
B Web Appendix: Proofs and extensions.

B.1 Proofs of results about block correlated markets.

This subsection provides proofs for Propositions A1, A2, A3 and A4, and the proof of Lemma

A1.

Proof of Proposition A1 (Equilibrium with no signals). Consider some agent preference

profile θ ∈ Θ. We will compare two strategies for firm f given its profile of preferences θf :

strategy σf of making an offer to its top worker, and strategy σ′f of making an offer to its

nth ranked worker, n > 1. We have σf (θ) = θ1
f ≡ w and σ′f (θ) = θnf ≡ wn. We will show that

for any anonymous strategies σ−f of opponent firms −f , these two strategies yield identical

probabilities of f being matched, so that f optimally makes its offer to its most preferred

worker. The proposition straightforwardly follows.

Denote a permutation that changes the ranks of w and wn in a firm preference list (or

profile of firm preference lists) as

ρ : (..., w, ..., wn, ...) −→ (..., wn, ..., w, ...).

We now construct preference profile θ′ ∈ Θ from θ as follows:

• firm f preferences are the same as in θ : θ′f = θf ,

• workers w and wn are exchanged in the preference lists of firms −f : ∀f ′ ∈ −f, we

have θ′f ′ = ρ(θf ′)

• worker w and worker wn preference profiles are exchanged: θ′w = θwn , θ′wn = θw, and

• θw′ = θ
′

w′ for any other w′ ∈ W \{w,wn}.

Define function mf : (Σw)W × (Σf )
F ×Θ→ R as the probability of firm f being matched as

a function of agent strategies and types. Since firm −f strategies are anonymous we have

σ−f (θ
′
−f ) = σ−f (ρ(θ−f )) = ρ (σ−f (θ−f ))

Therefore, the probability of firm f ′, f ′ ∈ −f, making an offer to worker w for profile θ

equals the probability of making an offer to worker wn for profile θ′. Moreover, since we

exchange worker w and wn preference lists for profile θ′, whenever it is optimal for worker

w to accept firm f offer for profile θ, it is optimal for worker wn to accept firm f ′s offer for

profile θ′. Therefore,

mf (σf , σ−f , θ) = mf (σ
′
f , σ−f , θ

′)
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In other words, given θf , for each θ−f there exists θ′−f such that the probability of f ’s

offer to θ1
f being accepted when opponent preferences are θ−f equals the probability of f ’s

offer to θnf being accepted when opponent preferences are θ′−f .
29 Moreover θ′−f is different

for different θ−f by construction. Since θ−f and θ′−f are equally likely, we have

Eθ−f
mf (σf , σ−f , θ | θf ) = Eθ−f

mf (σ
′
f , σ−f , θ | θf )

and

Eθmf (σf , σ−f , θ) = Eθmf (σ
′
f , σ−f , θ).

That is, the expected probability of getting a match from firm f ’s top choice equals the

expected probability of getting a match from firm f ’s nth ranked choice. Since the utility

from obtaining a top match is greater, the strategy of firm f of making an offer to its top

worker is optimal. �

Proof of Proposition A2 (Binary nature of firm optimal offer). Consider firm f from

some block Fb, b ∈ {1, ..., B} that has realized preference profile θ∗ ∈ Θf and that receives

signals from the set of workers WS ⊂ W . Denote worker Sf as w and select arbitrary other

worker w′ ∈ WS . We first prove that the expected payoff to f from making an offer to

worker w is strictly greater than the expected payoff from making an offer to worker w′.

We denote the strategies of firm f that correspond to these actions as σf (θ
∗,WS) = w and

σ′f (θ
∗,WS) = w′.

Workers use symmetric best-in-block strategies and firms have best-in-block beliefs.

Specifically, firm f believes that it is the top firm within block Fb in the preference lists

of workers w and w′. Denote the set of all possible agents’ profiles consistent with firm f

beliefs as30

Θ̄ ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS}

As in the proof of Proposition A1, we denote a permutation that changes the ranks of w

29In this context, θ−f is a preference profile for all agents – both workers and firms – other than f .
30For the case of one block of firms, firm f beliefs also exclude preference profiles where firm f is a top

firm for those workers that did not send signal to firm f.

Θ̄ ≡ {θ ∈ Θ | θf = θ∗, f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS , and f 6= maxθw
(f ′ ∈ Fb′) for each w ∈ W\WS}.

For simplicity, we assume that there are at least two blocks. All the derivations are also valid without change
for the case of one block.
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and w′ in a firm preference list (or profile of firm preference lists) as

ρ : (..., w, ...w′, ...)→ (..., w′, ...w, ...).

We now construct preference profile θ′ ∈ Θ from θ∗ as follows:

• firm f preferences are the same as in θ∗: θ′f = θ∗,

• workers w and w′ are exchanged in the preference lists of firms −f : ∀f ′ ∈ −f, we

have θ′f ′ = ρ(θf ′),

• worker w and worker w′ preference profiles are exchanged θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ′w0 .

Since firm f ’s preference list is unchanged and since w,w′∈ WS , profile θ′ belongs to Θ̄.

Since strategies of firms −f are anonymous, then for any f ′ ∈ −f and for any WS
f ′
⊂ W we

have

σf ′(ρ(θf ′), ρ(WSf ′)) = ρ
(
σf ′(θf ′ ,WSf ′)

)
.

Worker w and w′ send their signals to firm f under both profile θ and θ′. Therefore, they

do not send their signals to firms −f , i.e. ρ(WS
f ′

) =WS
f ′ . Since θ′f = ρ(θf ) we have

σf ′(θ
′
f ′ ,WSf ′) = ρ

(
σf ′(θf ′ ,WSf ′)

)
.

This means that the probability of firm f ′ making an offer to worker w for profile θ equals

the probability of making an offer to worker w′ for profile θ′. Moreover, since we exchange

worker w and w′ preference lists for profile θ′, whenever it is optimal for worker w to accept

firm f ′s offer under profile θ, it is optimal for worker w′ to accept an offer from firm f ′ under

profile θ′. Since firm types are independent, the probability of firm f being matched when

it uses strategy σf for profile θ equals the probability of firm f being matched when it uses

strategy σ′f for profile θ′ :

mf (σf , σ−f , θ) = mf (σ
′
f , σ−f , θ

′).

Therefore, for each θ ∈ Θ̄ there exists θ′ ∈ Θ̄ such that the probability that firm f

gets an offer from worker w equals the probability that firm f gets an offer from worker w′.

Moreover, profile θ′ is different for different θ by our construction. Since θ and θ′ are equally

likely,

Eθmf (σf , σ−f , θ | θ ∈ Θ̄) = Eθmf (σ
′
f , σ−f , θ | θ ∈ Θ̄).
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Therefore, the expected probability that firm f gets a match if it makes an offer to some

worker in WS is the same across all workers in WS. But within this set, a match with Sf

offers the greatest utility, so the expected payoff to f from making an offer to Sf is strictly

greater than the payoff from making an offer to any other worker in WS.

A similar construction is valid for the workers in set W\WS. That is, the probability

that firm f ’s offer is accepted is the same across all workers inW\WS. Hence, firm f prefers

making an offer to its most valuable worker, Tf , than to any other worker in W\WS.31 �

Proof of Proposition A3 (Optimality of Cutoff Strategies). If workers use best-in-block

strategies and firms have best-in-block beliefs, the optimal choice of firm f for each set of

received signals is either Sf or Tf (or some lottery between them) (see Proposition A2). In

light of this, we break the proof into two parts. First we show that the identities of workers

that have sent a signal to firm f influence neither the expected payoff of making an offer

to Sf nor the expected payoff of making an offer to Tf , conditional on the total number of

signals received by f remaining constant. Second we prove that if it is optimal for firm f

to choose Sf when it receives signals from some set of workers, then it still optimal for firm

f to choose Sf if the number of received signals does not change and Sf has a smaller rank

(Sf is more valuable to f).

