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Quantum Mechanics

Additional: Quick discussion of Fourier Analysis

Here we want to concentrate not primarily on Fourier Analysis but expansions of functions in complete
orthonormal functions in general.

First, review vectors

Recall the discussion of vectors and vector spaces. Vectors within a vector space can be represented by an
expansion into perpendicular directions. As long as a set of unit vectors is defined that span the space. The unit
vectors are an orthonormal, complete set of vectors. Complete means that any vector within the space can be
represented in the expansion. Thus, for normal spaces, the number of unit vectors is equal to the dimension of
the space.

The inner product (dot product) gave us how to find lengths of vectors and angles between vectors (the inner
product is a representation of the metric in the space). Thus if we have an n-dimensional space the inner products
of any vector can be broken down into the inner products of the basis vectors,

〈i|j〉 = 0 for i 6= j ortho

〈i|i〉 = 1 for i = 1, 2, ...n. normal

These two conditions can be more compactly expressed in terms of the Kronecker delta, δij which has the
simple property of being 1 when i = j and 0 when i 6= j. Thus the orthonormal condition is expressed as,

〈i|j〉 = δij

Any vector in this vector space can then be expressed as,

|V 〉 = a1|1〉 + a2|2〉 + a3|3〉 + · · · + an|n〉 =
n

∑

i=1

ai|i〉

If you want to find any of the components of this vector, for e.g. you are asked ‘what is the extent of this vector
in the 27th dimension?’, you simply use the inner product,

〈27|V 〉 = 〈27|a27|27〉 = a27

all the other inner products vanishing due to the orthogonality of the basis vectors. This general idea is behind
the expansion of functions in an orthonormal, complete basis of functions that we look at next.

1 Expansion in terms of harmonic functions

We will start with a simple example, the space of periodic functions on the circle (S1). In this case there is
one parameter θ that maps out all points. However now we are not concerned about mapping locations within
this space but the set of periodic functions that can exist. If you think about you can have a wildly fluctuating
function here that looks random and all we ask is that it comes back to itself when θ → θ2π. We want a method
to represent these functions in a simpler manner.

In analogy to the vector case, we want to define a basis that is orthonormal and complete. Then we can
expand our complicated function in terms of this basis.

Thus, I propose we look at the following function,

fn(θ) = einθ where, n = 0,±1,±2,±3, · · · ±∞

This is an infinite set of vectors that we can make into an orthonormal, complete basis. First, we need to define
the inner product in this function space. Since our basis vectors are complex, we need to complex conjugate the
first entry.

〈f |g〉 =

∫ 2π

0

f∗gdθ

The left hand side is written in a similar form as for vectors, this is just for notational convenience. I could
also define the functions as vectors if I wish (f(θ) → |f〉), perhaps later we might represent them that way.



So again, the inner product in this function space is to conjugate the first entry multiply by the second, and
integrate over the space (θ). Let’s see if our proposed basis above works. (We will suppress the θ dependence for
clarity, fn(θ) → fn). First, are these functions normalized?

〈fn|fn〉 =

∫ 2π

0

f∗

nfndθ = 1?

=

∫ 2π

0

e−inθeinθdθ =

∫ 2π

0

dθ = 2π.

Huh, they are not normalized. This is easily remedied by redefining our proposed basis as

fn(θ) =
1√
2π
einθ where, n = 0,±1,±2,±3, · · · ±∞

Now they are normalized. Are they orthogonal?

〈fn|fm〉 =
1

2π

∫ 2π

0

e−inθeimθdθ =
1

2π

∫ 2π

0

ei(m−n)θ with n 6= m

=
1

2π

[

1

i(m− n)
ei(m−n)θ

∣

∣

∣

∣

2π

0

=
1

2iπ(m− n)

[

ei(m−n)2π − 1
]

=
1

2iπ(m− n)
[1 − 1] = 0

Thus this basis is orthogonal since m − n is an integer and ein2π ∼ cos(2πn) + sin(2πn) = 1. Thus we have an
orthonormal set of vectors. Is the set complete? Well, since we can consider any function with arbitrarily high
frequencies we need a basis that can handle it. Thus, if we have an infinite set of basis vectors, as given in our
definition (n up to ±∞), we can handle any frequency. So they are complete. Thus our function space is infinite
dimensional.

