
The whole of quantum mechanics can be expressed in terms of a small set

of postulates. When their consequences are developed, they embrace the

behaviour of all known forms of matter, including the molecules, atoms, and

electrons that will be at the centre of our attention in this book. This chapter

introduces the postulates and illustrates how they are used. The remaining

chapters build on them, and show how to apply them to problems of chemical

interest, such as atomic and molecular structure and the properties of mole-

cules. We assume that you have already met the concepts of ‘hamiltonian’ and

‘wavefunction’ in an elementary introduction, and have seen the Schrödinger

equation written in the form

Hc ¼ Ec

This chapter establishes the full significance of this equation, and provides

a foundation for its application in the following chapters.

Operators in quantum mechanics

An observable is any dynamical variable that can be measured. The principal

mathematical difference between classical mechanics and quantum mechan-

ics is that whereas in the former physical observables are represented by

functions (such as position as a function of time), in quantum mechanics they

are represented by mathematical operators. An operator is a symbol for an

instruction to carry out some action, an operation, on a function. In most of

the examples we shall meet, the action will be nothing more complicated than

multiplication or differentiation. Thus, one typical operation might be

multiplication by x, which is represented by the operator x� . Another

operation might be differentiation with respect to x, represented by the

operator d/dx. We shall represent operators by the symbol O (omega) in

general, but use A, B, . . . when we want to refer to a series of operators.

We shall not in general distinguish between the observable and the operator

that represents that observable; so the position of a particle along the x-axis

will be denoted x and the corresponding operator will also be denoted x (with

multiplication implied). We shall always make it clear whether we are

referring to the observable or the operator.

We shall need a number of concepts related to operators and functions

on which they operate, and this first section introduces some of the more

important features.
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1.1 Linear operators

The operators we shall meet in quantum mechanics are all linear. A linear

operator is one for which

Oðaf þ bgÞ ¼ aOf þ bOg ð1:1Þ
where a and b are constants and f and g are functions. Multiplication is a

linear operation; so is differentiation and integration. An example of a non-

linear operation is that of taking the logarithm of a function, because it is not

true, for example, that log 2x¼ 2 log x for all x.

1.2 Eigenfunctions and eigenvalues

In general, when an operator operates on a function, the outcome is another

function. Differentiation of sin x, for instance, gives cos x. However, in

certain cases, the outcome of an operation is the same function multiplied by

a constant. Functions of this kind are called ‘eigenfunctions’ of the operator.

More formally, a function f (which may be complex) is an eigenfunction of an

operator O if it satisfies an equation of the form

Of ¼ of ð1:2Þ
where o is a constant. Such an equation is called an eigenvalue equation. The

function eax is an eigenfunction of the operator d/dx because (d/dx)eax¼ aeax,

which is a constant (a) multiplying the original function. In contrast, eax2
is

not an eigenfunction of d/dx, because (d/dx)eax2 ¼ 2axeax2
, which is a con-

stant (2a) times a different function of x (the function xeax2
). The constant o

in an eigenvalue equation is called the eigenvalue of the operator O.

Example 1.1 Determining if a function is an eigenfunction

Is the function cos(3xþ 5) an eigenfunction of the operator d2/dx2 and, if so,

what is the corresponding eigenvalue?

Method. Perform the indicated operation on the given function and see if

the function satisfies an eigenvalue equation. Use (d/dx)sin ax¼ a cos ax and

(d/dx)cos ax¼�a sin ax.

Answer. The operator operating on the function yields

d2

dx2
cosð3xþ 5Þ ¼ d

dx
�3 sinð3xþ 5Þð Þ ¼ �9 cosð3xþ 5Þ

and we see that the original function reappears multiplied by the eigen-

value �9.

Self-test 1.1. Is the function e3xþ 5 an eigenfunction of the operator d2/dx2

and, if so, what is the corresponding eigenvalue?

[Yes; 9]

An important point is that a general function can be expanded in terms of

all the eigenfunctions of an operator, a so-called complete set of functions.
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That is, if fn is an eigenfunction of an operator O with eigenvalue on (so Ofn¼
on fn), then1 a general function g can be expressed as the linear combination

g ¼
X

n

cnfn ð1:3Þ

where the cn are coefficients and the sum is over a complete set of functions.

For instance, the straight line g¼ ax can be recreated over a certain range by

superimposing an infinite number of sine functions, each of which is an

eigenfunction of the operator d2/dx2. Alternatively, the same function may be

constructed from an infinite number of exponential functions, which are

eigenfunctions of d/dx. The advantage of expressing a general function as a

linear combination of a set of eigenfunctions is that it allows us to deduce the

effect of an operator on a function that is not one of its own eigenfunctions.

Thus, the effect of O on g in eqn 1.3, using the property of linearity, is simply

Og ¼ O
X

n

cnfn ¼
X

n

cnOfn ¼
X

n

cnonfn

A special case of these linear combinations is when we have a set of

degenerate eigenfunctions, a set of functions with the same eigenvalue. Thus,

suppose that f1, f2, . . . , fk are all eigenfunctions of the operator O, and that

they all correspond to the same eigenvalue o:

Ofn ¼ ofn with n ¼ 1, 2, . . . , k ð1:4Þ
Then it is quite easy to show that any linear combination of the functions fn
is also an eigenfunction of O with the same eigenvalue o. The proof is as

follows. For an arbitrary linear combination g of the degenerate set of

functions, we can write

Og ¼ O
Xk

n¼1

cnfn ¼
Xk

n¼1

cnOfn ¼
Xk

n¼1

cnofn ¼ o
Xk

n¼1

cnfn ¼ og

This expression has the form of an eigenvalue equation (Og¼og).

Example 1.2 Demonstrating that a linear combination of degenerate

eigenfunctions is also an eigenfunction

Show that any linear combination of the complex functions e2ix and e�2ix is an

eigenfunction of the operator d2/dx2, where i¼ (�1)1/2.

Method. Consider an arbitrary linear combination ae2ixþ be�2ix and see if the

function satisfies an eigenvalue equation.

Answer. First we demonstrate that e2ix and e�2ix are degenerate eigenfunctions.

d2

dx2
e�2ix ¼ d

dx
ð�2ie�2ixÞ ¼ �4e�2ix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. See P.M. Morse and H. Feschbach, Methods of theoretical physics, McGraw-Hill, New York

(1953).
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where we have used i2¼�1. Both functions correspond to the same eigen-

value, �4. Then we operate on a linear combination of the functions.

d2

dx2
ðae2ix þ be�2ixÞ ¼ �4ðae2ix þ be�2ixÞ

The linear combination satisfies the eigenvalue equation and has the same

eigenvalue (�4) as do the two complex functions.

Self-test 1.2. Show that any linear combination of the functions sin(3x) and

cos(3x) is an eigenfunction of the operator d2/dx2.

[Eigenvalue is �9]

A further technical point is that from n basis functions it is possible to con-

struct n linearly independent combinations. A set of functions g1, g2, . . . , gn is

said to be linearly independent if we cannot find a set of constants c1, c2, . . . ,

cn (other than the trivial set c1¼ c2¼ 	 	 	 ¼0) for whichX
i

cigi ¼ 0

A set of functions that is not linearly independent is said to be linearly

dependent. From a set of n linearly independent functions, it is possible to

construct an infinite number of sets of linearly independent combinations,

but each set can have no more than n members. For example, from three

2p-orbitals of an atom it is possible to form any number of sets of linearly

independent combinations, but each set has no more than three members.

1.3 Representations

The remaining work of this section is to put forward some explicit forms of

the operators we shall meet. Much of quantum mechanics can be developed in

terms of an abstract set of operators, as we shall see later. However, it is often

fruitful to adopt an explicit form for particular operators and to express them

in terms of the mathematical operations of multiplication, differentiation,

and so on. Different choices of the operators that correspond to a particular

observable give rise to the different representations of quantum mechanics,

because the explicit forms of the operators represent the abstract structure of

the theory in terms of actual manipulations.

One of the most common representations is the position representation,

in which the position operator is represented by multiplication by x (or

whatever coordinate is specified) and the linear momentum parallel to x is

represented by differentiation with respect to x. Explicitly:

Position representation: x! x� px !
�h

i

q
qx

ð1:5Þ

where �h ¼ h=2p. Why the linear momentum should be represented in pre-

cisely this manner will be explained in the following section. For the time

being, it may be taken to be a basic postulate of quantum mechanics.

An alternative choice of operators is the momentum representation, in

which the linear momentum parallel to x is represented by the operation of
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multiplication by px and the position operator is represented by differentia-

tion with respect to px. Explicitly:

Momentum representation: x! � �h

i

q
qpx

px ! px� ð1:6Þ

There are other representations. We shall normally use the position repres-

entation when the adoption of a representation is appropriate, but we shall

also see that many of the calculations in quantum mechanics can be done

independently of a representation.

1.4 Commutation and non-commutation

An important feature of operators is that in general the outcome of successive

operations (A followed by B, which is denoted BA, or B followed by A,

denoted AB) depends on the order in which the operations are carried out.

That is, in general BA 6¼AB. We say that, in general, operators do not

commute. For example, consider the operators x and px and a specific

function x2. In the position representation, (xpx)x2¼x(2�h/i)x¼ (2�h/i)x2,

whereas (pxx)x2¼ pxx3¼ (3�h/i)x2. The operators x and px do not commute.

The quantity AB�BA is called the commutator of A and B and is denoted

[A, B]:

½A, B
 ¼ AB� BA ð1:7Þ

It is instructive to evaluate the commutator of the position and linear

momentum operators in the two representations shown above; the procedure

is illustrated in the following example.

Example 1.3 The evaluation of a commutator

Evaluate the commutator [x,px] in the position representation.

Method. To evaluate the commutator [A,B] we need to remember that the

operators operate on some function, which we shall write f. So, evaluate [A,B]f

for an arbitrary function f, and then cancel f at the end of the calculation.

