INTRODUCTION TO MINIMAL SURFACES

LECTURE NOTES FOR MATH 286, STANFORD, WINTER 2025

OTIS CHODOSH

CONTENTS

(L. Introductionl

[Part 1. Plateau’s problem|

2._The direct method

[3.  Douglas—Radd|

[4.  Harmonic maps|

(. _Sacks—Uhlenbeck]

[6.  The homological Plateau problem|

P 5T e r l

(. Mean curvature and first variation
[8.  Basic consequences of minimality]
[9. Monotonicity|

(10.  The Gehring link problem|

(11.  Fary—Milnor|

[12.  'The isoperimetric inequality]|

[Part 3. Examples of minimal surfaces|

[13.  Examples via isometries]

(14. The catenoid|

[15. The Weierstrass—Enneper representation|
6 Calbaion

(17. Minimality of the Simons cone|

[18.  Minimal graphs|

[Part 4. The maximum principle for minimal surfaces|

(19.  The maximum principle for the minimal surtace equation|
[20.  Hoffman—Meeks halfspace theorem|

Date: September 15, 2025.

14
16
23

23
23
28
29
31
31
34

35
35
37
40
45
48
50

51
51
54



OTIS CHODOSH

[22.  Shifftman’s theorem and the convex curve conjecture|

Pari 5 S [variation of ared

[23.  Computing the second variation|
B g [t ] |
[25.  The Bernstein problem|

PG Stable Tommal !

Part 6 Timits of minimal surfaces

[27.  Examples

[30.  White’s easy Allard|

[31.  Bounded total curvaturel
[32.  Removable singularities|
[33.  Multiplicity and stability]

[34.  Choi—Schoen compactness|

[Appendices and references|

[Appendix A. Elliptic estimates|

[Appendix B. Harnack inequality]

[Appendix C. Sobolev inequalities|
[References

55
56

99
29
61
62
64

68
68
69
73
74
5
7
79
81

86
86
86
86
87



INTRODUCTION TO MINIMAL SURFACES 3
1. INTRODUCTION

These are my lecture notes for Math 286 taught at Stanford, Winter 2025. They cover
the basic theory of minimal surfaces. The material is taken from various sources including
[0ss86, Law77, Whil6l [CM11, [Pér17, Whil3]. I am grateful to the attendees of the course
for spotting numerous errors during the course. I am also grateful to Jianchun Chu for
catching a huge number of typos and mistakes in an earlier version of the notes. Please write

ochodosh@stanford.edu with any comments.

Part 1. Plateau’s problem

We begin by discussing Plateau’s problem, first studied by Lagrange in 1760. We (loosely)

formulate the problem as follows:

Given some class of “submanifolds” of a Riemannian manifold (M, g), does

there exist one of least area?

The name is in honor of Joseph Plateau who studied this problem experimentally in the

1870’s using soap films.

2. THE DIRECT METHOD

Plateau’s problem is a question in the calculus of variations, so we are led to the direct
method: show that a minimizing sequence in the class converges (possibly in some weak
topology) to a minimizer (still in the class). This is problematic in multiple ways. There
is the issue of thin “tentacles” as illustrated in Figure |[1| where a minimizing sequence that
becomes dense in space is illustrated. Moreover, if we work with parametrized objects,

there’s also issues of diffeomorphism invariance of area (see Remark below).

N M, My M3
FIGURE 1. The least area surface bounded by a planar circle is a disk. Note
that area(M;) = area(D) + o(1), but M; is becoming dense in R3.

To handle these issues one must either improve the minimizing sequence somehow (one
approach is discussed in Section [3[ below) or else develop a sufficiently weak topology for the

convergence.
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3. DoucLAs-RADO

In this section, we discuss the classical formulation of Plateau’s problem. Let D be the

open unit disk in R?. Fix I' C R™ a smooth Jordan curve (simple closed curve). Let
Cr ={F € C°'(D)NC>™(D) : F|ap is a D weakly monotone parametrization of I'}

If F € Cr is an immersion, then we can define a pullback Riemannian metric on D by
gi; = 0;F - 0;F. We recall that the volume form is

dVy, = +/det gdxdy = \/gzmgyy — (Gay)? dzdy

so it’s reasonable to define the area of F' to be

(3.1) A(F) ::/ \/|8IF\2|8yF|2—(@cF-&yF)?:/ 0,F A0, F.
D D

Note that for arbitrary F' € Cr, we can use (3.1]) as a definition of the area of F E| By way of

justification, we remark that the area formula in geometric measure theory says that A(F)

agrees with the 2-dimensional Hausdorff measure of F'(D) (counted with multiplicity). See
[Sim83, Theorem 3.3].

