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Abstract. We consider the problem of truthfully sampling opinions of a
population for statistical analysis purposes, such as estimating the pop-
ulation distribution of opinions. To obtain accurate results, the surveyor
must incentivize individuals to report unbiased opinions. We present a
rewarding scheme to elicit opinions that are representative of the popula-
tion. In contrast with the related literature, we do not assume a specific
information structure. In particular, our method does not rely on a com-
mon prior assumption.

1 Introduction

Online surveys, opinion polls and questionnaires are primary tools to gather
information on a population and have been growing at a fast pace over the
past few years. There already exists an extensive literature on the construction
of questionnaires and their statistical processing and analysis (see, for exam-
ple, Montgomery [1] or Kish [2]). However, to derive meaningful results, it is
also imperative to get accurate samples. To induce honest behavior, the sur-
veyor should reward participants appropriately. This paper focuses on the design
of survey mechanisms that incentivize participants to provide true samples of
opinions.

This problem falls under the broader umbrella of information elicitation, for
which there exists several available solutions in various settings. For example,
when one is interested in gathering information regarding the uncertainty of
an upcoming event, such as the probability of a political candidate winning
an election, one may use scoring rules and score functions [3,4]. These induce
honest participation by setting rewards as a function of the outcome of the
event. However, these methods rely on the verifiability of the outcomes, and do
not apply to more general information, such as subjective opinions.

Miller et al. [5] show that eliciting non-verifiable information is nonetheless
possible if we make some assumptions on the information being retrieved, and
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the knowledge available to the individuals. They consider the problem of gath-
ering ratings of the quality of a product or service. They assume that products
have a true quality, distributed according to a prior P (ω), and that each indi-
vidual experiencing a particular product of quality ω∗ gets a noisy signal t of
the quality, distributed according to P (t|ω∗). An individual with private sig-
nal t forms a posterior belief about the true quality P (ω|t). Miller et al. design
payment schemes to obtain truthful opinions based on probability scoring rules.
Jurca and Faltings [6] show how to minimize the payments needed to offset the
potential gain from lying. In both cases, the authors set rewards that depend
explicitly on the prior distribution. In a similar setting, Prelec [7] suggests an
alternative approach by delegating to participants the estimation of the distribu-
tion. Individuals are asked for both their private opinion and their beliefs about
the posterior distribution of opinions given their information. In Prelec’s mech-
anism, the rewards do not depend on any distribution directly, but indirectly
through the reports of the participants.

In the mechanisms described so far, the goal is to enforce truthful reports from
each participant through a Nash implementation. This is achieved by choosing
payment schemes in function of the distributions, either provided by the mecha-
nism designer or by the participants. The poses a number of practical difficulties:
the mechanism designer usually does not know the parameters of the model, and
asking individuals to report a distribution may be unnatural and infeasible with
many outcomes. Fortunately, to obtain a sample of opinions that is representa-
tive of the population, we need not know the opinion of a specific individual.

Jurca and Faltings [8] consider the related problem of obtaining the distribu-
tion of opinions in an online setting. In contrast to previous work, their payment
schemes does not depend on any prior. However, their mechanism is limited to
binary opinions, such as yes/no answers, and is only correct asymptotically as
the number of participants grows to infinity. In particular, it cannot be used to
obtain a true sample of opinions.

Besides, in all cases, the authors consider a bayesian model with common
prior. However, in many situations of interest, information is asymmetric and
no general assumption can be made about the knowledge of individuals. For ex-
ample, when rating an hotel, people who often travel in rural areas will form a
different belief about the distribution of hotel quality than those who frequently
visit large cities. Some individuals may be more informed than others, for exam-
ple a frequent business traveler staying over an extended period can hold more
accurate beliefs than occasional travelers with short stays. In general, when be-
liefs depend on information that is common knowledge nor part of the private
signal being reported, mechanisms that assume a common prior are no longer
incentive-compatible.

