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Abstract

We study trading behavior and the properties of prices in informationally

complex markets. Our model is based on the single-period version of the linear-

normal framework of Kyle (1985). We allow for essentially arbitrary correlations

among the random variables involved in the model: the value of the traded asset,

the signals of strategic traders and competitive market makers, and the demand

from liquidity traders. We show that there always exists a unique linear equi-

librium, characterize it analytically, and illustrate its properties with a number

of applications. We then use this characterization to study the informational

efficiency of prices as the number of strategic traders becomes large. If liquid-

ity demand is positively correlated (or uncorrelated) with the asset value, then

prices in large markets aggregate all available information. If liquidity demand is

negatively correlated with the asset value, then prices in large markets aggregate

all information except that contained in liquidity demand.
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1 Introduction

Whether and how dispersed information enters into market prices is one of the central

questions of information economics. A key difficulty in answering this question is the

strategic behavior of informed traders. A trader who has private information about the

value of an asset has an incentive to trade in the direction of that information. However,

the more he trades, the more he reveals his information, and the more he moves the

prices closer to the true value of an asset. Thus, to maximize his profits, an informed

trader may stop short of fully revealing his information, and so the informational

efficiency of market prices may fail.

In one important case, however, market prices may still accurately reflect dispersed

information: the case in which the number of informed traders is large, and each of

these traders is small. In such markets, each of the traders has limited impact on

prices, but their aggregate behavior reflects the aggregate information available in the

market. As a result, market prices are close to those that would prevail if all private

information were publicly available.

Nonstrategic explorations of this intuition go back to Hayek (1945), Grossman

(1976), and Radner (1979). Subsequently, a line of research (which we discuss in more

detail in Section 1.1) has considered strategic foundations for this intuition, studying

the strategic behavior of informed agents in finite markets, and then considering the

properties of prices as the number of agents becomes large. This stream of work,

however, imposes very strict assumptions on how information is distributed among the

agents, typically assuming that the signals are symmetrically distributed, or satisfy

other related restrictions so that in equilibrium, the strategies of all informed traders

are identical. In practice, however, the distribution of information in the economy can

be much more complex. Some agents may be better informed than others. Different

groups of agents may have access to different, potentially interdependent, sources of

information. Some agents may be informed about the fundamental value of the security,

while others may possess “technical” information about the market or other traders.

And all such possibilities may be present in a market at the same time.

Our paper makes two main contributions.

First, we present a tractable framework that makes it possible to study trading in

such informationally complex environments. Our model is based on the single-period

version of the model of Kyle (1985). As in that paper, an important assumption that

makes our model analytically tractable is the assumption of joint normality of ran-
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dom variables involved: the true value of the traded asset, the signals of strategic

traders, the signals of competitive market makers, and the demand coming from liq-

uidity traders. Beyond that assumption, however, we impose essentially no restrictions

on the joint distribution of these variables, making it possible to model informationally

rich situations such as those described above. In this framework, we show that there

always exists a unique linear equilibrium, which can be computed in closed form.

Second, we explore the informational properties of equilibrium prices as the number

of informed traders becomes large. We assume that there are several types of traders,

with each trader of a given type receiving the same information (possibly affected by

idiosyncratic noise), and fix the matrix of correlations of signals across the types. We

then allow the numbers of traders of every type to grow. We find that the properties

of prices in large markets depend on the informativeness of the demand from liquidity

traders. If liquidity demand is uncorrelated with the value of the asset or is positively

correlated with it (conditional on other signals), then prices in large markets aggregate

all available information. If liquidity demand is negatively correlated with asset value,

then prices in large markets aggregate all available information except that contained

in liquidity demand. Crucially, in both cases, as markets become large, the information

possessed by the strategic traders is fully aggregated and fully incorporated into market

prices, for very general (multidimensional and asymmetric) information structures.1

We also illustrate our model with two sets of applications.2 First, we consider

a natural question of whether having more information is always advantageous for a

strategic trader. The answer turns out to be subtle. In the context of a single market,

if one trader is more informed than another, then the former trader indeed has a higher

expected profit than the latter. However, if a strategic trader receives more information

in one market than he does in another one (with other characteristics of those markets

being the same), he may be worse off in the market in which he is more informed.

Second, we explore a question in the spirit of Bergemann and Morris (2013): how

much can the outcomes in our model vary when the fundamentals of the economy are

fixed, but the informational structure is not? We find that the information structure

plays an important role in determining market outcomes: if it is allowed to vary with-

1The presence of exogenous liquidity demand plays an important role in our results: it makes trad-
ing possible by providing a source of profits for the strategic traders. Our information aggregation
results rely on a slightly stronger assumption that the variance of liquidity demand is positive condi-
tional on the signals of the strategic traders and the market maker (see Section 5 and footnote 20).

2In addition to these applications, in Section 5 of the Online Appendix we present a number of
further illustrative examples.
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out any restrictions, the resulting bounds on the outcomes are quite wide, even in the

most restrictive case of markets in which liquidity demand is independent of all other

variables in the model. This finding may at first glance seem at odds with our in-

formation aggregation result, which gives very sharp predictions on outcomes in large

markets. Of course, there is no contradiction, since for the information aggregation

result, we do place a restriction on the underlying informational structure: there are

several groups of symmetrically informed traders, and these groups grow large.

We conclude the paper with two sets of results related to information aggregation

in large markets.

First, we characterize the properties of prices in a “hybrid” case, in which some in-

formation is available only to a small number of traders (“scarce” information), while

some other information is available to a large number of traders (“abundant” infor-

mation). As the number of traders having access to abundant information grows, the

equilibrium converges to the one that would obtain if these traders were not present

in the market at all, and instead their information was observed by the market maker

(but not by the remaining strategic traders).

Second, to investigate the driving force behind our information aggregation result,

we consider a simpler model in which there are no liquidity traders, and in which

the sensitivity of prices to aggregate quantity is fixed (instead of being endogenously

determined by a Bayesian market maker). We present the model in the language of

Cournot competition, but note that it is isomorphic to a model of trading with a

mechanical (rather than Bayesian) market maker. We find that in this simpler model,

information dispersed among the strategic agents gets fully aggregated in the limit as

their numbers grow—just as in the first model.

1.1 Related Literature

The literature on strategic foundations of information aggregation and revelation in

markets goes back to Wilson (1977), who considers an auction-based model in which

multiple partially informed agents bid on a single object. Other work in this tradi-

tion includes Milgrom (1981), Pesendorfer and Swinkels (1997), Kremer (2002), Reny

and Perry (2006), and Mihm and Siga (2017). These papers find that under suitable

conditions, information gets aggregated when the number of bidders becomes large.

However, these results depend critically on strong symmetry assumptions on the bid-

ders’ signals and strategies.
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Another stream of literature, going back to Kyle (1989), considers equilibria in de-

mand and supply functions, where bidders specify how many units of an asset they

demand or supply at each price, and the market maker picks the price that clears

the market.3 Most papers in this tradition also require a very high degree of sym-

metry among the traders, typically assuming that they are ex ante identical, receive

symmetrically distributed information, and employ identical strategies in equilibrium.4

The stream of literature most closely related to our paper is the work building on

Kyle (1985). In that literature, one or more strategic traders, fully or partially informed

about the value of the traded asset, are present in the market. These strategic traders

submit market orders to centralized market makers. There are also liquidity traders

who submit exogenously determined market orders. The market makers set the price

of the asset equal to their Bayesian estimate of its value based on the aggregate order

flow. Our paper borrows much of its analytical framework from this literature. The

key difference is that while many of the papers in this area consider both static and dy-

namic models of trading but place restrictive assumptions on the information structure,

our paper places virtually no restrictions on the information structure (beyond joint

normality), and focuses on the one-period model of trading and on the informational

properties of prices as the number of strategic traders becomes large.

In the original model of Kyle (1985), there is only one informed trader, who knows

the value of the asset. Admati and Pfleiderer (1988), Holden and Subrahmanyam

(1992), Foster and Viswanathan (1996), and Back et al. (2000) study generalizations

of the dynamic model of Kyle (1985) in which multiple informed traders are either

all fully informed about the asset value, or receive imperfect signals about it, in which

case different traders may observe different signals, but the distribution of these signals

3See Vives (2008) for a textbook treatment of that literature.
4Notable exceptions are recent papers by Rostek and Weretka (2012), who replace symmetry with

a weaker assumption of “equicommonality” on the matrix of correlations of agents’ values; Rostek and
Yoon (2014), who go beyond equicommonality and provide conditions on the (potentially asymmetric)
matrix of correlations for the existence of linear equilibrium; Manzano and Vives (2016), who consider
the case of two groups of traders, with traders belonging to the same group observing identical signals;
and Babus and Kondor (2017), who assume a symmetric matrix of correlations of agents’ values, but
allow for asymmetries in the graph of possible trading relationships. There are important differences
between our model and the settings of those papers. First, in our model, while traders generally
receive different signals, their valuations for the security are the same, while in the above papers,
the valuations are allowed to differ. Correspondingly, while the focus in our paper is on whether
prices fully aggregate and reveal information, in the above papers the focus is on whether prices are
“privately revealing.” Second, the trading mechanisms are different: in our model, traders submit
quantity orders, while in the above papers, agents submit demand and supply curves. So while the
questions are related, our results and those of the above papers are not directly comparable.
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across the traders is symmetric (as are the traders’ strategies). Caballé and Krishnan

(1994) and Pasquariello (2007) consider multiasset versions of the one-period model

with multiple traders, but still maintain the assumption of symmetry of information

among the traders. Dropping the assumption of normality of the underlying random

variables, Bagnoli et al. (2001) provide conditions for the existence and uniqueness of

linear equilibria in one-period models with multiple strategic traders whose (possibly

imperfect) signals about the value of the asset are distributed symmetrically.5

Several papers go beyond the case of fully symmetric distributions of strategic

traders’ signals. Foster and Viswanathan (1994) consider a dynamic model with two

strategic traders in which one trader is strictly more informed than the other. Dridi

and Germain (2009) study a one-period model in which the signals of strategic traders

are independent conditionally on the true value of the security, but may have different

precisions. Colla and Mele (2010) consider a dynamic model in which strategic traders

are located on a circle, with the correlations of signals being stronger for traders who

are closer to each other (in this model, as in the Rostek and Weretka (2012) model

discussed above, all traders use identical strategies in equilibrium).

Bernhardt and Miao (2004) consider a dynamic model with a general information

structure, allowing, as our paper does, for essentially arbitrary covariance matrices of

traders’ signals.6 However, while Bernhardt and Miao (2004) characterize necessary

and sufficient conditions for linear equilibria (analogous to Steps 1 and 2 in the proof

of Theorem 1 in our paper, but in a multiperiod setting), and use these conditions to

study the properties of such equilibria analytically and numerically in some specific

examples, they do not provide general results on equilibrium existence or uniqueness

and do not provide general closed-form equilibrium characterizations. Whether such

results can be established for a general multiperiod setting is an open question.

There are also a number of papers building on Kyle’s (1985) one-period model

in which the information structure is not limited to strategic traders observing signals

about the asset value. In Jain and Mirman (1999), the market maker receives a separate

5See also Nöldeke and Tröger (2001, 2006) for the analysis of the role of the normality assumption
for the existence of linear equilibria in one-period Kyle (1985)-style models with multiple strategic
traders who receive perfect signals about the value of the asset.

6There are several differences between the models. Bernhardt and Miao (2004) consider a model
with multiple trading periods, while we restrict attention to one period. On the other hand, unlike
Bernhardt and Miao (2004), we allow liquidity demand to be correlated with the asset value and the
signals of informed traders. We also allow the market maker to observe informative signals in addition
to the order flow. Finally, we do not impose any special structure on how the informed traders’ signals
are related to the value of the asset (and other random variables in the model), beyond joint normality.
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informative signal about the value of the asset, in addition to observing the order flow.

In Rochet and Vila (1994) and Foucault and Lescourret (2003), some of the strategic

traders observe signals about the amount of liquidity demand.7 These features of the

information structure are naturally incorporated in our general model. Hence, our

equilibrium existence and uniqueness result, as well as the characterization we derive,

provide a unified approach with closed-form solutions to various models that include

these features. In Section 5 of the Online Appendix, we provide several examples

illustrating the flexibility of our general model, and its ability to naturally incorporate

such features as the market maker receiving a signal about the value of the asset and

the strategic traders observing signals about liquidity demand, among others.