We set ar := infpee. A(F). We can now rigorously state:
Problem 3.1 (The classical Plateau problem). Find F' € Cr attaining ar.

Note that if p : D — D is a diffeomorphism, then A(F o p) = A(F) (this is essentially

coordinate invariance of the Riemannian volume form).

Remark 3.2. This raises following potential obstruction to the direct method. Suppose
that some F' attains ar. For any sequence of diffeomorphisms ¢;, we have F; € Cr with

A(F;) = ar. However, for many choices of ¢;, F; has no convergent subsequence.

To resolve Remark we now introduce the energy functional. This will resolve the
diffeomorphism invariance as well as the issue illustrated in Figure [, modulo one final
difficulty that we will need to address later.

We observe that

1
\/Ié?xFIQIOyFP = (0.F - 9,F)* < [0,F[|0,F| < S(10.F[* + 10, F[)
with equality if and only if
(3.2) |0, F| = |0,F| and 0, F - 0,F =0

We call F satisfying (3.2)) weakly conformal. Note that this is equivalent to the “pullback
metric” g;; = 0;F - 0;F satisfying g = p(da? + dy*) for p > 0 smooth. As such, if we define

INote that this is a notion of unsigned area.
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the energy of F' by

(3.3) E(F) := 1/ 0. F|” + |0,F|” = 1/ IVE]?,
2J/p 2J/p

we’ve proven:

Lemma 3.3. For F' € Cr, we have A(F) < E(F) with equality if and only if F is weakly
conformal on D, i.e. (3.2)) holds.

We say that F': D — R™ is harmonic if each component is (and write AF = 0). We recall
Lemma 3.4. For G € C*°(D), there exists F € C*(D) harmonic so that F|op = Glap.

Proof. Existence of F € C?(D) N C°(D) follows from the Poisson integral [GT0I, Theorem
2.6]. Boundary Schauder estimates [GT01, Theorem 6.19] imply that F € C>(D) O

A basic property of harmonic F is that it minimizes energy among maps with the fixed

boundary data:

Lemma 3.5. For G, F : D — R"™ smooth with G|op = Flop and AF = 0 we have E(F) <
E(G) with equality if and only if F' = G.

Proof. Let V = G — F. Then we have

E(G) = E(F) + E(V) + /DVF YV = E(F) + £(V) — /D(AF) V= E(F) + E(V).
This completes the proof. 0
Lemma 3.6. For G € Cr, there’s G; € Cr N C>®(D) with A(G;) < A(G) +o(1) as i — oo.

This proof from the proof of the Douglas-Rado Theorem in [Whil6] (Claim 1).

Proof. Let 20y be sufficiently small so that the nearest point projection from the tubular
neighborhood II : Uy, (I') — T is smooth (and well-defined). For ¢ < g we set

P P e U25(F)C
D5(P) = < II(P) P e Us(l)
(P) + (67 d(p, T) = )(P —TI(P)) P € Uns(I') \ Us(I')
Note that if G € Cr then ®50 G € Cr and A(Ps0G) = A(G) +0o(1) as 6 — 0.
For any § € (0,8y) we can find » € (0,1) so that A := D\ D, has F(A) = T' and
Flop, : 0D, — T is a smooth map homotopic to a parametrization of I'. By replacing A by

a smooth homotopy to such a parametrization we can obtain G with A(Gs) = A(®s o G)
and G5 € Cr N C>=(D). O