Let us consider some firm f from block Fb, b ∈ {1, ..., B} and some realization θ∗ of its

preference list. Assume that it is optimal for firm f to make an offer to Sf if it receives a

set of signals WS ⊂ W . We want to show that if firm f receives the set of signals WS′ such

that Sf (θ
∗,WS) = Sf (θ

∗,WS′) and
∣∣WS′

∣∣ =
∣∣WS

∣∣, it is still optimal for firm f to make an

offer to Sf . For simplicity, we only consider the case when WS and WS′ differ only in one

signal. (The general case then follows straightforwardly.) That is, there exist worker w and

worker w′ such that w belongs to set WS, but not to set WS′ ; while w′ belongs to WS′ , but

not to WS. We consider two firm f strategies for realization of signals WS and WS′ .

σf (θ
∗, ·) = Sf (θ

∗, ·)
σ′f (θ

∗, ·) = Tf (θ
∗, ·).

We denote the set of possible agents’ profiles that are consistent with firm f having received

31It is certainly possible that Tf = Sf . In this case the statement of the proposition is still valid. Firm f
believes that it is Tf ’s top firm within block Fb and firm f prefers making an offer to Tf = Sf rather than
to any other worker in W.
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signals from WS and WS′ as32

Θ̄S ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS}

Θ̄S′ ≡ {θ ∈ Θ | θf = θ∗ and f = max
θw

(f ′ ∈ Fb′) for each w ∈ WS′}

correspondingly. We now construct a bijection between Θ̄S and Θ̄S′ . Denote a permutation

that changes the ranks of w and w′ in a firm preference profile as

ρ : (..., w, ...w′, ...) −→ (..., w′, ...w, ...).

For any profile θ ∈ Θ̄S we construct profile θ′ ∈ Θ as follows:

• firm f preferences are the same as in θ: θ′f = θ∗,

• the ranks of workers w and w′ are exchanged in the preference lists of firms −f :

∀f ′ ∈ −f, θ′f = ρ(θf ),

• the preference lists of worker w and worker w′ are exchanged: θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ
′

w0 .

Since this construction leaves the preference list of firm f unchanged, and since workers w

and w′ swap preference lists, we have that if θ ∈ Θ̄S, then θ′ ∈ Θ̄S′ . By construction, profile

θ′ is different for different θ. Finally, since the cardinality of sets Θ̄S and Θ̄S′ are the same,

the above correspondence is a bijection.

Since firm −f strategies are anonymous, for any f ′ ∈ −f and WS
f ′ ⊂ W

σf ′(ρ(θf ′), ρ(WS
f ′)) = ρ

(
σf ′(θf ′ ,WS

f ′)
)
.

This means that the probability of firm f ′ making an offer to worker w for any profile θ

equals the probability of firm f ′ making an offer to worker w′ for corresponding profile θ′.

Moreover, since we exchange worker w and w′ preference lists for profile θ′, whenever it is

optimal for worker w to accept firm f offer for profile θ, it is optimal for worker w′ to accept

firm f ′s offer for profile θ′. Since firms types are independent, the probability of firm f being

matched when it uses strategy σf (θ
∗, ·) for profile θ equals the probability of firm f being

matched when it uses strategy σf (θ
∗, ·) for profile θ′:

mf (σf , σ−f , θ) = mf (σf , σ−f , θ
′).

32See footnote 30 for the definition of firm beliefs for the case of one block.
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Similarly, for strategy σ′f (θ
∗, ·) we have

mf (σ
′
f , σ−f , θ) = mf (σ

′
f , σ−f , θ

′).

Since our construction is a bijection between Θ̄S and Θ̄S′ , and since θ and θ′ are equally

likely, we have

Eθmf (σf , σ−f , θ | θ ∈ Θ̄S) = Eθmf (σf , σ−f , θ
′ | θ′ ∈ Θ̄S′)

Eθmf (σ
′
f , σ−f , θ | θ ∈ Θ̄S) = Eθmf (σ

′
f , σ−f , θ

′ | θ′ ∈ Θ̄S′).

Therefore, if firm f optimally makes an offer to Sf (Tf ) when it has received set of signals

WS, it also should optimally make an offer to Sf (Tf ), which is the same worker, for the set

of signals WS′ .

We now prove that if firm f optimally chooses Sf (θ
∗,WS) when it receives signals from

WS, then it should still optimally choose Sf (θ
∗,WS′) for set of signalsWS′ , if the number of

received signals is the same
∣∣WS′

∣∣ =
∣∣WS

∣∣ and Sf (θ
∗,WS′) has a smaller rank, that is, when

the signaling worker is more valuable to f . We consider set WS′ that differs from WS only

in the best (for firm f) worker and the difference between the ranks of top signaled workers

equals one. (The general case follows straightforwardly.) That is,

w ∈ WS/Sf (θ
∗,WS)⇔ w ∈ WS′/Sf (θ

∗,WS′) and

rankf (Sf (θ
∗,WS′)) = rankf (Sf (θ

∗,WS))− 1.

The construction in the first part of the proof works again in this case. Using sets of

profiles and a correspondence similar to the one above, we can show that the probabilities

of firm f being matched with Sf (Tf ) are the same for WS and WS′ . Observe that if firm

f ’s offer to Tf is accepted, naturally firm f gets the same payoff for sets WS and WS′ . If

firm f ’s offer to Sf is accepted, firm f gets strictly greater payoff for set WS′ compared to

set WS, because by definition Sf (θ
∗,WS′) has smaller rank than Sf (θ

∗,WS). Hence, if it is

optimal for firm f to make an offer to Sf (θ
∗,WS) when it receives set of signals WS, it is

optimal for firm f to make an offer to Sf (θ
∗,WS′) when firm f receives set of signals WS′ .

Combined, the two statements we have just proved allow us to conclude that if firms

−f use anonymous strategies, firm f ’s optimal strategy can be represented as some cutoff

strategy.33 �

33Note that there can be other optimal strategies. If firm f is indifferent between making an offer to Sf
and making an offer to Tf for some set of signals, firm f could optimally make its offer to Sf or to Tf
for any set of signals conditional on maintaining the same rank of the most preferred signaling worker and
cardinality of signals received.
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Proof of Proposition A4 (Strategic complements under block correlation). Consider some

firm f from some block Fb, b ∈ {1, ..., B}. We consider two strategy profiles, σ−f and σ′−f ,

for firms −f that vary only in the strategy for firm f ′ . For simplicity, we assume that σ′f ′

differs from σf ′ only for some profile θ̄f ′ and some set of received signals WS
f ′

σf ′(θ̄f ′ ,WS
f ′) = αSf ′ + (1− α)Tf ′

σ′f ′(θ̄f ′ ,WS
f ′) = α′Sf ′ + (1− α′)Tf ′

such that α′ > α. Formally, this means σ′f is not a cutoff strategy, because a cutoff strategy

requires the same behavior for any profile of preferences (anonymity) when firms receive

the same number of signals. We will prove the statement using our simplifying assumption

about strategies for firms −f , and the extension to the full proposition follows from iterated

application of this result.

Consider some realized firm f preference profile θ∗f ∈ Θ and some set of signalsWS ⊂ W .

We want to show that firm f ’s payoff from making an offer to Tf (weakly) decreases whereas

firm f ’s payoff from making an offer to Sf (weakly) increases when firm f ′ responds more

to signals, i.e. plays strategy σ′f ′ instead of σf ′ . That is,

I) Eθ(πf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(πf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS)

II) Eθ(πf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(πf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

Since firm f ’s offer can only be either accepted or declined, the above statements are equiv-

alent to

I) Eθ(mf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(mf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS)

II) Eθ(mf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(mf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

That is, we wish to show that the probability of being matched to Tf weakly decreases, and

the probability of being matched to Sf weakly increases.