Answer. Substitution of the explicit expressions for the operators into [x,px]

proceeds as follows:

½x, px
f ¼ ðxpx � pxxÞf ¼ x� �h

i

qf

qx
� �h

i

qðxf Þ
qx

¼ x� �h

i

qf

qx
� �h

i
f � x� �h

i

qf

qx
¼ i�hf

where we have used (1/i)¼�i. This derivation is true for any function f,

so in terms of the operators themselves,

½x, px
 ¼ i�h

The right-hand side should be interpreted as the operator ‘multiply by the

constant i�h’.

Self-test 1.3. Evaluate the same commutator in the momentum representation.

[Same]
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1.5 The construction of operators

Operators for other observables of interest can be constructed from the ope-

rators for position and momentum. For example, the kinetic energy operator

T can be constructed by noting that kinetic energy is related to linear

momentum by T¼ p2/2m where m is the mass of the particle. It follows that

in one dimension and in the position representation

T ¼ p2
x

2m
¼ 1

2m

�h

i

d

dx

� �2

¼ � �h

2m

d2

dx2
ð1:8Þ

In three dimensions the operator in the position representation is

T ¼ � �h2

2m

q2

qx2
þ q2

qy2
þ q2

qz2

( )
¼ � �h2

2m
r2 ð1:9Þ

The operator r2, which is read ‘del squared’ and called the laplacian, is the

sum of the three second derivatives.

The operator for potential energy of a particle in one dimension, V(x), is

multiplication by the function V(x) in the position representation. The same is

true of the potential energy operator in three dimensions. For example, in the

position representation the operator for the Coulomb potential energy of an

electron (charge �e) in the field of a nucleus of atomic number Z is the

multiplicative operator

V ¼ � Ze2

4pe0r
� ð1:10Þ

where r is the distance from the nucleus to the electron. It is usual to omit the

multiplication sign from multiplicative operators, but it should not be for-

gotten that such expressions are multiplications.

The operator for the total energy of a system is called the hamiltonian

operator and is denoted H:

H ¼ T þ V ð1:11Þ

The name commemorates W.R. Hamilton’s contribution to the formulation

of classical mechanics in terms of what became known as a hamiltonian

function. To write the explicit form of this operator we simply substitute the

appropriate expressions for the kinetic and potential energy operators in the

chosen representation. For example, the hamiltonian for a particle of mass m

moving in one dimension is

H ¼ � �h2

2m

d2

dx2
þ VðxÞ ð1:12Þ

where V(x) is the operator for the potential energy. Similarly, the hamiltonian

operator for an electron of mass me in a hydrogen atom is

H ¼ � �h2

2me
r2 � e2

4pe0r
ð1:13Þ

Although eqn 1.9 has explicitly

used Cartesian coordinates, the

relation between the kinetic energy

operator and the laplacian is true

in any coordinate system; for

example, spherical polar

coordinates.
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The general prescription for constructing operators in the position repres-

entation should be clear from these examples. In short:

1. Write the classical expression for the observable in terms of position

coordinates and the linear momentum.

2. Replace x by multiplication by x, and replace px by (�h/i)q/qx (and likewise

for the other coordinates).

1.6 Integrals over operators

When we want to make contact between a calculation done using operators

and the actual outcome of an experiment, we need to evaluate certain

integrals. These integrals all have the form

I ¼
Z

f �mOfn dt ð1:14Þ

where f �m is the complex conjugate of fm. In this integral dt is the volume

element. In one dimension, dt can be identified as dx; in three dimensions it is

dxdydz. The integral is taken over the entire space available to the system,

which is typically from x¼�1 to x¼ þ1 (and similarly for the other

coordinates). A glance at the later pages of this book will show that many

molecular properties are expressed as combinations of integrals of this form

(often in a notation which will be explained later). Certain special cases of this

type of integral have special names, and we shall introduce them here.

When the operator O in eqn 1.14 is simply multiplication by 1, the integral

is called an overlap integral and commonly denoted S:

S ¼
Z

f �mfn dt ð1:15Þ

It is helpful to regard S as a measure of the similarity of two functions: when

S¼0, the functions are classified as orthogonal, rather like two perpendicular

vectors. When S is close to 1, the two functions are almost identical. The

recognition of mutually orthogonal functions often helps to reduce the

amount of calculation considerably, and rules will emerge in later sections

and chapters.

The normalization integral is the special case of eqn 1.15 for m¼n.

A function fm is said to be normalized (strictly, normalized to 1) ifZ
f �mfm dt ¼ 1 ð1:16Þ

It is almost always easy to ensure that a function is normalized by multiplying

it by an appropriate numerical factor, which is called a normalization factor,

typically denoted N and taken to be real so that N� ¼N. The procedure is

illustrated in the following example.

Example 1.4 How to normalize a function

A certain function f is sin(px/L) between x¼ 0 and x¼L and is zero elsewhere.

Find the normalized form of the function.

The complex conjugate of

a complex number z¼ aþ ib

is z� ¼ a� ib. Complex

conjugation amounts to

everywhere replacing i by � i.

The square modulus jzj2 is given by

zz� ¼ a2þ b2 since jij2¼ 1.
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Method. We need to find the (real) factor N such that N sin(px/L) is norm-

alized to 1. To find N we substitute this expression into eqn 1.16, evaluate the

integral, and select N to ensure normalization. Note that ‘all space’ extends

from x¼ 0 to x¼L.

Answer. The necessary integration isZ
f �f dt ¼

Z L

0

N2 sin2ðpx=LÞdx ¼ 1
2LN2

where we have used
R

sin2ax dx¼ (x/2)(sin 2ax)/4aþ constant. For this

integral to be equal to 1, we require N¼ (2/L)1/2. The normalized function is

therefore

f ¼ 2

L

� �1=2

sinðpx=LÞ

Comment. We shall see later that this function describes the distribution of a

particle in a square well, and we shall need its normalized form there.

Self-test 1.4. Normalize the function f¼ eif, where f ranges from 0 to 2p.

[N¼ 1/(2p)1/2]

A set of functions fn that are (a) normalized and (b) mutually orthogonal

are said to satisfy the orthonormality condition:Z
f �mfn dt ¼ dmn ð1:17Þ

In this expression, dmn denotes the Kronecker delta, which is 1 when m¼n

and 0 otherwise.

1.7 Dirac bracket notation

With eqn 1.14 we are on the edge of getting lost in a complicated notation. The

appearance of many quantum mechanical expressions is greatly simplified by

adopting the Dirac bracket notation in which integrals are written as follows:

hmjOjni ¼
Z

f �mOfn dt ð1:18Þ

The symbol jni is called a ket, and denotes the state described by the function

fn. Similarly, the symbol hnj is called a bra, and denotes the complex conjugate

of the function, f �n . When a bra and ket are strung together with an operator

between them, as in the bracket hmjOjni, the integral in eqn 1.18 is to be

understood. When the operator is simply multiplication by 1, the 1 is omitted

and we use the convention

hmjni ¼
Z

f �mfn dt ð1:19Þ

This notation is very elegant. For example, the normalization integral

becomes hnjni¼1 and the orthogonality condition becomes hmjni¼0

for m 6¼n. The combined orthonormality condition (eqn 1.17) is then

hmjni ¼ dmn ð1:20Þ
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A final point is that, as can readily be deduced from the definition of a Dirac

bracket,

hmjni ¼ hnjmi�

1.8 Hermitian operators

An operator is hermitian if it satisfies the following relation:Z
f �mOfn dt ¼

�Z
f �nOfmdt

	�
ð1:21aÞ

for any two functions fm and fn. An alternative version of this definition isZ
f �mOfn dt ¼

Z
ðOfmÞ�fn dt ð1:21bÞ

This expression is obtained by taking the complex conjugate of each term on

the right-hand side of eqn 1.21a. In terms of the Dirac notation, the definition

of hermiticity is

hmjOjni ¼ hnjOjmi� ð1:22Þ

Example 1.5 How to confirm the hermiticity of operators

Show that the position and momentum operators in the position representa-

tion are hermitian.

Method. We need to show that the operators satisfy eqn 1.21a. In some cases

(the position operator, for instance), the hermiticity is obvious as soon as the

integral is written down. When a differential operator is used, it may be

necessary to use integration by parts at some stage in the argument to transfer

the differentiation from one function to another:Z
u dv ¼ uv�

Z
v du

Answer. That the position operator is hermitian is obvious from inspection:Z
f �mxfn dt ¼

Z
fnxf �m dt ¼

Z
f �n xfm dt

� 	�
We have used the facts that (f�)� ¼ f and x is real. The demonstration of the

hermiticity of px, a differential operator in the position representation,

involves an integration by parts:

Z
f �mpxfn dx ¼

Z
f �m

�h

i

d

dx
fn dx ¼ �h

i

Z
f �m dfn

¼ �h

i

�
f �mfn �

Z
fndf �m

	




x¼1

x¼�1

¼ �h

i
f �mfnjx¼1x¼�1 �

Z 1
�1

fn
d

dx
f �m dx

� 	
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The first term on the right is zero (because when jxj is infinite, a normalizable

function must be vanishingly small; see Section 1.12). Therefore,

Z
f �mpxfn dx ¼ � �h

i

Z
fn

d

dx
f �m dx

¼
Z

f �n
�h

i

d

dx
fm dx

� 	�
¼

Z
f �n pxfm dx

� 	�

Hence, the operator is hermitian.

Self-test 1.5. Show that the two operators are hermitian in the momentum

representation.

As we shall now see, the property of hermiticity has far-reaching impli-

cations. First, we shall establish the following property:

Property 1. The eigenvalues of hermitian operators are real.

Proof 1.1 The reality of eigenvalues

Consider the eigenvalue equation

Ojoi ¼ ojoi

The ket joi denotes an eigenstate of the operator O in the sense that the

corresponding function fo is an eigenfunction of the operator O and we are

labelling the eigenstates with the eigenvalue o of the operator O. It is often

convenient to use the eigenvalues as labels in this way. Multiplication from the

left by hoj results in the equation

hojOjoi ¼ ohojoi ¼ o

taking joi to be normalized. Now take the complex conjugate of both sides:

hojOjoi� ¼ o�

However, by hermiticity, hojOjoi� ¼ hojOjoi. Therefore, it follows that

o¼o�, which implies that the eigenvalue o is real.