Ok let’s see how this works. Given an arbitrary function g(θ), it can now be expressed as an infinite sum of
components in each dimension of this function space.

g(θ) =
+∞
∑

j=−∞

ajfj =
1√
2π

+∞
∑

j=−∞

aje
ijθ (1)

Finding the expansion

Ok, let’s say we are given a function g(θ) and we want to create this expansion (perhaps out to so many terms),
how do we do it? Think back to the vectors, to specify this expansion we just need to find the coefficients aj .
We said how to do it for vectors, the same applies here. So let’s find the 27th coefficient (calling g → |g〉 for the
moment).

a27 = 〈27|g〉 =
1√
2π

∫ 2π

0

e−i 27 θg(θ)dθ

Again, this works because the basis functions are orthogonal. The idea is almost exactly the same as with vectors.
In fact, many go ahead and write the basis functions as unit vectors and go from there.

Notice also we could have defined other bases that may be more useful. For example, since we are dealing
with complex exponentials, I could also have used sines and cosines. That is, define,

|n〉 =
1√
2π

cos(nθ) + sin(nθ)

where now we do not need to worry about complex conjugating the bra vector when we form our inner product.
We do need to be a little careful to make sure that all of the integrals exist, that the series converges, and

does so to the function. We will not worry about these technicalities and assume all is good as we proceed.

General function expansions

Thus the method in the last section can be made more general and thus extended to different types of function
spaces.



1) Define the function space. How many independent parameters are there (what dimension functions are we
considering)? Are the parameters finite? Periodic (like above)?, Infinite?

2) Define the inner product in this function space.

3) Construct a complete orthonormal basis of functions.

• Expand away!

There are many type of expansions that can be considered.

Example: Legendre Polynomials

An example that arises in electrostatics and quantum mechanics (Hydrogen atom) are functions defined on the
line −1 ≤ x ≤ +1. These arise in trying to find solutions for the Laplacian in spherical coordinates (the Θ
equation of Ψ = RΘΦ) where x ≡ cos(θ). Let’s break it down.

1) The space of functions are those defined on the line −1 ≤ x ≤ +1. It is not necessarily periodic.

2) The inner product is defined as,

〈g|f〉 =

∫ 1

−1

g(x)f(x)dx

3) The Legendre polynomials, Pl(x), form an orthogonal set of functions on this function space. Note, they are

not normalized this is a convention. The first several are listed in the appendix at the end. The orthogonality
condition is expressed as,

∫ 1

−1

Pl′(x)Pl(x)dx =
2

2l + 1
δl′l

We can easily define an orthonormal set as follows,

Ul(x) =

√

2l+ 1

2
Pl(x)

However, just to keep us on our toes, this set is rarely used.

• Any function defined on this interval can be expanded in this infinite basis.

Example: Hermite Polynomials

These are often the first set of orthogonal polynomials one sees in a formal quantum mechanics class. They
are the set of solutions for the differential equation that results for Schrödinger equation of a particle in a one
dimensional harmonic oscillator potential.

As defined in Park (see page 126).

1) The space of functions is over the real line: −∞ ≤ y ≤ ∞.

2) The inner product is defined as,

〈g|f〉 =

∫

∞

−∞

g(x)f(x)dx

3) The Hermite polynomials, Hl(y), are an orthogonal set of polynomials

∫

∞

−∞

Hl′(y)Hl(y) = Nl′lδl′l

The polynomials are not normalized. If you are interested in how these are used to solve the harmonic oscillator,
see section 4.6 and then page 126 of Park.



Example: Spherical Harmonics

Now we go up a dimension and consider a set of functions that are defined on the 2-sphere. These are solutions
of the particle on the 2-sphere -the optional question assigned.

1) The functions are over the two angles θ, φ where they range over,

φ : [0, 2π] θ : [0, π]

The coordinates are periodic.

2) The inner product is defined as,

〈f |g〉 =

∫ 2π

0

∫ π

0

f∗(θ, φ)g(θ, φ) sin θdθdφ

3 The spherical harmonic functions, Y m
l (θ, φ) are comprised of the associated Legendre polynomials, Pm

l (cos θ)
(for the θ portion). The polynomials, Pm

l (cos θ) are listed in the appendix.

Y m
l (θ, φ) = ǫ

√

(2l + 1)(l − |m|)!
4π(l + |m|)! eimφPm

l (cos θ)

The factor in front is ǫ = (−1)m for m ≥ 0 and 1 for m ≤ 0. The full orthonormal relation of these
harmonics are,

∫ 2π

0

∫ π

0

[Y m
l (θ, φ)]∗[Y m′

l′ (θ, φ)] sin θdθdφ = δll′δmm′

Again, these are solutions to the free particle on a 2-sphere and are also important if you want to interpret
the data from the WMAP probe. See www.nasa.gov/topics/universe/features/wmap five.html and
the plot attached to the end of this document.