In Section 7, we study information aggregation in a model of Cournot competition.

The literature on information aggregation under Cournot competition as the number

of firms becomes large goes back to Li (1985) and Palfrey (1985). These papers con-

sider environments in which all firms’ signals about the true state of the world are

symmetrically distributed. In contrast, our information aggregation result holds for

essentially arbitrary covariance matrices of firms’ signals.8 Our focus in Section 7 is on

information aggregation as the number of firms becomes large, and the parallels be-

tween this information aggregation result and the main information aggregation result

in the paper. Thus, we do not explore in depth the connections between equilibrium

outcomes in Cournot competition (in which the slope of the demand curve is fixed) and

in the model based on the framework of Kyle (in which the slope of the demand curve

is determined endogenously) for a fixed, finite number of strategic traders. For the case

of symmetric distributions of signals, these connections (along with the connections to

equilibrium outcomes in a model of demand-function competition in the spirit of Kyle

(1989)) are explored by Bergemann et al. (2015).

Finally, on a more conceptual level, our paper is related to the work of Bergemann

and Morris (2013, 2016) on the analysis of games with rich information structures.

Bergemann and Morris argue that the structure of players’ information in games may

be hard to observe, and thus it is important to study to what extent the outcomes

of various strategic interactions depend on that structure, and which predictions are

7Röell (1990) and Sarkar (1995) also consider related one-period models in which some agents
observe signals about liquidity demand. Madrigal (1996) considers a dynamic model in which a
speculator is informed about liquidity demand.

8As in Li (1985) and Palfrey (1985), we also assume that the firms’ marginal costs of production
are constant. Vives (1988) shows that full information aggregation in large Cournot markets is not
necessarily obtained when marginal costs are increasing, even in the fully symmetric case.
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robust to it. We discuss the connection to those papers in more detail in Section 4.2.

2 Model

There is a security traded in the market, whose value v is not initially known to

market participants. There are n strategic traders, i = 1, . . . , n. Prior to trading,

each strategic trader i privately observes a multidimensional signal θi ∈ Rki . For

convenience, we denote by θ = (θ1; θ2; · · · ; θn) the vector9 summarizing the signals of

all strategic traders. The dimensionality of vector θ is K =
∑n

i=1 ki. There is also a

market maker, who privately observes signal θM ∈ RkM , kM ≥ 0 (when kM = 0, the

market maker does not receive any signals, as in the standard Kyle (1985) model).10,11

Finally, there are liquidity traders, whose exogenously given random demand u is in

general not directly observed by either the strategic traders or the market maker.

The key assumption that makes the model analytically tractable is that all of the

random variables mentioned above—v, θ, θM , and u—are jointly normally distributed.

Specifically, we assume that the vector µ = (v; θ; θM ;u) is drawn randomly from the

multivariate normal distribution with expected value 0 and covariance matrix Ω. The

assumption that the expected value of vector µ is equal to zero is simply a normalization

that allows us to simplify the notation. We also assume that every covariance matrix

for signal θi of strategic trader i and the covariance matrix of the marker maker’s signal

θM are full rank. This assumption is without loss of generality; it simply eliminates

redundancies in each trader’s signals. Note that we do not place a full rank restriction

on matrix Ω itself: for instance, two different strategic traders are allowed to have

perfectly correlated signals. The only substantive restrictions that we place on matrix

Ω are as follows.

Assumption 1 At least one strategic trader receives at least some information about

the value of the security, beyond that contained in the market maker’s signal. Formally:

Cov(v, θ|θM) 6= 0. (1)

9We denote the row vector with elements x1, . . . , xk by (x1, . . . , xk), and the column vector with
the same elements by (x1; . . . ;xk). All vectors are column vectors unless specified otherwise.

10Strictly speaking, θi and θM are random variables whose realizations are in Rki and RkM .
11The multidimensionality of the traders’ and the market maker’s signals is a key feature that allows

our model to incorporate complex informational interdependencies discussed in the introduction.
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Assumption 2 The market maker does not perfectly observe the demand from liq-

uidity traders. Formally:

V ar(u|θM) > 0. (2)

2.1 Trading and Payoffs

After observing his signal θi, each strategic trader i submits his demand di(θi) to the

market. In addition, the realized demand from liquidity traders, u, is also submitted

to the market. The market maker observes her signal θM and the total demand D =∑n
i=1 di(θi)+u, and subsequently sets the price of the security, P (θM , D), based on these

observations. Securities are traded at this price P (θM , D) (with each strategic trader

getting his demand di(θi), liquidity traders getting u, and the market maker taking the

position of size −D to clear the market). At a later time, the true value of the security

is realized, and each strategic trader i obtains profit πi = di(θi) · (v − P (θM , D)).

2.2 Linear Equilibrium

Our solution concept is essentially the same as that in Kyle (1985): linear equilibrium.

Definition 1 below formalizes the notion of equilibrium, while Definition 2 states what

it means for an equilibrium to be linear.

Definition 1 A profile of demand functions di(·) and pricing rule P (·, ·) form an equi-

librium if

(i) on the equilibrium path, the price P set by the market maker is equal to the

expected value of the security conditional on θM and D, given the primitives and

the demand functions di(·); and

(ii) for every trader i, for every realization of signal θi, the expected payoff from

submitting demand di(θi) is at least as high as the expected payoff from submitting

any alternative demand d′i, given the realization of signal θi, the pricing rule P (·, ·)
and the profile of strategies of other traders (dj(·))j 6=i.12

12Our interpretation of condition (i) is similar to that of Kyle (1985): it is a reduced-form way of
representing the outcome of Bertrand competition among multiple market makers. In that interpre-
tation, Kyle (1985) assumes that all market makers observe the total order flow and nothing else. In
our case, all market makers observe the total order flow D and the signal θM , and nothing else. (For
an alternative way of modeling competition among liquidity-supplying market makers, in which they
post price schedules and make positive profits in equilibrium, see Biais et al. (2000, 2013).)

Another, technical difference from the equilibrium notion of Kyle (1985) is that in our case, condition
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Definition 2 Equilibrium ({di(·)}i=1,...,n, P (·, ·)) is linear if functions di and pricing

rule P are linear functions of their arguments, i.e., di(θi) = αTi θi for some αi ∈ Rki

and P (θM , D) = βTMθM + βDD for some βM ∈ RkM and βD ∈ R.13

3 Equilibrium Existence and Uniqueness

We can now state and prove our first main result.

Theorem 1 There exists a unique linear equilibrium.

The proof of Theorem 1 is in Appendix A. The notation used in the proof, as well

as in some of the subsequent sections, is given in Section 3.1 below. The proof is

constructive, yielding a closed-form characterization of the unique equilibrium. This

characterization is presented in Section 3.2.

The proof consists of several steps. We first show that if all strategic traders follow

linear strategies, then the pricing rule resulting from Bayesian updating is also linear;

and that if all strategic traders other than trader i follow linear strategies, and the

market maker is also using a linear pricing rule (with a positive coefficient βD on

aggregate demand D), then the unique best response of trader i is also linear. Next,

we show that the best response conditions allow us to express all parameters of the

pricing rule and the traders’ strategies as functions of “market depth” γ = 1/βD. Using

that derivation, we show that the system of best response conditions can be reduced to

a quadratic equation in γ. Finally, we prove that this quadratic equation has exactly

one positive root, which concludes the proof.

(i) is required to hold only on the equilibrium path. In the standard Kyle (1985) model and many
of its generalizations, every observation of the market maker can be rationalized as being on the
equilibrium path, and thus this qualifier is not needed. In our case, it is in general possible that for
some strategy profiles di(·), only some realizations of aggregate demand D can be observed by the
market maker if the strategic traders follow those strategies. In such cases, by analogy with perfect
Bayesian equilibrium, our definition restricts the beliefs of the market maker on the equilibrium path,
where they are pinned down by Bayes rule, and does not restrict them off the equilibrium path. For
an example in which not all realizations of aggregate demand are observed in equilibrium, consider
the following market. Value v ∼ N(0, 1). There is one strategic trader with signal θ1 who observes
the value perfectly: θ1 = v. The demand of liquidity traders is u = −v. Then in the unique linear
equilibrium, the demand of the strategic trader is equal to the value of the security, and the aggregate
demand is thus always equal to zero. See Section 1 of the Online Appendix for details.

13In principle, we could consider a more general definition that allows the strategies and the pricing
rule to potentially have nonzero intercepts. However, in our setting, linear equilibria with nonzero
intercepts do not exist. See Section 2 of the Online Appendix for a formal proof of this statement.
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3.1 Notation

We decompose the covariance matrix Ω of the vector (v; θ1; . . . ; θn; θM ;u) as follows:

σvv Σv1 · · · Σvn ΣvM σvu

Σ1v Σ11 · · · Σ1n Σ1M Σ1u

...
...

. . .
...

...
...

Σnv Σn1 · · · Σnn ΣnM Σnu

ΣMv ΣM1 · · · ΣMn ΣMM ΣMu

σuv Σu1 · · · Σun ΣuM σuu


.

In this matrix, every σ represents a (scalar) variance or covariance of the asset value

and/or the demand of liquidity traders, and every Σ represents a (generally nonscalar)

covariance matrix of an element of vector (v; θ1; . . . ; θn; θM ;u) with another element.

We also introduce notation for the covariance matrices of the entire vector of traders’

signals, θ = (θ1; . . . ; θn), with itself and with other elements of vector µ. Specifically:

Σθθ = V ar (θ) =


Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn

 , ΣθM = Cov (θ, θM) =


Σ1M

...

ΣnM

 ,

Σθv = Cov (θ, v) =


Σ1v

...

Σnv

 , Σθu = Cov (θ, u) =


Σ1u

...

Σnu

 .

In addition, we use the following matrices:

Σdiag =


Σ11 0 0 0

0 Σ22 0 0

0 0
. . . 0

0 0 0 Σnn

 ,

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1(Σθu − ΣθMΣ−1
MMΣMu),

Av = Λ−1(Σθv − ΣθMΣ−1
MMΣMv).

(We show in the proof of Theorem 1 that matrix Λ is invertible.)
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3.2 Closed-Form Solution

The proof of Theorem 1 is constructive, producing the following expressions for the

parameters of interest.

Depth γ = −
(
b+
√
b2 − 4ac

)
/2a, where

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au + ΣuMΣ−1
MMΣMv − σuv,

c = V ar(ATu θ − u|θM).

(The proof shows that a < 0, c > 0, and thus γ > 0.) Equilibrium pricing rule and

strategies are then as follows:

βD =
1

γ
,

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)
− βDΣ−1

MM

(
ΣMu − ΣT

θMAu
)
,

α =
1

βD
Av − Au.

These expressions are simplified in the case kM = 0, when the market maker does

not observe any private signals (other than the aggregate demand D).14 In that case,

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au − σuv,

c = V ar(ATu θ − u),

where

Λ = Σθθ + Σdiag,

Au = Λ−1Σθu,

Av = Λ−1Σθv.

These expressions are further simplified if, in addition, the demand from liquidity

traders, u, is uncorrelated with the other random variables in the model. Then b = 0

14Strictly speaking, our proof does not apply directly to the case kM = 0 since, for example, it
uses the inverse of the covariance matrix of θM . However, one can drop all terms related to θM from
the proof and immediately obtain the proof for that case. Alternatively, one can consider a model
in which the market maker observes a signal that is independent of all other random variables. The
equilibrium in that model will be equivalent to one in which kM = 0.
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and γ =
√

σuu
AT

v ΣdiagAv
, and so

βD =

√
ATv ΣdiagAv

σuu
and α =

√
σuu

ATv ΣdiagAv
Av.

Finally, the proof of Theorem 1 allows us to obtain convenient closed-form expres-

sions for the expected profits of strategic traders and the expected losses of liquidity

traders, in the general setting. Specifically, the expected profit of trader i is equal to

βDα
T
i Σiiαi, and the expected loss of liquidity traders is equal to βDα

TΣdiagα.15

3.3 Discussion of the Proof of Theorem 1

The first part of the proof, which shows the linearity of best responses to linear strate-

gies and linear pricing rules, is standard in the literature on linear-normal equilibria.