To construct robust mechanisms that do not rely on any particular assumption
about the knowledge of the agents, it is common to look for dominant-strategy
implementations. While a dominant-strategy implementation cannot be achieved
in the present setting, we propose mechanisms to obtain independent samples of
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opinions representative of the population, based on a Nash implementation that
does not rely on any particular knowledge structure. In particular, no common
prior is needed, and there may be asymmetric information. Our mechanisms
provide incentives through a payment scheme that depends only on the reports
of opinions of the individuals being surveyed. When at least one participant may
be trusted, our mechanisms ensure that at all Nash equilibria correspond to true
samples of opinions.

The paper is organized as follows. We present the problem and the model in
Section 2. In Section 3, we propose an intermediary mechanism to elicit ran-
dom values from given distributions. Those results are used in Section 4, which
presents our main survey mechanisms. We conclude in Section 5.

2 Model

We consider a large population of individuals, each of whom owns an opinion
regarding a given question (e.g., what is the quality of this hotel? what will be
the price of a barrel of oil in 10 years?). We assume opinions can be expressed as
real values in some closed interval I, for example a scale between 0 (worst hotel
quality) and 10 (best hotel quality). F represents the distribution of opinions
across the population: for each opinion value x, the quantity F (x) denotes the
proportion of the population with an opinion less than or equal to x. Formally,
we may consider that the population forms a continuum of individuals in the
interval I distributed according to F (hereafter referred to as the population
distribution). We assume that F is absolutely continuous (i.e., admits a density
function), and that the density is positive on I. The objective of the surveyor is
to obtain n independent samples of opinions, which may be used for example to
estimate the population distribution or to perform statistical analysis, such as
hypothesis testing, goodness-of-fit, etc.

The process of surveying the population is accomplished by a survey mech-
anism. Formally, a survey mechanism is a tuple (I, n, Π). I is the interval of
possible values of opinions, n is the number of agents being surveyed, and
Π : In �→ R

n is the vector of payments. The mechanism is interpreted as
follows:

Step 1. The surveyor selects n individuals at random from the population, re-
ferred to as “agent 1, . . . , agent n”.

Step 2. Each agent i reports an opinion ri ∈ I.
Step 3. Each agent i gets a payment Πi(r1, . . . , rn).

Each individual knows whether she is being surveyed, but does not know the
identities of the other agents being surveyed. As agents are selected at random,
their opinions are (ex-ante) identically and independently drawn from F . We
assume that agents are rational and seek to maximize their expected payment.
The population distribution is, a priori, not known.
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We will be interested in mechanisms that satisfy certain properties described
below. For a mechanism (I, n, Π):

Budget-Balance. The mechanism is budget-balanced when it generates no
profit nor loss: for all possible reports r1, . . . , rn ∈ I,

∑

1≤i≤n

Πi(r1, . . . , rn) = 0 .

Anonymity. The mechanism is anonymous when payments do not depend on
the ordering of the agents: for all possible reports r1, . . . , rn, ∈ I, all agent
i, and all permutations σ of {1, . . . , n},

Πi(r1, . . . , rn) = Πσ(i)(rσ−1(n), . . . , rσ−1(n)) .

The surveyor’s objective is to obtain samples of opinions that are representative
of the population, and is captured by the following two properties:

Accuracy. The mechanism is accurate when each agent reporting an opinion
drawn (ex-ante) according to the population distribution is a Nash equilib-
rium.

Strong Accuracy. The mechanism is strongly accurate when each agent re-
porting an opinion drawn (ex-ante) according to the population distribution
constitute the only Nash equilibria.

Note that reporting one’s true opinion is an accurate strategy, because the
opinion of an agent selected at random from the population is ex-ante distributed
according to F . However, depending on the information available to each indi-
vidual, there are accurate strategies that are not truthful: for example, each
agent reporting the opinion of her neighbor would still lead to accuracy. This
is not limiting, as the surveyor is not interested in the opinion of a particular
individual, but only in reports of opinions representative of the population.

