” Reconsidered” American Economic
Review, February, 2011, 101(1): 399-410.




Matching with indifferences

|: a finite set of students (individuals) with (strict)
preferences P, over school places.

S: a finite set of schools with responsive weak
preferences/priorities R, over students (i.e. can

include indifferences: P, (>, ) is the asymmetric
part of R,).

As before:

g = (gs)ses: @ vector of quotas (g 2 1, integer).

A matching is a correspondence u: | U S — S U | satisfying:
(i) Foralliel: (i) e S U {i}

(i) Foralls e S : |u(s)| £ qg, and i € pu(s) implies p(i) = s.

We'll mostly concentrate on student welfare and student
strategy, and regard Rg as fixed.
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Matchings and student welfare

A matching p is individually rational if it matches every x
€ | U S with agent(s) that is(are) acceptable for x.

A matching p is blocked by (i, s) if sP;u(i), and either [|u(s)|
<g,andi> s]or[i>,i forsomei' € y(s)]. uis stable if
U is individually rational and not blocked by any student-
school pair (i, s).

A matching y dominates matching if u(i)Ri(i) for all i € |,
and p(i)Pi(i) for some i € |. (Weak Pareto domination for
students.)

A stable matching p is @ student-optimal stable matching
if it is not dominated by any other stable matching.

“A” not “the™: When school preferences aren'’t strict, there
won'’t generally be a unique optimal stable match for
each side, rather there will be a non-empty set of stabler
matches that are weakly Pareto optimal for agents on



Example: multiple optimal stable matchings

Example 1. (Tie-breaking does not always vield student-optimal stable matchings. )
Tie-breaking has important welfare consequences. Suppose that school s 18 indifferent
among students, students iy, 12, 73 and schools s and sq have the following strict prefer-

EICEes:
Student Preferences  School Preferences
sa by 8185 83 1 gy B9 g 13
s1 Py, 82,83 g sy U1 7 sy 13
s1Fi, 52 Py 83 9 s U1 s 12

The stable matchings are the following:

1= , M2 = , 3 =
: §1 82 83 : s2 &1 83 : 83 82 51

Note that peq, po and pg are produced by the student proposing deferred acceptance
algorithm (DA) when the indifference in s1’s preferences is broken as i1 =g, i3 =g 22,
12 =g Iy sy by and i3 =g, iy =g iy, respectively. However, po dominates jiq despite piq
being stable. That is, DA need not produce a student-optimal stable matehing even if
ties at schools are broken the same way. 73



Weak Pareto optimality generalizes...

* Proposition 1. If y is a student-optimal
stable matching, there is no individually
rational matching v (stable or not) such
that v(i)P;u(i) for all i € I.

 (terminology: a student optimal stable matching
Is weakly Pareto optimal because it can't be
strictly Pareto dominated, but the outcome of
student proposing deferred acceptance
algorithm might not be strongly Pareto optimal,
l.e. might not be student optimal, because it can
be weakly Pareto dominated) 74



Tie breaking

* A tie-breaker is a bijection r:l—N, that
breaks ties at school s by associating R,
with a strict preference relation P :

IPsj& (=) or (i~ and r(i) < r())].
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Basic Deferred Acceptance
(Gale and Shapley 1962)

Step 0: arbitrarily break all ties in preferences

Step 1: Each student "proposes” to her first choice. Each
school tentatively assigns its seats to its proposers one
at a time in their priority order. Any remaining proposers
are rejected.

Step k: Each student who was rejected in the previous
step proposes to her next choice if one remains. Each
school considers the students it has been holding
together with its new proposers and tentatively assigns
its seats to these students one at a time in priority order.
Any remaining proposers are rejected.

The algorithm terminates when no student proposal is
rejected, and each student is assigned her final tentative

assignment.
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Deferred acceptance algorithm
with tie breaking: DAT

* A single tie breaking rule uses the same
tie-breaker r, = r at each school, while a
multiple tie breaking rule may use a
different tie breaker r, at each school s.

* For a particular set of tie breakers
T=(rg)scs, let the mechanism DA™ be the
student-proposing deferred acceptance
algorithm acting on the preferences
(P,Ps), where P is obtained from R, by
breaking ties using r, for each school s. =



Single and Multiple tie breaking

* The dominant strategy incentive
compatibility of the student-proposing
deferred acceptance mechanism for every
student implies that DA" is strategy-proof
for any T.