We first prove I) first. Define the sets of agent profiles that lead to the increase and

decrease in the probability of getting a match given the change in firm f ′ strategy as

Θ̄+ ≡ {θ ∈ Θ | θf = θ∗f ,WS
f =WS and mf (Tf , σ−f , θ) < mf (Tf , σ

′
−f , θ)}

Θ̄− ≡ {θ ∈ Θ | θf = θ∗f ,WS
f =WS and mf (Tf , σ−f , θ) > mf (Tf , σ

′
−f , θ)}

correspondingly. If set Θ̄+ is empty, the statement has been proved. Otherwise, select

arbitrary θ ∈ Θ̄+ and denote Tf ≡ w. Since in this case, f ′’s strategy change pivotally reduces
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competition to f ’s offer to w, we must have Tf ′(θ̄f ′ ,WS
f ′) = w and Sf ′(θ̄f ′ ,WS

f ′) = w′ 6= w,

and

σf ′(θ̄f ′ ,WS
f ′) = αw′ + (1− α)w

σ′f ′(θ̄f ′ ,WS
f ′) = α′w′ + (1− α′)w.

Note that it cannot be that firm f is from a higher ranked block than firm f ′ , i.e. f ′ ∈ Fb′
where b′ > b. If f were from a higher ranked block, an offer from firm f ′ is always worse

than the offer of firm f and could not influence the probability that firm f obtains a match.

Therefore, firm f is from a block that is weakly worse than Fb′ , i.e. b′ ≤ b.

Note that under θ, worker w has sent a signal neither to firm f nor to firm f ′. This will

allow us to construct element θ′ ∈ Θ̄−. Consider a permutation that changes the ranks of w

and w′ in a firm preference profile

ρ : (..., w, ...w′, ...) −→ (..., w′, ...w, ...).

For any profile θ ∈ Θ̄+ we construct profile θ′ ∈ Θ as follows:

• θ′f = θ∗f

• the ranks of workers w and w′ are exchanged in the preference lists of firms −f : for

each firm f ′ ∈ −f, θ′f ′ = ρ(θf ′)

• worker w and worker w′ preference profiles are exchanged: θ′w = θw′ , θ
′
w′ = θw, and

• for any other w0 ∈ W\{w,w′}, θw0 = θ
′

w0 .

Note that under θ and θ′, firm f has the same preferences θ∗f and receives the same set of

signals.

Since firm strategies are anonymous we have that

σf ′(θ
′
f ′ ,WS′

f ′ ) = σf ′(ρ(θf ′), ρ(WS
f ′)) (by our construction)

= αρ(w′) + (1− α)ρ(w) (by anonymity)

= αw + (1− α)w′

and similarly

σ′f ′(θ
′
f ′ ,WS′

f ′ ) = α′w + (1− α′)w′.

We will now argue that θ′ ∈ Θ̄−. Since θ ∈ Θ̄+, the strategy change for firm f ′ reduces

the likelihood of firm f being matched with worker w (when f makes Tf an offer under
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profile θ). Under profile θ′, firm f ′ makes an offer to worker w more frequently when using

strategy σ′f ′ rather than σf ′ . Furthermore, worker w prefers firm f ′ to firm f under profile

θ′. (We have already shown that f ′ cannot be in a lower ranked block than f . If firm f ′ is

in a higher ranked block Fb′ , b > b′, worker w always prefers firm f ′ to firm f . If firm f and

firm f ′ are from the same block, b = b′, worker w prefers f to f ′, since worker w sends a

signal to firm f ′ under profile θ′).

To finish our proof, we must also investigate the behavior of a firm that receives worker

w’s signal for profile θ, say firm fy. If firm fy makes an offer to worker w for profile θ, since

the change of firm f ′ strategy changes firm f ’s payoff, firm fy must be lower ranked than

both firms f and f ′ in worker w’s preferences. Hence, firm fy’s offer cannot change the

action of worker w. If worker w′ sends her signal to firm fy then firm fy either makes an

offer to worker w′ or to worker Tfy , which are both different from worker w.

Hence, firm fy does not influence the behavior of the agents in question, and the overall

probability that firm f ’s offer to worker w is accepted is smaller when firm f ′ uses strategy

σ′f ′ rather than σf ′ . That is, θ′ ∈ Θ̄−.

Note that the above construction gives different profiles in Θ̄+ for different profiles of Θ̄−.

Hence, our construction is an injective function from Θ̄+ to Θ̄−, so
∣∣Θ̄−∣∣ > ∣∣Θ̄+

∣∣.34 Since

profiles θ and θ′ are equally likely, we have

Eθ(mf (Tf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≥ Eθ(mf (Tf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

We now prove inequality II). That is, we will show that if firm f ′ responds more to

signals, the probability of firm f being matched to Sf (upon making Sf an offer) weakly

increases. If firm f, f ∈ Fb, receives a signal from worker w it believes it is the best firm in

block Fb according to worker w’s preferences. That is, worker w prefers the offer of firm f

to an offer from any other firm f ′ from any block Fb′ with b′ ≥ b. Therefore, the change of

the behavior of any firm f ′ from block Fb′ , b′ ≥ b, does not influence firm f ’s payoff.

If we consider some firm f ′ from group Fb′ , b′ < b, it can draw away worker w’s offer

from firm f only if it makes an offer to worker w. However, firm f ′ makes an offer to worker

w, conditionally on firm f receiving a signal from worker w, only when worker w is Tf ′ .

However, if firm f ′ responds more to signals, it makes an offer to its Tf more rarely. This

means that firm f ′ draws worker w away from firm f less often. Therefore, the probability

that firm f ’s offer is accepted by Sf increases:

Eθ(mf (Sf , σ−f , θ) | θf = θ∗f ,WS
f =WS) ≤ Eθ(mf (Sf , σ

′
−f , θ) | θf = θ∗f ,WS

f =WS).

34One may show by example that this is not, in general, a bijection.
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As a corollary of I) and II), if firm f ′ increases its cutoff point for some set of signals,

firm f will also optimally (weakly) increase its cutoff points. The above logic is valid for the

change of cutoff points for any set of signals of the same size and any profile of preferences,

so the statement of the proposition immediately follows. �

Proof of Lemma A1. We prove the first statement first. Let us consider firm f cutoff

strategies σf and σ′f such that σ′f has weakly greater cutoffs. We consider two sets of

preference profiles

Θ̄+ ≡ {θ ∈ Θ | m(σf , σ−f , θ) < m(σ′f , σ−f , θ)}
Θ̄− ≡ {θ ∈ Θ | m(σf , σ−f , θ) > m(σ′f , σ−f , θ)}.

For each profile θ from set Θ+, it must be the case that without firm f ’s offer, Tf has an

offer from another firm and worker Sf does not:

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = 1. (B.1.1)

Similarly, if profile θ is from set Θ−, it must be the case that without firm f offer, Sf has

an offer from another firm, and Tf does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = −1. (B.1.2)

We will now show that |Θ̄+| ≥ |Θ̄−|. Equations (B.1.1) and (B.1.2), along with the fact

that each θ ∈ Θ+ ∪Θ− occurs equally likely, will then be enough to prove the result.

Let us denote Tf = w′ and Sf = w. We construct function ψ : Θ → Θ as follows. Let

ψ(θ) be the profile in which workers have preferences as in θ, but firms −f all swap the

positions of workers w′ and w in their preference lists. If profile θ belongs to Θ̄−, without

firm f ’s offer, worker w has an offer from another firm, and worker w′ does not. Therefore,

when preferences are ψ(θ), without firm f ’s offer the following two statements must be true:

i) worker w′ must have another offer and ii) worker w cannot have another offer.

To see i), note that under θ, worker w sends a signal to firm f , so his outside offer must

come from some firm f ′ who has ranked him first. Under profile ψ(θ), firm f ′ ranks worker

w′ first. If worker w′ has not sent a signal to firm f ′, then by anonymity, w′ gets the offer of

firm f ′. If worker w′ has signaled to firm f ′, worker w′ again gets firm f ′’s offer.