The main novel contribution of the next part of the proof is to transform the potentially

unwieldy, very general system of equations with
∑n

i=1 ki+kM +1 unknowns into a man-

ageable, analytically tractable set of expressions, as follows. First, for any fixed value

of “market depth” γ = 1/βD, the remaining
∑n

i=1 ki + kM unknowns can be expressed

in a convenient matrix form as a function of γ. Next, using that representation, we

can show that γ must be a root of a quadratic equation, where, again, the coefficients

have manageable, compact matrix representations in terms of the underlying primi-

tives of the model. Of course, obtaining a quadratic equation on γ is not sufficient: a

quadratic equation can have two roots (and the model can thus in principle suffer from

equilibrium multiplicity) or zero roots (and the model can thus suffer from equilibrium

nonexistence). In our setting, we have an additional constraint that γ must be positive

(because market sensitivity βD must be positive). The last part of the proof shows that

the quadratic equation obtained in the previous step is guaranteed to have exactly one

positive root for all possible values of the primitives. The proof of this statement is

fairly subtle, and relies on the compact and tractable matrix representations obtained

in the previous steps. So while the general outline of the proof is parallel to those in

the earlier literature, its main novelty is in the generality of the underlying model, and

15The expressions in Step 2 of the proof of Theorem 1 imply that for any trader i, conditional on

realization θ̃i of signal θi, the equilibrium expected profit is equal to βD

(
αTi θ̃i

)2
= βDα

T
i θ̃iθ̃i

T
αi.

Thus, the unconditional expected profit of trader i is equal to βDα
T
i E[θiθi

T ]αi = βDα
T
i V ar(θi)αi =

βDα
T
i Σiiαi. The expected loss of liquidity traders is equal to the sum of the expected profits of

strategic traders,
∑n
i=1 βDα

T
i Σiiαi = βDα

TΣdiagα.
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in showing that despite this generality, one does not need to worry about equilibrium

existence or equilibrium selection issues, and moreover can use tractable, convenient

closed-form expressions to characterize the equilibrium.

A natural question is to what extent this approach is applicable to the analysis of

asymmetric linear equilibria in another canonical linear-normal setting: that of compe-

tition in demand/supply schedules, in the tradition of Kyle (1989), Vives (2011), and

other related papers. Broadly speaking, with jointly normally distributed signals and

CARA or quadratic utility functions, the first two steps of the proof “go through” and

the linearity of best response functions is preserved. That is, if all traders other than

trader i submit demand/supply schedules that are linear in market price p, the optimal

demand/supply schedule that trader i will submit in response will also be linear in p.

Moreover, this “best response” schedule can be characterized in compact closed form as

a function of the primitives of the model and the parameters of the strategies of other

traders—even for very general, multidimensional and asymmetric information struc-

tures and strategy profiles like those that we consider in the current paper. However,

proving that the resulting system of equations has a solution, determining whether and

when it is unique, and characterizing its properties, all become much more challenging,

for several reasons. First, with small numbers of traders, a linear equilibrium may not

exist for strategic reasons, even in the original symmetric model of Kyle (1989). Sec-

ond, Bayesian inference by strategic traders becomes more complicated. In the model

of Section 2, trader i’s expectation of asset value, v, depends only on his signal θi, and

the expected price of the asset depends linearly on the parameters of other players’

strategies.16 By contrast, in models of price schedule competition, trader i conditions

his expectation of the value of the security on realized price p, which in turn depends

endogenously on the parameters of other players’ strategies. While in the linear-normal

world, this conditioning is analytically tractable, it results in a nonlinear function of

the parameters of players’ strategies, substantially complicating the analysis.17 Third,

in the model of the current paper, as well as in symmetric equilibria of price schedule

competition, each trader faces the same sensitivity of price to his own demand. By

contrast, in asymmetric equilibria of price schedule competition, each trader in gen-

eral faces a different residual demand curve from those that other traders face, with

16The strategy of player j enters into player i’s expectation of the price of the asset as an additive
term −βDαTj E[θj |θi].

17Intuitively, conditioning on p involves multiplying the observed price by the inverse of its variance.
The variance of p is a second-degree polynomial in the parameters of players’ strategies.
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different slopes, complicating the analysis.

For these reasons, the analysis of demand and supply schedule competition has

been largely restricted to various cases with symmetric equilibria. However, given the

compact closed-form expressions for linear best responses, and the resulting system

of well-behaved polynomial equations, there may be ways to obtain positive results

for this framework despite the general lack of closed-form solutions of this system

of equation. Some recent papers make progress on that front. Rostek and Yoon

(2014) solve the resulting systems of equations numerically, for a variety of asymmetric

examples. Manzano and Vives (2016) obtain closed-form solutions for a special case

with two groups of traders, with traders belonging to the same group observing identical

signals. What makes this special case tractable is that the second problem described

above (dividing by the variance of p) disappears, because prices in this particular case

are privately revealing: knowing his own signal (and thus the signals of other trader in

his group) and price p, each trader can immediately infer the signal of the traders in

the other group. And the third problem becomes manageable as well, as there are only

two different price sensitivities that need to be dealt with. As a result, the system of

equations can be reduced to an analytically tractable cubic equation in one variable.

4 Applications

Before proceeding to our second main result (Theorem 2 in Section 5), we illustrate

our general framework with a number of applications. In Section 4.1, we consider the

question of whether having more information is always advantageous for a strategic

trader. In Section 4.2, we explore the range of possible outcomes in our model when

the fundamentals of the economy are fixed, but the informational structure is allowed

to vary, in the spirit of Bergemann and Morris (2013). We also provide a number of

additional illustrative examples in Section 5 of the Online Appendix.

4.1 The Value of Additional Information

In this subsection, we address the question of whether having more information is

always advantageous for a strategic trader. In decision problems, the answer is of course

immediate: getting more information is always weakly better than getting less, because

the decision maker can always dismiss the additional information if he so desires.

Similarly, in strategic situations, if a player receives additional information without
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other players knowing that he has received it, he is again weakly better off, because he

can dismiss the additional information, and because by assumption, other players do

not know about this additional information and thus their actions are not affected by

it. However, in a strategic situation, if other players know about the existence of this

additional information, they may adjust their behavior accordingly, with potentially

detrimental effects for the player who receives this additional information.

In the current setting, the effect of additional information turns out to be subtle.

We first show (Proposition 1) that in the context of a single market, if one trader is

more informed than another one (in the sense that the first trader knows the informa-

tion of the second one, and also possibly has some additional information), then the

expected profit of the first trader is weakly higher than that of the latter. We then

show (Example 1) that if a strategic trader receives more information in one market

than he does in another one (with all other parameters in these two markets being the

same), then the trader may be worse off in the market where he is more informed.

Proposition 1 Consider a market in the general framework of Section 2, and sup-

pose strategic trader A is more informed than strategic trader B: the latter observes a

multidimensional signal θB, while (slightly abusing our notation) the former observes

a multidimensional signal (θA; θB). Then in the unique linear equilibrium, the expected

profit of trader A is weakly higher than the expected profit of trader B.

The proof of Proposition 1 is in Section 3 of the Online Appendix. The key in-

gredient of the proof is Lemma OA.1, which shows that if two strategic traders share

some common information, then in equilibrium, they put exactly the same weight on

this information (even if the additional signals that they observe are different). It then

follows that in the context of Proposition 1, traders A and B make the same expected

profits from the information contained in θB, and then trader A also makes additional

nonnegative profits from the additional information contained in signal θA.

By contrast, the following example shows that becoming more informed is not

necessarily good for a strategic trader: equilibrium effects may be negative and may

outweigh the benefit from extra information.

Example 1 The value of the security is v ∼ N(0, 1). There are two strategic traders.

Trader 1 observes a noisy estimate of v: θ1 = v + ε, where ε ∼ N(0, 1) is a random

variable independent of v. Trader 2 observes θ2 = v. Finally, there is demand from
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liquidity traders, u ∼ N(0, 1), which is independent of all other random variables. The

resulting covariance matrix is

Ω =


1 1 1 0

1 2 1 0

1 1 1 0

0 0 0 1

 .

Using the notation and closed-form characterization from the preceding section, we

have Λ = Σθθ + Σdiag =

(
4 1

1 2

)
, Λ−1 = (1/7)

(
2 −1

−1 4

)
, and so

Av = Λ−1Σθv =

(
1
7
3
7

)
and βD =

√
ATv ΣdiagAv

σuu
=

√
11

7
.

The equilibrium strategies of traders 1 and 2, α1 and α2, are thus given by(
α1

α2

)
=

1

βD
Av =

(
1
11

√
11

3
11

√
11

)
.

The equilibrium expected profit of every trader i is equal to βDα
T
i Σiiαi. Thus, in

the current example, the expected profit of trader 1 is equal to π1 = 2
√

11/77 ≈ 0.086,

and the expected profit of trader 2 is equal to π2 = 9
√

11/77 ≈ 0.388.

Now consider a modified market, in which trader 2 becomes more informed: he

observes both v and ε, i.e., θ2 = (v; ε). The resulting covariance matrix is now

Ω =


1 1 1 0 0

1 2 1 1 0

1 1 1 0 0

0 1 0 1 0

0 0 0 0 1

 .

The corresponding auxiliary matrices are

Λ =

 4 1 1

1 2 0

1 0 2

 , Λ−1 =
1

12

 4 −2 −2

−2 7 1

−2 1 7

 , and Av = Λ−1Σθv =
1

12

 2

5

−1

 ,

and so

βD =

√
ATv ΣdiagAv

σuu
=

√
34

12
, α1 =

(
2√
34

)
, and α2 =

(
5√
34
−1√

34

)
.
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Thus, in this modified market, the expected profit of trader 1 is equal to π′1 =
√

34/51 ≈
0.114 and the expected profit of trader 2 is equal to

π′2 =
(√

34/12
)( 5/

√
34

−1/
√

34

)T (
1 0

0 1

)(
5/
√

34

−1/
√

34

)
=

13
√

34

204
≈ 0.372.

After getting more informed, trader 2 is worse off: π′2 ≈ 0.372 < 0.388 ≈ π2.

Perhaps surprisingly, trader 1 (whose information did not change) is better off: π′1 ≈
0.114 > 0.086 ≈ π1. Of course, there is no contradiction here with Proposition 1: we

still have π′2 > π′1, consistent with the fact that in the modified market, trader 2 (who

observes v and ε separately) is better informed than trader 1 (who only observes v+ ε).

4.2 The Range of Possible Outcomes

As argued by Bergemann and Morris (2013), the information structure of players in

a game may be hard to observe, and thus it is interesting to know what range of

predictions one can obtain without making specific assumptions on that structure. In

this section, we explore this question in the context of our model. For tractability, we

restrict attention to the case in which the market maker does not observe any signals

beyond the aggregate demand. For normalization, we fix the variance of the asset

value, σvv, and the variance of liquidity demand, σuu, and also assume that the pooled

information of all strategic traders is sufficient to know the asset value: V ar(v|θ) = 0.

We consider three classes of markets. The first (and smallest) class C1 contains

markets in which liquidity demand is independent of the value of the asset, and the

strategic traders do not observe any information about liquidity demand (just like in the

canonical Kyle (1985) model). The second, larger class C2 contains markets in which

liquidity demand is still independent of the value of the asset, but now the strategic

traders may observe some information about liquidity demand. Finally, the third, most

general class C3 contains markets in which liquidity demand may be correlated with

the value of the asset, and the strategic traders may observe some information about it.

Within those classes, we allow the information structure of the strategic traders to

vary freely (subject to the constraint that as a group, they know the true value of the

asset, v), and also allow the number of strategic traders to vary. For each class, we find

the lower and the upper bounds on four outcomes of interest: the variance of market

prices, V ar(p); the variance of aggregate market demand, V ar(D); the sensitivity of

the market maker, βD; and the expected loss of liquidity traders, −E[u(v − p)]. For
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each of the four variables, within each of the three classes, we find the infimum and

the supremum of possible outcome values in the unique linear equilibrium, across all

possible information structures and possible numbers of strategic traders. The results

are summarized in the following proposition.

Proposition 2 The bounds on the four outcome variables of interest, for three classes

of markets, are as in the table below.