Although we do not consider an implementation in dominant strategies, our
results hold independently of the knowledge structure of the population. In ad-
dition to her own opinion, each individual may have some knowledge about the
population, about the knowledge of the population, about the knowledge of the
knowledge of the population, etc. For example, individuals may be ignorant and
know nothing about the population distribution. Or individuals may be omni-
scient and know the opinion of each individual in the population. Alternatively,
there may be asymmetric information: some individuals may be ignorant and
others may know exactly the population distribution. There may be a common
prior, or different priors conditional on the history of each member of the popu-
lation. There may be publicly available information, such as the mean opinion,
etc. For simplicity, the reader may consider a complete information setting in
which opinions all individuals of the population are common knowledge, however
our results are much more general.
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3 Generating Random Values

In this section, we present a mechanism to elicit random values drawn from any
given distributions. The results of this section will be used to prove properties
of our survey mechanisms.

3.1 Mechanism Description

We consider a group of n agents 1, . . . , n. For all agent i, let Fi be a cumulative
distribution on a closed interval I, absolutely continuous with positive density.
The distributions F1, . . . , Fn are common knowledge. We define the following
random generator mechanism:

Step 1. Each agent i is asked to report a value randomly drawn from Fi.
Step 2. Each agent i is rewarded a payment given by

Πi(r1, . . . , rn) =
1

n − 1
(|{j | Fi(ri) < Fj(rj)}| − |{j | Fi(ri) > Fj(rj)}|)

+ 2Fi(ri) − 2
n − 1

∑

j �=i

Fj(rj) .

This mechanism creates incentives for each agent i to report a random value
drawn from Fi, as shown in the next theorem.

Theorem 1. The random generator mechanism satisfies the following properties:

1. The mechanism is budget-balanced.
2. If F1 = · · · = Fn, the mechanism is anonymous.
3. The payments take values in the range [−1, 1].
4. There exists a unique Nash equilibrium, corresponding to each agent i re-

porting a random number drawn according to Fi.

Proof. Let 1B be the function that equals 1 if the boolean statement B is true,
and 0 otherwise.

Items 1., 2., and 3. are easily shown, the proof is omitted due to space con-
straints.

Item 4. We proceed in two steps. We begin by showing that each agent i
choosing a value ri at random from Fi is a Nash equilibrium, then we show the
equilibrium is unique.

Let I = [a, b], and consider any particular agent i. Assume that any other
agent j �= i chooses to report a value rj distributed according to Fj . Let rk be
the report of any agent k.

Writing the payment of i as

Πi(r1, . . . , rn) =

2
n − 1

∑

j �=i

[
1
2
1Fi(ri)<Fj(rj) − 1

2
1Fi(ri)>Fj(rj) + Fi(ri) − Fj(rj)

]
,
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we get the expected payment for agent i, given her report ri:

E
rj∼Fj ,j �=i

[Πi(r1, . . . , rn)] =
2

n − 1

∑

j �=i

[∫ F −1
j (Fi(ri))

a

(
−1

2

)
fj(rj) drj

+
∫ b

F −1
j (Fi(ri))

(
1
2

)
fj(rj) drj

+
∫ b

a

(Fi(ri) − Fj(rj))fj(rj) drj

]

=
1

n − 1

∑

j �=i

[
−Fi(ri)

2
+

1 − Fi(ri)
2

+ Fi(ri)

−
∫ b

a

Fj(rj)fj(rj) drj

]

= 0 .

Therefore the expected payment of agent i is null for any report ri. In par-
ticular, a randomized value distributed according to Fi is a best response. By
symmetry, each agent i choosing a value at random drawn from Fi is a Nash
equilibrium.

We now prove that the Nash equilibrium is unique. For all 1 ≤ i ≤ n, let Gi be
(cumulative) distributions such that each agent i choosing to report a random
value distributed according to Gi is a Nash equilibrium (with the convention
that pure strategies correspond to point mass distributions).

Agent i’s expected payment is

E
rj∼Gj,j �=i

[Πi(r1, . . . , rn)] =
1

n − 1

∑

j �=i

∫ b

a

Hj(Fi(ri)) dGi(ri) (1)

under the Riemann-Stieltjes integral, with

Hj(α) =
∫ F −1

j (α)

a

(
−1

2

)
dGj(rj) +

∫ b

F −1
j (α)

1
2

dGj(rj)

+
∫ b

a

[α − Fj(rj)] dGj(rj) .