To see ii), suppose to the contrary that under ψ(θ), worker w does in fact receive an offer

from some firm f ′ 6= f . Since worker w sends a signal to firm f , worker w must be Tf ′ under

ψ(θ), so that worker w′ is Tf ′ under θ. But then by anonymity w′ receives the offer of firm

f ′ under θ, a contradiction.
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From i) and ii), we have

θ ∈ Θ̄− ⇒ ψ(θ) ∈ Θ̄+.

Since function ψ is injective, we have |Θ̄+| ≥ |Θ̄−|.
In order to prove the second statement note that the expected number of matches of each

worker increases when firm f responds more to signals. Using the construction presented

above, one can show that whenever worker w “loses” a match with firm f for profile θ

(worker w is Tf ) it is possible to construct profile θ′ when worker w obtains a match (worker

w is Sf ). The function that matches these profiles is again injective. Moreover, worker w

values more greatly the match with firm f when she has signaled it (Sf ) rather when she is

simply highest ranked (Tf ). Therefore, the ex-ante utility of worker w increases when firm

f responds more to signals. �

B.2 Market Structure and the Value of a Signaling Mechanism —

Proofs and Extensions

This set of results pertains to Section 7: Market Structure and the Value of a Signaling

Mechanism. In this section, we denote as u(j) the utility of a firm from matching with its

jth ranked worker.

The first proposition states that when preferences over workers are sufficiently flat, then

in any non-babbling equilibrium firms always respond to signals.

Proposition B1. Under the assumption that

u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1) (B.2.1)

there is a unique non-babbling equilibrium in the offer game with signals. Each worker sends

her signal to her top firm. Each firm f makes an offer to Sf if it receives at least one signal;

otherwise, firm f makes an offer to Tf .

Proof. We will show that under condition (B.2.1) even if Sf is the worst ranked worker

in firm f preferences, firm f still optimally makes her an offer.

Proposition 2 shows that if firms −f respond more to signals, i.e. increase their cutoffs, it

is also optimal for firm f to respond more to signals. Therefore, if firm f optimally responds

to signals when no other firm does, it will certainly optimally respond to signals when other

firms respond. Hence, it will be enough to consider the incentives of firm f when firms −f
do not respond to signals and always make an offer their top ranked workers.

Let us consider some realized profile of preferences of firm f and denote Tf as w. If firms

−f do not respond to signals, then some firm among −f makes an offer to worker w with
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probability q = 1
W

. Therefore, the probability that the offer of firm f to worker w is accepted

equals

(1− q)F−1 + ...+ Cj
F−1q

j (1− q)F−1−j 1
j+1

+ ...+ qF−1 1
F

(B.2.2)

where Cy
x = x!

y!(x−y)!
. Intuitively, j firms among the other F − 1 firms simultaneously make

an offer to worker w with probability Cj
F−1q

j(1− q)F−1−j. Therefore, firm f is matched with

worker w only with probability 1
j+1

because worker w’s preferences are uniformly distributed.

The sum over all possible j from 0 to F − 1 gives us the overall probability of firm f ’s offer

being accepted. We can simplify this expression as follows:

∑F−1

j=0
Cj
F−1q

j (1− q)F−1−j 1
j+1

(B.2.3)

=
∑F−1

j=0

(F−1)!
j!(F−1−j)!q

j (1− q)F−1−j 1
j+1

(B.2.4)

=
∑F−1

j=0

1
Fq

F !
(j+1)!(F−(1+j))!

qj+1 (1− q)F−(1+j) (B.2.5)

= 1
Fq

∑F

j=1

F !
j!(F−j)!q

j (1− q)F−j (B.2.6)

= 1
Fq

(∑F

j=0

F !
j!(F−j)!q

j (1− q)F−j − (1− q)F
)

(B.2.7)

= 1
Fq

(
1− (1− q)F

)
= W

F

(
1−

(
1− 1

W

)F)
. (B.2.8)

Alternatively, if firm f makes an offer to its top signaling worker, its offer is accepted

with probability one. Therefore, it is optimal for the firm to make an offer to the signaling

worker only if u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1). We conclude that under assumption B.2.1

there is no other non-babbling symmetric equilibrium in the offer game with signals. �

The following proposition characterizes equilibria in the multi-period offer game.

Proposition B2. Consider the following assumptions on agent utility functions and the

discount factor.

u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1)

u(W ) > δu(1), v(W ) > δv(1)

Then

1. There is a unique symmetric sequential equilibrium in the offer game with no signals

and L periods of interaction: each firm makes an offer to its most preferred worker

and each worker accepts its best offer in each period.

2. There is a unique symmetric, sequential, non-babbling (in each period) equilibrium in
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the offer game with signals and L periods of interaction: In period 0, each worker sends

her signal to her most preferred firm. In periods l = 1, ..., L, each firm makes an offer

at to its top signaling worker among workers remaining in the market; otherwise the

firm makes an offer to its top ranked worker among those in the market. Each worker

accepts the best available offer in each period.

Proof. Consider the offer game with no signals and L periods of interaction. We will

apply backward induction, examining first the final stage of the game. Since the final stage

of the game is identical to a one period offer game with no signals, in the unique symmetric

equilibrium of the subgame, each firm makes an offer to its top ranked worker and each

worker accepts best available offer.

Assumptions u(W ) > δu(1) and v(W ) > δv(1) guarantee that there is no incentive to

hold offers or make dynamically strategic offers. Since firms −f use symmetric anonymous

strategies at stage L− 1 and stage L, the only optimal strategy of firm f at stage L− 1 is

to make an offer to Tf . Each worker who receives at least one offer in stage L− 1 optimally

accepts the best available offer immediately. Similar logic applies to the other stages.

Now consider the offer game with signals and L periods of interaction. The symmetry

of the strategies of workers −w and the anonymity of firm strategies guarantee that the

equilibrium probability that a firm makes an offer to worker w (across any of the L periods)

conditional on receiving a signal from w (and also conditional on not receiving her signal) is

the same for all firms. Therefore, workers optimally send their signals to their most preferred

firm in period 0.

Observe that signals play a meaningful role for firms only in the first period. Since

u(W ) > δu(1) and u(W ) > W
F

(
1−

(
1− 1

W

)F)
u(1), each firm f makes a period 1 offer to

Sf if it received at least one signal. Since v(W ) > δv(1), workers accept the best available

offers immediately. In period 2, each remaining firm either received no signals or else saw its

offers rejected in period 1. Thereafter firm offers to their most preferred remaining workers

prevail, as the logic of backward induction in the offer game with no signals and many periods

applies to periods 2 through L. �

Proof of Proposition 5. We first calculate an explicit formula for the increase in the

expected number of matches from the introduction of the signaling mechanism.

Lemma B1. Consider a market with W workers and F > 2 firms. The expected number of

matches in the offer game with no signals equals

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
. (B.2.9)
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The expected number of matches in the offer game with signals equals

mS(F,W ) = F

 1− (F−1
F

)W + W (F−1)2W−2

FW (F−2)W−1

(
1− F−1

W

(
1− (F−2

F−1
)W
))
∗

∗
(

1−
(
1− 1

W
(F−2
F−1

)W−1
)F−1

)  . (B.2.10)

Proof of Lemma B1. Let us first calculate the expected number of matches in the pure

coordination game with no signals. Proposition A1 establishes that the unique symmetric

non-babbling equilibrium when agents use anonymous strategies is as follows. Each firm

makes an offer to its top worker and each worker accepts the best offer among those available.

We have already calculated the probability of firm f being matched to its top worker in

Proposition B1. The probability of this event is

W
F

(
1−

(
1− 1

W

)F)
.Therefore, the expected total number of matches in the game with no signals equals

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
(B.2.11)

Let us now calculate the expected number of matches in the offer game with signals.

Proposition B1 derives agent strategies in the unique symmetric non-babbling equilibrium

in the pure coordination game with signals. Each worker sends her signal to her top firm

and each firm makes its offer to its top signaling worker if it receives at least one signal,

otherwise it makes an offer to its top ranked worker.