Class C1 Class C2 Class C3

V ar(p)
sup = σvv

inf = 0

sup = σvv

inf = 0

sup = σvv

inf = 0

V ar(D)
sup =∞
inf = σuu

sup =∞
inf = 0

sup =∞
inf = 0

βD
sup =

1

2

√
σvv/σuu

inf = 0

sup =∞
inf = 0

sup =∞
inf = 0

−E[u(v − p)] sup =
1

2

√
σvvσuu

inf = 0

sup =
1

2

√
σvvσuu

inf = 0

sup =
√
σvvσuu

inf = 0

The proof of Proposition 2 is in Section 4 of the Online Appendix. The bounds estab-

lished in the proposition show the critical importance of the underlying information

structure for the predictions of our model. For instance, without any assumptions on

the information structure, prices can range from fully informative about the value of

the security to completely uninformative, despite the fact that the players, as a group,

have full information about v.18 This finding may at first glance seem at odds with

the second main result of our paper, discussed in the next section: as markets grow

large, the information of strategic traders gets aggregated and fully incorporated in

market prices. Of course, there is no contradiction, but the contrast highlights the

importance of the assumption on information structures that we impose in our large-

market information aggregation result in Section 5: there is a finite number of groups

of traders, symmetrically informed within each group, and the size of each group grows

18Since by construction, E[v|p] = p, we have the following simple formula for the informativeness of
the price: V ar(v−p) = σvv−V ar(p). In class C1, prices approach the asset value when, for example,
the market includes many informed traders and each of them knows the asset value (see Section 5).
Conversely, prices can also contain arbitrarily little information about the asset value. This can happen
if each individual trader’s information is very noisy, even though the traders’ combined signals are
sufficient to learn the value of the asset (see Section 4 of the Online Appendix).
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large. Intuitively, for information aggregation, it is not sufficient that traders, taken

together, know the value of the security. It is also not sufficient that the number of

traders is large. What is essential is that for every bit of information, there are many

traders observing it, and it is the competition among those traders that leads to that

bit of information being fully revealed and incorporated into the market price. If there

is a part of information that is observed by only a small number of traders, it will in

general not be fully revealed, as we show in Section 6 on “hybrid” markets.

We should note that while the question answered by Proposition 2 is in the spirit of

Bergemann and Morris (2013, 2016), the proof relies on the analysis of various specific

examples of information structures and their equilibria rather than on the methodology

of Bayes correlated equilibrium developed by Bergemann and Morris. The difference is

due to the fact that the model of strategic interaction in our paper is dynamic: traders

i = 1, . . . , n move first, and then the market maker moves second after observing

endogenous aggregate demand D.19

5 Information Aggregation in Large Markets

Consider a sequence of markets, indexed by m = 1, 2, . . . . In every market, there

are n groups of strategic traders, with at least one trader in each group. Index i,

1 ≤ i ≤ n, now denotes a group of traders. The size of group i in market m is denoted

by `
(m)
i . Every trader j in group i receives a ki-dimensional signal θi + ξi,j, where

θi denotes the signal component common to all traders in group i and ξi,j denotes

the idiosyncratic component of trader j. We denote by θ = (θ1; . . . ; θn) the vector of

common components of the signals, and denote by Ω the covariance matrix of vector

µ = (v; θ; θM ;u). The idiosyncratic components ξi,j are distributed identically across

the traders in group i, with each ξi,j distributed according to a ki-dimensional normal

distribution with mean 0 and covariance matrix Σξ
i . Every ξi,j is independent of all

other random variables in the model. We place no restrictions on matrices Σξ
i . In

particular, we allow for the case Σξ
i = 0, in which all traders in group i receive the

same signal θi.

19Formally, in our model, the market maker sets the price nonstrategically, to be equal to the
expected value of the security based on her information. However, this behavior is identical to that of
a fully strategic player who chooses p that maximizes the expected value of the expression − (v − p)2.
So with this reinterpretation, our model can be viewed as a standard two-period game, with traders
i = 1, . . . , n moving first and the market maker moving second.
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We assume that Ω and Σξ
1, . . . ,Σ

ξ
n are the same for all markets m. The number

of traders in each group, however, changes with m: specifically, we assume that for

every i, limm→∞ `
(m)
i = ∞, i.e., all groups become large as m becomes large. We do

not impose any restrictions on the rates of growth of those groups: e.g., the sizes of

some groups may grow much faster than those of other groups.

We slightly strengthen one of the two conditions on matrix Ω made in Section 2,

replacing Assumption 2 with the following:20

Assumption 2L V ar(u|θ, θM) > 0.

It follows from Theorem 1 that for each m, there exists a unique linear equilibrium

in the corresponding market. Let p(m) denote the random variable that is equal to the

resulting price in the unique linear equilibrium of market m.

We can now state and prove our main result on information aggregation in large

markets. If the demand from liquidity traders is positively correlated with the true

value of the asset (conditional on other signals), then prices in large markets aggregate

all available information: p(m) converges to E[v|θ, θM , u]. If liquidity demand is nega-

tively correlated with the true value of the asset, then prices in large markets aggregate

all available information except that contained in liquidity demand: p(m) converges to

E[v|θ, θM ]. If liquidity demand is uncorrelated with the true value of the asset, then

both statements are true: p(m) converges to E[v|θ, θM , u] = E[v|θ, θM ].

Theorem 2

• If Cov(u, v|θ, θM) ≥ 0, then limm→∞E
[(
p(m) − E[v|θ, θM , u]

)2
]

= 0.

• If Cov(u, v|θ, θM) ≤ 0, then limm→∞E
[(
p(m) − E[v|θ, θM ]

)2
]

= 0.

In Appendix B, we prove Theorem 2 for the special case in which the covariance

matrix of random vector (θ; θM ;u) is full rank. This additional assumption guarantees

that certain matrices remain invertible in the limit as m becomes large, which in turn

20Under the original Assumptions 1 and 2, information may not get aggregated as markets become
large. To see that, consider a modification of the example introduced in footnote 12. Value v ∼ N(0, 1).
There are m strategic traders with the same signal θ1 = v. The demand of liquidity traders is u = −v.
Then in the unique linear equilibrium, the demand of each strategic trader is equal to θ1/m, the
aggregate demand of all strategic trader is equal to θ1 = v = −u, the aggregate demand of all traders
is equal to zero, and thus the equilibrium price is also always equal to zero, for any m. Thus, there is
no information aggregation of any kind in the limit as m becomes large. See Section 1 of the Online
Appendix for a formal derivation of these results.
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allows us to give a direct proof of the theorem without technical complications. How-

ever, this special case rules out some interesting possibilities (e.g., one type of traders

knowing strictly more than another type of traders), so in the Online Appendix (Sec-

tion 8), we provide the full proof of Theorem 2, without this simplifying assumption.

The intuition for the information aggregation result is that, when the number of

informed traders of each type is large, the information of each strategic trader has

to be (almost) fully incorporated into the market price, since otherwise each trader

of that type would be able to make a nonnegligible profit, which cannot happen in

equilibrium. Also, as the size of every group i grows, the idiosyncratic noise in the

aggregate demand from that group vanishes, leaving only the “informative” part of

the demand that is driven by the common component θi.
21 The signal of the market

maker gets incorporated into the market price by construction. Finally, with liquidity

demand, the situation is more subtle. When liquidity demand is positively correlated

with the asset value (Cov(u, v|θ, θM) > 0), equilibrium strategies and market depth

adjust precisely in a way that makes liquidity demand get incorporated into the mar-

ket price “correctly,” i.e., with the same weight as it would be incorporated into the

market price by a Bayesian observer who was fully informed about all the random vari-

ables in the model (except value v). As a result, price p(m) converges to E[v|θ, θM , u],

and so all information available in the market is incorporated into the market price.

However, when liquidity demand is negatively correlated with the value of the asset

(Cov(u, v|θ, θM) < 0), this cannot happen. In equilibrium, aggregate demand always

enters the market price with a positive sign (sensitivity βD is positive). Thus, liquidity

demand also enters the market price with a positive sign. However, a fully informed

Bayesian observer would put a negative weight on liquidity demand—which cannot

happen in any linear equilibrium, for any parameter values. So what happens instead

as m becomes large is that the variance of the aggregate demand from informed traders

grows to infinity (in contrast to the case Cov(u, v|θ, θM) > 0, in which it converges to

21The fact that the idiosyncratic components in signals have no impact on equilibrium outcomes in
large markets is parallel to the results in McLean and Postlewaite (2002) and McLean et al. (2005) in
which the agents with such idiosyncratic components in signals have nonredundant information, but
become “informationally small” as markets become large: adding the information of an extra agent
to the information of others does not significantly impact the Bayesian estimate of the value of the
security. Note, however, that “informational smallness” by itself is not sufficient for our results. In
an economy without idiosyncratic components in signals, agents become “informationally small” as
soon as the size of each group i is at least two. However, information is generally not aggregated in
our setting in finite markets, even if the size of each group is two or greater and all the traders in
each group i receive the same signal θi. That is, for such finite markets, we do not generally have
E
[
(p− E[v|θ, θM , u])2

]
= 0 or E

[
(p− E[v|θ, θM ])2

]
= 0.
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a finite value). And thus, as m grows, liquidity demand u has less and less impact

on the market price, and in the limit it has no impact at all: price p(m) converges to

E[v|θ, θM ]. The same happens in the case Cov(u, v|θ, θM) = 0, for the same reason,

but in that case E[v|θ, θM ] is equal to E[v|θ, θM , u], and so price p(m) does converge to

the expected value of the asset given all the information available in the market.

Another way to get intuition about the result is to notice that as a particular

group i becomes large, its aggregate behavior converges to that of a single agent who is

trying to minimize the expected square of the difference between the true value of the

asset and its market price, E [(v − p)2].22 By construction, the market maker is also

trying to minimize E [(v − p)2] (subject to the constraint that the sensitivity of price

to aggregate demand, βD, is positive). Thus, as market size grows large, the system

in essence behaves as a game with n partially informed traders (each corresponding

to a particular group i and receiving the signal θi) and a market maker, all of whom

have the same objective function: to minimize the expected square of the mispricing.

The commonality of objective functions implies that the profile of policies by these

n + 1 agents that minimizes the expected squared mispricing will be an equilibrium

of this limit game. When Cov(u, v|θ, θM) is positive, the profile of policies that mini-

mizes the expected squared mispricing is the one that sets the price p = E[v|θ, θM , u],

incorporating all the information available in the market. When Cov(u, v|θ, θM) is

negative or zero, setting the price at p = E[v|θ, θM , u] is impossible, since that would

require setting βD ≤ 0, which is not allowed. In fact, since βD has to be positive, any

profile of strategies by the n + 1 agents has to put positive weight on u in forming

22To see this, fix a market and the corresponding equilibrium, and consider group i with ` traders,
all of whom observe the same signal θi ∈ R (the cases with multidimensional signals or idiosyn-
cratic components are more notationally cumbersome, but the conclusions are the same). Suppose

in equilibrium each of these traders, after observing realization θ̃i, submits demand d∗ = αiθ̃i. Let
p−i = p−βD (`αiθi) denote the random variable corresponding to what the price in the market would
have been if all traders in group i demanded zero instead of submitting the demands prescribed by
the equilibrium. Conditional on θ̃i, each trader in group i submits demand d that is maximizing

d ×
(
E
[
v − p−i|θ̃i

]
− βD(`− 1)d∗ − βDd

)
, which implies d = 1

2βD

(
E
[
v − p−i|θ̃i

]
− βD(`− 1)d∗

)
.

