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New Questions raised by school Choice

I How to do tie breaking?
I Tradeo¤s between Pareto optimality, stability, strategy
proofness� what are the �costs�of each?

I Evaluating welfare from di¤erent points in time
I Restricted domains of preferences?



Matching with indi¤erences

I When we were mostly using matching models to think about
labor markets, strict preferences didn�t seem like too costly an
assumption.

I Strict preferences might be generic

I But that isn�t the case with school choice
I We already saw that one of the �rst NYC design decisions
faced in 2003 was how to randomize to break ties.
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Matching with Indi¤erence

I I : a �nite set of students (individuals) with (strict)
preferences Pi over school places.

I S : a �nite set of schools with responsive weak preferences /
priorities Rs over students (i.e. can include indi¤erences: Ps
(�s ) is the asymmetric part of Rs ).

As before:

I q = (qs )s2S a vector of quotas (qs � 1, integer).
A matching is a correspondence µ : I [ S ! I [ S satisfying:
(i) For all i 2 I : µ(i) 2 S [ fig
(ii) For all s 2 S : jµ(s)j � qs , and i 2 µ(s) implies µ(i) = s.
We�ll mostly concentrate on student welfare and student strategy,
and regard Rs as �xed.



Matchings and student welfare

A matching µ is individually rational if it matches every
x 2 I [ S with agent(s) that is(are) acceptable for x .
A matching µ is blocked by (i , s) if sPiµ(i), and either
[jµ(s)j < qs and i �s s] or [i �s i 0 for some i�2 µ(s)]. µ is stable
if µ is individually rational and not blocked by any student-school
pair (i , s).
A matching µ dominates matching if µ(i)Ri (i) for all i 2 I , and
µ(i)Pi (i) for some i 2 I . (Weak Pareto domination for students.)
A stable matching µ is a student-optimal stable matching if it
is not dominated by any other stable matching.
�A�not �the�: When school preferences aren�t strict, there won�t
generally be a unique optimal stable match for each side, rather
there will be a non-empty set of stable matches that are weakly
Pareto optimal for agents on that side.



Example: Tie breaking does not always yield student-optimal
stable matching:

Student Pref School Pref
s2Pi1s1Pi1s3 i1 �s1 i2 �s1 i3
s1Pi2s2Pi2s3 i2 �s2 i1 �s2 i3
s1Pi3s2Pi3s3 i3 �s2 i1 �s2 i2

The stable matchings are

µ1 =

�
i1 i2 i3
s1 s2 s3

�
, µ2 =

�
i1 i2 i3
s2 s1 s3

�
, µ3 =

�
i1 i2 i3
s3 s2 s1

�
µ1, µ2 and µ3 are produced by student proposing DA when s1�s
indi¤erence is broken as i1 �s1 i3 �s1 i2, i2 �s1 ix �s1 iy and
i3 �s1 ix �s1 iy respectively. But µ2 dominates µ1, hence DA need
not produce a student-optimal stable match even if ties are broken
the same way.



Weak Pareto optimality generalizes. . .
Proposition 1. If µ is a student-optimal stable matching, there is
no individually rational matching ν (stable or not) such that
ν(i)Piµ(i) for all i 2 I .

(terminology: a student optimal stable matching is weakly Pareto
optimal because it can�t be strictly Pareto dominated, but the
outcome of student proposing deferred acceptance algorithm might
not be strongly Pareto optimal, i.e. might not be student optimal,
because it can be weakly Pareto dominated)



Tie breaking
A tie-breaker is a bijection r : I ! N, that breaks ties at school s
by associating Rs with a strict preference relation Ps :

iPs j , [(i �s j) or (i �s j and r(i) < r(j))].



Basic Deferred Acceptance (Gale and Shapley 1962)

I Step 0: arbitrarily break all ties in preferences
I Step 1: Each student �proposes� to her �rst choice. Each
school tentatively assigns its seats to its proposers one at a
time in their priority order. Any remaining proposers are
rejected.

. . .

I Step k: Each student who was rejected in the previous step
proposes to her next choice if one remains. Each school
considers the students it has been holding together with its
new proposers and tentatively assigns its seats to these
students one at a time in priority order. Any remaining
proposers are rejected.