We first calculate ex-ante probability of being matched by some firm f. We denote the

set of workers that send her signal to firm f as WS
f ⊂ W . If firm f receives at least one

signal, |WS
f | > 0, it is guaranteed a match because each worker sends her signal to her top

firm. If firm f receives no signals, it makes an offer to its top ranked worker Tf . This worker

accepts firm f ’s offer only if this offer is the best one among those she receives. Let us denote

the probability that Tf accepts firm f ′s offer (under the condition that firm f receives no

signals) as

PTf ,|WS
f |=0 ≡ P (Tf accepts firm f ′s offer|

∣∣WS
f

∣∣ = 0).

The ex-ante probability that firm f is matched then equals

Prob matchf (F,W ) = P (|WS
f | > 0) ∗ 1 + P (|WS

f | = 0) ∗ PTf ,|WS
f |=0. (B.2.12)

If firm f receives no signals, |WS
f | = 0, it makes an offer to Tf , which we will call worker
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w. Worker w receives an offer from its top ranked firm, say firm f0, conditional on firm f

receiving no signals, |WS
f | = 0, with probability equal to

G = P (|WS
f0
| = 1||WS

f | = 0) ∗ 1 + ...+ P (|WS
f0
| = W ||WS

f | = 0) ∗ 1
W

(B.2.13)

=
∑W−1

j=0
Cj
W−1

(
1

F−1

)j
(1− 1

F−1
)W−j−1 1

j+1
. (B.2.14)

Intuitively, firm f0 receives a signal from a particular worker with probability 1
F−1

(note that

firm f receives no signals). Then, if firm f0 receives signals from j other workers, worker

w receives an offer from firm f0 with probability 1
j+1

. Similarly to equation (B.2.3) the

expression for G simplifies to

G = F−1
W

(
1− (1− 1

F−1
)W
)
. (B.2.15)

Firm f can be matched with worker w only if worker w does not receive an offer from its

top firm, which happens with probability 1−G. If worker w does not receive an offer from

her top firm − firm f0 − firm f competes with other firms that have received no signals

from workers. The probability that some firm f ′ among firms F\{f, f0} receives no signals

conditional on the fact that worker w sends her signal to firm f0 and firm f receives no

signals (|WS
f | = 0) equals r = (1− 1

F−1
)W−1. Note that the probability that firm f ′ does not

receive a signal from a worker equals 1− 1
F−1

, because firm f receives no signals. There are

also only W − 1 workers that can send a signal to firm f ′, because worker w sends her signal

to firm f0.

Therefore, the probability that some firm f ′ among firms F\{f, f0} receives no signals

and makes an offer to worker w, conditional on the fact that worker w sends her signal to

firm f0, equals r
W

. Therefore, the probability that worker w prefers the offer of firm f to

other offers (conditional on the fact that firm f receives no signals and worker w sends her

signal to firm f0) equals35

∑F−2

j=0
Cj
F−2

(
r
W

)j
(1− r

W
)F−2−j 1

j+1
= W

(F−1)r

(
1−

(
1− r

W

)F−1
)
. (B.2.16)

The probability that worker w accepts firm f ′s offer then equals

PTf ,|WS
f |=0 = (1−G)

(
W

(F−1)r

(
1−

(
1− r

W

)F−1
))

.

Taking into account that firm f receives no signals with probability P (|WS
f | = 0) = (1− 1

F
)W ,

35Note that the maximum number of offers worker w could get equals to M − 1 as it does not receive an
offer from its top firm f0.
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the probability of firm f being matched in the offer game with signals is then

Prob matchf (F,W ) = 1− (1− 1
F

)W + (1− 1
F

)W ∗ PTf ,|WS
f |=0

= 1− (1− 1
F

)W + (1− 1
F

)W W
(F−1)r

∗ (B.2.17)(
1− F−1

W

(
1− (1− 1

F−1
)W
))
∗
(

1−
(
1− r

W

)F−1
)

where r = (1 − 1
F−1

)W−1. The expected total number of matches in the offer game with

signals equals mS(F,W ) = F ∗ Prob matchf (F,W ). �

Lemma B1 establishes the expected total number of matches in the offer game with and

without signals. Let us first fix W and calculate where the increase in the expected number

of matches from the introduction of the signaling mechanism, V (F,W ) = mS(F,W ) −
mNS(F,W ), attains its maximum. In order to obtain the proposition, we consider large

markets (markets where the number of firms and the number of workers are large) and we

use Taylor’s expansion formula:

(1− a)b = exp(−ab+O(a2b)). (B.2.18)

where O(a2b) is a function that is smaller than a constant for large values of a2b. Setting x ≡
F
W
, the expected number of matches in the offer game with no signals can be approximated

as

mNS(F,W ) = W
(

1−
(
1− 1

W

)F)
= W (1− e−x+O(x/W )).

Let us now consider the expected number of matches in the offer game with signals.

Using the result of Lemma B1 we get

mS(F,W ) = Wx
(

1− e−1/x+O(1/(x2W )) + A ∗B
)

where

A =
(
1− F−1

W

(
1− (F−2

F−1
)W
))

and

B = W (F−1)2W−2

FW (F−2)W−1

(
1−

(
1− 1

w
(F−2
F−1

)W−1
)F−1

)
.

We first calculate an approximation of A for large markets. Using (B.2.18) we have that

1− (1− 1
F−1

)W = 1− e−x+O(1/(x2W ))
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and

A = 1− x
(

1− e−1/x+O(1/(x2W ))
)

+O(1/ (xW )).

We now calculate an approximation of B for large markets:

W (F−1)2W−2

FW (F−2)W−1 = W
F

(
F−1
F

)W−1 (F−1
F−2

)W−1

= 1
x
e−(W−1)/F+O(1/(x2W ))e(W−1)/(F−1)+O(1/(x2W ))

= 1
x
eO(1/(x2W )).

Also, we have that (
1−

(
1− Z

W

)F−1
)

= 1− e−Z(F−1)/W+O(x/W )

= 1− e−Zx+O(x/W )

where Z = (F−2
F−1

)W−1 = e−1/x+O(1/(x2W )). Finally, we have

B = W (F−1)2W−2

FW (F−2)W−1 ∗
(

1−
(
1− 1

W
(F−2
F−1

)W−1
)F−1

)
= 1

x
eO(1/(x2W ))(1− e−xe−1/x+O(x/W )).

Putting it all together, we have

V (F,W ) = Wx

(
1− e−1/x+O(1/W ) +

(
1− x

(
1− e−1/x+O(1/W )

)
+O(1/W )

)
∗

∗ 1
x
eO(1/W )(1− e−xe−1/x+O(1/W ))

)
−

−W (1− e−x+O(1/W ))

= W
(
x− xe−1/x +

(
1− x

(
1− e−1/x

))
(1− e−xe−1/x

)− 1 + e−x
)

+O(1)

= Wα(x) +O(1)

where α(x) is a positive quasi-concave function that attains maximum at x0 ' 1.012113.

Therefore, for fixed W , V (F,W ) attains its maximum value at F = x0W +O(1).

Similar to the previous derivation, we can fix F and calculate the value of W where
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V (F,W ) attains its maximum:

V (F,W ) = F

(
1− e−1/x+O(1/W ) +

(
1− x

(
1− e−1/x+O(1/W )

)
+O(1/W )

)
∗ 1
x
eO(1/W )(1− e−xe−1/x+O(1/W ))

)
−F

x
(1− e−x+O(1/F ))

= F
(

1− e−1/x +
(
1− x

(
1− e−1/x

))
1
x
(1− e−xe−1/x

)− 1
x

(
1− e−x

))
+O(1)

= Fβ(x) +O(1)

where β(x) is a positive quasi-concave function that attains maximum at x00 ' 0.53074.