After simplification and rearranging the terms,

Hj(α) =

[
α − Gj(F−1

j (α))

]
−

[
− 1

2
+

∫ b

a

Fj(rj) dGj(rj)

]
. (2)
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By Hewitt’s theorem [9], we may integrate by parts the second term and apply
the change of variable y = Fj(xj):

−1
2

+
∫ b

a

Fj(rj) dGj(rj) = −1
2

+ [Fj(rj)Gj(rj)]
b
a +

∫ b

a

Gj(rj)fj(rj) drj

=
1
2

−
∫ b

a

Gj(rj)fj(rj) drj

=
1
2

−
∫ 1

0
Gj(F−1

j (x)) dx

=
∫ 1

0

[
x − Gj(F−1

j (x))
]

dx ,

where we observed that 1/2 =
∫ 1
0 xdx. We replace the last term of (2) and get

Hj(α) = Γj(α) −
∫ 1

0
Γj(y) dy , (3)

where we defined Γj(y) = y − Gj(F−1
j (y)). Let

ζi =
1

n − 1

∑

j �=i

Γj . (4)

By putting together (1), (3) and (4), we get

E
rj∼Gj ,j �=i

[Πi(r1, . . . , rn)] =
∫ b

a

[
ζi(Fi(ri)) −

∫ 1

0
ζi(y) dy

]
dGi(ri) . (5)

Suppose by contradiction that there exists i such that ζi �= 0. Then we show
that there exists some possible report r∗i such that agent i choosing r∗i makes a
positive expected payment.

We first prove that
∫ 1
0 ζi(y) dy < sup ζi. If the inequality is false, then ζi =

sup ζi almost everywhere, however since ζi �= 0 and ζi(0) = ζi(1) = 0, we can
choose y < 1 such that ζi(y) < sup ζi. As Gj and F−1

j are nondecreasing,
Γj(y + ε) < sup ζi for ε > 0 small enough, so that ζi does not almost everywhere
equal sup ζi.

Since
∫ 1
0 ζi(y) dy < sup ζi, there exists y∗ such that ζi(y∗) −

∫ 1
0 ζi(y) dy > 0,

and so by taking r∗i = F−1
i (y∗), we find that agent i choosing the pure strategy

r∗i would make a positive expected payment according to (5).
Since i plays a Nash equilibrium, i’s strategy is a best response and her ex-

pected payment is at least that obtained by choosing the pure strategy r∗i and
so is strictly positive. Therefore, if the Nash equilibrium is such that ζi �= 0 for
some i, then i’s payment is strictly positive, otherwise ζi = 0 and i’s expected
profit is null. So the expected profit of every agent is non-negative, and if there
exists at least one agent i such that ζi �= 0, agent’s i profit is strictly positive,
which is impossible as the mechanism is budget-balanced. Hence for all i, ζi = 0,
which implies y = Gj(F−1

j (y)): the only possible Nash equilibrium corresponds
to Gj = Fj , for all j.
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3.2 Graphical Interpretation

The lazy hiker race gives an intuitive interpretation of our mechanism, and may
be described as follows. A group of n hikers starts a march on a mountain with
1 mile high. Each hiker has a designated trail, which is common knowledge. All
the trails share a common starting/ending point. Hikers are able to keep track of
the distance they cover along their own trail, but cannot observe the progression
of others. After 10 hours, the march stops and hikers are ranked in decreasing
order of altitude.

Hikers want to win the race, and are strong enough to climb to the top within
the time limit. But they are also lazy and prefer to win by making as little
effort as possible. When there are two hikers, the winner gets the maximum
satisfaction (+1) when he wins by being just above the other hiker. He gets the
worse satisfaction (−1) when he wins by being at the top, while the other hiker
remains at the bottom. The loser’s satisfaction is the opposite of the winner’s.
Satisfaction is linear in the difference of altitude, so that the winner is indifferent
between winning and losing when the difference of altitude between the hikers
is 0.5 miles. Figure 1 illustrates the case of two hikers. If there are more than
two hikers, the satisfaction of a hiker equals the average satisfaction when he
compares himself to each other hiker.