The algorithm terminates when no student proposal is rejected,
and each student is assigned her �nal tentative assignment.



Deferred acceptance algorithm with tie breaking: DAτ

A single tie breaking rule uses the same tie-breaker rs = r at each
school, while a multiple tie breaking rule may use a di¤erent tie
breaker rs at each school s.
For a particular set of tie breakers τ = (rs )s2S , let the mechanism
DAτ be the student-proposing deferred acceptance algorithm
acting on the preferences (PI ,PS ), where Ps is obtained from Rs
by breaking ties using rs , for each school s.



Single and Multiple tie breaking

The dominant strategy incentive compatibility of the
student-proposing deferred acceptance mechanism for every
student implies that DAτ is strategy-proof for any τ.
But the outcome of DAτ may not be a student optimal stable
matching.
We already saw this is true even for single tie breaking.



Single versus multiple tie breaking (NYC Grade 8 applicants in
2006-07)



Proposition: For any (PI ,RS ), any matching that can be produced
by deferred acceptance with multiple tie breaking, but not by
deferred acceptance with single tie breaking is not a
student-optimal stable matching.



Dominating stable matchings

Lemma: Suppose µ is a stable matching, and ν is some matching
(stable or not) that dominates µ. Then the same set of students
are matched in both ν and µ



I Proof: If there exists a student who is assigned under µ and
unassigned under ν, then ν(i) = iPiµ(i), which implies that µ
is not individually rational, a contradiction. So every i
assigned under µ is also assigned under ν. Therefore
jν(S)j � jµ(S)j.

I If jν(S)j > jµ(S)j then there exists some s 2 S and i 2 I
such that jν(s)j > jµ(s)j and ν(i) = s 6= µ(i). This implies
there is a vacancy at s under µ and i is acceptable for s.
Furthermore, sPiµ(i) since ν dominates µ. These together
imply that µ is not stable, a contradiction. So
jν(S)j = jµ(S)j.

I Then the same set of students are matched in both ν and µ
since jν(S)j = jµ(S)j and every student assigned under µ is
also assigned under ν.



Stable Improvement Cycles (Erdil and Ergin, 08)

Fix a stable matching µ w.r.t. given preferences P and priorities R.
Student i desires s if sPiµ(i).
Let Bs = the set of highest Rs -priority students among those who
desire school s.

De�nition: A stable improvement cycle C consists of distinct
students i1, ..., in = i0 (n � 2) such that
(i) µ(ik ) 2 S (each student in the cycle is assigned to a school),
(ii) ik desires µ(ik+1), and
(iii) ik 2 Bµ(ik+1), for any k = 0, ..., n� 1.

Given a stable improvement cycle de�ne a new matching µ�by:
µ0(j) = µ(j) if j is not one of fi1, ..., ing
µ0(j) = µ(ik+1) if j = ik .

Proposition: µ�is stable and it (weakly) Pareto dominates µ.



Improving on DAτ

Theorem (Erdil and Ergin, 2008): Fix P and R, and let µ be a
stable matching. If µ is Pareto dominated by another stable
matching, then µ admits a stable improvement cycle.

Algorithm for �nding a student optimal matching: start with a
stable matching. Find and implement a stable improvement cycle,
as long as one exists.



Outline of proof
Fix P and R. Suppose µ is a stable matching Pareto dominated by
another stable matching ν.

I Simplifying assumption: Each school has one seat.

1. I 0 := fi 2 I jν(i)Piµ(i)g = fi 2 I jν(i) 6= µ(i)g.
2. All students in I�are matched to a school at ν.
3. S 0 := ν(I 0) = µ(I 0).

Hence, I [S ] can be partitioned into two subsets I�and InI�[S�
and SnS�] such that
I those in InI�[SnS�] have the same match under µ and ν.
I the matches of those in I�[S�] have been �shu­ ed�among
themselves to obtain ν from µ.



4. For all s 2 S�:
I 0s := (i 2 I 0ji desires s at µ, and no j 2 I�desires s at µ and jPs i)
is nonempty;.

5. Construct a directed graph on S�:

I For each s 2 S�, arbitrarily choose and �x is 2 I 0s .
I is 2 Bs : i.e., is desires s at µ, and there is no j 2 I who
desires s at µ and jPs i . (from stability of ν)

I For all s, t 2 S�, let t ! s if t = µ(is ).