Since in equilibrium d = d∗, this in turn implies βD(` + 1)d∗ = E
[
v − p−i|θ̃i

]
. The aggregate

demand of group i is equal to `d∗, and so as ` → ∞, the aggregate demand of group i con-

verges to 1
βD
E
[
v − p−i|θ̃i

]
. Now suppose we instead have a single trader i who observes a real-

ization θ̃i of signal θi and whose objective is to minimize E
[
(v − p)2

]
. We have E

[
(v − p)2|θ̃i

]
=

E
[
(v − p−i − βDd)2|θ̃i

]
= E

[
(v − p−i)2|θ̃i

]
− 2dβDE

[
v − p−i|θ̃i

]
+β2

Dd
2. The first term of this sum

does not depend on d, and so the expression is minimized at d = 1
βD
E
[
v − p−i|θ̃i

]
—which is precisely

the quantity to which the aggregate demand of group i converges in the original game as `→∞.
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the price—which the n + 1 agents do not want to do. So they will want to set βD

to be infinitesimally small, and then adjust the strategies of the n partially informed

traders accordingly, to get price p to be close to E[v|θ, θM ]—which provides the in-

fimum of the square of the mispricing given the constraint βD > 0. Note that this

intuition also illustrates that mathematically, there is no asymmetry between the cases

of Cov(u, v|θ, θM) > 0 and Cov(u, v|θ, θM) < 0, and the difference in predictions for

those cases arises from the economic incentives of the traders. Namely, if in the original

game the goal of the strategic traders was to lose as much money as possible, the limit

game with the n + 1 agents would in fact be the same as in our original case, except

that the constraint would be βD < 0. And so all information would get aggregated

in the case Cov(u, v|θ, θM) < 0 (and market depth would remain bounded), and only

information contained in θ and θM , but not that contained in u, would get aggregated

in the case Cov(u, v|θ, θM) > 0 (and market depth would go to infinity).

The information aggregation result in Theorem 2 raises some natural questions.

The first one is to what extent it matters that the variance of liquidity traders’ de-

mand u(m) remains constant as markets become large. What would happen if that

variance also grew together with the number of strategic traders? Of course, the prof-

its made by the strategic traders and their equilibrium strategies would be affected.

It turns out, however, that equilibrium prices would remain unchanged. Specifically,

for a given market, if liquidity demand were scaled by some factor ρ, the equilibrium

strategies of all strategic traders would also get rescaled by the same factor ρ, the sensi-

tivity of market maker’s pricing rule to the aggregate demand, βD, would get rescaled

by 1/ρ, and the equilibrium prices would thus stay the same. Proposition OA.4 in

Section 7 of the Online Appendix formally proves these statements. This result, in

turn, immediately implies that the conclusion of Theorem 2 would not be affected if

we allowed liquidity demand u(m) to scale as a function of m.

Another question is whether the presence of a Bayesian market maker is critical for

information aggregation. Is it important that there is an agent in the economy who

is accurately setting prices based on the information available to her? To answer this

question, in Section 7 of the paper we consider a model of Cournot competition, which

can be viewed as an analogue of the Kyle-style model of Section 2 with one key differ-

ence: the Bayesian market maker is replaced with a mechanical market maker whose

sensitivity to aggregate demand, β, is exogenously fixed, instead of being determined

endogenously in equilibrium. We find that the presence of a Bayesian market maker is
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not critical for information aggregation: Proposition 4 in Section 7.3 shows that as the

number of firms grows, the outcome (equilibrium price and total quantity produced)

of Cournot competition with information dispersed among the firms converges to that

of Cournot competition in which all firms have access to all information.

Finally, a natural question is what happens if some groups remain “small,” while

others grow “large.” The next section addresses this question.

6 Information in “Hybrid” Markets

In many situations, some “scarce” information about the value of a security is known

by only a small number of traders, perhaps just one, and some other information,

while not publicly available, may be more “abundant,” and may be observed by a

large number of traders. In this section, we explore how these two types of information

get incorporated into market prices in equilibrium.

It is intuitive that due to strategic considerations, “scarce” information will not be

fully incorporated into market prices, and the traders possessing this information will

make positive profits, while “abundant” information will be almost fully incorporated

into market prices (and the traders possessing it will make vanishingly small profits).

What is less immediate is the interplay between these two types of information, and

how they get combined with the information observed directly by the market maker

and the information contained in liquidity demand. In particular, a seemingly natural

conjecture is that “abundant” information will enter the price essentially as a public

signal, observed by everyone in the economy. Our last result shows that this is not the

case: instead, “abundant” information, in the limit, enters into market prices in the

same way as if it were directly observed by the market maker—but not by the strategic

traders observing “scarce” information. As Examples OA.6 and OA.7 in Section 5.3 of

the Online Appendix illustrate, this is substantively different from the case in which

“abundant” information is observed by all the agents in the economy.

Formally, using the notation introduced in Section 5, suppose that for some s ≥ 1,

the sizes of the groups i = 1, . . . , s < n remain constant as m varies, i.e., `
(m)
i = `i for

some `i, while for i = s+ 1, . . . , n, the size of group i grows to infinity, i.e., `
(m)
i →∞.

We will refer to groups i = 1, . . . , s as “small groups,” and to groups i = s + 1, . . . , n

as “large groups.” Every trader j of a small group i receives signal θi. Every trader j

of a large group i receives signal θi + ξi,j, where θi is the component common to all
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traders of group i, and ξi,j is the idiosyncratic component of trader j, independently

distributed according to a normal distribution with mean zero and covariance matrix

Σξ
i .

23

Throughout this section, let θS be the vector of signals of the small groups, i.e.,

θS = (θ1; . . . ; θs), and let θL be the vector of common components of the signals of the

large groups, i.e., θL = (θs+1; . . . ; θn). We make two assumptions:

Assumption 1H Cov(v, θS|θL, θM) 6= 0.

Assumption 2H V ar(u|θL, θM) > 0.

The first assumption states that at least one of the small groups has some infor-

mation about the asset value that is not observed by the market maker or the large

groups. This assumption is analogous to Assumption 1 of Section 2, ensuring that some

information about the value of the asset remains “scarce” even in the limit. The second

assumption states that the information of the market maker and the joint information

of large groups is not sufficient to fully learn liquidity demand. This assumption is

analogous to Assumption 2L of Section 5.

Our next result shows that under Assumptions 1H and 2H, equilibrium prices in

the above sequence of markets converge to the equilibrium price that would obtain

in an alternative market, in which only the small groups of traders are present (with

the same information as in the original markets, θS), and in which the market maker

directly observes both her original signal θM and the common components of signals

observed by the large groups of traders in the original markets, θL. Let {p(m)} denote

the sequence of random variables that are equal to the prices in the linear equilibria of

the original sequences of markets indexed by m. Let p(alt) denote the random variable

that corresponds to the equilibrium price obtained in the alternative market.

Theorem 3 limm→∞E
[(
p(m) − p(alt)

)2
]

= 0.

In Section 9 of the Online Appendix, we prove Theorem 3 for the special case

in which the covariance matrix of vector (θS; θL; θM ;u) is full rank. As in the case

of Theorem 2, this assumption simplifies the argument by guaranteeing that certain

23Note that the assumption that all traders in the same small group i receive the same signal θi
is without loss of generality: one small group of size `i in which traders also receive idiosyncratic
components with nonzero covariance matrix can be represented as `i small groups of size one.
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matrices remain invertible in the limit. However, this assumption rules out some in-

teresting possibilities (e.g., some small groups know some elements of the common

components of signals of some large groups), and so in Section 10 of the Online Ap-

pendix, we provide the full proof of Theorem 3 without this simplifying assumption.

The techniques used in the proofs are similar to those used in the proofs of Theorem 2,

except that the presence of small groups requires a separate treatment, because their

strategic incentives do not vanish in the limit. Also, note that unlike in Theorem 2,

the result in Theorem 3 does not depend on the sign of the conditional covariance of

liquidity demand and asset value. The reason for that is that in the large-market case,

when Cov(u, v|θ, θM) ≤ 0, as the market was getting larger, market maker’s sensitiv-

ity βD was converging to zero, removing the impact of u on the market price. In the

hybrid-market case, even as some groups become large, there are still some groups that

remain small and whose traders thus possess “scarce” information which would have

allowed them to make infinite profits if βD converged to zero. So in the hybrid-market

case, βD remains bounded away from zero even in the limit, regardless of the sign of

Cov(u, v|θ, θM).

We conclude this section with a final observation. As Examples OA.6 and OA.7 in

Section 5 of the Online Appendix show, the expected profit of an informed trader can

be strictly higher when he observes the signal of the market maker than when he does

not, because observing the information of the market maker allows the informed trader

to better use the part of his information that is not known to the market maker. In the

case of “hybrid” markets, Theorem 3 shows that equilibria converge to those that would

obtain if the information of “large” groups was observed by the market maker, but not

publicly, so that the “small” groups do not observe that information. This situation

may create incentives for trading information. If some small-group traders were to

obtain information from some of the large-group traders, those small-group traders

could increase their expected profit by a nonnegligible amount. At the same time, in

the limit, large-group traders make zero profits anyway, so they would not lose anything

by sharing this information with the small-group traders. Thus, if trading information

is allowed, the large-group information may end up being purchased by small-group

traders, and thus the market, in the limit, may behave as if that information was

observed publicly. We leave the formal analysis of this intuition to future research.
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7 Cournot Competition

The model of Section 2 (to which we will refer as the Kyle model throughout this

section) has many “moving parts.” In particular, it has three types of agents: fully

optimizing strategic traders, mechanical liquidity traders, and Bayesian market makers.

It is thus natural to ask which of these components are the driving forces behind our

result on information aggregation (Theorem 2). Would the result break down without

a market maker who explicitly sets prices to be equal to the expected value of the

security? Is it essential that there are liquidity traders who in expectation lose money

and by doing so “subsidize” trading and information discovery?

To shed light on these questions, in this section we consider a model that contains

neither Bayesian market makers nor liquidity traders, but is otherwise closely related

to the Kyle model. (As we explain in footnote 26 below, the model of this section can

be equivalently viewed as a model of trading with a mechanical market maker whose

sensitivity to demand is exogenously fixed.) The model we consider in this section

is asymmetric Cournot competition, in which firms observe imperfect (and generally

different) signals about the intercept of the market demand function (an analogue of

the value of the security v in the Kyle model) and the question we address is, again,

whether this asymmetric information gets aggregated as the market grows large.24 We

show that information does indeed get aggregated as the number of firms increases—

the total quantity and price in the market converge to those that would obtain if all

the firms had access to all available information.25

24Bergemann et al. (2015) also compare informational properties of trading under Cournot com-
petition, in which the slope of the price response is exogenously fixed, and of trading in a setting
in the spirit of Kyle (1985), in which the slope of the price response is endogenously determined by
a Bayesian market maker (as well as in a setting of demand function competition in the spirit of
Kyle (1989), which we do not consider). Their focus, however, is different from ours: while we study
information aggregation in the limit as the number of strategic traders becomes large, Bergemann
et al. (2015) keep the number of players fixed and study the spaces of possible equilibrium outcomes
under general information structures, the equivalences of these outcomes under different equilibrium
notions (Bayes correlated equilibrium and Bayesian Nash equilibrium), and the properties of these
spaces (such as the first and second moments of the equilibrium distributions of players’ actions).

25This result is closely related to the results of Li (1985) and Palfrey (1985), who also observe that
under constant marginal costs of production, Cournot competition efficiently aggregates distributed
information as the number of firms becomes large. The key difference between our result and those of
Li (1985) and Palfrey (1985) is that we allow for an arbitrary matrix of correlations of the firms’ signals,
while they require the signals to be symmetric. Note that the assumption of constant marginal costs is
important for the results Li (1985) and Palfrey (1985), and thus also for our information aggregation
result. As Vives (1988) shows, if production costs are quadratic (and so marginal costs are increasing
in quantity instead of being constant), the market does not converge to the full-information outcome
as the number of firms becomes large, even if the firms are ex ante identical.
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7.1 Model

There are n firms in the market for a good. Each firm has a constant marginal cost

of production c per unit of the good, and no fixed costs. The demand function for the

good is not initially known to the firms. Rather, if the firms in aggregate produce Q

units of the good, the resulting market price will be

p = v − βQ,

where β > 0 is the commonly known slope of the inverse demand function, and v is

the uncertain intercept of that function.

Prior to making a production decision, each firm i observes a multidimensional

signal θi ∈ Rki . Vector θ = (θ1; . . . ; θn) summarizes the signals of all firms. We assume

that vector (θ; v) is drawn randomly from the multivariate normal distribution with

expected value (0; v̄) and covariance matrix Ω. We further assume, without loss of

generality, that for every i, the covariance matrix of signal θi is full rank.

After observing its signal θi, each firm i simultaneously decides to produce quan-

tity qi(θi) of the good. The total amount produced is thus Q =
∑n

i=1 qi(θi). The

resulting market price is p(v,Q) = v − βQ. The realized payoff of firm i is (p− c)qi.