O

A

B

O

Height Height

y

x

y

x

difference of altitude

Fig. 1. Profile of trails for two hikers A and B

Hikers strategize about the distance they should cover so as to maximize their
average satisfaction. We observe that, if Fi(di) denotes the altitude reached by
hiker i after walking a distance1 di, the payment Πi(d1, . . . , dn) of the random
generator mechanism described previously corresponds exactly to the satisfac-
tion of hiker i when hikers 1, . . . , n cover the respective distances d1, . . . , dn

(where we take I = [0, 1]).
To simplify our argument, let’s take the case of two hikers. We first note that

there is no pure Nash equilibrium: if the loser knows where the winner is, he will
1 For simplification di is normalized and equals to the proportion of the total distance

covered.
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change his strategy to place himself slightly above the winner. Therefore hikers
should cover a random distance. When one hiker chooses to cover a distance
so that his altitude is uniformly random, each hiker gets a null satisfaction on
average, no matter what the other hiker decides to do. If, however, one hiker will
likely stop at a low altitude, the other hiker would get a likely positive satisfaction
by stopping at a medium altitude. More generally, when a hiker makes frequent
stops at some altitudes, the other can choose a location so as to get a positive
expected satisfaction. Therefore any choices of random distances that result
in nonuniform distribution of altitudes cannot lead to a Nash equilibrium. A
similar argument applies to groups of any size. Note that uniform distributions
of altitudes are obtained only when each hiker i covers a distance di chosen at
random according to the distribution Fi. For a given distribution F with density
f = F ′, one can verify that the trail with profile given by

x(y) =
∫ y

0

√
L

f(F−1(h))2
− 1 dh

will generate the mixed-Nash equilibrium strategy with distribution F , where L
is the desired length of the trail, with L > max f2. Figure 2 shows some density
functions and their associated trails.
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Fig. 2. The equilibrium strategy for trails with profiles (d), (e) and (f) is to choose a
random distance with respective densities (a), (b) and (c)

4 Mechanisms for Truthful Surveys

We now describe our survey mechanisms. Given a random sample of k opinions
x1, . . . , xk, let F̃ x1,...,xk(x) be a statistical estimator of the proportion of the
population having an opinion less than or equal to x. In practice, it is common to
use a probabilistic model with parameterized densities. The maximum-likelihood
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parameters may for example be obtained through the Expectation-Maximization
algorithm [10]. The statistical estimator is said to be unbiased when, for all x,

E
X1,...,Xk∼F

[
F̃X1,...,Xk(x)

]
= F (x)

for all population distribution F . For example, the empirical distribution is an
unbiased estimator:

F̃ x1,...,xk(x) =
1
k

∑

1≤i≤k

1xi<x .

with 1xi<x = 1 if xi < x and 1xi<x = 0 otherwise.
Let G1, . . . , Gk be a partition of the n agents into k groups, k ≥ 2. Let G(i) be

the group that includes agent i, and let Si = {1, . . . , n}\G(i) be the set of agents
that doesn’t include the group containing i. Our basic survey mechanism uses the
random generator mechanism of the previous section to incentivize each agent i
to reveal an opinion that corresponds to a statistical estimate of the distribution
population. For a given interval of possible opinions I and a number of agents
n, the payments of our survey mechanism are defined by

Πi(r1, . . . , rn) =
1

|G(i)| − 1
[
|{j | ri < rj}| − |{j | ri > rj}|

]

+ 2F̃i(ri) − 2
|G(i)| − 1

∑

j∈G(i),j �=i

F̃j(rj)

where F̃i(x) = F̃ {rj}j∈Si (x) is an unbiased statistical estimator of F (x) given the
reports of agents in Si. By linearity of expectation, and noting that the payments
are linear in the estimators, the following can be derived from Theorem 1:

Theorem 2. The basic survey mechanism is budget-balanced, anonymous, and
accurate.

Payments take values in the interval [−3, 3]. Payments near the interval bounds
occur only with estimators of high variance. As the variance decreases, pay-
ments become restricted to the interval [−1, 1]. One may also offset/rescale the
payments, to get for example payments in the interval [0, 1] so as to provide
participation incentives and strict individual rationality.