6. The directed graph has a cycle of n � 2 distinct schools:
s1 ! s2 !��! sn ! s1
7. The students is1 , is2 , ..., isn constitute a stable improvement cycle
at µ.



How much room is there to improve on deferred acceptance?

Are there costs to Pareto improvements in welfare?



Strategy-proof mechanisms

I A direct mechanism φ is a function that maps every (PI ,RS )
to a matching.

I For x 2 I [ S , let φx (PI ;RS ) denote the set of agents that
are matched to x by φ.

A mechanism φ is dominant strategy incentive compatible
(DSIC) for i 2 I if for every (PI ,RS ) and every Pi�,

φi (PI ;RS )Riφi (P
0
i ,P�i ;RS ).

A mechanism will be called strategy-proof if it is DSIC for all
students.



Pareto improvement and strategy proofness

Fix RS . We say that a mechanism φ dominates ψ if

I for all PI : φi (PI ;RS )Riψi (PI ;RS ) for all i 2 I , and
I for some PI : φi (PI ;RS )Piψi (PI ;RS ) for some i 2 I .

Theorem (Abdulkadiroglu, Pathak, Roth): For any tie breaking
rule τ, there is no mechanism that is strategy-proof and dominates
DAτ.



Proof:

Suppose that there exists a strategy-proof mechanism ϕ and
tie-breaking rule r such that ϕ dominates DAτ. There exists a
pro�le PI such that

ϕi (PI ;RS )RiDA
τ(PI ;RS ) for all i 2 I , and

ϕi (PI ;RS )PiDA
τ(PI ;RS ) for some i 2 I .

Let si = DAτ
i (PI ;RS ) and si�= ϕi (PI ;RS ) be i�s assignment under

DAτ(PI ;RS ) and ϕ(PI ;RS ), respectively, where si�Pi si .



Consider pro�le PI�= (Pi�,P�i ), where Pi�ranks si�as the only
acceptable school. Since DAτ is strategy-proof,
si = DAτ

i (PI ;RS )RiDA
τ
i (PI 0;RS ), and since DAτ

i (PI 0;RS ) is either
s�i or i , we conclude that DAτ

i (PI 0;RS ) = i . Then the Lemma
implies ϕi (PI 0;RS ) = i .

Now let (PI 0;RS ) be the actual preferences. In this case, i could
state Pi and be matched to ϕi (PI ;RS ) = si�, which under Pi�she
prefers to ϕi (PI 0;RS ) = i .

So ϕ is not strategy-proof.



Let�s look at some data

We can�t tell what preferences would have been submitted with a
di¤erent (non strategy-proof) mechanism, but we can ask, given
the preferences that were submitted, how big an apparent welfare
loss there might be due to not producing a student optimal stable
matching.



Ine¢ ciency in the NYC match (cost of strategy-proofness)



Cost of stability in NYC



Comparison with Boston



Open questions

I (Equilibrium) misrepresentation in stable improvement cycles?
(Can potential gains be realized?)

I It appears there will be an incentive to raise popular schools in
your preferences, since they become tradeable endowments. . .

I Restricted domains of preference?
I Manipulation will be easier on some domains than others, and
potential welfare gains greater on some domains than others.



Miralles, 2008, Abdulkadiroglu et al 2009

Suppose all students have the same ordinal preferences, but
potentially di¤erent cardinal preferences.

Suppose cardinal preferences (or the distribution over them) is
common knowledge.

Suppose there are no more school seats than students, then:

I No assignment that �lls all school seats is in expectation
inferior to DA

I Boston weakly dominates DA.



Miralles, 2008, Abdulkadiroglu et al 2009

Suppose all students have the same ordinal preferences, but
potentially di¤erent cardinal preferences.

Suppose cardinal preferences (or the distribution over them) is
common knowledge.

Suppose there are no more school seats than students, then:

I No assignment that �lls all school seats is in expectation
inferior to DA

I Boston weakly dominates DA.



Are these the right costs of strategyproofness?
Ex post versus ex ante evaluation?
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