The second property we shall prove is as follows:

Property 2. Eigenfunctions corresponding to different eigenvalues of an

hermitian operator are orthogonal.

That is, if we have two eigenfunctions of an hermitian operator O with

eigenvalues o and o 0, with o 6¼o 0, then hojo 0i ¼ 0. For example, it follows at

once that all the eigenfunctions of a harmonic oscillator (Section 2.16) are

mutually orthogonal, for as we shall see each one corresponds to a different

energy (the eigenvalue of the hamiltonian, an hermitian operator).
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Proof 1.2 The orthogonality of eigenstates

Suppose we have two eigenstates joi and jo 0i that satisfy the following

relations:

Ojoi ¼ ojoi and Ojo0i ¼ o0jo0i
Then multiplication of the first relation by ho 0j and the second by hoj gives

ho0jOjoi ¼ oho0joi and hojOjo0i ¼ o0hojo0i
Now take the complex conjugate of the second relation and subtract it from

the first while using Property 1 (o 0� ¼o 0):

ho0jOjoi � hojOjo0i� ¼ oho0joi � o0hojo0i�

Because O is hermitian, the left-hand side of this expression is zero; so (noting

that o 0 is real and using hojo 0i� ¼ ho 0joi as explained earlier) we arrive at

ðo� o0Þho0joi ¼ 0

However, because the two eigenvalues are different, the only way of satisfying

this relation is for ho 0joi¼ 0, as was to be proved.

The postulates of quantum mechanics

Now we turn to an application of the preceding material, and move into the

foundations of quantum mechanics. The postulates we use as a basis for

quantum mechanics are by no means the most subtle that have been devised,

but they are strong enough for what we have to do.

1.9 States and wavefunctions

The first postulate concerns the information we can know about a state:

Postulate 1. The state of a system is fully described by a function C(r1,

r2, . . . , t).

In this statement, r1, r2, . . . are the spatial coordinates of particles 1, 2, . . .

that constitute the system and t is the time. The function C (uppercase psi)

plays a central role in quantum mechanics, and is called the wavefunction of

the system (more specifically, the time-dependent wavefunction). When we

are not interested in how the system changes in time we shall denote the

wavefunction by a lowercase psi as c(r1, r2, . . . ) and refer to it as the time-

independent wavefunction. The state of the system may also depend on some

internal variable of the particles (their spin states); we ignore that for now

and return to it later. By ‘describe’ we mean that the wavefunction

contains information about all the properties of the system that are open to

experimental determination.

We shall see that the wavefunction of a system will be specified by a set of

labels called quantum numbers, and may then be written ca,b, . . . , where

a, b, . . . are the quantum numbers. The values of these quantum numbers

specify the wavefunction and thus allow the values of various physical
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observables to be calculated. It is often convenient to refer to the state of

the system without referring to the corresponding wavefunction; the state is

specified by listing the values of the quantum numbers that define it.

1.10 The fundamental prescription

The next postulate concerns the selection of operators:

Postulate 2. Observables are represented by hermitian operators chosen to

satisfy the commutation relations

½q, pq0 
 ¼ i�hdqq0 ½q, q0
 ¼ 0 ½pq, pq0 
 ¼ 0

where q and q 0 each denote one of the coordinates x, y, z and pq and pq 0 the

corresponding linear momenta.

The requirement that the operators are hermitian ensures that the observables

have real values (see below). Each commutation relation is a basic, unpro-

vable, and underivable postulate. Postulate 2 is the basis of the selection of

the form of the operators in the position and momentum representations for

all observables that depend on the position and the momentum.2 Thus, if we

define the position representation as the representation in which the position

operator is multiplication by the position coordinate, then as we saw in

Example 1.3, it follows that the momentum operator must involve differ-

entiation with respect to x, as specified earlier. Similarly, if the momentum

representation is defined as the representation in which the linear momentum

is represented by multiplication, then the form of the position operator is

fixed as a derivative with respect to the linear momentum. The coordinates

x, y, and z commute with each other as do the linear momenta px, py, and pz.

1.11 The outcome of measurements

The next postulate brings together the wavefunction and the operators and

establishes the link between formal calculations and experimental observations:

Postulate 3. When a system is described by a wavefunction c, the mean

value of the observable O in a series of measurements is equal to the expec-

tation value of the corresponding operator.

The expectation value of an operator O for an arbitrary state c is denoted hOi
and defined as

hOi ¼
R
c�Oc dtR
c�cdt

¼ hcjOjcihcjci ð1:23Þ

If the wavefunction is chosen to be normalized to 1, then the expectation

value is simply

hOi ¼
Z

c�Oc dt ¼ hcjOjci ð1:24Þ

Unless we state otherwise, from now on we shall assume that the wave-

function is normalized to 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. This prescription excludes intrinsic observables, such as spin (Section 4.8).
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The meaning of Postulate 3 can be unravelled as follows. First, suppose

that c is an eigenfunction of O with eigenvalue o; then

hOi ¼
Z

c�Oc dt ¼
Z

c�oc dt ¼ o
Z

c�c dt ¼ o ð1:25Þ

That is, a series of experiments on identical systems to determine O will give

the average value o (a real quantity, because O is hermitian). Now suppose

that although the system is in an eigenstate of the hamiltonian it is not in an

eigenstate of O. In this case the wavefunction can be expressed as a linear

combination of eigenfunctions of O:

c ¼
X

n

cncn where Ocn ¼ oncn

In this case, the expectation value is

hOi ¼
Z X

m

cmcm

 !�
O
X

n

cncn

 !
dt ¼

X
m, n

c�mcn

Z
c�mOcn dt

¼
X
m,n

c�mcnon

Z
c�mcn dt

Because the eigenfunctions form an orthonormal set, the integral in the last

expression is zero if n 6¼m, is 1 if n¼m, and the double sum reduces to a

single sum:

hOi ¼
X

n

c�ncnon

Z
c�ncn dt ¼

X
n

c�ncnon ¼
X

n

cnj j2on ð1:26Þ

That is, the expectation value is a weighted sum of the eigenvalues of O,

the contribution of a particular eigenvalue to the sum being determined by the

square modulus of the corresponding coefficient in the expansion of the

wavefunction.

We can now interpret the difference between eqns 1.25 and 1.26 in the

form of a subsidiary postulate:

Postulate 30. When c is an eigenfunction of the operator O, the determina-

tion of the property O always yields one result, namely the corresponding

eigenvalue o. The expectation value will simply be the eigenvalue o. When c
is not an eigenfunction of O, a single measurement of the property yields

a single outcome which is one of the eigenvalues of O, and the probability that

a particular eigenvalue on is measured is equal to jcnj2, where cn is the

coefficient of the eigenfunction cn in the expansion of the wavefunction.

One measurement can give only one result: a pointer can indicate only one

value on a dial at any instant. A series of determinations can lead to a series of

results with some mean value. The subsidiary postulate asserts that a mea-

surement of the observable O always results in the pointer indicating one of

the eigenvalues of the corresponding operator. If the function that describes

the state of the system is an eigenfunction of O, then every pointer reading is

precisely o and the mean value is also o. If the system has been prepared in a

state that is not an eigenfunction of O, then different measurements give

different values, but every individual measurement is one of the eigenvalues of
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O, and the probability that a particular outcome on is obtained is determined

by the value of jcnj2. In this case, the mean value of all the observations is the

weighted average of the eigenvalues. Note that in either case, the hermiticity

of the operator guarantees that the observables will be real.

Example 1.6 How to use Postulate 3 0.

An operator A has eigenfunctions f1, f2, . . . , fn with corresponding eigenvalues

a1, a2, . . . , an. The state of a system is described by a normalized wavefunction

c given by

c ¼ 1
2 f1 � 3

8


 �1=2
f2 þ 3

8 i

 �1=2

f3

What will be the outcome of measuring the observable A?

Method. First, we need to determine if c is an eigenfunction of the operator A.

If it is, then we shall obtain the same eigenvalue of A in every measurement.

If it is not, we shall obtain different values in a series of different measure-

ments. In the latter case, if we have an expression for c in terms of the

eigenfunctions of A, then we can determine what different values are possible,

the probabilities of obtaining them, and the average value from a large series

of measurements.

Answer. To test whether c is an eigenfunction of the operator A we proceed as

follows:

Ac ¼ A 1
2 f1 � 3

8


 �1=2
f2 þ 3

8 i

 �1=2

f3

h i
¼ 1

2a1f1 � 3
8


 �1=2
a2f2 þ 3

8 i

 �1=2

a3f3 6¼ constant� c

Therefore, c is not an eigenfunction of A. However, because c is a linear

combination of f1, f2, and f3 we will obtain, in different measurements,

the values a1, a2, and a3 (the eigenvalues of the eigenfunctions of A that

contribute to c). The probabilities of obtaining a1, a2, and a3 are, respectively,
1
4,

3
8, and 3

8. The average value, given by eqn 1.26, is

hAi ¼ 1
4 a1 þ 3

8 a2 þ 3
8 a3

Comment. The normalization of c is reflected in the fact that the probabilities

sum to 1. Because the eigenfunctions f4, f5, . . . do not contribute here to c,

there is zero probability of finding a4, a5, . . . .

Self-test 1.6. Repeat the problem using c ¼ 1
3 f2 þ ð79Þ

1=2f4� 1
3 if5:

[hAi ¼ 1
9 a2 þ 7

9 a4 þ 1
9 a5


1.12 The interpretation of the wavefunction

The next postulate concerns the interpretation of the wavefunction itself, and

is commonly called the Born interpretation:

Postulate 4. The probability that a particle will be found in the volume

element dt at the point r is proportional to jc(r)j2dt.
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As we have already remarked, in one dimension the volume element is dx.

In three dimensions the volume element is dxdydz. It follows from this

interpretation that jc(r)j2 is a probability density, in the sense that it

yields a probability when multiplied by the volume dt of an infinitesimal

region. The wavefunction itself is a probability amplitude, and has no direct

physical meaning. Note that whereas the probability density is real and non-

negative, the wavefunction may be complex and negative. It is usually con-

venient to use a normalized wavefunction; then the Born interpretation

becomes an equality rather than a proportionality. The implication of the

Born interpretation is that the wavefunction should be square-integrable;

that isZ
jcj2 dt <1

because there must be a finite probability of finding the particle somewhere in

the whole of space (and that probability is 1 for a normalized wavefunction).