The mechanism easily adapts to the case of sequential elicitation, often desired
in online surveys. The surveyor should form groups of 2 or 3 people, progressively
as new reports come in, and reward individuals of a group as soon as the group
is finalized. Distribution estimates should be computed from reports of previous
groups only, with the exception of the distribution estimates used for rewarding
the first group, which could take as input reports of the second group.

As opposed to the work of Miller et al. [5] and Jurca and Faltings [6], truthful
revelation is a non-strict equilibrium of our mechanism. This limitation is due
to the lack of common prior: it is easily shown that, with our general knowledge
structures, no survey mechanism may implement truthful reporting as a strict
Nash equilibrium. Indeed, the expected payment for an agent who reports her
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true opinion must be maximized under all possible distributions of opinions, and
therefore must be constant for all possible reports. We observe by the same argu-
ment that any survey mechanism that implements reporting one’s true opinion
as a Nash equilibrium is also accurate, in the sense of Section 2.

Note that, as accuracy only requires that truthful reporting is a Nash equilib-
rium, a trivial mechanism that assigns a zero payoff to all agents also meets the
accuracy criterium: all strategies constitute a Nash equilibrium. However, our
mechanism is not trivial, as it admits only restricted Nash equilibria. Indeed it
can be shown that the only Nash equilibria correspond to each group reporting
the same aggregate distribution. As agents do not know, ex-ante, which group
they belong to, the only strategies that always result in a Nash equilibrium cor-
respond to all agents reporting an opinion drawn from the same distribution.
Therefore it would require significant coordination among the agents to play a
Nash equilibrium that is not truthful.

Besides, the Nash equilibria of our mechanism are not unique, and all methods
for eliciting subjective information suffer from the multiplicity of Nash equilibria,
since rewards can only be a function of information submitted by the agents.
However, unlike other methods such as Miller et al. [5] in which non-truthful
Nash-equilibria may lead to higher revenue for all agents, in our mechanism all
Nash equilibria lead to a null expected payment for all agents.

If there are trusted individuals, we can ensure uniqueness of the Nash equi-
libria that correspond to accurate samples, so that the surveyor is guaranteed
to obtain true random samples. Let T be a group of trusted individuals who
provide their true opinion. T may not be empty but can be of any positive size,
larger groups are generally preferred as they reduce the variance of individual
payments. For simplicity we assume that trusted agents form a separate group
from the n surveyed agents. The payments of our trusted-survey mechanism are
defined as follows:

Πi(r1, . . . , rn) =
1

n − 1
[
|{j | ri < rj}| − |{j | ri > rj}|

]

+ 2F̃ (ri) − 2
n − 1

∑

j �=i

F̃ (rj) ,

where F̃ (x) = F̃ {rj}j∈T (x) is an unbiased estimator of F (x) given by the reports
of trusted agents in T .

Our next theorem claims that the trusted-survey mechanism is guaranteed to
elicit true random samples of opinions. As for Theorem 2, the proof follows from
Theorem 1.

Theorem 3. The trusted-survey mechanism is budget-balanced, anonymous,
and strongly accurate.

5 Conclusion

We have investigated the problem of incentivizing individuals to elicit samples of
opinions that are representative of a population. We have proposed a nontrivial
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budget-balanced, anonymous mechanism for which reporting a true sample of
opinion, in particular reporting one’s true opinion, is a Nash equilibrium. When
some opinions can be trusted, we propose a variation of our mechanism which
guarantees that the only Nash equilibria correspond to providing true samples.
Although we use a Nash implementation as opposed to a dominant strategy
implementation—impossible to achieve in our setting—our results do not depend
on the knowledge structure of the population, in particular we do not make use
of a common prior.

We believe an important avenue for future work is that of empirical studies.
Our analysis has focused on theoretical considerations. However, it is not clear
how individuals would behave in practice. Experiments studying and comparing
our approach with those whose payments depend on a common prior, either
provided by the surveyor as in Miller et al. [5], or provided by the agents as in
Prelec [7], or simply assumed by all agents as in Jurca and Faltings [8], would
need to be performed to help assess the validity of each method, and their
potential applicability to practical contexts. In particular, more work would be
needed to understand the limitations raised by the common prior assumption
and those implied by the weakness of the Nash equilibria in our mechanisms.
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