Proposition 3.7. There ezists F; € Cr N C*°(D) harmonic so that £(F;) — ar.
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Proof. By Lemma , we can consider a minimizing sequence G; € Cr N C*®(D) with
A(G;) — ar. We now show that it’s possible to find a harmonic F; € Cr N C*°(D) with
E(F;) < A(G;) + o(1) as i — oo. This will complete the proof since £(F;) > A(F;) > ar.
We fix G = G;. For s # 0, we set é(x, y) = (G, sz, sy) € R""2 so that G is an embedding.
Thus, the pullback metric g;; = g;; + $°0;; defines a non-degenerate metric on D. Note that
A(G) = A(G) + o(1) as s — 0. By uniformization (cf. Theorem below), there’s a
diffeomorphism ¢ : D — D so that (G o ¢)*grni> = ¢*§ = A(da® + dy?). In particular, we
have that G o is conformal. Let F' : D — R™ denote the harmonic map agreeing with G o

on dD. Using Lemma [3.5| we have
E(F) <E(Gop) <EGop) =A(Gop) = AG) < A(G) +o(1)

as s — 0. This completes the proof. 0
Remark 3.8. Since A(F') < E(F'), Proposition implies that infpee. E(F) = ar.
We used the following uniformization result above:

Theorem 3.9 (Uniformization of disks). Suppose that (,g) is a compact Riemannian sur-
face with boundary so that X s homeomorphic to a disk. Then there’s a smooth diffeomor-
phism ¢ : D — ¥ so that p*g = \(dx? + dy?) for some 0 < X\ € C*®(D).

See e.g. [Tay23|, Proposition 6.4] for a simple proof.

We now recall the weak maximum principle for harmonic functions:
Lemma 3.10. Ifu € C°(D) N C>(D) then max,cpu = maxpegp U.

Applying this to the coordinates of F', we see that space-filling tentacles cannot occur for
a harmonic minimizing sequence.

Choosing a harmonic minimizing sequence has also partially resolved the issue of diffeo-
morphism invariance of the area functional, but still some invariance remains: we recall that
the Mobius transformations of the form
igo @ T2

1+az

p(z) =e

for a € C,la] < 1,¢p € R are precisely the set of (orientation preserving) conformal diffeo-
morphisms D — D.

Lemma 3.11. For ¢ : D — D a Mébius transformation, we have E(F o ) = E(F).

Proof. Write g = ¢*. Then we have

(3.4) / 1V, (F o @) dV, = / VsFI2dVs = £(F),
D D
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Since ¢ is a conformal map we have g = ud for p > 0 smooth. Then |V, f|? = u | Vsf|?
andﬂ dV, = pdVs. Thus we see that

&Fop) = [ IV(Fopdy,
completing the proof. 0

Exercise 3.1. Prove (3.4)) in two ways: (i) direct computation and (ii) appealing to isometry

invariance of geometric quantities.

Corollary 3.12. If F : D — R" is harmonic and ¢ : D — D is a Mébius transformation

then F o ¢ is harmonic.

Proof. Let F' be the harmonic function with boundary values F o ¢|gp. Lemma m gives
E(F oy = £(F) < E(F o) = £(F)

so Fo ¢ ! = F. This completes the proof. O

Recalling that the set of Mébius transformations is non-compact, we still need to handle

the invariance of energy. The key tool is as follows:

Lemma 3.13 (Courant-Lebesgue). For p € R? and F : D — R™ smooth, let {(p) be the
arc-length of F|praB,p)- Then

, A& (F)

2
<

Jél,}gbg(p ~ logb/a

for0<a<b<oo.

Proof. We use polar coordinates centered at p. We have that [VF|? = |0,F|? + r2|0,F|?.

Thus we have )
(ry? = ( / |89F|d6)) <o / 10, F |2
DNdB,(p) DNdB:(p)

50 b f(?‘)2 b
/ ——dr < 27T/ / r2|0p F|*rdfdr < 4n&(F).
a r a J DNIBr(p)
This proves the assertion. 0

We can now solve the classical Plateau Problem B.11

Theorem 3.14 (Douglas-Radd). There’s F' € Cr attaining ar = A(F). The map F is

harmonic and weakly conformal.

Proof. Proposition gives I, € Cr N C*(D) harmonic with £(F;) = ar + o(1). Fix
a,b,c € 0D distinct and A, B,C' € I' with the same orientation. Recalling that Mobius

2Caution: the second expression would be ,ung(; if D was a k-dimensional domain.
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transformations act transitively on ordered triples on 0D, we can arrange that Fj(a) =
A, F;(b) = B, F;(c) = C (this will preserve F; harmonic by Lemma and will not change
the area thanks to diffeomorphism invariance).