This postulate in turn implies that c!0 as x!�1, for otherwise the inte-

gral of jcj2 would be infinite. We shall make frequent use of this implication

throughout the text.

1.13 The equation for the wavefunction

The final postulate concerns the dynamical evolution of the wavefunction

with time:

Postulate 5. The wavefunction C(r1, r2, . . . , t) evolves in time according

to the equation

i�h
qC
q t
¼ HC ð1:27Þ

This partial differential equation is the celebrated Schrödinger equation

introduced by Erwin Schrödinger in 1926. At this stage, we are treating the

equation as an unmotivated postulate. However, in Section 1.24 we shall

advance arguments in support of its plausibility. The operator H in the

Schrödinger equation is the hamiltonian operator for the system, the operator

corresponding to the total energy. For example, by using the expression

in eqn 1.12, we obtain the time-dependent Schrödinger equation in one

dimension (x) with a time-independent potential energy for a single particle:

i�h
qC
q t
¼ � �h2

2m

q2C
qx2
þ VðxÞC ð1:28Þ

We shall have a great deal to say about the Schrödinger equation and its

solutions in the rest of the text.

1.14 The separation of the Schrödinger equation

The Schrödinger equation can often be separated into equations for the time

and space variation of the wavefunction. The separation is possible when the

potential energy is independent of time.
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In one dimension the equation has the form

HC ¼ � �h2

2m

q2C
qx2
þ VðxÞC ¼ i�h

qC
qt

Equations of this form can be solved by the technique of separation of

variables, in which a trial solution takes the form

Cðx, tÞ ¼ cðxÞyðtÞ

When this substitution is made, we obtain

� �h2

2m
y

d2c
dx2
þ VðxÞcy ¼ i �hc

dy
dt

Division of both sides of this equation by cy gives

� �h2

2m

1

c
d2c
dx2
þ VðxÞ ¼ i �h

1

y
dy
dt

Only the left-hand side of this equation is a function of x, so when x changes,

only the left-hand side can change. But as the left-hand side is equal to the

right-hand side, and the latter does not change, the left-hand side must be

equal to a constant. Because the dimensions of the constant are those of an

energy (the same as those of V), we shall write it E. It follows that the time-

dependent equation separates into the following two differential equations:

� �h2

2m

d2c
dx2
þ VðxÞc ¼ Ec ð1:29aÞ

i�h
dy
dt
¼ Ey ð1:29bÞ

The second of these equations has the solution

y / e�iEt=�h ð1:30Þ

Therefore, the complete wavefunction (C¼cy) has the form

Cðx, tÞ ¼ cðxÞe�iEt=�h ð1:31Þ

The constant of proportionality in eqn 1.30 has been absorbed into the

normalization constant for c. The time-independent wavefunction satisfies

eqn 1.29a, which may be written in the form

Hc ¼ Ec

This expression is the time-independent Schrödinger equation, on which

much of the following development will be based.

This analysis stimulates several remarks. First, eqn 1.29a has the form of a

standing-wave equation. Therefore, so long as we are interested only in the

spatial dependence of the wavefunction, it is legitimate to regard the time-

independent Schrödinger equation as a wave equation. Second, when the

potential energy of the system does not depend on the time, and the system

is in a state of energy E, it is a very simple matter to construct the time-

dependent wavefunction from the time-independent wavefunction simply by
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multiplying the latter by e�iEt/�h. The time dependence of such a wavefunction

is simply a modulation of its phase, because we can write

e�iEt=�h ¼ cosðEt=�hÞ � i sinðEt=�hÞ
It follows that the time-dependent factor oscillates periodically from 1 to �i

to �1 to i and back to 1 with a frequency E/h and period h/E. This behaviour

is depicted in Fig. 1.1. Therefore, to imagine the time-variation of a wave-

function of a definite energy, think of it as flickering from positive through

imaginary to negative amplitudes with a frequency proportional to the energy.

Although the phase of a wavefunction C with definite energy E oscillates in

time, the product C�C (or jCj2) remains constant:

C�C ¼ ðc�eiEt=�hÞðce�iEt=�hÞ ¼ c�c

States of this kind are called stationary states. From what we have seen so far,

it follows that systems with a specific, precise energy and in which the

potential energy does not vary with time are in stationary states. Although

their wavefunctions flicker from one phase to another in repetitive manner,

the value of C�C remains constant in time.

The specification and evolution of states

Let us suppose for the moment that the state of a system can be specified as

ja,b, . . . i, where each of the eigenvalues a, b, . . . corresponds to the operators

representing different observables A, B, . . . of the system. If the system is in

the state ja,b, . . . i, then when we measure the property A we shall get exactly

a as an outcome, and likewise for the other properties. But can a state be

specified arbitrarily fully? That is, can it be simultaneously an eigenstate of all

possible observables A, B, . . . without restriction? With this question we are

moving into the domain of the uncertainty principle.

1.15 Simultaneous observables

As a first step, we establish the conditions under which two observables may

be specified simultaneously with arbitrary precision. That is, we establish the

conditions for a state jci corresponding to the wavefunction c to be simul-

taneously an eigenstate of two operators A and B. In fact, we shall prove the

following:

Property 3. If two observables are to have simultaneously precisely defined

values, then their corresponding operators must commute.

That is, AB must equal BA, or equivalently, [A,B]¼0.

Proof 1.3 Simultaneous eigenstates

Assume that jci is an eigenstate of both operators: Ajci¼ ajci and

Bjci¼ bjci. That being so, we can write the following chain of relations:

ABjci ¼ Abjci ¼ bAjci ¼ bajci ¼ abjci ¼ aBjci ¼ Bajci ¼ BAjci

We have used Euler’s relation,

eix ¼ cos x þ i sin x

as well as sin(�x)¼ � sin(x) and

cos(�x)¼ cos(x).

Re �

Im �

x

Fig. 1.1 A wavefunction

corresponding to an energy E rotates

in the complex plane from real to
imaginary and back to real at a

circular frequency E/�h.
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Therefore, if jci is an eigenstate of both A and B, and if the same is true for all

functions c of a complete set, then it is certainly necessary that [A,B]¼ 0.

However, does the condition [A,B]¼ 0 actually guarantee that A and B have

simultaneous eigenvalues? In other words, if Ajci¼ ajci and [A,B]¼ 0, can

we be confident that jci is also an eigenstate of B? We confirm this as follows.

Because Ajci¼ ajci, we can write

BAjci ¼ Bajci ¼ aBjci

Because A and B commute, the first term on the left is equal to ABjci.
Therefore, this relation has the form

AðBjciÞ ¼ aðBjciÞ

However, on comparison of this eigenvalue equation with Ajci¼ ajci, we can

conclude that Bjci/ jci, or Bjci¼ bjci, where b is a coefficient of pro-

portionality. That is, jci is an eigenstate of B, as was to be proved.

It follows from this discussion that we are now in a position to determine

which observables may be specified simultaneously. All we need do is to

inspect the commutator [A,B]: if it is zero, then A and B may be specified

simultaneously.

Example 1.7 How to decide whether observables may be specified

simultaneously

What restrictions are there on the simultaneous specification of the position

and the linear momentum of a particle?

Method. To answer this question we have to determine whether the position

coordinates can be specified simultaneously, whether the momentum com-

ponents can be specified simultaneously, and whether the position and

momentum can be specified simultaneously. The answer is found by examin-

ing the commutators (Section 1.10; Postulate 2) of the corresponding

operators.

Answer. All three position operators x, y, and z commute with one another, so

there is no constraint on the complete specification of position. The same is

true of the three operators for the components of linear momentum. So all

three components can be determined simultaneously. However, x and px do

not commute, so these two observables cannot be specified simultaneously,

and likewise for (y,py) and (z,pz). The consequent pattern of permitted

simultaneous specifications is illustrated in Fig. 1.2.

Self-test 1.7. Can the kinetic energy and the linear momentum be specified

simultaneously?

[Yes]

Pairs of observables that cannot be determined simultaneously are said to

be complementary. Thus, position along the x-axis and linear momentum

pz

x

y

px

z

py

Fig. 1.2 A summary of the position

and momentum observables that can
be specified simultaneously with

arbitrary precision (joined by solid

lines) and those that cannot (joined
by dotted lines).
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parallel to that axis are complementary observables. Classical physics made

the mistake of presuming that there was no restriction on the simultaneous

determination of observables, that there was no complementarity. Quantum

mechanics forces us to choose a selection of all possible observables if we seek

to specify a state fully.

1.16 The uncertainty principle

Although we cannot specify the eigenvalues of two non-commuting operators

simultaneously, it is possible to give up precision in the specification of one

property in order to acquire greater precision in the specification of a com-

plementary property. For example, if we know the location of a particle to

within a range Dx, then we can specify the linear momentum parallel to x to

within a range Dpx subject to the constraint

DxDpx � 1
2 �h ð1:32Þ

Thus, as Dx increases (an increased uncertainty in x), the uncertainty in px can

decrease, and vice versa. This relation between the uncertainties in the spe-

cification of two complementary observables is a special case of the uncer-

tainty principle proposed by Werner Heisenberg in 1927. A very general form

of the uncertainty principle was developed by H.P. Robertson in 1929 for two

observables A and B:

DADB � 1
2 jh½A, B
ij ð1:33Þ

where the root mean square deviation of A is defined as

DA ¼ hA2i � hAi2
n o1=2

ð1:34Þ

This is an exact and precise form of the uncertainty principle: the precise form

of the ‘uncertainties’ DA and DB are given (they are root mean square

deviations) and the right-hand side of eqn 1.33 gives a precise lower bound on

the value of the product of uncertainties.