7.2 Linear Equilibrium

As before, we restrict attention to linear equilibria, i.e., those of the form qi(θi) =

αTi θi+δi for some profile of vectors αi ∈ Rki and δi ∈ R. We denote a linear equilibrium

by these linear coefficients, and define α = (α1; . . . ;αn) and δ = (δ1; . . . ; δn).

Proposition 3 The Cournot competition game has a unique linear equilibrium.

The proof of Proposition 3 is in Appendix C. The proof is, in essence, a substantially

simplified version of the proof of Theorem 1, which only involves the analogues of

Steps 2 and 3 from that proof. Step 1 (market maker’s Bayesian updating) is not

needed, because there is no market maker in the current model, and the price impact

of each individual unit of supply, β, is exogenously fixed, instead of being endogenously

determined by the market maker. Recall that Step 3 of the proof of Theorem 1 allowed

us to express all the equilibrium strategies of the traders as a function of a single

parameter—the inverse of the market maker’s sensitivity to aggregate demand, βD.

Steps 4 and 5 then derived a quadratic equation in that parameter and showed that
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it has a unique positive root. In the Cournot competition setting, the sensitivity β is

fixed exogenously, and so the analogue of Step 3 concludes the proof.26

The closed-form solutions no longer involve the roots of a quadratic equation, and

take the following form. Each firm i’s strategy is given by

qi(θi) = αTi θi + δi,

where for each i,

δi = β−1 v̄ − c
n+ 1

,

and vector α is given by

α = β−1(Σθθ + Σdiag)
−1Σθv,

where matrices Σθθ, Σdiag, and Σθv are defined as before. The formula for vector α (as

a function of price sensitivity β and the three matrices) is essentially the same as that

in the Kyle model for the case in which the market maker does not observe any private

signals (Section 3.2), except for the terms related to liquidity demand u that have no

counterparts in the Cournot competition model. Of course, the key difference between

the two formulas is that in the Kyle model, sensitivity βD is derived endogenously,

while in the Cournot competition model, sensitivity β is exogenously fixed.

7.3 Information Aggregation in Large Markets

We now turn to the behavior of markets with a large number of participants. Our

modeling approach is analogous to that in Section 5. Specifically, consider a sequence

of markets, indexed by m = 1, 2, . . . . The inverse demand function is the same in all

markets m: p(Q) = v−βQ. In every market, there are n groups of firms, with at least

one firm in each group. The groups are indexed by i = 1, . . . , n, and each group i in

market m consists of `
(m)
i firms, with `

(m)
i →∞ as m→∞.

Each firm j in group i receives signal θi + ξi,j ∈ Rki , where θi is the common

signal component of all firms in group i, and ξi,j is the idiosyncratic component of

26To see the parallels between the two models more directly, consider the version of the model in
Section 2 in which the market maker does not observe any direct signals, and the version of the Cournot
competition in which the marginal cost c is zero. In the former, the realized payoff of an individual
trader i from submitting demand di is di(v−p) = di(v−βD(di+

∑
j 6=i dj+u)). In the latter, the realized

payoff of an individual firm i from producing qi units of the good is qi(v−βQ) = qi(v−β(qi+
∑
j 6=i qj)).

So the Cournot competition setting can be viewed as a version of the Kyle model in which liquidity
demand is fixed at zero, and the market maker is mechanical, with the sensitivity exogenously fixed
at βD = β, instead of being endogenously determined by the Bayes rule.
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firm j. Random vector (θ1; . . . ; θn; v) is distributed normally with mean (0; . . . ; 0; v̄) and

covariance matrix Ω. We also assume that the covariance matrix of random vector θ =

(θ1; . . . ; θn) is positive definite. Every ξi,j is drawn from the normal distribution with

mean zero and covariance matrix Σξ
i , independently of all the other random variables

in the model. We impose no restrictions on Σξ
i , and in particular allow for the case

Σξ
i = 0, when all firms in group i observe identical signals.

As a benchmark, we also consider a sequence of alternative markets with the number

of firms growing to infinity (for concreteness, let the number of firms in market m

equal N (m) =
∑n

i=1 `
(m)
i ), but with a much simpler information structure: all “common

components” of all signals are known to all firms. Formally, each firm j observes the

same signal θ = (θ1; . . . ; θn). In this sequence of alternative markets, all information is

shared by all firms, and as the number of firms increases, the outcomes (i.e., the total

quantity produced and the equilibrium price) converge to the perfectly competitive

equilibrium. Our next proposition shows that the outcomes in the original sequence of

markets also converge to the same perfectly competitive outcome, thus aggregating all

the information distributed among the firms. Formally, let Q(m) and p(m) denote the

random variables corresponding to the total quantity produced and the price realized

in the original market m, and let Q(alt,m) and p(alt,m) denote the random variables

corresponding to the total quantity produced and the price realized in the alternative

market m where all the firms observe the same joint signal θ.

Proposition 4 limm→∞E[(Q(m)−Q(alt,m))2] = 0 and limm→∞E[(p(m)−p(alt,m))2] = 0.

The proof of Propostion 4 is in Appendix C. The proof proceeds by showing that

in both sequences (original and alternative), for any realization of signals θ, the total

quantity produced converges to the quantity produced in the perfectly competitive mar-

ket with the intercept of the demand function equal to E[v|θ]: Q∗(θ) = (E[v|θ]− c)/β.
The result for the convergence of prices is then immediate.

Proposition 4 illustrates that the main driving force behind the information aggre-

gation results in our paper is not the presence of a market maker who sets prices in an

“intelligent” way, but rather the fact that the individual actions of informed players

get aggregated (via aggregate demand in the Kyle model and via aggregate production

in Cournot competition). The “aggregate action” of each group of players reflects that

group’s common signal, and these aggregate actions of the groups are then further

aggregated by the marketplace with the appropriate weights. This action aggregation
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feature is important for our results. In Section 11 of the Online Appendix, we provide

a simple example of a Beauty Contest game in which dispersed information does not

get aggregated in the limit, even though that game shares many of the features with

the models considered above (normally distributed signals, linear best responses, and

the uniqueness of linear equilibrium that can be characterized in closed form).

8 Concluding Remarks

Our paper leaves a number of open questions and directions for future research. One

question is to what extent our analysis can be generalized to a dynamic setting, in

which trading takes place over multiple periods, and each strategic trader takes into

account the impact of his trading on his future arbitrage opportunities.

Second, the fact that our model admits explicit closed-form solutions for every pro-

file of primitives makes it “embeddable” as part of richer settings and games. For in-

stance, one can study pretrading investment in costly acquisition of information (about

the fundamentals of the traded security, about liquidity demand, or about the informa-

tion of other strategic traders), mergers among the traders, or information sharing and

trading among them. One can also consider the case of endogenous participation by

liquidity traders, by considering a model with several different types of liquidity traders

(e.g., retail investors, pension funds, insurance companies, etc.) whose demands may

be differentially correlated with the value of the asset and/or with the informed traders’

or the market maker’s signals, and who choose to participate in the market only if their

expected losses do not exceed certain thresholds.

Third, the tractability of our model may also extend, at least to some degree, to

other related settings, such as those with risk-averse traders (with CARA utilities, to

preserve the linear-quadratic structure of the game; see, e.g., Subrahmanyam (1991)),

costly trading (with quadratic trading costs; see, e.g., Subrahmanyam (1998)), or mul-

tiple securities or trading venues (Chowdhry and Nanda, 1991; Caballé and Krishnan,

1994; Baruch et al., 2007; Pasquariello, 2007; Bernhardt and Taub, 2008).

Finally, a shared feature of the models considered in this paper (the model of trading

in financial markets in Section 2 and the model of Cournot competition in Section 7)

is that when making decisions, strategic players condition their behavior only on their

own information, and not on market prices: in the model of financial trading, they

submit market orders, and in the model of Cournot competition, they decide on the
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level of production before they get to observe any feedback from the market. A natural

question is to what extent the types of rich informational asymmetries allowed in our

models can also be considered in strategic models of markets in which players can

condition their actions both on their own information and on endogenous market prices.

As we discuss in Section 3.3, getting general closed-form solutions in such settings is

challenging, both for economically fundamental strategic reasons (when the number of

players is small), and for technical reasons (when the system of polynomial equations

characterizing the equilibria of the market game does not have closed-form solutions).

However, some of the results of our paper may continue to hold in such settings,

perhaps under some additional assumptions. For example, one intuitive argument for

our information aggregation result27 is that a large group of symmetrically informed

traders will behave in approximately the same way as a single trader who tries to

minimize mispricing in the market. Thus, as all groups become large, the market, in

effect, converges to a game in which all players pursue a common objective function:

getting the price as close as possible to the asset value. This intuition may carry over

to at least some of the settings in which players can condition their actions on market

prices, and for large markets, existence results may be possible to obtain by means

other than closed-form solutions. Thus, information aggregation results for general

asymmetric information structures may continue to hold in those settings. Similarly,

analogues of Proposition 1 (that in a given market, better informed traders receive

higher expected profits) may also hold.

We leave the exploration of these extensions and generalizations to future research.

Appendix A: Proof of Theorem 1

Step 1. Let α = (α1; . . . ;αn) be a profile of linear strategies for the strategic traders.

Each αi in this profile is a vector (α1
i ; . . . ;α

ki
i ) ∈ Rki , corresponding to linear strategy

di(θi) = α1
i θ

1
i + · · ·+ αkii θ

ki
i

= αTi θi,

where θ1
i , . . . , θ

ki
i are the elements of vector θi ∈ Rki .

Take any linear pricing rule (βM ; βD), βM ∈ RkM , βD ∈ R. Let vector β = (βM ; βD)

summarize the pricing rule and let random vector η = (θM ;D = αT θ + u) denote the

27This argument is presented in more detail in the discussion that follows Theorem 2.
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information available to the market maker when she sets the price. Then for this pricing

rule to be consistent with profile α, condition (i) of the definition of equilibrium requires

that βTη = E[v|η], which is equivalent to the condition Cov(v, η) = βTV ar(η).28

Expressing Cov(v, η) and V ar(η) using the notation from Section 3.1, we thus get the

following equivalent characterization of condition (i) of the definition of equilibrium:

(
βTM , βD

)( ΣMM ΣT
θMα + ΣMu

αTΣθM + ΣT
Mu αTΣθθα + 2ΣT

θuα + σuu

)
=
(
ΣvM ,Σ

T
θvα + σvu

)
. (3)

Step 2. We now consider the optimization problem of a strategic trader i. Suppose

he observes signal realization θ̃i of signal θi, and subsequently submits demand d.

Assuming that other traders j 6= i follow linear strategies αj, and that the market maker

follows a linear pricing rule (βM ; βD), the expected profit of trader i from submitting

demand d when observing realization θ̃i is equal to

E

[
d

(
v − βTMθM − βD

(
d+

∑
j 6=i

αTj θj + u

))∣∣∣∣∣ θi = θ̃i

]
. (4)

Using the fact that d is a choice variable, and thus d and d2 are constants from the

point of view of taking expectations, we can rewrite Equation (4) as

d · E

[
v − βTMθM − βD

(∑
j 6=i

αTj θj + u

) ∣∣∣∣∣ θi = θ̃i

]
− d2 · βD. (5)

Now, if βD < 0, trader i can make an arbitrarily large expected profit, and no single

d maximizes it—hence, βD cannot be negative in equilibrium.

If βD = 0, and E
[
v − βTMθM

∣∣∣θi = θ̃i

]
6= 0, then again trader i can make an ar-

bitrarily large expected profit, and no single d maximizes it. But it follows from

Assumption 1 in the model29 that for at least one trader i, for at least some (in fact,

for almost all) realizations θ̃i, we have E
[
v − βTMθM

∣∣∣θi = θ̃i

]
6= 0—hence, βD cannot

be equal to zero in equilibrium.

28To see the equivalence, note first that βT η = E[v|η] =⇒ Cov(v, η) = Cov(E[v|η], η) =
Cov(βT η, η) = βTV ar(η). To go in the opposite direction, note that Cov(v, η) = βTV ar(η) =
Cov(βT η, η) =⇒ Cov(v − βT η, η) = 0. Since variables v − βT η and η are jointly normal,
Cov(v − βT η, η) = 0 implies that they are independent, and thus for every realization η̃ of ran-
dom variable η, E[v − βT η|η = η̃] = E[v − βT η] = 0, which implies that for every realization η̃,
E[v|η = η̃] = E[βT η|η = η̃] = βT η̃.