By the weak maximum principle (Lemma , we have ||F;||z~(py < maxper||. Thus,
by higher derivative estimates for harmonic functions (Lemma we can pass to a subse-
(D). Note that F' will be harmonic.

We claim that the F;|sp are equicontinuous. If not, there’s p;, ¢; € 0D with 6; := |p;—q;| —
0 but |Fi(p;) — Fi(¢:)| # 0. Apply the Courant-Lebesgue lemma at p; to find §; < p; < V/6;
so that

quence so that the F; converge to F' in CX,

lr(pi)? < % — 0.

Since p; — 0, for ¢ large, up to passing to a subsequence and permuting the labels, v; :=
0D N B,,(p;) is disjoint from the arc from b to ¢ on dD. Thus, the arc Fi(v;) C I' is disjoint
from the arc from B to C' on I'. Combined with the observation that ¢ (p;) — 0, the
distance between the endpoints of Fj(~;) tend to zero, we find that the length of F;(~;) tends
to zero as ¢ — oo.

Putting this together we have that the length of F;(0(D N B,,(p;)) tends to zero as i — oo.
Since p;,q; € 9(D N B,,(p;)) we thus have that |F;(p;) — Fi(¢;)] — 0, a contradiction. Thus
Fj|lsp are equicontinuous. Passing to a subsequence, we have that F;|sp are Cauchy in

C°(0D). Since F; — F; is harmonic, the weak maximum principle (Lemma [3.10) gives
max |F; — Fj| = max |F; — Fj|,
D oD

so Fj is Cauchy in C°(D). Thus, we have that the interior F extends to a C°(D) function
and F; — F in C°(D). Note that this preserves weak monotonicity on the boundary. Thus
F € Cr. Fatou’s lemma and Lemma |3.3| give

A(F) < E(F) < liminf E(F;) = ar.

1—>00

Thus F € Cr attains ar and E(F) = A(F). Thus F is weakly conformal by Lemma 3.3, O
We used the following interior estimates for harmonic functions (cf. [GT01, Theorem 2.10]):
Lemma 3.15. If Au=0 on D and D" C D then supp, |D%u| < C(co, D') supp |ul.

Remark 3.16. In view the proof given above, we can view the classical Plateau problem as
a geometric version generalization of the Riemann mapping theorem. Indeed, if I' C C is a
Jordan curve, the solution to Plateau’s problem for I' will yield a conformal diffeomorphism
between D an the interior of I'. In fact, the idea of energy minimization and the Courant—
Lebesgue lemma can be used to prove the Uniformization Theorem used above; cf.
[Mor08, 366] and [Str88| p. 29].
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3.1. The holomorphic differential. Consider F' : D — R" weakly conformal and har-

monic. We recall that we can write the harmonic condition AF = 0 in terms of complex

derivatives . )
0, = 5(895 —10,), 0; = E(Gx +1i0,)
as
0;0.F = 0.
Thus
(P1,. .., Opn) = 0, F

is a C™-valued holomorphic function on D. Note that

467 =4 ¢p =Y ((0Fr)* = (0,F%)* — 200, Fu0, Fy) = [0, F|* — [0, F|” — 200, F - 0, F
k=1 k=1
and
4> = [0.F|* + |9, F
Thus, since ¢ is weakly conformal we find that ¢* = 0. Moreover, |¢|* = % w for p the induced
conformal factor g = p(dz? + dy?).

Corollary 3.17. There is B C D with no limit points so that F|p\g is an immersion.
Proof. The function ¢ is holomorphic so its zeroes are isolated. 0

We call points B C D where F' fails to be an immersion branch points. We discuss this

further below.

3.2. Branched minimal immersions. We will call I : D — R" weakly conformal and
harmonic a branched minimal immersion. Take caution to note that a branched minimal
immersion need not be a minimizer for Plateau’s problem.

Note, however, that a branched minimal immersion F' : D — R" is automatically a critical
point of the area functional in the following sense. Suppose that Fj is a 1-parameter family
of maps (smooth with respect to s) with Fyy = F and Fi|p\x = F|p\x for K € D compact.