• Any function can be expanded in terms of this basis.

g(θ, φ) =

∞
∑

l=1

m=+l
∑

m=−l

glmY
m
l (θ, φ)

Fourier Analysis

We’ve already met the most basic aspects of Fourier analysis above. Consider a space of functions over the
periodic line −π ≤ x ≤ +π (this is identical to our previous case of 0 ≤ θ ≤ 2π). We already introduced the
orthonormal basis in terms of complex exponentials and sines and cosines. Often the first case treated is in terms
of sines and cosines.

|n〉 = cos(nx) + sin(nx)

(where often the normalization constant is absorbed into the expansion coefficients). Using this basis we can
expand a function as,

f(x) =
a0

2
+

∞
∑

n=1

[an cos(nx) + sin(nx)]

This is the common way to express what is called a Fourier series. The expansion coefficients are determined
exactly as before (but now including the normalization constant).

an =
1

π

∫ π

−π

f(x) cos(nx)dx

bn =
1

π

∫ π

−π

f(x) sin(nx)dx

(2)

There are several variations of defining the normalization and notation but the basic idea is always the same as
what we did above.



Relation to quantum mechanics

Quantum mechanics is intimately tied to Fourier analysis and can be thought simply as an application of it.
Recall that for a measurement of a particular observable quantity, we want to express the wavefunction in the
appropriate basis if we wish to get the probability distribution for that observable.

Consider position and momentum. We introduced the wavefunction initially in the position basis, where x
and t were the independent variables and we had the Born probability rule,

prob(x, t) = ψ∗(x, t)ψ(x, t)

(I am using prob to express the probability density to avoid confusion with momentum). We could get expectation
values of momentum and other observables in this basis however if we change the experiment and measure the
momentum, we want to calculate the probability distribution in momentum. Thus, we represent the wave function
in the momentum basis. To emphasize the difference we used a different Greek letter Φ(p, t) and now it is p and
t that are our independent variables. The Born rule is now,

prob(p, t) = Φ∗(p, t)Φ(p, t)

Now, note that these two functions ψ and Φ are representing the same quantum state. They are the same
wavefunction expressed in two different bases.

The question is how do we get one from the other?
Recall our plane wave state (in the position basis).

ψ(x, t) = e
i

h̄
(p0x−Et)

This was a state of definite momentum p0 (which is a constant here). The probability distribution of the plane
wave state in the momentum basis is a Dirac delta function. That is, it is a function that is nonzero at p = p0

and zero everywhere else. It is expressed as, δ(p − p0) and is really just the continuous analog of the Kronecker
delta. (More formally δ(0) = 1, δ(c) = 0 if c 6= 0). Thus our plane wave state in the momentum basis is,

prob(p, t) = Φ∗(p, t)Φ(p, t) = δ(p− p0)

Since the measurement of momentum in this case will return the result p0 with probability 1, the normalization
of probability here gives,

1 =

∫ +∞

−∞

Φ∗(p, t)Φ(p, t)dp =

∫ +∞

−∞

δ(p− po)dp

This is the general property of the Dirac delta function. It is is zero everywhere except at one point and zero
everywhere else, but the area under its curve is 1. You can think of it as an infinitely tall function that has no
width such that the area under it is 1 (think of a limiting form if this is melting your mind).

Now consider the reverse case, where we have localized a particle to one position x0. In this case, the
probability distribution in the position basis is a Dirac delta function,

1 =

∫ +∞

−∞

ψ∗(x, t)ψ(x, t)dx = δ(x − x0)

And in this case the momentum basis wavefunction is,

Φ(p, t) = e
i

h̄
(px0−Et)

Thus these expressions must be related.
Notice that our plane wave state is somewhat similar to our basis functions defined in section 1. We want to

try to now create a basis in which to expand our wavefunctions. So,

1) The function space is over the real line, −∞ ≤ x ≤ +∞, (and time which we will ignore for now).

2) The inner product is defined as,

〈f |g〉 =

∫ +∞

−∞

f∗gdx



3) We want to try to use our plane wave states (of definite momentum) as an orthonormal basis. Thus, are
they normalized?