» But the outcome of DA™ may not be a
student optimal stable matching.

— We already saw this is true even for single tie
breaking.
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Single versus multiple tie breaking
NYC Grade 8 applicants in 2006-07

(250 random draws: simulation standard errors in

parentheses)
Deferred Acceptance | Deferred Acceptance
Choace mingle Tie-Breaking | Multiple Tie-Breaking
DA-STE DA-MTE
(1) (2]
| 42,105.3 (62.2) 20,8400 (67.7)
2 14,206.0 {53.2) 14,562.3 (59.00
3 92704 (47.4) 9,B50.7 (52.5)
4 6,112.8 (43.5) 6,653.3 (47.5)
5 30882 (34.4) 4, 386.8 (30.4)
B 2,628.8 (20.6) 2,010.1 (33.5)
T 1, 732.7 (26.0) 19191 (28.0)
a 1.089.1 (23.3) 1,212.2 {26.8)
2] TEL.O (17.8) 171 (21.7)
10 h26.4 (15.4) G484 (19.4)
11 3480 (13.2) A53.2 (12.8)
12 236.0 (10,59 220.3 (10.5)
unassigned 5,613.4 (26.5) AA26.7 (21.4)
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Proposition: For any (P,,Rg), any matching that can
be produced by deferred acceptance with multiple
tie breaking, but not by deferred acceptance with
single tie breaking is not a student-optimal stable

matching.

—_ DA-MTB

Student optimal
matchings
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Dominating stable matchings

 Lemma: Suppose [ is a stable matching,
and v is some matching (stable or not) that
dominates Y. Then the same set of
students are matched in both v and pu
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Proof

* If there exists a student who is assigned under
and unassigned under v, then v(i)=iP,u(i), which
Implies that p is not individually rational, a
contradiction. So every i assigned under J is
also assigned under v.

« Therefore |[v(S)|Z|u(S)]. If [V(S)|>|u(S)| then
there exists some seS and i€l such that
Iv(s)|>|u(s)| and v(i)=s#u(i). This implies there is
a vacancy at s under y and i is acceptable for s.
Furthermore, sP.u(i) since v dominates y. These
together imply that p is not stable, a
contradiction. So |v(S)|=|u(S)].

* Then the same set of students are matched in

e . .. madl L. Alimaa /O /ON\] ] L. ...



Stable Improvement Cycles (Erdil and Ergin,

08)

Fix a stable matching y w.r.t. given preferences P and priorities R.

Student i desires s if sP;u(i).

Let B, = the set of highest R.-priority students among those who
desire school s.

Definition: A stable improvement cycle C consists of distinct
students iy, . . ., i, =iy (N 2 2) such that

(i) u(i,) € S (each student in the cycle is assigned to a school),
(ii) i, desires p(i..4), and

(iii) i, € Bu(i44), forany )k=0,...,n-1.
Given a stable improvement cycle define a new matching p’ by:
w(j) = u(@)ifjis notone of {i,,...,Ii}

w(i) = Migeq) i j =1y

Proposition: p’ is stable and it (weakly) Pareto dominates p.
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Improving on DAT

 Theorem (Erdil and Ergin, 2008): Fix P and
R, and let y be a stable matching. If y is
Pareto dominated by another stable matching
, then y admits a stable improvement cycle.

* Algorithm for finding a student optimal
matching: start with a stable matching. Find
and implement a stable improvement cycle,
as long as one exists.
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Outline of proof

Fix P and R. Suppose p is a stable matching Pareto
dominated by another stable matching v.

Simplifying assumption: Each school has one seat.

1.7 :={iel|v(i)Pu()}={iel|v(i) # p())

2. All students in I’ are matched to a school at v.

3. S = v(I')=u(l).

Hence, | [S] can be partitioned into two subsets |I' and
\I' [S"and S\ S’] such that

 Those in I\ I' [S\ S’] have the same match under p
and v.

* The matches of those in I' [S’] have been “shuffled”
among themselves to obtain v from .
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4. Forallse S’

I';:=(iel'|idesiressaty,andnojel desiress at
and j P, i) is nonempty;.

5. Construct a directed graph on S’

* For each s € S, arbitrarily choose and fix i € I'..

*i,eBgl.e., I g desires s at g, and thereisnoj e |
who desires s at y and j P, i. (from stability of v)

*Foralls,te S, lett —»sift=p(l).