Then for V = %|S:0FS, we have

4 S(FS):/VF-VV:—/AF-V:()
dsls=0 D D

using that V' is compactly supported. On the other hand, we have A(F;) < E(F;) with
equality at 0. This implies that

as claimed.
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3.3. The reflection principle. It’s natural to ask about the regularity of the solution to
the Plateau problem at the boundary. The following result shows that F' is regular up to

the boundary in a very special case:

Proposition 3.18. Consider I' a smooth Jordan curve and F : D — R"™ in Cr a branched
minimal tmmersion. Assume there is a line segment L C I'. Then F extends by Schwarz

reflection across L as a branched minimal immersion.

Proof. Write Dt = {(x,y) € D : y > 0} and ¢ = {(,0) : |z| < 1}.

We can assume that L C {xy = --- = x,, = 0} and apply a conformal transformation D
to obtain F': D* — R" with F({) = L. Then F, ..., F, are harmonic functions with zero
boundary values on £. Thus, Schwarz reflection allows us to extend them a smooth harmonic

function on D via

Fi(e.y) = Fi(x,y) y=>0
o —Fy(z,—y) y<DO.

We now consider F;. We claim that we can extend Fj by

- Fy(z,y) y=0
Fl(xuy) =
E(ﬁ,—y) y < 0.

Of course we need to check that F} is harmonic across ¢. To this end, let é = 9,F and note

that for y < 0 we have

- 1 , -
¢1(£C, y) = §(axF1('x7 _y) + 282F1<x7 _y>> = (bl(xa _y>

Note that F;, = 0 along ¢ for ¢ > 2 implies that ¢, ..., ¢, are purely imaginary along /.
Using that £ is conformal on D \ 4, ie. ¢* = 0, we obtain

Gt = (G + -+ ).
Thus, Im él(z) — 0 as z — £. Combining these facts, Schwarz reflection implies that ¢;

extends holomorphically to D. Thus F is harmonic. We have ¢ = 0 on D by continuity, so

F is weakly conformal. This completes the proof. 0

Remark 3.19. As proved by Lewy, this can be (significantly) generalized as follows: If
I' contains a real analytic sub-arc then F' can be locally extended past the boundary as a

weakly conformal harmonic map. See [Nit89, p. 287].

3.4. Boundary regularity. A similar (but easier) argument shows that the least area map
from Theorem is strictly monotone on the boundary.

Proposition 3.20. Consider I' a smooth Jordan curve and F : D — R™ in Cp branched

minimal immersion. Then F|aop : 0D — T' is a homeomorphism.
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Proof. 1t suffices to prove there cannot be an arc v C 9D so that F is constant on ~. If
there was, then after a translation, we can assume that F(z,y) =0 € R™ for all (z,y) € ~.
We can then use Schwarz reflection to extend F' to a harmonic and weakly conformal map

F defined on a larger domain. This is a contradiction since F |, is constant. U

We also have the following boundary regularity result (not proven here):

Theorem 3.21 (Hildebrandt). ForT' a smooth Jordan curve and F : D — R™ in Cr branched

minimal immersion, then F € C*(D).

See [DHKWO92, §7.3], [Str88, p. 23], [Nit&9, p. 274].

Note that the boundary regularity results (Remark , Theorem assert that the
parametrization F (not just the image F(D)) inherits regularity of I'. Of course, these
results can be viewed as generalizations of proofs of boundary regularity in the context of

the Riemann mapping theorem.

Exercise 3.2. Let ' be a C'-regular Jordan curve in R”. Suppose that F' € Cr N CY(D)
is weakly conformal and harmonic. Prove the (non-sharp) isoperimetric inequality E(F) <
1 length(I)2.

Exercise 3.3. Solve the Plateau problem for C'-regular Jordan curves by approximation by
smooth Jordan curves, the methods of Theorem [3.14] and Exercise (you can assume the
result from Theorem |3.21]).

Remark 3.22. If ' is an arbitrary Jordan curve (homeomorphic image of S' in R"), it
might hold that ar = co. We note that even in this case Douglas was able to find a weakly

conformal harmonic map F : D — R" with F|sp : 9D — I' a homeomorphism.

3.5. Branch points. We now return to the discussion of branch points in slightly more
detail. (Recall that branch points of F' : D — R"™ branched minimal immersion are points

in D where F fails to be an immersion.)