Therefore, for fixed F , V (F,W ) attains its maximum value at W = y0F + O(1), where

y0 = 1/x00 = 1.8842. �

B.3 Extension: Signaling with Many Positions and Many Signals

In this section we consider a model of matching markets in a symmetric environment that is

similar to the one in Sections 3 and 4. The difference is that each firm now has the capacity

to hire up to L workers, and each worker may send up to K identical costless private signals.

We assume that the number of signals each worker may send is less than the number of

firms, K < F, and each worker can send at most one signal to a particular firm.

We assume that firm utilities are additive, i.e. firm f with preferences θf over individual

workers values a match with a subset of workers W0 ⊂ W as u(θf ,W0) =
∑

w∈W0
u(θf , w),

where u(θf , ·) is a von-Neumann Morgenstern utility function. Worker w with preference

list θw values a match with firm f as v(θw, f). We keep all assumptions of Sections 3 and 4

regarding agent utilities u(·, ·) and v(·, ·).
The timing and strategies of agents of the offer game without signals can be adopted

from Section 3:

1. Agents’ preferences are realized. In the case of a signaling mechanism, each worker

sends up to K private, identical, costless signals to firms. Signals are sent simultane-

ously, and are observed only by firms who have received them.

2. Each firm makes an offer to at most L workers; offers are made simultaneously.

3. Each worker accepts at most one offer from the set of offers she receives.

Once again, sequential rationality ensures that workers will always select the best available

offer. Hence, we take this behavior for workers as given and focus on the reduced game

consisting of the first two stages.
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A mixed strategy for worker w when deciding wether and to whom to send signals is a

map from the set of all possible preference lists to the set of distributions over subsets of

firms of size K or less that we denote as ∆(2FK), i.e. σw : Θw → ∆(2FK). Similarly, a mixed

strategy of firm f is a map from the set of all possible preference lists, Θf , and the set of

all possible combinations of received signals, 2W , to the set of distributions over subsets of

workers of size L or less, which we denote as ∆(2WL). That is, σf : Θf × 2W → ∆(2WL).

Preferences of both firms and workers are independently and uniformly chosen from all

possible preference orderings. Similarly to Sections 3 and 4 we define σW , σF , Σw,Σf , πw, and

πf . The definition of sequential equilibrium and anonymous strategies can also be adopted

in an analagous manner.

We first consider an offer game without signals. If firms use anonymous strategies, the

chances of hiring any worker, conditional on making her an offer, are the same. Therefore,

each firm optimally makes its offers to the L highest-ranked workers on its preference list.

This is the unique symmetric equilibrium of the offer game without signals when firms use

anonymous strategies (see Proposition B4).

We now turn to the analysis of the offer game with signals. In any symmetric equilibrium

in which workers send signals and signals are interpreted as a sign of interest by firms and

hence increase the chance of receiving an offer, each worker sends her K signals to her K

most preferred firms (see Proposition B5). As in the case of one signal and each firm only

having one position, we pin down the behavior of workers in equilibrium: workers send their

signals to their highest ranked firms, and workers accept the best available offer. We now

examine offers of firms in the second stage of the game, taking the strategies of workers and

beliefs of firms about interpreting signals as given.36

In Section 4 each worker could send up to one signal, and each firm had L = 1 positions

to fill. Then, when all other firms used anonymous strategies, firm f decided between making

an offer to f ’s most preferred worker Tf (or T 1
f ) and f ’s most preferred worker in the subset of

signaled workers Sf (or S1
f ). Now, when all other firms use anonymous strategies, firm f can

make up to L offers. When deciding whom to make the first offer, firm f , once more, decides

between the most preferred worker Tf (or T 1
f ) and the most prefered worker among those

who sent a signal Sf (or S1
f ) where that decision may depend on the total number of signals

received. So, if firm f received |WS| signals and uses a cutoff strategy with corresponding

cutoff j|WS |, then f makes an offer to S1
f if and only if the rank of S1

f is lower or equal than

j|WS |. If firm f made an offer to S1
f , then, for the second position, the firm decides between

36Note that in any non-babbling symmetric equilibrium, all information sets for firms are realized with
positive probability. Hence, the beliefs of firms are determined by Bayes’ Law: if a firm receives a signal
from a worker, it believes that it is on of the kth top firms, k ∈ {1, ...,K}, in the workers’ preference list and
the probability of having rank k is identical across ranks {1, ...,K}.
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T 1
f and S2

f the most preferred worker among those that sent a signal to whom firm f has not

made an offer yet. Furthermore, firm f will use the same cutoff strategy as before: Firm f

still received |WS| signals and hence will make an offer to S2
f compared to T 1

f if and only if

the rank of S1
f is lower than j|WS |.

If the firm made its first offer to T 1
f , then for the second offer, firm f decides between T 2

f

and S1
f , where f can use a new cutoff strategy, since the alternative to a signaling worker

is now T 2
f , the overall second most preferred worker, and not T 2

f . We can show that in

equilibrium, the cutoff for T 2
f will be greater than for T 1

f for any number if received signals

(see Proposition B6). We can now define the notion of cutoff strategies for this setting.

Definition B1 (Cutoff Strategies in Case of Many Positions and Multiple Signals). Strategy

σf is a cutoff strategy for firm f if there are L vectors J l = (jl1, ..., j
l
W ), l = 1, ..., L such that

for any θf ∈ Θf and any setWS of workers who sent a signal to firm f we have the following:

For any number m of offers already made, let the most preferred worker to whom firm f

has not yet made an offer be T rf of rank 1 ≤ r < L and let the most preferred worker who

sent a signal and to whom f has not yet made an offer be Sqf of rank 1 ≤ q < L, where

m = q + r − 2. Then firm f makes its next offer to{
Sqf if rankθf

(Sqf ) ≤ jr|WS |

T rf otherwise.

We call (J1, . . . , JL) a cutoff matrix that has cutoff vectors for each of the top L ranked

workers as its components. Note that the probability of a firm’s offer being accepted by

any worker who has signaled to it is the same as in a symmetric equilibrium. Similarly, the

probability of a firm’s offer being accepted by any worker who has not signaled to the firm

is also the same across such workers (see Lemma B2).

Using an argument similar to the case of one position and one signal, we show that

cutoff strategies are optimal strategies for firms (see Proposition B7). We can also impose

a partial order on the cutoff strategies as in Section 4. However, strategies of firms are no

longer necessarily strategic complements. When other firms respond more to signals, this

decreases the payoff from making an offer to both workers who have and workers who have

not signaled to the firm. This is because receiving a signal does not guarantee acceptance in

case an offer is tendered to that worker. We can, however, assure the existence of symmetric

mixed strategy equilibrium.

Theorem B1 (Equilibrium Existence). There exists a symmetric equilibrium of the offer

game with signals where 1) workers send their signals to top K firms, and 2) firms play

symmetric cutoff strategies.
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We now address the welfare implications from the introduction of a signaling mechanism.

Proposition B3 and Theorem B2 formally restate our welfare results from previous chapters

for the case when firms have many positions and workers can send multiple signals. The

logic of their proofs again begins with an incremental approach: we first study the effect of

a single firm increasing its cutoff, that is, responding more to signals. We then rank various

signaling equilibria in terms of their outcomes. Finally, we show how the introduction of a

signaling mechanism impacts our three measures of welfare.

Proposition B3 (Welfare Across Equilibria). Consider any two symmetric cutoff strategy

equilibria where in one equilibrium firms have greater cutoffs. Compared to the equilibrium

with lower cutoffs, in the equilibrium with greater cutoffs we have the following:

• the expected number of matches is weakly greater,

• workers have weakly higher expected payoffs, and

• firms have weakly lower expected payoffs.

Theorem B2 (Welfare Impact of a Signaling Mechanism). Consider any non-babbling sym-

metric equilibrium of the offer game with signals. Then the following three statements hold.

i. The expected number of matches is strictly greater than in the unique equilibrium of

the offer game with no signals.

ii. The expected welfare of workers is strictly greater than in the unique equilibrium of the

offer game with no signals.

iii. The welfare of firms may be greater or smaller than in the unique equilibrium of the

offer game with no signals.