Proof 1.4 The uncertainty principle

Suppose that the observables A and B obey the commutation relation

[A,B]¼ iC. (The imaginary i is included for future convenience. For A¼ x and

B¼ px it follows from the fundamental commutation relation that C¼ �h.) We

shall suppose that the system is prepared in a normalized but otherwise

arbitrary state jci, which is not necessarily an eigenstate of either operator A

or B. The mean values of the observables A and B are expressed by the

expectation values

hAi ¼ hcjAjci and hBi ¼ hcjBjci

The operators for the spread of individual determinations of A and B around

their mean values are

dA ¼ A� hAi and dB ¼ B� hBi
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It is easy to verify that the commutation relation for these deviation operators is

dA, dB½ 
 ¼ A� hAi, B� hBi½ 
 ¼ A, B½ 
 ¼ iC

because the expectation values hAi and hBi are simple numbers and commute

with operators.

Now consider the properties of the following integral, where a is a real but

otherwise arbitrary number:

I ¼
Z
j adA� idBð Þcj2 dt

The integral I is clearly non-negative as the integrand is positive everywhere.

This integral can be developed as follows:

I ¼
Z
fða dA� idBÞcg�fða dA� idBÞcgdt

¼
Z

c�ðadAþ idBÞðadA� idBÞc dt

In the second step we have used the hermitian character of the two operators

(as expressed in eqn 1.21b). At this point it is convenient to recognize that the

final expression is an expectation value, and to write it in the form

I ¼ hðadAþ idBÞðadA� idBÞi
This expression expands to

I ¼ a2hðdAÞ2i þ hðdBÞ2i � iahdAdB� dBdAi ¼ a2hðdAÞ2i þ hðdBÞ2i þ ahCi
In the second step we have recognized the presence of the commutator. The

integral is still non-negative, even though that is no longer obvious. At this

point we recognize that I has the general form of a quadratic expression in a,

and so express it as a square:

I ¼
�
ðdAÞ2

�
aþ hCi

2
�
ðdAÞ2

�
 !2

þ
�
ðdBÞ2

�
� hCi2

4
�
ðdAÞ2

�
(We have ‘completed the square’ for the first term.) This expression is still non-

negative whatever the value of a, and remains non-negative even if we choose

a value for a that corresponds to the minimum value of I. That value of a is the

value that ensures that the first term on the right is zero (because that term

always supplies a positive contribution to I). Therefore, with that choice of a,

we obtain

I ¼
�
ðdBÞ2

�
� hCi2

4
�
ðdAÞ2

� � 0

The inequality rearranges to�
ðdAÞ2

�
hðdBÞ2

�
� 1

4 hCi
2

The expectation values on the left can be put into a simpler form by writing

them as follows:�
ðdAÞ2

�
¼ hðA� hAiÞ2i
¼ hA2 � 2AhAi þ hAi2i ¼ hA2i � 2hAihAi þ hAi2

¼ hA2i � hAi2
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We see that h(dA)2i is the mean square deviation of A from its mean value

(and likewise for B).

Then the inequality becomes

DADB � 1
2 jhCij

Then, because [A, B]¼ iC, we obtain the final form of the uncertainty principle

in eqn 1.33.

1.17 Consequences of the uncertainty principle

The first point to note is that the uncertainty principle is consistent with

Property 3, for if A and B commute, then C is zero and there is no constraint

on the uncertainties: there is no inconsistency in having both DA¼0 and

DB¼0. On the other hand, when A and B do not commute, the values of DA

and DB are related. For instance, while it may be possible to prepare a system

in a state in which DA¼0, the uncertainty then implies that DB must be

infinite in order to ensure that DADB is not less than 1
2jh[A,B]ij. In the par-

ticular case of the simultaneous specification of x and px, as we have seen, [x,

px]¼ i�h, so the lower bound on the simultaneous specification of these two

complementary observables is 1
2�h.

Example 1.8 How to calculate the joint uncertainty in two observables

A particle was prepared in a state with wavefunction c¼N exp(� x2/2G),

where N¼ (1/pG)1/4. Evaluate Dx and Dpx, and confirm that the uncertainty

principle is satisfied.

Method. We must evaluate the expectation values hxi, hx2i, hpxi, and hpx
2i by

integration and then combine their values to obtain Dx and Dpx. There are two

short cuts. For hxi, we note that c is symmetrical around x¼ 0, and so hxi¼ 0.

The value of hpxi can be obtained by noting that px is an imaginary hermitian

operator and c is real. Because hermiticity implies that hpxi� ¼ hpxi whereas

the imaginary character of px implies that hpxi� ¼�hpxi, we can conclude that

hpxi¼ 0. For the remaining integrals we useZ 1
�1

e�ax2

dx ¼ p
a

� �1=2
and

Z 1
�1

x2e�ax2

dx ¼ 1

2a

p
a

� �1=2

Answer. The following integrals are obtained:

hx2i ¼ N2

Z 1
�1

x2e�x2=G dx ¼ 1

2
G

hp2
xi ¼ N2

Z 1
�1

e�x2=2G ��h2 d2

dx2

 !
e�x2=2G dx

¼ �h2N2 1

G

Z 1
�1

e�x2=G dx� 1

G2

Z 1
�1

x2e�x2=G dx

� 	
¼ �h2

2G
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It follows that (because hxi¼ 0 and hpxi¼ 0)

DxDpx ¼ hx2i1=2hp2
xi

1=2 ¼ 1
2 �h

Comment. In this example, DxDpx has its minimum permitted value. This is a

special feature of ‘gaussian’ wavefunctions, wavefunctions of the form

exp(�ax2). A gaussian wavefunction is encountered in the ground state of a

harmonic oscillator (see Section 2.16).

Self-test 1.8. Calculate the value of DxDpx for a wavefunction that is zero

everywhere except in a region of space of length L, where it has the form

(2/L)1/2 sin(px/L).

[(�h/2(3)1/2)(p2 �6)1/2]

The uncertainty principle in the form given in eqn 1.33 can be applied to all

pairs of complementary observables. We shall see additional examples in later

chapters.

1.18 The uncertainty in energy and time

Finally, it is appropriate at this point to make a few remarks about the

so-called energy–time uncertainty relation, which is often expressed in the

form DEDt� �h and interpreted as implying a complementarity between

energy and time. As we have seen, for this relation to be a true uncertainty

relation, it would be necessary for there to be a non-zero commutator for

energy and time. However, although the energy operator is well defined (it is

the hamiltonian for the system), there is no operator for time in quantum

mechanics. Time is a parameter, not an observable. Therefore, strictly

speaking, there is no uncertainty relation between energy and time. In

Section 6.18 we shall see the true significance of the energy–time ‘uncertainty

principle’ is that it is a relation between the uncertainty in the energy of

a system that has a finite lifetime t (tau), and is of the form dE� �h/2t.

1.19 Time-evolution and conservation laws

As well as determining which operators are complementary, the commutator

of two operators also plays a role in determining the time-evolution of

systems and in particular the time-evolution of the expectation values of

observables. The precise relation for operators that do not have an intrinsic

dependence on the time (in the sense that qO/qt¼0) is

dhOi
dt
¼ i

�h
h½H,O
i ð1:35Þ

We see that if the operator for the observable commutes with the hamil-

tonian, then the expectation value of the operator does not change with time.

An observable that commutes with the hamiltonian for the system, and which

therefore has an expectation value that does not change with time, is called

a constant of the motion, and its expectation value is said to be conserved.
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Proof 1.5 Time evolution

Differentiation of hOi with respect to time gives

dhOi
dt
¼ d

dt
hCjOjCi ¼

Z
qC�

qt

� �
OC dtþ

Z
C�O

qC
qt

� �
dt

because only the state C (not the operator O) depends on the time. The

Schrödinger equation lets us writeZ
C�O

qC
qt

� �
dt ¼

Z
C�O

1

i�h

� �
HCdt ¼ 1

i�h

Z
C�OHC dt

Z
qC�

qt

� �
OC dt ¼ �

Z
1

i�h

� �
ðHCÞ�OC dt ¼ � 1

i�h

� �Z
C�HOC dt

In the second line we have used the hermiticity of the hamiltonian (in the form

of eqn 1.21b). It then follows, by combining these two expressions, that

dhOi
dt
¼ � 1

i�h

� �
ðhHOi � hOHiÞ ¼ i

�h
h½H,O
i

as was to be proved.

As an important example, consider the rate of change of the expectation

value of the linear momentum of a particle in a one-dimensional system. The

commutator of H and px is

½H, px
 ¼ � �h2

2m

d2

dx2
þ V,

�h

i

d

dx

" #
¼ �h

i
V,

d

dx

� �

because the derivatives commute. The remaining commutator can be evalu-

ated by remembering that there is an unwritten function on the right on

which the operators operate, and writing

½H, px
c ¼
�h

i
V

dc
dx
� dðVcÞ

dx

� 	
¼ �h

i
V

dc
dx
� V

dc
dx
� dV

dx
c

� 	

¼ � �h

i

dV

dx
c

This relation is true for all functions c; therefore the commutator itself is

½H, px
 ¼ �
�h

i

dV

dx
ð1:36Þ

It follows that the linear momentum is a constant of the motion if the

potential energy does not vary with position, that is when dV/dx¼0. Speci-

fically, we can conclude that the rate of change of the expectation value of

linear momentum is

d

dt
hpxi ¼

i

�h
h½H, px
i ¼ �

dV

dx

� �
ð1:37Þ
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Then, because the negative slope of the potential energy is by definition the

force that is acting (F¼�dV/dx), the rate of change of the expectation value

of linear momentum is given by

d

dt
hpxi ¼ hFi ð1:38Þ

That is, the rate of change of the expectation value of the linear momentum is
equal to the expectation value of the force. It is also quite easy to prove in the

same way that

d

dt
hxi ¼ hpxi

m
ð1:39Þ

which shows that the rate of change of the mean position can be identified

with the mean velocity along the x-axis. These two relations jointly constitute

Ehrenfest’s theorem. Ehrenfest’s theorem clarifies the relation between clas-

sical and quantum mechanics: classical mechanics deals with average values

(expectation values); quantum mechanics deals with the underlying details.

Matrices in quantum mechanics

As we have seen, the fundamental commutation relation of quantum

mechanics, [x,px]¼ i�h, implies that x and px are to be treated as operators.

However, there is an alternative interpretation: that x and px should be

represented by matrices, for matrix multiplication is also non-commutative.