∫ +∞

−∞

e−
i

h̄
(px−Et))e

i

h̄
(px−Et))dx =

∫ +∞

−∞

dx = ∞

We already explored this before -the plane wave state is not normalizable. Before proceeding, let’s examine
orthogonality. Are they orthogonal? Here we want to consider plane wave states of different momentum (p
is taking the place of n that we used in section 1).

∫ +∞

−∞

e−
i

h̄
(px−Et))e

i

h̄
(p′x−Et))dx =

∫ +∞

−∞

e−
i

h̄
(p−p′)xdx = 0 if p 6= p′

The argument is the same as in section 11 Thus they are orthogonal but are normalized to infinity.

Note now that if we write the orthonormal relations in terms of the Dirac delta function it will not only
appear very similar to our section 1 result, but will give us what we need. That is,

∫ +∞

−∞

e−
i

h̄
(px−Et)e

i

h̄
(p′x−Et)dx = 2πδ(p− p′)

and we have our orthogonal basis we desire (probably should not call it an orthonormal basis since they are
normalized to a delta function and not 1). The factor of 2π comes from taking the limit of a finite interval
to an infinite line. See Park appendix 3 (page 561) for details.

Notice, this gives us a definition of the Dirac delta function (written in terms of wavenumber instead of
momentum),

δ(k − k′) =
1

2π

∫ +∞

−∞

e−i(k−k′)xdx

• Now we can expand any wavefunction on the real line in terms of this basis. I.e.

ψ(x, t) =
1√
2π

∫ +∞

−∞

Φ(p)e
i

h̄
(px−Et)dp

Note that this is a continuous version of the expansion (1), instead of summing over j, we are integrating
over p.

Notice that our coefficients are a function of momentum (just as the coefficients in (1) are discrete functions of
j). These expansion factors are not a function of time because the plane wave states have constant momentum.
This is the key result we want. The function Φ(p) is exactly the momentum basis representation of this wave
function.

This transformation is known as a Fourier transform. We can now freely go back and forth between the
position basis and momentum basis,

ψ(x, t) =
1√
2π

∫ +∞

−∞

Φ(p)e
i

h̄
(px−Et)dp

Φ(p) =
1√
2π

∫ +∞

−∞

ψ(x, t)e−
i

h̄
(px−Et)dx

Note though, the full momentum basis wave function is Φ(p, t) = Φ(p)e−
i

h̄
Et.

***More to come but that is most of it.

What does it mean?

I find the easiest way to understand a Fourier transform is with a sound wave. The two complementary bases
in this case is the waveform, i.e. the amplitude at each position in space changing in time and the frequency
spectrum, i.e. the amplitude at each frequency of sound. Each frequency being represented as a a nice sine wave
(the basis function). These complementary ways to think of a sound is analogous to what is going in in QM.

1You may not note this immediately but consider chopping up the infinite line into equal segments, each one wavelength of this
plane wave, (λ = h

p−p′
). Over each wavelength the integral will vanish. Or better yet, think of the cosine part of the plane wave

oscillating over the whole real line. There are equal areas above the axis and below of the cosine function - these cancel each other.



Appendix: Some sets of orthogonal functions

Legendre polynomials

Defined on the interval −1 ≤ x ≤ +1. These are not normalized. The condition is,

∫ 1

−1

Pl′(x)Pl(x)dx =
2

2l + 1
δ)l′l

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

Hermite polynomials

Defined on the interval −∞ ≤ y ≤ +∞.

H0(y) = 1

H1(y) = 2y

H2(y) = 4y2 − 2

H3(y) = 8y3 − 12y

H4(y) = 16y4 − 48y2 + 12

associated Legendre polynomials

Defined on the interval −1 ≤ cos θ ≤ +1.

P 1
1 (cos θ) = sin θ P 2

2 (cos θ) = 3 sin2 θ P 3
3 (cos θ) = 15 sin θ(1 − cos2 θ)

P 1
0 (cos θ) = cos θ P 1

2 (cos θ) = 3 cos θ sin θ P 2
3 (cos θ) = 15 sin2 θ cos θ

P 0
2 (cos θ) = 1

2 (3 cos2 θ − 1) P 1
3 (cos θ) =

3

2
sin θ(5 cos2 θ − 1)

P 0
3 (cos θ) =

1

2
(5 cos3 θ − 3 cos θ)

Appendix: WMAP results



Figure 1: WMAP results of temperature fluctuations as a function of spherical harmonic moments l. See
en.wikipedia.org/wiki/Spherical harmonics for a nice picture of the spherical harmonics.