Proofs: Signaling with Many Positions and Many Signals

In addition to providing proofs for the above results, this section introduces Propositions

B4-B7 and Lemma B2 which help establish the main findings.

Proposition B4. The unique equilibrium of the offer game with no signals when firms use

anonymous strategies and workers accept the best available offer is σf (θf ) = (θ1
f , ..., θ

L
f ) for

all f ∈ F and θf ∈ Θf .

Proof. The proof repeats the argument of Proposition 1. �
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Proposition B5. In any symmetric non-babbling equilibrium of the offer game with signals

each worker sends signals to her K top firms.

Proof. Select an arbitrary worker. Firms use symmetric anonymous strategies, signals are

identical, and the worker can send at most one signal to a given firm. Hence, from the

worker’s perspective the probability of getting an offer from a firm depends only on whether

the worker has sent a signal to this firm or not. Similar to the argument of the proof of

Proposition 4 the probability of getting an offer from a firm that receives the worker’s signal is

greater than the probability of getting an offer from a firm that does not receive the worker’s

signal. Since this probability does not depend on the identity of the firm in a symmetric

equilibrium we conclude that the worker optimally sends her signals to her K top firms. �

Proposition B6. Suppose firms −f use anonymous strategies and workers send their signals

to their top K firms. Then firm f makes offers to its LNS ∈ {0, ..., L} top workers who have

signaled to it and to its LS = L − LNS top workers who have not signaled to it in any

non-babbling symmetric sequential equilibrium.

Proof. Note that firms use anonymous strategies, workers send their signal to their top K

firms, and workers accept the best available offer. We first prove a lemma that states that

from point of view of firm f , the probability that workers who have and have not signaled

to it accept its offer depends only on the number of signals firm f receives.

Lemma B2. Suppose firms −f use anonymous strategies and workers send their signals to

their top K firms. Consider two events, A and B. Event A is that firm f receives the set

of signals WS. Event B is that firm f receives the set of signals W̌S , where |WS| = |W̌S|.
Then

• the probability that worker w ∈ WS accepts firm f ’s offer conditional on event A equals

the probability that worker w′ ∈ W̌S accepts firm f offer conditional on event B;

• the probability that worker w ∈ W\WS accepts firm f ’s offer conditional on event A

equals the probability that worker w′ ∈ W\W̌S accepts firm f offer conditional on event

B.

Proof. Let us consider firm f with realized preference profile θ∗f ∈ Θf that receives

signals from the set of workers WS. We first prove that the probability that a worker from

WS accepts firm f ’s offer conditional on event A equals the probability that a worker from

W̌S accepts firm f ’s offer conditional on event B.
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Note that firm f believes that it is one of the top K firms in worker preference list if it

receives an offer from her. Let us denote the set of possible agent profiles consistent with

firm f beliefs in both events as

ΘA ≡ {θ ∈ Θ|θf = θ∗f and rankθws (f) ∈ {1, ..., K} for each ws ∈ WS}

ΘB ≡ {θ ∈ Θ|θf = θ∗f and rankθws (f) ∈ {1, ..., K} for each ws ∈ W̌S}

Since firm f receives the same number of signals for both events, i.e. |WS| = |W̌S|,
for each worker wa ∈ WS we pair some worker w′a ∈ W̌S, a = 1, ..., |WS|. Let us denote

rankθwa
(f) = ka and rankθw′a

(f) = k′a. Therefore, ka, k
′
a ∈ {1, ..., K} for each a. We denote

a permutation that changes ka and k′a’s positions in a worker’s preference list as

ρwa : (..., ka, ..., k
′
a, ...)→ (..., k′a, ..., ka, ...).

We also denote a permutation that changes the ranks of wa and w′a for every a in a firm

preference lists as

ρf : (..., wa, ..., w
′
a, ...)→ (..., w′a, ..., wa, ...).

Beginning with arbitrary profile of preferences θ ∈ ΘA, we construct a profile of prefer-

ences θ′ as follows:

• we do not change firm f preference list, i.e. θ′f = θ∗f ,

• the ranks of workers wa and w′a are exchanged in the preference lists of firms −f for

each a: for each firm f ′ ∈ −f, θ′f = ρf (θf ),

• firms in positions ka and k′a in worker wa and worker w′a preference profiles are ex-

changed for each a:

θ′wa
= ρwa(θwa), θ′w′a = ρwa(θw′a), and

• for any other w0 ∈ W\(WS⋃ W̌S), θw0 = θ′w0 .

Since firm f ’s preference list is unchanged, θ′f = θ∗, and firm f receives signals from the

set W̌S for profile θ′, this profile belongs to ΘB. Since firm −f strategies are anonymous for

any f ′ ∈ −f and for any WS
f ′
⊂ W , we have that

σf ′(ρ
f (θf ′), ρ

f (WS
f ′)) = ρf

(
σf ′(θf ′ ,WS

f ′)
)
.

Workers in WS and W̌S send their signals to the same firms among −f for both profiles θ
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and θ′. Therefore, i.e. ρf (WS
f ′

) =WS
f ′
. Since θ′f = ρf (θf ) we have that

σf ′(θ
′
f ′ ,WS

f ′) = ρ
(
σf ′(θf ′ ,WS

f ′)
)

This means that the probability of firm f ′ making an offer to worker wa ∈ WS for profile θ

equals the probability of making an offer to a worker in w′a ∈ W̌S for profile θ′. Moreover,

since we exchange worker wa and w′a preference lists for profile θ′, whenever it is optimal for

worker wa to accept firm f offer for profile θ, it is optimal for worker w′a to accept firm f ′s

offer for profile θ′.

Since firm types are independent the probability of firm f being matched when it makes

an offer to wa for profile θ equals the probability of firm f being matched when it makes

an offer to worker w′a for profile θ′. Therefore, for each θ ∈ ΘA there exists θ′ ∈ ΘB such

that the probability that firm f gets an offer from worker wa equals the probability that

firm f gets an offer from worker w′a. Moreover, profile θ′ is different for different θ by the

construction. Therefore, we have constructed a bijection between sets ΘA and ΘB. Since θ

and θ′ are equally probable, the likelihood that firm f ’s offer is accepted by worker wa in

the event A equals the probability that firm f ’s offer is accepted by worker w′a in the event

B.

An analagous construction works for the proof of the second statement that involves

workers in sets W\WS and W\W̌S. Therefore, the probability that worker w ∈ W\WS

accepts firm f offer conditional on event A equals the probability that worker w′ ∈ W\W̌S

accepts firm f offer conditional on event B. �

The statement of the proposition follows directly from the lemma. Since the probability

that the worker who has sent a signal to firm f accepts its offer is independent of the identity

of the worker, firm f prefers to make offers to its top workers among those who signaled

to it. Similarly, firm f prefers to make offers to its top workers among those who has not

signaled to it. Finally, firm f prefers to make all L offers. �

Proposition B7. Suppose workers send their signals to their top K firms. Then for any

strategy σf of firm f , there exists a cutoff strategy that provides f with a weakly higher

expected payoff than σf for any anonymous strategies σ−f of opponent firms −f .

Proof. Let us consider two sets of workers that firm f might receive WS and W̌S such that

WS=W̌S. Firm f makes an offer to workers Woffer =WS
offer

⋃
WNS

offer such thatWNS
offer ⊂

WS and WNS
offer ⊂ W\WS in equilibrium. Lemma B2 proves that identities of workers who

have sent a signal to firm f do not influence the probability that workers accept the firm’s
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offer provided that the total number of signals firm f receives is constant. Therefore, if

workers WS
offer are amongW̌S, i.e. WS

offer ⊂ W̌S, it is still optimal for firm f to make its

offers to workers Woffer.