We shall introduce this approach here as it introduces a language that is

widely used throughout quantum mechanics even though matrices are not

being used explicitly.

1.20 Matrix elements

A matrix, M, is an array of numbers (which may be complex), called matrix

elements. Each element is specified by quoting the row (r) and column (c) that

it occupies, and denoting the matrix element as Mrc. The rules of matrix

algebra are set out in Further information 23. For our present purposes it is

sufficient to emphasize the rule of matrix multiplication: the product of two

matrices M and N is another matrix P¼MN with elements given by the rule

Prc ¼
X

s

MrsNsc ð1:40Þ

The order of matrix multiplication is important, and it is essential to note that

MN is not necessarily equal to NM. Hence, MN�NM is not in general zero.

Heisenberg formulated his version of quantum mechanics, which is called

matrix mechanics, by representing position and linear momentum by the

matrices x and px, and requiring that xpx� pxx¼ i�h1 where 1 is the unit

matrix, a square matrix with all diagonal elements (those for which r¼ c)

equal to 1 and all others 0.
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Throughout this chapter we have encountered quantities of the form

hmjOjni. These quantities are commonly abbreviated as Omn, which imme-

diately suggests that they are elements of a matrix. For this reason, the Dirac

bracket hmjOjni is often called a matrix element of the operator O. A diagonal

matrix element Onn is then a bracket of the form hnjOjni with the bra and the

ket referring to the same state. We shall often encounter sums over products

of Dirac brackets that have the formX
s

hrjAjsihsjBjci

If the brackets that appear in this expression are interpreted as matrix elements,

then we see that it has the form of a matrix multiplication, and we may writeX
s

hrjAjsihsjBjci ¼
X

s

ArsBsc ¼ ðABÞrc ¼ hrjABjci ð1:41Þ

That is, the sum is equal to the single matrix element (bracket) of the product

of operators AB. Comparison of the first and last terms in this line of equa-

tions also allows us to write the symbolic relationX
s

jsihsj ¼ 1 ð1:42Þ

This completeness relation is exceptionally useful for developing quantum

mechanical equations. It is often used in reverse: the matrix element hrjABjci
can always be split into a sum of two factors by regarding it as hrjA1Bjci and

then replacing the 1 by a sum over a complete set of states of the form in

eqn 1.42.

Example 1.9 How to make use of the completeness relation

Use the completeness relation to prove that the eigenvalues of the square of an

hermitian operator are non-negative.

Method. We have to prove, for O2joi¼ojoi, that o� 0 if O is hermitian.

If both sides of the eigenvalue equation are multiplied by hoj, converting it to

hojO2joi¼o, we see that the proof requires us to show that the expectation

value on the left is non-negative. As it has the form hojOOjoi, it suggests that

the completeness relation might provide a way forward. The hermiticity of O
implies that it will be appropriate to use the property hmjOjni¼ hnjOjmi� at

some stage in the argument.

Answer. The diagonal matrix element hojO2joi can be developed as follows:

hojO2joi ¼ hojOOjoi ¼
X

s

hojOjsihsjOjoi

¼
X

s

hojOjsihojOjsi� ¼
X

s

jhojOjsij2 � 0

The final inequality follows from the fact that all the terms in the sum are

non-negative.

Self-test 1.9. Show that if (Of )� ¼�Of �, then hOi¼ 0 for any real function f.
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The origin of the completeness relation, which is also known as the closure

relation, can be demonstrated by the following argument. Suppose we have

a complete set of orthonormal states jsii. Then, by definition of complete,

we can expand an arbitrary state jci as a linear combination:

jci ¼
X

i

cijsii

Multiplication from the left by the bra hsjj and use of the orthonormality of

the complete basis set gives cj¼hsjjci. Thus

jci ¼
X

i

hsijcijsii ¼
X

i

jsiihsijci

which immediately implies the completeness relation.

1.21 The diagonalization of the hamiltonian

The time-independent form of the Schrödinger equation, Hc¼Ec, can be

given a matrix interpretation. First, we express jci as a linear combination of

a complete set of states jni:

Hjci ¼ H
X

n

cnjni ¼
X

n

cnHjni

Ejci ¼ E
X

n

cnjni

These two lines are equal to one another. Next, multiply the right-hand sides

of the above two equations from the left by an arbitrary bra hmj and use the

orthonormality of the states to obtainX
n

cnhmjHjni ¼ E
X

n

cnhmjni ¼ Ecm

In matrix notation this equation isX
n

Hmncn ¼ Ecm ð1:43Þ

Now suppose that we can find the set of states such that Hmn¼0 unless m¼n;

that is, when using this set, the hamiltonian has a diagonal matrix. Then this

expression becomes

Hmmcm ¼ Ecm ð1:44Þ

and the energy E is seen to be the diagonal element of the hamiltonian matrix.

In other words, solving the Schrödinger equation is equivalent to diag-

onalizing the hamiltonian matrix (see Further information 23). This is yet

another link between the Schrödinger and Heisenberg formulations of

quantum mechanics. Indeed, it was reported that when Heisenberg was

looking for ways of diagonalizing his matrices, the mathematician David

Hilbert suggested to him that he should look for the corresponding differ-

ential equation instead. Had he done so, Schrödinger’s wave mechanics

would have been Heisenberg’s too.
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Example 1.10 How to diagonalize a simple hamiltonian

In a system that consists of only two orthonormal states j1i and j2i (such

as electron spin in a magnetic field, when the electron spin can be in one of

two orientations), the hamiltonian has the following matrix elements:

H11¼h1jHj1i¼ a, H22¼h2jHj2i¼ b, H12¼ d, H21¼ d�. For notational sim-

plicity, we shall suppose that d is real, so d� ¼ d. Find the energy levels and the

eigenstates of the system.

Method. The energy levels are the eigenvalues of the hamiltonian matrix.

We use the procedure explained in Further information 23 to find the eigen-

values and eigenstates. We describe the procedure here briefly, specifically

for the two-state system. One eigenstate is jji¼ c1j1iþ c2j2i and the other is

jki¼ d1j1iþ d2j2i. Beginning twice with Hjji¼Ejji and multiplying one on

the left by h1j and the second on the left by h2j, we obtain two equations which

in matrix form are

H11 � E H12

H21 H22 � E

� �
c1

c2

� �
¼ 0

There is a (non-trivial, c1 and c2 non-zero) solution to this matrix equation

only if the determinant of the matrix on the left-hand side vanishes. A similar

argument develops if we begin with Hjki¼Ejki. The two energy eigenvalues

are determined from the secular determinant jH�E1j ¼ 0 and the two energy

eigenvalues, denoted E�, are the diagonal elements of the matrix E. To find the

eigenstates, we form the matrix T composed of the two column vectors of the

eigenstates:

T ¼ c1 d1

c2 d2

� �

The matrix T satisfies the equation HT¼TE. The best procedure is to choose

the coefficients c1, c2, d1, and d2 so that the eigenstates are given by jji¼
j1i cos zþ j2i sin z and jki¼�j1i sin zþ j2i cos z, where z is a parameter, for

this parametrization ensures that the two eigenstates are orthonormal for all

values of z. After solving the secular determinant equation for the eigenvalues,

we form T�1HT, equate it to the matrix E, and then solve for z.

Answer. Because the states j1i and j2i are orthonormal, the secular deter-

minant is

detjH � E1j ¼ a� E d
d b� E










 ¼ ða� EÞðb� EÞ � d2 ¼ 0

This quadratic equation for E has the roots

E� ¼ 1
2 ðaþ bÞ � 1

2 fða� bÞ2 þ 4d2g1=2 ¼ 1
2 ðaþ bÞ � D

where D¼ 1
2 {(a� b)2þ 4d2}1/2. These are the eigenvalues, and hence they are

the energy levels. We next form the transformation matrix and its reciprocal:

T ¼ cos z � sin z
sin z cos z

� �
T �1 ¼ cos z sin z

� sin z cos z

� �
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Then construct the following matrix equation:

Eþ 0

0 E�

� �
¼T�1HT¼

cosz sinz

�sinz cosz

� �
a d

d b

� �
cosz �sinz

sinz cosz

� �

¼ a cos2zþb sin2zþ2d cosz sinz dðcos2z�sin2zÞþðb�aÞcosz sinz

dðcos2z�sin2zÞþðb�aÞcosz sinz b cos2zþa sin2z�2d cosz sinz

 !

Consequently, by equating matching off-diagonal elements, we obtain

dðcos2 z� sin2 zÞ þ ðb� aÞ cos z sin z ¼ 0

which solves to

z ¼ � 1
2 arctan

2d

b� a

� �
Comment. The two-level system occurs widely in quantum mechanics, and we

shall return to it in Chapter 6. The parametrization of the states in terms of the

angle z is a very useful device, and we shall encounter it again.

The plausibility of the Schrödinger equation

The Schrödinger equation is properly regarded as a postulate of quantum

mechanics, and hence we should not ask for a deeper justification. However,

it is often more satisfying to set postulates in the framework of the familiar.

In this section we shall see that the Schrödinger equation is a plausible

description of the behaviour of matter by going back to the formulation of

classical mechanics devised by W.R. Hamilton in the nineteenth century.

We shall concentrate on the qualitative aspects of the approach: the calcu-

lations supporting these remarks will be found in Further information 1.

1.22 The propagation of light

In geometrical optics, light travels in straight lines in a uniform medium, and

we know that the physical nature of light is a wave motion. In classical

mechanics particles travel in straight lines unless a force is present. Moreover,

we know from the experiments performed at the end of the nineteenth

century and the start of the twentieth century that particles have a wave

character. There are clearly deep analogies here. We shall therefore first

establish how, in optics, wave motion can result in straight-line motion, and

then argue by analogy about the wave nature of particles.

The basic rule governing light propagation in geometrical optics is Fermat’s

principle of least time. A simple form of the principle is that the path taken by

a ray of light through a medium is such that its time of passage is a minimum.