6. The directed graph has a cycle of n = 2 distinct
schools: s; > s, —> " —>S, — S,

/. The students i, Iy, . . ., Iy, CcOnstitute a stable
Improvement cycle at p
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How much room Is there to
improve on deferred
acceptance?

 Are there costs to
welfare?

areto improvements in
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Strategy-proof mechanisms

A direct mechanism ¢ is a function that
maps every (Pl ,Rg) to a matching.

For x € IUS, let @,(P, ;R5) denote the set of
agents that are matched to x by .

A mechanism ¢ is dominant strategy
Incentive compatible (DSIC) fori € | if for
every (P, ,Rg) and every P’ ,

? (P ;Rs)R; @ (P, P_iRs).
A mechanism will be called strategy-proof if
it is DSIC for all students.
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Pareto improvement and strategy
proofness

Fix Rs.

We say that a mechanism ¢ dominates y
if

forall P, : @,(P, ;Rs)R, w.(P, ;Rg) for all i € 1,
and

for some P, : @,(P, ;R5)P; w,(P, ;Rg) for
some i € |.

Theorem (Abdulkadiroglu, Pathak, Roth):,

Fnar anv tie hreaakina rniile T thare ie nn



Proof

* Suppose that there exists a strategy-proof
mechanism ¢ and tie-breaking rule T such
that ¢ dominates DA'. There exists a profile
P, such that

¢.(P;;R5)R, DAT(P;R¢) for all iel, and
¢.(P;R5)P, DAT(P;Rs) for some i€l.
Let s=DAT(P;Rs) and s’ =¢i(P;Rs) be I's
assignment under DAT(P;Rs) and ¢(P;Rs),
respectively, where s'.Ps..
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...continued

» Consider profile P,'=(P,,P_), where P/
ranks s’; as the only acceptable school.
Since DA' is strategy-proof, s=DA/
(P;Rs)RDAT(P,;Rs), and since DA/(P,;Rq)
IS either s’; or i, we conclude that
DA/(P,;Rg)=I. Then the Lemma implies
¢i(P;Rs)=1.

* Now let (P,;Rg ) be the actual preferences.
In this case, i1 could state P, and be
matched to ¢,(P;Rs)=s’,, which under P/
she prefers to ¢(P,;Rs )=I.

* S0 ¢ is not strategy-proof.
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Let’'s look at some data

* We can't tell what preferences would have
been submitted with a different (non
strategy-proof) mechanism, but we can
ask, given the preferences that were
submitted, how big an apparent welfare
loss there might be due to not producing a
student optimal stable matching.
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Inefficiency in the NYC match

(cost of strategy-proofness)

Table 1— Tie-breaking for Grade 8 Applicants in NYC in 2006-07
Deferred Acceptance | Deferred Aceceptance | Student-Optimal || Improvement from MNumber
Choice single Tie-Breaking | Multiple Tie-Breaking | Stable Matching DA-STH to of Students
DA-STE DA-MTE student-Optimal
(1) (2) (3) (4)
1 32,105.3 (62.2) 20,8400 (67.7) 32,701.5 (58.4) +1 633.2 (32.1)
2 14,206.0 {53.2) 14,562.3 (50.0) 14,382.6 {50.9) +2 338.6 (22.0)
3 0.270.4 (47 .4) 0.850.7 (52.5) 0.208.6 (46.0) +3 108.3 (15.5)
4 6,112.8 {43.5) 6,653.3 (47.5) 5,000.8 (41.4) +4 125.6 (11.0)
5 3,088.2 (34.4) 4,386.8 (30.4) 3.883.4 (33.8) +5 70.4 (8.0)
fi 2,628.8 (20.6) 2,010.1 {33.5) 25105 (28.4) +6 51.7 (6.0)
T 1,732.7 (26.0) 1.919.1 (28.0) 1.654.6 (24.1) +7 26.09 (5.1)
& 1,000.1 (23.3) 1,212.2 (26.8) 1.034.8 {22.1) +8 17.0 (4.1
0 T61.0 (17.8) 817.1(21.7) T16.7(174) +9 10.2 {3.1)
10 5264 (15.4) 548.4 (10.4) 485.6 (15.1) +10 4.7 (2.0
11 348.0 (13.2) 353.2 (12.8) 3163 (12.3) +11 2.001.1)
12 236.0 (10.9) 220.3 (10.5) 211.2(104)
unassigned 5,613.4 (26.5) 5.426.7 (21.4) 5,613.4 (26.5) Total: 1,487.5
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Cost of stability in NYC