Let us again consider two sets of signals with the same power, i.e. WS and W̌S such

that WS=W̌S. However, these sets differ now in one worker: there exist w ∈ WS and

w′ ∈ W̌S such that WS\w=W̌S\w′. Moreover, firm f prefers worker w′ to worker w, i.e.

rankθf
(w′) > rankθf

(w). As a consequence of Lemma B2, if firm f makes an offer to worker

w when it receives the set of signals WS in equilibrium, it should make an offer to w′ when

it receives the set of signals W̌S . Let us consider the case when sets WS and W̌S differ in

more than one worker. There are some workers in W̌0 ⊂ W̌S who are better than workers

in W0 ⊂ WS who receive an offer from firm f when it recieves signals from WS . Similar

argument shows that firm f should then optimally make an offer to W̌0 when it receives

signals from W̌S .

The two arguments presented above allows us to conclude that if firm −f use anonymous

strategies, firm f ’s optimal strategy could be represented as some cutoff strategy. �

Proof of Theorem B1.

The proof repeats the steps of the proof of Theorem 3. �

Lemma B3. Assume firms use cutoff strategies and workers send their signals to their top

K firms. Fix the strategies of firms −f as σ−f . Let firm f ’s strategy σf differ from σ′f only

in that σ′f has greater cutoffs (responds more to signals). Then we have

Eθ(m(σ′f , σ−f , θ)) ≥ Eθ(m(σf , σ−f , θ))

Eθ(πw(σ′f , σ−f , θ)) ≥ Eθ(πw(σf , σ−f , θ))

where m(·) denotes the total number of matches.

Proof. Let us consider firm f cutoff strategies σf and σ′f such that σ′f has weakly greater

cutoffs for profile θf :

σf (θf ,WS
f ) = WS

offer

⋃
WNS

offer

σ′f ′(θf ,WS
f ) = W̌S

offer

⋃
W̌NS

offer

In order to preserve anonymity firm f also should have the corresponding increase in cutoff

strategies for any profile of preferences and any set of received signals of the same power.
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Firm f responds more to signals for profile θf means that WS
offer ⊂ W̌S

offer ⊂ WS
f and

W̌NS
offer⊂WNS

offer ⊂ W\WS
f . Proposition B6 shows that |WS

offer

⋃
WNS

offer| =|W̌S
offer

⋃
W̌NS

offer|=
L. We consider only the case when WS

offer\W̌S
offer = wS and W̌NS

offer\WNS
offer = wNS. More

general case directly follows.

We denoter two sets of preference profiles

Θ+ ≡ {θ ∈ Θ| m(σf , σ−f , θ) < m(σ′f , σ−f , θ)}
Θ− ≡ {θ ∈ Θ| m(σf , σ−f , θ) > m(σ′f , σ−f , θ)}

For each profile θ from set Θ+ it must be the case that without firm f offer wNS has an

offer from another firm, and worker wS does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = 1. (B.3.1)

Similarly, if profile θ is from set Θ−, it must be the case that without firm f offer wS has an

offer from another firm and wNS does not

m(σ′f , σ−f , θ)−m(σf , σ−f , θ) = −1. (B.3.2)

We will now show that |Θ+| ≥ |Θ−|. Equations (B.3.1) and (B.3.2) along with the fact

that each θ ∈ Θ+ ∪Θ− happens equally likely will then be enough to prove the result.

If profile θ belongs to Θ−, without firm f ’s offer, worker wS has an offer from another

firm, name this firm f ′, and worker wNS does not. We construct function ψ : Θ → Θ as

follows. Let us considerLet ψ(θ) be the profile such that

• firms swap the positions of workers wNS and wS in their preference lists.

• if both wS and wNS send signals to firm f ′ for profile θ their preferences remain

unchanged

• if woker wS (wNS) sends her signal to firm f ′ but worker wNS (wS) does not for profile

θ, find a firm fy such that worker wS(wNS) does not send her signal to firm fy, and

worker wNS (wS)does. Exchange the positions of firm f ′ and firm fy in worker wNS

and worker wS preference lists.

Note that firm fy exists because each worker sends exactly K signals in any non-babling

symmetric equilibrium. We need the latter modification because each worker can send several

signals, and the fact that worker wSsends her signal to firm f does not guarantee that she

does not send another signal to firm f ′.
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If profile θ belongs to Θ−, without firm f ’s offer, worker wS has an offer from firm f ′,

and worker wNS does not. Therefore, when preferences are ψ(θ), without firm f ’s offer the

following two statements should be true i) worker wNS must have another offer and ii)

worker wS cannot have another offer.

To see i), note that under θ, worker wS his outside offer comes from firm f ′. Under ψ(θ)

worker wNS take position of worker wS in firm f ′ preference list, and worker wNS sends a

signal to firm f ′ for profile ψ(θ) whenever worker wS sends a signal to firm f ′ for profile θ.

Anonymity of firm strategies guarantee that firm f ′ makes an offer to worker wNS.

To see ii), suppose to the contrary that under ψ(θ), worker w does in fact receive an

outside offer from some firm f ′′. This cannot be firm f ′. Otherwise worker wNS should get

an offer from firm f ′ for profile θ by anonymity. This cannot be firm fy because worker wNS

would get an offer from firm fy for profile θ.

The main idea of the construction preserves the logic of Theorem 4. Specifically, if a

worker receives firm’s offer when she does not send a signal to the firm, she will definitely

receives an offer if she sends a signal to the firm.

From i) and ii), we have

θ ∈ Θ− ⇒ ψ(θ) ∈ Θ+.

Since function ψ is injective, we have |Θ+| ≥ |Θ−|.
In order to prove the second statement note that the expected number of matches of each

worker increases when firm f responds more to signals. Using the construction presented

above, one could show whenever worker w looses a match with firm f for profile θ (worker

w ranks firm f low) it is possible to construct profile θ′ when worker w obtains the match

(worker w ranks firm f high). The function that matches these profiles is again injective.

Moreover, worker w values more the match with high ranked firms. Therefore, ex-ante utility

of worker w increases when firm f responds more to signals. �

Proof of Proposition B3.

The result that the expected number of matches and the expected welfare of workers is

higher in the equilibrium with higher cutoffs is an immediate consequence of Lemma B3.

In order to show that firms have lower expected payoffs in the equilibrium with greater

cutoffs we first consider the following situation. We take some firm f such that its strategy

σf differs from σ′f only in that σ′f has weakly greater cutoffs. Let us consider some firm

f ′ ∈ −f . For each profile of preferences θf ′ and a set of signals WS, firm f ′ either makes an

offer to Sf ′(θf ′ ,WS) or Tf ′(θf ′ ,WS). If firm f responds more to signals this decreases the

probability that both Tf ′ and Sf ′ accept firm f ′ offer. Therefore, the expected payoff of firm
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f ′ ∈ −f weakly decreases when firm f responds more to signals.

Eθ(πf ′(σf , σ−f , θ)) ≥ Eθ(πf ′(σ
′
f , σ−f , θ)).

Let us now consider two symmetric equilibria where firms play cutoff strategies σ̃ and σ̄

correspondingly such that σ̃ ≥ σ̄. From the definition of an equilibrium strategy we have:

Eθ[πf (σ̄f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̄−f , θ)]

Using the result proved above we proceed with

Eθ[πf (σ̃f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̃−f , θ)]

Therefore

Eθ[πf (σ̄f , σ̄−f , θ)] ≥ Eθ[πf (σ̃f , σ̃−f , θ)]

�

Proof of Theorem B2.

Denote firm strategies in the unique equilibrium of the offer game with no signals as

σ0
F . Now consider a symmetric equilibrium of the offer game with signals where agents use

strategies (σF , σW ). If agents employ strategies (σ0
F , σW ), the expected number of matches

and the welfare of workers equal the corresponding parameters in the offer game with no

signals. Therefore, the result that the expected number of matches and the expected welfare

of workers in a symmetric equilibrium in the offer game with signals are weakly greater than

the corresponding parameters in the unique equilibrium of the offer game with no signals is a

consequence of sequential application of Lemma B3. The result for worker and firm welfare,

and the argument that the comparison is strict are analagous to those in Theorem 4. �

71