As an illustration, consider the relation between the angles of incidence and

reflection for light falling on a mirror (Fig. 1.3). The briefest path between

source, mirror, and observer is clearly the one corresponding to equal angles

of incidence and reflection. In the case of refraction, it is necessary to take into

P1 P2

� �

Fig. 1.3 When light reflects from a
surface, the angle of reflection is

equal to the angle of incidence.
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account the different speeds of propagation in the two media. In Fig. 1.4,

the geometrically straight path is not necessarily the briefest, because the light

travels relatively slowly through the denser medium. The briefest path is in

fact easily shown to be the one in which the angles of incidence yi and

refraction yr are related by Snell’s law, that sin yr/sin yi¼n1/n2. (The refractive

indexes n1 and n2 enter because the speed of light in a medium of refractive

index n is c/n, where c is the speed of light in a vacuum.)

How can the wave nature of light account for this behaviour? Consider the

case illustrated in Fig. 1.5, where we are interested in the propagation of light

between two fixed points P1 and P2. A wave of electromagnetic radiation

travelling along some general path A arrives at P2 with a particular phase that

depends on its path length. A wave travelling along a neighbouring path A 0

travels a different distance and arrives with a different phase. Path A has very

many neighbouring paths, and there is destructive interference between the

waves. Hence, an observer concludes that the light does not travel along a

path like A. The same argument applies to every path between the two points,

with one exception: the straight line path B. The neighbours of B do not

interfere destructively with B itself, and it survives. The mathematical reason

for this exceptional behaviour can be seen as follows.

The amplitude of a wave at some point x can be written ae2pix/l, where l is

the wavelength. It follows that the amplitude at P1 is ae2pix1/l and that at P2

it is ae2pix2/l. The two amplitudes are therefore related as follows:

CðP2Þ ¼ ae2pix2=l ¼ e2piðx2�x1Þ=le2pix1=l ¼ e2piðx2�x1Þ=lCðP1Þ
This relation between the two amplitudes can be written more simply as

CðP2Þ ¼ eifCðP1Þ withf ¼ 2pðx2 � x1Þ=l ð1:45Þ
The function f is the phase length of the straight-line path. The relative

phases at P2 and P1 for waves that travel by curved paths are related by an

expression of the same kind, but with the phase length determined by the

length, L, of the path:

f ¼ 2pL

l
ð1:46Þ

Now we consider how the path length varies with the distortion of the path

from a straight line. If we distort the path from B to A in Fig. 1.5, f changes as

depicted in Fig. 1.6. Obviously, f goes through a minimum at B. Now we

arrive at the crux of the argument. Consider the phase length of the paths in

the vicinity of A. The phase length of A 0 is related to the phase length at A by

the following Taylor expansion:

fðA0Þ ¼ fðAÞ þ df
ds

� �
A

dsþ 1
2

d2f
ds2

 !
A

ds2 þ 	 	 	 ð1:47Þ

where ds is a measure of the distortion of the path. This expression should be

compared with the similar expression for the path lengths of B and its neighbours:

fðB0Þ ¼ fðBÞ þ df
ds

� �
B

dsþ 1
2

d2f
ds2

 !
B

ds2 þ 	 	 	

¼ fðBÞ þ 1
2

d2f
ds2

 !
B

ds2 þ 	 	 	 ð1:48Þ

A

A�

B

B�

P1

P2

P2

P1

(a)

(b)

Fig. 1.5 (a) A curved path through a
uniform medium has neighbours

with significantly different phases at

the destination point, and there is
destructive interference between

them. (b) A straight path between

two points has neighbours with

almost the same phase, and these
paths do not interfere destructively.

P1

P2

�i

�r

Fig. 1.4 When light is refracted at the

interface of two transparent media,

the angle of refraction, yr, and the
angle of incidence, yi, are related by

Snell’s law.
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The term in ds is zero because the first derivative is zero at the minimum of the

curve. In other words, to first order in the displacement, straight line paths

have neighbours with the same phase length. On the other hand, curved paths

have neighbours with different phase lengths. This difference is the reason

why straight line propagation survives whereas curved paths do not: the latter

have annihilating neighbours.

Two further points now need to be made. When the medium is not

uniform, the wavelength of a wave varies with position. Because l¼ v/n, and

v, the speed of propagation, is equal to c/n, where the refractive index n varies

with position, a more general form of the phase length is

f ¼ 2p
Z P2

P1

dx

lðxÞ ¼
2pn
c

Z P2

P1

nðxÞ dx ð1:49Þ

The same argument applies, but because of the dependence of the refractive

index on position, a curved or kinked path may turn out to correspond to
the minimum phase length, and therefore have, to first order at least, no

destructive neighbours. Hence, the path adopted by the light will be curved or

kinked. The focusing caused by a lens is a manifestation of this effect.

The second point concerns the stringency of the conclusion that the

minimum-phase-length paths have non-destructive neighbours. Because the

wavelength of the radiation occurs in the denominator of the expression

defining the phase length, waves of short wavelength will have larger phase

lengths for a given path than radiation of long wavelength. The variation of

phase length with wavelength is indicated in Fig. 1.7. It should be clear that

neighbours annihilate themselves much more strongly when the light has a

short wavelength than when it is long. Therefore, the rule that light (or any

other form of wave motion) propagates itself in straight lines becomes more

stringent as its wavelength shortens. Sound waves travel only in approxi-

mately straight lines; light waves travel in almost exactly straight lines.

Geometrical optics is the limit of infinitely short wavelengths, where the

annihilation by neighbours is so effective that the light appears to travel in

perfectly straight lines.

1.23 The propagation of particles

The path taken by a particle in classical mechanics is determined by Newton’s

laws. However, it turns out that these laws are equivalent to Hamilton’s

principle, which states that particles adopt paths between two given points

such that the action S associated with the path is a minimum. There is clearly

a striking analogy between Fermat’s principle of least time and Hamilton’s

principle of least action.

The formal definition of action is given in Further information 1, where it is

seen to be an integral taken along the path of the particle, just like the phase

length in optics. When we turn to the question of why particles adopt the path

of least action, we can hardly avoid the conclusion that the reason must be the

same as why light adopts the path of least phase length. But to apply that

argument to particles, we have to suppose that particles have an associated

wave character. You can see that this attempt to ‘explain’ classical mechanics

Displacement, s

Decreasing
wavelength

P
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g
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Fig. 1.7 The variation of phase length

with wavelength. Interference

between neighbours is most acute for
short wavelengths. The geometrical

limit corresponds to zero wavelength,

where even infinitesimal neighbours

interfere destructively and
completely.
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Fig. 1.6 The variation of phase length

with displacement from a straight

line path. The phase length at
A 0 differs from that at

A by a first-order term; the phase

lengths at B and B 0 differ only
to second order in the displacement.
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leads almost unavoidably to the heart of quantum mechanics and the duality

of matter. We have the experimental evidence to encourage us to pursue the

analogy; Hamilton did not.

1.24 The transition to quantum mechanics

The hypothesis we now make is that a particle is described by some kind of

amplitude C, and that amplitudes at different points are related by an

expression of the form C(P2)¼ eifC(P1). By analogy with optics, we say that

the wave is propagated along the path that makes f a minimum. But we also

know that in the classical limit, the particle propagates along a path that

corresponds to least action. As f is dimensionless (because it appears as an

exponent), the constant of proportionality between f and S must have the

dimensions of 1/action. Furthermore, we have seen that geometrical optics,

the classical form of optics, corresponds to the limit of short wavelengths and

very large phase lengths. In classical mechanics, particles travel along ‘geo-

metrical’ trajectories, corresponding to large f. Hence, the constant with the

dimensions of action must be very small. The natural quantity to introduce is

Planck’s constant, or some small multiple of it. It turns out that agreement

with experiment (that is, the correct form of the Schrödinger equation) is

obtained if we use �h; we therefore conclude that we should write f¼ S/�h.

You should notice the relation between this approach and Heisenberg’s. In

his, a 0 was replaced by �h (in the commutator [x,px]), and classical mechanics

‘evolved’ into quantum mechanics. In the approach we are presenting here,

a 0 has also been replaced by �h, for had we wanted precise geometrical

trajectories, then we would have divided S by 0.

We have arrived at the stage where the amplitude associated with a particle

is described by a relation of the form

CðP2Þ ¼ eiS=�hCðP1Þ ð1:50Þ

where S is the action associated with the path from P1 (at x1, t1) to P2 (at x2, t2).

This expression lets us develop an equation of motion, because we can

differentiate C with respect to the time t2:

qCðP2Þ
qt2

� �
¼ i

�h

qS

qt2

� �
eiS=�hCðP1Þ ¼

i

�h

qS

qt2

� �
CðP2Þ

One of the results derived in Further information 1 is that the rate of change

of the action is equal to �E, where E is the total energy, TþV:

qS

qt

� �
¼ �E ð1:51Þ

Therefore, the equation of motion at all points of a trajectory is

qC
qt

� �
¼ � i

�h
EC

The final step involves replacing E by its corresponding operator H, which

then results in the time-dependent Schrödinger equation, eqn 1.27.
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There are a few points that are worth noting about this justification.

First, we have argued by analogy with classical optics, and have sought to

formulate equations that are consistent with classical mechanics. It should

therefore not be surprising that the approach might not generate some purely

quantum mechanical properties. Indeed, we shall see later that the property of

electron spin has been missed, for despite its evocative name, spin has no

classical counterpart. A related point is that the derivation has been entirely

non-relativistic: at no point have we tried to ensure that space and time are

treated on an equal footing. The alignment of relativity and quantum

mechanics was achieved by P.A.M. Dirac, who found a way of treating space

and time symmetrically, and in the process accounted for the existence of

electron spin. Finally, it should be noted that the time-dependent Schrödinger

equation is not a wave equation. A wave equation has a second derivative

with respect to time, whereas the Schrödinger equation has a first derivative.

We have to conclude that the time-dependent Schrödinger equation is

therefore a kind of diffusion equation, an equation of the form

qf

qt
¼ Dr2f ð1:52Þ

where f is a probability density and D is a diffusion coefficient. There is

perhaps an intuitive satisfaction in the notion that the solutions of the basic

equation of quantum mechanics evolve by some kind of diffusion.

P R O B L E M S

1.1 Which of the following operations are linear and
which are non-linear: (a) integration, (b) extraction of
a square root, (c) translation (replacement of x by xþ a,
where a is a constant), (d) inversion (replacement of x
by �x)?