Table 2— Weltare Consequences of Stability for Grade 8 Applicants in in 2006-07

Student-Optimal Efficient Improvement from Clonnt of Students
Choice Stable Matching Matching Student-Cptimal Number i with & Blocking
Stable Matching Pairs
(1) (2) (3) (4)
1 32,7015 (58.4) 34, 707.8 (50.5) +1 1,819.7 (41.3) 1 22,287.5 (205.1)
2 14,382.6 (50.9) 14,511.4 (51.1) +2 1,012.8 {26.4) 2 6.707.8 (117.99
3 0,208.6 (46.0) 5.804.4 {41.2) +3 502.0 (19.5) 3 2,001.0 { 70.6)
4 50008 (41.4) 5.582.1 (40.3) +4 260.6 (16.0) 4 1.485.4 (56.5)
5 3,883.4 (31.8) 34027 (314 +5 2125 (12.0) 5 T16.6 (32.5)
fi 25105 (284 2,222.0 (24.3) +6 132.1 (9.1 i 364.6 (22.9)
T 1,654.6 (24.1) 1,430.3 (22.4) +7 70071 T 183.1 (13.6)
] 1,034.8 (22.1) 8605 (20.0) +8 43.0 (5.6) B 85.6 (10.9)
0 TI6.7 (17.4) 502.6 (16.0) +0 26.3 14.5) ] 44.7 (6.4)
10 485.6 (15.1) 305.6 (13.7) + 110 11.6 {2.8) 10 226 (4.9)
11 316.3 (12.3) 255.0 (10.8) +11 4.8 {2.0) 11 0.0 (3.0
12 211.2 (10.4) 160.2 {0.3) 12 3.2 (1.6)
unassigned 5,613.4 (26.5) 56134 (26.5) Total: 4,206.6 34 808.8
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Table 3

Comparison with Boston

Tie-breaking for Elementary School Applicants in Boston in 2006-07

Deferred Acceptance

Deferred Acceptance

student-Crptimal

Improvement from

Mumber

Choice single Tie-Breaking | Multiple Tie-Breaking | Stable Matching DA-STE to of Students
DA-STE DA-MTE student-Cptimal
y ey (3) (4]
1 2,251.8 (B.4) 2,157.3 (13.4) 2,256.6 (8.2) +1 4.6 {2.6)
2 300.8 {10.3) 355.5 (12.0) 2074 (10.0] +2 1.2 {1.1)
2 154.0 (7.0) 180.3 (101 1540 (7.7) +3 05 (N7
4 0.7 (5.5) TE.1 (7.0) 58.7 (5.5) +4 0.3 {0.5)
5 27.4 (4.5) 34.1 (4.8) 7.0 (4.4) +5 0.0 {0.1)
G 4.9 {1.9) 6.0 {2.5) 4.9 (1.9) +46 0.0 {0.1)
T 2.6 (1.4) 2.8 {1.6) 2.5 (14) +7 0.0 {0.1)
8 1.9 {1.2) 0.9 {0.9) 1.9 (1.2) +3 0.0 {0.1)
o 1.2 {1.1) 0.4 {0.6) 1.2 {1.0) +40 0.0 {0.0)
10 0.3 {0.6) 0.1 {0.2) 0.3 (0.5)
unassigned 112.4 {4.6) 104.6 {4.5) 112.4 {4.6) Total: 6.5
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Open questions

* (Equilibrium) misrepresentation in stable
iImprovement cycles? (Can potential gains
be realized?)

— It appears there will be an incentive to raise
popular schools in your preferences, since they
become tradeable endowments...

» Restricted domains of preference?

— Manipulation will be easier on some domains
than others, and potential welfare gains greater
on some domains than others.
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CAN WE MAKE SCHOOL CHOICE MORE EFFICIENT?
AN EXAMPLE
EDUARDO M. AZEVEDO AND JACOB D. LESHNO (2011)

School Priorities Student Preferences
Arts  Science o z I bia
i By, bz Science  Seience  Arts Arts
by bz t, Z Arts 0, ¢ o
o

School S has two seats, and school A has a single seat (gq = 1, g¢ = 2). We assume that all
agents are expected utility maximizers. We normalize the utility functions by setting the utility of
an assignment to the most preferred school to be 1, and the utility from being unmatched to ), We
assume that up (Science) > —5