29Assumption 1 says that at least one strategic trader i has some useful information beyond that
contained in the market maker’s signal: Cov(v, θ|θM ) 6= 0.
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Finally, if βD > 0, then there is a unique d maximizing the expected profit:

d∗ =
1

2βD
E

[
v − βTMθM − βD

(∑
j 6=i

αTj θj + u

)∣∣∣∣∣ θi = θ̃i

]
(6)

=
1

2βD

(
ΣT
iv − βTMΣT

iM − βD

(∑
j 6=i

αTj ΣT
ij + ΣT

iu

))
Σ−1
ii θ̃i, (7)

where Equation (7) is the standard projection/signal extraction formula for jointly

normal variables. Note that d∗ is a linear function of θ̃i, and vector αi is uniquely

determined by pricing rule (βM ; βD) and strategies αj for j 6= i.

Step 3. We showed in Steps 1 and 2 that profile of strategies α and pricing rule (βM ; βD)

form a linear equilibrium if and only if βD > 0 and the following two conditions hold:

(i)
(
βTM , βD

)( ΣMM ΣT
θMα + ΣMu

αTΣθM + ΣT
Mu αTΣθθα + 2ΣT

θuα + σuu

)
=
(
ΣvM ,Σ

T
θvα + σvu

)
;

(ii) for all i, αTi = 1
2βD

(
ΣT
iv − βTMΣT

iM − βD
(∑

j 6=i α
T
j ΣT

ij + ΣT
iu

))
Σ−1
ii .

We will now show that there is a unique profile (α, β) satisfying these conditions,

thus proving the existence and uniqueness of linear equilibrium.

First, we rewrite condition (ii), for all i, as:

2Σiiαi =
1

βD
(Σiv − ΣiMβM)−

∑
j 6=i

Σijαj − Σiu (8)

or equivalently

Σiiαi +
n∑
j=1

Σijαj =
1

βD
(Σiv − ΣiMβM)− Σiu. (9)

“Stacking” equations (9) for all i one under another, and rewriting the resulting system

of equations in matrix form using the notation defined in Section 3.1, we obtain the

following condition (equivalent to condition (ii)):

(Σdiag + Σθθ)α = γΣθv − ΣθMβ
′
M − Σθu, (10)

where for convenience we define γ = 1/βD, β′M = βM/βD.

Next, using this notation, and transposing the matrix equation in condition (i),

that condition can be written as a system of two equations:

ΣMMβ
′
M + ΣT

θMα + ΣMu = γΣMv, (11)

αTΣθMβ
′
M + ΣuMβ

′
M + αTΣθθα + 2ΣT

θuα + σuu = γ(ΣT
θvα + σvu). (12)
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Step 4. We will now solve the system of equations (10), (11), and (12). Equation

(11) allows us to express β′M as a function of α and γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
. (13)

We then plug this expression of β′M into Equation (10):

(Σdiag + Σθθ)α = γΣθv − ΣθMΣ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
− Σθu,

or, isolating α on the left-hand side and collecting the terms with γ,(
Σdiag + Σθθ − ΣθMΣ−1

MMΣT
θM

)
α =

(
Σθv − ΣθMΣ−1

MMΣMv

)
γ −

(
Σθu − ΣθMΣ−1

MMΣMu

)
.

Note that

Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ)− Cov(θ, θM)V ar(θM)−1Cov(θM , θ)

= V ar(θ|θM),

where the last equation follows from the standard projection formula for multivariate

normal distributions. Thus, matrix Σθθ − ΣθMΣ−1
MMΣT

θM is positive semidefinite, and

matrix Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM is positive definite (and thus invertible). Letting

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Av = Λ−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,

we can express α as a linear function of γ:

α = γAv − Au.

Plugging this expression into (13), we can also express β′M as a linear function of γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θM (γAv − Au)− ΣMu

)
= γΣ−1

MM

(
ΣMv − ΣT

θMAv
)
− Σ−1

MM

(
ΣMu − ΣT

θMAu
)
.

Using these expressions, we can now rewrite Equation (12) as a quadratic equation

of just one scalar variable, γ:

aγ2 + bγ + c = 0, (14)

where

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ ATv ΣθθAv − ΣT
θvAv,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)
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+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu.

Therefore, finding a linear equilibrium is equivalent to finding a positive root of

Equation (14). To prove that this equation has a unique such root, we first simplify the

expressions for a, b, and c. (For the proof, it is sufficient to simplify a and c, but getting

a simplified expression for b is useful for deriving an explicit analytic characterization

of the equilibrium.) Starting with a:

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ ATv ΣθθAv − ΣT
θvAv,

= ATv
[(

ΣθMΣ−1
MMΣMv − Σθv

)
+
(
Σθθ − ΣθMΣ−1

MMΣT
θM

)
Av
]

= ATv [(−ΛAv) + (Λ− Σdiag)Av]

= −ATv ΣdiagAv.

Next,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)

+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

= 2ATv
(
Σθu − ΣθMΣ−1

MMΣMu

)
+ ATu

(
Σθv − ΣθMΣ−1

MMΣMv

)
+2ATv

(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= 2ATv ΛAu + ATuΛAv

+2ATv
(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= ATv (2Σdiag + Λ)Au + ΣuMΣ−1

MMΣMv − σuv.

Finally,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

= −
(
ΣuM − ATuΣθM

)T
Σ−1
MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

=

(
Au

−1

)T

C

(
Au

−1

)
,
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where

C =

(
Σθθ Σθu

ΣT
θu σuu

)
−

(
ΣθM

ΣuM

)
Σ−1
MM

(
ΣθM

ΣuM

)T

= V ar ((θ;u))− Cov ((θ;u) , θM)V ar (θM)−1Cov (θM , (θ;u))

= V ar ((θ;u) |θM) .

Thus,

c = V ar(ATu θ − u|θM).

Step 5. We will now determine the signs of coefficients a and c.

Matrix Σdiag is positive definite, by construction. Vector Av is not equal to zero:

matrix Λ−1 is positive definite, and vector Σθv − ΣθMΣ−1
MMΣMv = Cov(θ, v|θM) is not

equal to zero (by Assumption 1 of the model). Thus, a = −ATv ΣdiagAv < 0.

To determine the sign of coefficient c, recall that we have shown in Step 4 that

c = V ar(ATu θ− u|θM). So if we show that c 6= 0, it will immediately follow that c > 0.

If Au = 0, then c 6= 0 follows from Assumption 2 of the model (which says that the

market maker does not perfectly observe liquidity demand: V ar(u|θM) > 0).

Suppose Au 6= 0. It is convenient to introduce an auxiliary random variable, φ,

drawn randomly from the normal distribution with mean zero and covariance matrix

Σdiag, independent of all other random variables in the model. Note that matrix Au

now has a simple interpretation:

Au = V ar(θ + φ|θM)−1Cov(θ, u|θM) = V ar(θ + φ|θM)−1Cov(θ + φ, u|θM).

Let ε = u − ATu (θ + φ). Then c = V ar(ε + ATuφ|θM). To show that c 6= 0, it is

thus sufficient to show that ε+ATuφ is not constant, conditional on θM . To show that,

consider Cov(ε+ATuφ,A
T
u (θ+φ)|θM) = Cov(ε, ATu (θ+φ)|θM)+Cov(ATuφ,A

T
u (θ+φ)|θM).

First, Cov(ε, ATu (θ + φ)|θM) = Cov(u − ATu (θ + φ), ATu (θ + φ)|θM) = Cov(u, θ +

φ|θM)Au − ATuV ar(θ + φ|θM)Au = 0.

Second, Cov(ATuφ,A
T
u (θ+φ)|θM) = V ar(ATuφ|θM) = ATuΣdiagAu, which is not equal

to zero, because Au 6= 0 and Σdiag is positive definite. Therefore, Cov(ε+ATuφ,A
T
u (θ+

φ)|θM) 6= 0, and thus ε+ ATuφ is not constant conditional on θM , and so c > 0.

Thus, a < 0, c > 0, and hence Equation (14) has exactly one positive root. There-

fore, there exists a unique linear equilibrium.
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Appendix B: Proof of Theorem 2 (Special Case)

Step 1. Consider first a specific market m, and, for convenience, drop superscript

(m). We know there exists a unique linear equilibrium. In this equilibrium, any two

strategic traders in the same group have the same linear strategy (otherwise, by swap-

ping the strategies of these two traders, we would be able to obtain a different linear

equilibrium). Denote by αi the aggregate demand multiplier, in equilibrium, of group i;

i.e., given signal θi+ξi,j of trader j in group i, the trader submits demand 1
`i
αTi (θi+ξi,j).

For the remainder of this proof, we define the variables ξi = 1
`i

∑
j ξi,j, ξ = (ξ1; . . . ; ξn),

and the matrices

Σξ = V ar(ξ) =


1
`1

Σξ
1 0 0

0
. . . 0

0 0 1
`n

Σξ
n

 , Σ̂diag =


1
`1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1
`n

(Σnn + Σξ
n)

 .

With this notation, the equilibrium condition (i) in Step 1 of of the proof of Theo-

rem 1—the market maker’s inference given her information—becomes:(
βTM , βD

)( ΣMM ΣT
θMα + ΣMu

αTΣθM + ΣT
Mu αT (Σθθ + Σξ)α + 2ΣT

θuα + σuu

)
=
(
ΣvM ,Σ

T
θvα + σvu

)
where we observe that the only modification is in the variance of the overall demand,

which is now written

V ar

(∑
i,j

αTi
`i

(θi + ξi,j) + u

)
= αTΣθθα + 2ΣT

θuα + σuu +
∑
i

αTi Σξ
iαi

`i

= αT (Σθθ + Σξ)α + 2ΣT
θuα + σuu.

The equations (11) and (12) that capture condition (i) then become slightly differ-

ent:

ΣMMβ
′
M + ΣT

θMα + ΣMu = γΣMv, (15)

αTΣθMβ
′
M + ΣuMβ

′
M + αT (Σθθ + Σξ)α + 2ΣT

θuα + σuu = γ(ΣT
θvα + σvu). (16)

The equilibrium condition (ii) in Step 3 of the proof of Theorem 1—the best re-

sponse of strategic trader i—is also slightly different. In this new notation, it becomes:

1

`i
αTi =

1

2βD

(
ΣT
iv − βTMΣT

iM − βD

(∑
j 6=i

αTj ΣT
ij +

`i − 1

`i
αTi ΣT

ii + ΣT
iu

))
(Σii + Σξ

i )
−1,
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which is equivalent to:

Σii

`i
αi +

2Σξ
i

`i
αi +

∑
j

Σijαj = β−1
D [Σiv − ΣiMβM ]− Σiu.

Similarly to Equation (10) in the proof of Theorem 1, this can be rewritten as

(Σ̂diag + Σθθ + Σξ)α = γΣθv − ΣθMβ
′
M − Σθu, (17)

where γ and β′M are defined as before.

Next, again by analogy with the proof of Theorem 1, we define

Λ̂ = Σ̂diag + Σθθ + Σξ − ΣθMΣ−1
MMΣT

θM ,

Âu = Λ̂−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Âv = Λ̂−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,

and then finding a linear equilibrium is equivalent to solving the quadratic equation

aγ2 + bγ + c = 0,

where

a = −ÂTv Σ̂diagÂv,

b = ÂTv

(
2Σ̂diag + Λ̂

)
Âu + ΣuMΣ−1

MMΣMv − σuv,

c = V ar(ÂTu (θ + ξ)− u|θM) = V ar(ÂTu θ − u|θM) + ÂTuΣξÂu.

Since by definition γ = 1/βD, solving the above quadratic equation is equivalent to

solving the quadratic equation

cβ2
D + bβD + a = 0,

which turns out to be a more convenient characterization that we will proceed with.

As before, we also have a simple expression for the vector of strategies α:

α = Âv/βD − Âu.

Step 2. Let us now consider the entire sequence of markets, and restore superscript

(m) for the variables. From the simplifying assumption that V ar(θ; θM ;u) is full rank,

it follows that both V ar(θ|θM) and V ar(θM |θ) are full rank, and thus invertible.