1.2 Find the operator for position x if the operator for
momentum p is taken to be (�h/2m)1/2(AþB), with [A,B]¼ 1
and all other commutators zero.

1.3 Which of the following functions are eigenfunctions of
(a) d/dx, (b) d2/dx2: (i) eax, (ii) eax2

, (iii) x, (iv) x2,
(v) axþ b, (vi) sin x?

1.4 Construct quantum mechanical operators in the
position representation for the following observables:
(a) kinetic energy in one and in three dimensions, (b) the
inverse separation, 1/x, (c) electric dipole moment,
(d) z-component of angular momentum, (e) the mean square
deviations of the position and momentum of
a particle from the mean values.

1.5 Repeat Problem 1.4, but find operators in the
momentum representation. Hint. The observable 1/x should
be regarded as x�1; hence the operator required is the
inverse of the operator for x.

1.6 In relativistic mechanics, energy and momentum are
related by the expression E2¼ p2c2þm2c4. Show that when
p2c2�m2c4 this expression reduces to E¼ p2/2mþmc2.
Construct the relativistic analogue of the Schrödinger
equation from the relativistic expression. What can be
said about the conservation of probability? Hint: For the
latter part, see Problem 1.36.

1.7 Confirm that the operators (a) T¼ � (�h2/2m)(d2/dx2)
and (b) lz¼ (�h/i)(d/df) are hermitian. Hint. Consider the
integrals

R L
0 c�aTcb dx and

R 2p
0 c�alzcb df and integrate

by parts.

1.8 Demonstrate that the linear combinations Aþ iB
and A� iB are not hermitian if A and B are hermitian
operators.

1.9 Evaluate the expectation values of the operators
px and px

2 for a particle with wavefunction (2/L)1/2

sin (px/L) in the range 0 to L.

1.10 Are the linear combinations 2x� y� z, 2y� x� z,
2z� x� y linearly independent or not?

1.11 Evaluate the commutators (a) [x,y], (b) [px,py],
(c) [x,px], (d) [x2,px], (e) [xn,px].
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1.12 Evaluate the commutators (a) [(1/x),px], (b) [(1/x), px
2],

(c) [xpy� ypx, ypz� zpy], (d) [x2(q2/qy2), y(q/qx)].

1.13 Show that (a) [A,B]¼ � [B,A], (b) [Am,An]¼ 0 for all
m, n, (c) [A2,B]¼A[A,B]þ [A,B]A,
(d) [A,[B,C] ]þ [B,[C,A] ]þ [C,[A,B] ]¼ 0.

1.14 Evaluate the commutator [ly,[ly,lz] ] given that
[lx,ly]¼ i�hlz, [ly,lz]¼ i�hlx, and [lz,lx]¼ i�hly.

1.15 The operator eA has a meaning if it is expanded as
a power series: eA¼Sn(1/n!)An. Show that if jai is an
eigenstate of A with eigenvalue a, then it is also an
eigenstate of eA. Find the latter’s eigenvalue.

1.16 (a) Show that eAeB¼ eAþB only if [A,B]¼ 0.
(b) If [A,B] 6¼ 0 but [A,[A,B] ]¼ [B,[A,B] ]¼ 0, show
that eAeB¼ eAþBef, where f is a simple function of
[A,B]. Hint. This is another example of the differences
between operators (q-numbers) and ordinary numbers
(c-numbers). The simplest approach is to expand the
exponentials and to collect and compare terms on both sides
of the equality. Note that eAeB will give terms like 2AB
while eAþB will give ABþBA. Be careful with order.

1.17 Evaluate the commutators (a) [H,px] and (b) [H,x],
where H¼ px

2/2mþV(x). Choose (i) V(x)¼V, a constant,
(ii) V(x)¼ 1

2kx2, (iii) V(x)!V(r)¼ e2/4pe0r.

1.18 Evaluate (by considering eqn 1.33) the limitation on
the simultaneous specification of the following observables:
(a) the position and momentum of a particle, (b) the three
components of linear momentum of a particle, (c) the kinetic
energy and potential energy of a particle, (d) the electric
dipole moment and the total energy of a one-dimensional
system, (e) the kinetic energy and the position of a particle in
one dimension.

1.19 An electron is confined to a linear box of length
0.10 nm. What are the minimum uncertainties in
(a) its velocity and (b) its kinetic energy?

1.20 Use the uncertainty principle to estimate the order of
magnitude of the diameter of an atom. Compare the result
with the radius of the first Bohr orbit of hydrogen,
a0¼ 4pe0�h2/mee

2. Hint. Suppose the electron is confined to a
region of extent Dx; this confinement implies a non-zero
kinetic energy. There is also a potential energy of order of
magnitude � e2/4pe0Dx. Find Dx such that the total energy
is a minimum, and evaluate the expression.

1.21 Use eqn 1.35 to find expressions for the rate of change
of the expectation values of position and momentum of a
harmonic oscillator; solve the pair of differential equations,
and show that the expectation values change in time in the
same way as for a classical oscillator.

1.22 Confirm that the z-component of angular
momentum, lz¼ (�h/i) d/df, is a constant of the motion for

a particle on a ring with uniform potential energy
V(f)¼V.

1.23 The only non-zero matrix elements of x and px for a
harmonic oscillator are

hvþ 1jxjvi ¼ �h

2mo

� �1=2

ðvþ 1Þ1=2

hv� 1jxjvi ¼ �h

2mo

� �1=2

v1=2

hvþ 1jpxjvi ¼ i
�hmo

2

� �1=2

ðvþ 1Þ1=2

hv� 1jpxjvi ¼ i
�hmo

2

� �1=2

v1=2

(and their hermitian conjugates); see Section 2.17. Write out
the matrices of x and px explicitly (label the rows and
columns v¼ 0, 1, 2, . . . ) up to about v¼ 4, and confirm by
matrix multiplication that they satisfy the commutation
rule. Construct the hamiltonian matrix by forming
px

2/2mþ 1
2kx2 by matrix multiplication and addition,

and infer the eigenvalues.

1.24 Use the completeness relation, eqn 1.42, and the
information in Problem 1.23 to deduce the value of the
matrix element hvjxpx

2xjvi.

1.25 Write the time-independent Schrödinger equations for
(a) the hydrogen atom, (b) the helium atom,
(c) the hydrogen molecule, (d) a free particle, (e) a particle
subjected to a constant, uniform force.

1.26 The time-dependent Schrödinger equation is separable
when V is independent of time. (a) Show that it is also
separable when V is a function only of time and uniform in
space. (b) Solve the pair of equations. Let V(t)¼V cos ot;
find an expression for C(x, t) in terms of C(x, 0). (c) Is C(x,
t) stationary in the sense specified in Section 1.12?

1.27 The ground-state wavefunction of a hydrogen atom
has the form c(r)¼Ne�br, b being a collection of
fundamental constants with the magnitude 1/(53 pm).
Normalize this spherically symmetrical function. Hint. The
volume element is dt¼ sin ydydf r2 dr, with 0� y� p,
0�f� 2p, and 0� r<1. ‘Normalize’ always means
‘normalize to 1’ in this text.

1.28 A particle in an infinite one-dimensional system was
described by the wavefunction c(x)¼Ne�x2=2G2

. Normalize
this function. Calculate the probability of finding the
particle in the range�G� x�G. Hint.
The integral encountered in the second part is the error
function. It is defined and tabulated in M. Abramowitz and
I.A. Stegun, Handbook of mathematical functions, Dover
(1965).

1.29 An excited state of the system in the previous
problem is described by the wavefunction
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cðxÞ ¼ Nxe�x2=2G2

. Where is the most probable
location of the particle?

1.30 On the basis of the information in Problem 1.27,
calculate the probability density of finding the electron
(a) at the nucleus, (b) at a point in space 53 pm from the
nucleus. Calculate the probabilities of finding the electron
inside a region of volume 1.0 pm3 located at these points
assuming that the probability density is constant inside the
small volume region.

1.31 (a) Calculate the probability of the electron being
found anywhere within a sphere of radius 53 pm for the
atom defined in Problem 1.27. (b) If the radius of the atom
is defined as the radius of the sphere inside which there is a
90 per cent probability of finding the electron, what is the
atom’s radius?

1.32 A particle is confined to the region 0� x�1 and its
state is described by the unnormalized wavefunction
c(x)¼ e�2x. What is the probability of finding the particle at
a distance x� 1?

1.33 A particle is moving in a circle in the xy plane.
The only coordinate of importance is the angle f which can
vary from 0 to 2p as the particle goes around the circle. We
are interested in measurements of the angular momentum L
of the particle. The angular momentum operator for such a
system is given by (�h/i) d/df. (a) Suppose that the state of the
particle is described by the wavefunction c(f)¼Ne�if

where N is the normalization constant. What values will we
find when we measure the angular momentum of the
particle? If more than one

value is possible, what is the probability of obtaining
each result? What is the expectation value of the
angular momentum? (b) Now suppose that the state
of the particle is described by the normalized
wavefunction c(f)¼N{(3/4)1/2e�if� (i/2)e2if}. When we
measure the angular momentum of the particle, what
value(s) will we find? If more than one value is
possible, what is the probability of obtaining each
result? What is the expectation value of the angular
momentum?

1.34 Explore the concept of phase length as follows.
First, consider two points P1 and P2 separated by a distance
l, and let the paths taken by waves of wavelength l be a
straight line from P1 to a point a distance d above the
midpoint of the line P1P2, and then on to P2. Find an
expression for the phase length and sketch it as a function of
d for various values of l. Confirm explicitly that f 0 ¼ 0 at
d¼ 0.

1.35 Confirm that the path of minimum phase length for
light passing from one medium to another corresponds to
light being refracted at their interface in accord with Snell’s
law (Section 1.21).

1.36 Show that if the Schrödinger equation had the form of
a true wave equation, then the integrated probability would
be time-dependent. Hint. A wave equation has
kq2/qt2 in place of q/qt, where k is a constant with the
appropriate dimensions (what are they?). Solve the time
component of the separable equation and investigate the
behaviour of

R
C�C dt.
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