The DA-STEB assignment depends on the tie breaking only to determine which b; student gets

rejected from 1. The resulting (random) assignment is:

DA-STE assignment:
(truthful)

0 — 5
z— g
b — 24, Lo

This assignment is Pareto eflicient, and truth-telling is an equilibrium under DA-STE. 97



Consider the equilibrium of (any) SOSM in which everyone
reports truthfully except the two bi who both (mis)report
A>S>¢ (notice that S is popular and the bi's have priority

there...)
* The outcome of the DA-STB for this profile is:

—a: 2S5, %2 A
—Z: 0
—bi: Va A, %S
« SOSM: stable improvement cycles would allow a
to trade A for S with a bi
—a: S,
—Z: 0
—bi: 12 A, %S
* None of the students do better under this

equilibrium, and some do strictly worse. %



AZEVEDO AND LESHNO

Proposition 3.1. Consider any mechanism that s Pareto efficient with
respect to reported preferences, and Pareto dominates DA-STB. In the econ-
omy above, this mechanism has a unique equilibrium assignment, which s
Pareto domanated by the DA-STB assignment, and 1s unstable with respect
to the true preferences.
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EX post versus ex ante
evaluation”?

* E.g. Boston mechanism in uncorrelated
environment, where you don’t have to pay
the cost for lack of strategy
proofness...Featherstone and Niederle
2008

* Recall that DA is strategy-proof (DSIC)
while the Boston mechanism is not.

* (The following slides are adapted from
F&N's)
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[ 2

Example; correlated preferences

(likely the general case...)

3 schools are commonly ranked by students as follows.

School Best Second Third No school

Seats 2 1 1
Payoff 100 67 25

0

Two types of students: Top and Average.

» Top always has priority over Average.
» Within group, ties are broken by a lottery.

3 Tops and 2 Averages

DA Outcome:

Top: 2 get Best, 1 gets Second
Average: 1 gets Third, 1 is unassighed

What is the equilibrium under Boston?
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Boston mechanism in the correlated
environment—complex eq. strategies

School Best Second Third No school
Seats 2 1 1 —
Payoff 100 67 25 0

Boston:

» Strategies:
Top: (Best, Third, ...) (skipping the middle)
Average: (Second, ....) (skipping the top)
» Qutcome:

Top: 2 get Best, 1 gets Third
Average: 1 gets Second, 1 is unassigned
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Uncorrelated preferences: (a
conceptually illuminating simple

environment)

e 2 schools, one for Art, one for Science, each with one
seat

« 3 students, each iid a Scientist with p=1/2 and Artist with
p=1/2. Artists prefer the art school, scientists the science
school.

« The (single) tie breaking lottery is equiprobable over all

CoRSRRINIR 0L HER SIUASRRR his own type, and

before he knows the types of the others. Then (because

the environment is uncorrelated) his type gives him no
information about the popularity of each school. So, under
the Boston mechanism, truthtelling is an equilibrium.
(Note that for some utilities this wouldn’t be true e.g. of the
school-proposing DA, even in this environment.) e



Boston can stochastically dominate DA in an
uncorrelated environment

Example: 3 students, 2 schools each with one seat
» DA:

Lottery rank First choice Second choice No school

1 1 0 0
25s /2 1:a 1/21:s 0
3 0 0 1
Average 1/2 1/6 1/3
» Boston:
Lottery rank First choice Second choice No school
1 1 0 0
25S 1/2 1:a 1/41:s; 38 1/41:s; 3:a
3 1/4 0 3/4

Average 1/2 +1/12 1/6 — 1/12 1/3




hings to note

* The uncorrelated environment let’s us look at
Boston and DA in a way that we aren't likely to
see them in naturally occurring school choice.

* |n this environment, there’s no incentive not to
state preferences truthfully in the Boston
mechanism, even though it isn't a dominant
strategy. (So on this restricted domain, there’s
no corresponding benefit to compensate for the
cost of strategyproofness.)

* Boston stochastically dominates DA, even
though it doesn’t dominate it ex-post (ex post the

two mechanisms just redistribute who is 105
lINAsK<inned)



Recap: New questions raised by
school choice

* How to do tie breaking?

» Tradeoffs between Pareto optimality,
stability, strategy proofness—what are the

‘costs’ of each?

» Evaluating welfare from different points in
time

» Restricted domains of preferences?
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