As m→∞, Σ̂
(m)
diag → 0 and Σξ,(m) → 0. Thus,

Λ̂(m) → Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ|θM),
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Â(m)
u → V ar(θ|θM)−1

(
Σθu − ΣθMΣ−1

MMΣMu

)
= V ar(θ|θM)−1Cov(θ, u|θM),

Â(m)
v → V ar(θ|θM)−1

(
Σθv − ΣθMΣ−1

MMΣMv

)
= V ar(θ|θM)−1Cov(θ, v|θM).

Therefore, using that ÂTuΣξ,(m)Âu → 0,

a(m) → 0,

b(m) → Cov(v, θ|θM)V ar(θ|θM)−1V ar(θ|θM)V ar(θ|θM)−1Cov(θ, u|θM) + ΣuMΣ−1
MMΣMv − σuv

= Cov(v, θ|θM)V ar(θ|θM)−1Cov(θ, u|θM)− Cov(u, v|θM) = −Cov(u, v|θ, θM),

c(m) → V ar
(
Cov(u, θ|θM)V ar(θ|θM)−1θ − u|θM

)
+ 0

= V ar (E[u|θ, θM ]− u|θM) = V ar (u|θ, θM) .

Note that these convergence results imply that β
(m)
D converges to some finite value,

since limm→∞ c
(m) = V ar(u|θ, θM) > 0 (where the last inequality is due to Assump-

tion 2L). If Cov(u, v|θ, θM) > 0, then limm→∞ β
(m)
D = V ar(u|θ, θM)−1Cov(u, v|θ, θM).

If Cov(u, v|θ, θM) ≤ 0, then limm→∞ β
(m)
D = 0. We now consider the limiting behavior

of price p(m) in these two cases separately.

Step 3, Case Cov(u, v|θ, θM) > 0. Note first that

E[v|θ, θM , u] = E[v|θM ]

+ Cov(v, θ|θM)V ar(θ|θM)−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM)V ar(u|θ, θM)−1 (u− E[u|θ, θM ])

= E[v|θM ]

+ Cov(v, θ|θM)V ar(θ|θM)−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM)V ar(u|θ, θM)−1

×
(
u− E[u|θM ]− Cov(u, θ|θM)V ar(θ|θM)−1(θ − E[θ|θM ])

)
.

Thus, E[v|θ, θM , u] is a linear function of θ, θM , and u:

E[v|θ, θM , u] = wTMθM + wTθ θ + wuu,

where weights w are as follows:

wTM = Cov(v, θM)V ar(θM)−1

− Cov(v, θ|θM)V ar(θ|θM)−1Cov(θ, θM)V ar(θM)−1

− Cov(v, u|θ, θM)V ar(u|θ, θM)−1Cov(u, θM)V ar(θM)−1

+ Cov(v, u|θ, θM)V ar(u|θ, θM)−1Cov(u, θ|θM)V ar(θ|θM)−1Cov(θ, θM)V ar(θM)−1;
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wTθ = Cov(v, θ|θM)V ar(θ|θM)−1

− Cov(v, u|θ, θM)V ar(u|θ, θM)−1Cov(u, θ|θM)V ar(θ|θM)−1;

wu = Cov(v, u|θ, θM)V ar(u|θ, θM)−1.

Next, price p(m)(θ, ξ(m), θM , u) in market m can be expressed as

p(m)(θ, ξ(m), θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T (θ + ξ(m)) + u

)
= β

(m)T
M θM + β

(m)
D α(m)T (θ + ξ(m)) + β

(m)
D u.

To prove the statement of the theorem for this case, note that

E
[(
p(m)(θ, ξ(m), θM , u)− E[v|θ, θM , u]

)2
]

= (β
(m)
D )2α(m)TΣξ,(m)α(m)

+

 β
(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu


T

V ar


 θM

θ

u



 β

(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu

 .

Since Σξ,(m) → 0, it is enough to show that β
(m)
D → wu, β

(m)
D α(m) → wθ, and β

(m)
M → wM .

The first convergence result is immediate:

lim
m→∞

β
(m)
D = V ar(u|θ, θM)−1Cov(u, v|θ, θM) = wu.

Next:

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Â(m)
v − β(m)

D Â(m)
u

= V ar(θ|θM)−1Cov(θ, v|θM)

−V ar(u|θ, θM)−1Cov(u, v|θ, θM)V ar(θ|θM)−1Cov(θ, u|θM)

= wθ.

Finally:

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= Σ−1

MM

(
ΣMv − ΣT

θMV ar(θ|θM)−1Cov(θ, v|θM)
)

− V ar(u|θ, θM)−1Cov(u, v|θ, θM)Σ−1
MM

(
ΣMu − ΣT

θMV ar(θ|θM)−1Cov(θ, u|θM)
)

= V ar(θM)−1Cov(θM , v)

− V ar(θM)−1Cov(θ, θM)TV ar(θ|θM)−1Cov(θ, v|θM)

− V ar(u|θ, θM)−1Cov(u, v|θ, θM)V ar(θM)−1Cov(θM , u)

+ V ar(u|θ, θM)−1Cov(u, v|θ, θM)V ar(θM)−1Cov(θ, θM)TV ar(θ|θM)−1Cov(θ, u|θM)
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= wM .

Step 3, Case Cov(u, v|θ, θM) ≤ 0. In this case, note that

E[v|θ, θM ] = E[v|θM ]

+ Cov(v, θ|θM)V ar(θ|θM)−1 (θ − E[θ|θM ]) .

Thus, E[v|θ, θM ] is a linear function of θ and θM :

E[v|θ, θM ] = wTMθM + wTθ θ,

where weights w are as follows:

wTM = Cov(v, θM)V ar(θM)−1

− Cov(v, θ|θM)V ar(θ|θM)−1Cov(θ, θM)V ar(θM)−1;

wTθ = Cov(v, θ|θM)V ar(θ|θM)−1.

As before, price p(m)(θ, ξ(m), θM , u) in market m can be expressed as

p(m)(θ, ξ(m), θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T (θ + ξ(m)) + u

)
= β

(m)T
M θM + β

(m)
D α(m)T (θ + ξ(m)) + β

(m)
D u.

As in Step 2, noting that V ar(ξ(m))→ 0, to prove the theorem for this case, it is thus

sufficient to show that as m grows, β
(m)
D → 0, β

(m)
D α(m) → wθ, and β

(m)
M → wM . The

first convergence result, β
(m)
D → 0, was proven at the end of Step 2 above. Next,

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Â(m)
v − β(m)

D Â(m)
u

= V ar(θ|θM)−1Cov(θ, v|θM)

−
[

lim
m→∞

β
(m)
D

]
V ar(θ|θM)−1Cov(θ, u|θM)

= V ar(θ|θM)−1Cov(θ, v|θM)

= wθ.

Finally,

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
= V ar(θM)−1Cov(θM , v)

− V ar(θM)−1Cov(θ, θM)TV ar(θ|θM)−1Cov(θ, v|θM)
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= wM .

Appendix C: Proofs of Propositions in Section 7

C.1 Proof of Proposition 3

Fix a firm i, and suppose every firm j 6= i plays according to a linear strategy

qj(θj) = αTj θj + δj.

Suppose firm i observes realization θ̃i of signal θi. The expected payoff of firm i from

producing q units of the good is then equal to

E

[
q

(
v − β

(
q +

∑
j 6=i

(
αTj θj + δj

))
− c

) ∣∣∣∣∣ θi = θ̃i

]
,

which can be rewritten as

q · E

[
v − β

(∑
j 6=i

(
αTj θj + δj

))
− c

∣∣∣∣∣ θi = θ̃i

]
− q2 · β.

Since by assumption β > 0, there is a unique q maximizing the expected profit:

q∗ =
1

2β

(
v̄ + ΣT

ivΣ
−1
ii θi − β

(∑
j 6=i

(
αTj ΣT

ijΣ
−1
ii θi + δj

))
− c

)
, (18)

where we reuse our earlier notation for various covariance matrices.

Thus, if all firms other than i use strategies linear in their signals, firm i’s (unique)

best response strategy is also linear in its signal. Moreover, the intercept and the slope

of that strategy are uniquely determined. The intercept is given by

δi =
1

2β

(
v̄ − β

∑
j 6=i

δj − c

)
, (19)

and the slope is given by

αTi =
1

2β

(
ΣT
ivΣ
−1
ii − β

∑
j 6=i

αTj ΣT
ijΣ
−1
ii

)
. (20)

For the intercepts, multiplying both sides of Equation (19) by 2β and moving one

44



of the βδi terms under the summation sign, we get

βδi = v̄ − β
n∑
j=1

δj − c,

and so all δi are equal:

δi =
v̄ − c

β(n+ 1)
.

For the slopes αi, we follow manipulations analogous to those in the proof of The-

orem 1: multiply both sides of Equation (20) by 2βΣii (on the right), move one of

the βαTi Σii terms under the summation sign, transpose the equation, and “stack” the

resulting equations for all i. The resulting system of equation can be rewritten as

βΣdiagα = Σiv − βΣθθα,

and so the vector of slopes α is given by the formula

α =
1

β
(Σθθ + Σdiag)

−1 Σiv,

because our assumptions imply that matrix (Σθθ + Σdiag) is invertible.

C.2 Proof of Proposition 4

Consider first the original sequence of markets and fix a particular market m (and for

convenience, drop the superscript (m) for now). By Proposition 3, there exists a unique

linear equilibrium. To explicitly characterize this equilibrium, we use the arguments

and the notation almost identical to those in Step 1 of the proof of Theorem 2.

Specifically, by symmetry, any two firms in the same group use the same linear

strategy in equilibrium. Denote by αi the aggregate supply multiplier of group i, and

by δi the aggregate intercept of group i. Thus, a specific firm j in group i, after

observing its signal θi + ξi,j, will produce quantity

1

`i
αTi (θi + ξi,j) +

1

`i
δi.

As in the proof of Theorem 2, let ξi = 1
`i

∑
j ξi,j (the average idiosyncratic term in

group i), let ξ = (ξ1; . . . ; ξn), and define matrices Σξ and Σ̂diag as

Σξ = V ar(ξ) =


1
`1

Σξ
1 0 0

0
. . . 0

0 0 1
`n

Σξ
n

 , Σ̂diag =


1
`1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1
`n

(Σnn + Σξ
n)

 .
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It is immediate from Proposition 3 that δi = `i(v̄−c)
β(N+1)

. For vector α, writing down

the first-order conditions for all firms j of all groups i, and combining them in the same

way as in Step 1 of the proof of Theorem 2, we get the expression(
Σ̂diag + Σθθ + Σξ

)
α = β−1Σθv. (21)

(Note that Equation (21) is almost identical to Equation (17) in Step 1 of the proof of

Theorem 2, except that the latter also contains the terms related to the signal observed

by the market maker and the demand from liquidity traders.)

Let us now again write the market indices explicitly, so that

α(m) = β−1
(

Σθθ + Σ̂
(m)
diag + (Σξ)(m)

)−1

Σθv,

and

δ(m) =
`i (v̄ − c)

β (N (m) + 1)
.

The total quantity produced in market m, as a function of θ and ξ(m), is then

Q(m) = β−1

((
Σθθ + Σ̂

(m)
diag + (Σξ)(m)

)−1

Σθv

)T
θ

+ β−1

((
Σθθ + Σ̂

(m)
diag + (Σξ)(m)

)−1

Σθv

)T
ξ(m)

+
N (m) (v̄ − c)
β (N (m) + 1)

.

As m goes to infinity, N(m)(v̄−c)
β(N(m)+1)

converges to β−1(v̄ − c), and matrices Σ̂
(m)
diag and

(Σξ)(m) converge to zero. Moreover, ξ(m) L2

−→ 0. Thus, as m goes to infinity,

Q(m) L2

−→ β−1
((

Σ−1
θθ Σθv

)T
θ + (v̄ − c)

)
= β−1 (E[v|θ]− c) .

For the alternative sequence of markets, note that each alternative market m can

be viewed as a special case of the “original” market, with just one group i = 1, and no

idiosyncratic components of signals within the group (i.e., Σξ
i = 0). Thus, the above

derivation applies to this special case, and so for the alternative sequence, we also have

Q(alt,m) L2

−→ β−1 (E[v|θ]− c) ,

and so

Q(m) −Q(alt,m) L2

−→ 0.
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Moreover, since p(m) = v − βQ(m) and p(alt,m) = v − βQ(alt,m), we immediately get

p(m) − p(alt,m) L2

−→ 0.
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