Definition 3.23. A false branch point is one where F locally factors as F(z) = F/(29) for
some () € N>, and a local immersion F. In other words, F fails to be an immersion at a
false branch point due to a coordinate singularity. A true branch point is a branch point

that is not false.

Example 3.24. Branch points can occur. Complex submanifolds in C" are area-minimizing
(we will discuss this later). In particular, F'(z) = (22, 2%) € C? defines a least area map of
D — R* with a true branch point at z = 0.

Example 3.25. Following [Law77, p. 77-78] we can construct an example of a branched

minimal surface (with a true branch point) in R? as follows. Let £;, {5 denote two straight
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line segments (starting at the origin) of length 1 and 1 + ¢ respectively in R® meeting at an

angle %” Choose a curve between the endpoints that does not lie in the (¢1,¢3)-plane to
form a piecewise smooth Jordan curve I'. Solve Plateau’s problem for I". (One may prove
that the solution is free of branch points in this case.) Reflect across the lines 5 times to

close up into a branched minimal surface with a branch point at the origin.

Example [3.25| gives a branched minimal immersion, but it cannot be an area minimizer

thanks to the following result.

Theorem 3.26 (Osserman [Oss70], Gulliver [Gul73]). A solution to the classical Plateau
Pmblem in R® has no branch points on D.

Sketch of the proof. Osserman ruled out true branch points (roughly) as follows. Suppose
that F' has a true branch point at zp € D. One can find distinct curves 1,72 : [0,€) = D
with 7;(0) = 29 and F(71(t)) = F(72(t)) is a transversal self-intersection (as an example,
consider /1, /5 in Example E| Then “cut” the disk D along 1,7, to introduce v;* (cf.
Figure 2). Then glue v;"(t) to 71 (¢) and 75 () to 7, (t). This gives a new piecewise smooth
map F : D — R? differing only on a set of measure zero, so A(F) = A(F). However, we can

“round the corners” to decrease area slightly, a contradiction.

FIGURE 2. Osserman’s area-decreasing modification.

Gulliver ruled out false branch points (roughly) as follows. If F locally factors through
z + 29 for Q € N, then (away from the isolated branch point) the image of F has
“multiplicity ¢).” Using a unique continuation argument one can extend this multiplicity all

the way to 0D, implying that F' transverses the boundary () times, a contradictionﬁ 0

Exercise 3.4. Suppose that F: D — R3 is a branched minimal immersion and z, € D.
(1) Show that up to a rotation, dilation, and translation of R?® we have
Fi+iFy = (2 — 2)? 4+ O(|]z — 2|9™), Fy = O(|z — 2|9
where () > 2 if and only if 2 is a branch point.

3This is where n = 3 is used in an essential way, one should compare with z — (22,2%) € C2.
4Note that F : z — 22 is a weakly conformal harmonic map D ¢ C — D C C but Flop is not a weakly
monotone parametrization.
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Fpx Fy

|Fx—><Fy| extends

(2) Assuming that zy is a branch point, show that the unit normal N =
continuously across zo.

(3) Let P = F(z). Show that F'is transversal to 0B.(P) for all € > 0 sufficiently small.
Let 4. = F~1(0B.(P)) and k. denote the intrinsic geodesic curvature of .. Compute
lim,_,g f% k..

(4) Assuming that I' is smooth, use (3) along with Gauss-Bonnet and Theorem to

prove that F' has only finitely many branch points.

There are several open problems about branch points. The following is one of the oldest

open problems in the area:

Open Question 1. For I' C R? a smooth Jordan curve and F : D — R? a solution to the

Plateau problem for I' can I' have branch points at the boundary?

Interestingly, it’s known that boundary branch points cannot exist when I' C R" is analytic
[Whi97] (even though interior branch points can exist in R=*). On the other hand, the map

1

F:{r+iy:x2>0} - C? s (2 e VF)

can be seen to define a least area solution with boundary branch point along smooth I' C R*.
Finally, we note that a smooth Jordan curve in R? bounding a branched minimal surface with

a boundary branch point is constructed in [Gul91], but it’s not known if F' is minimizing,.

Exercise 3.5. If a smooth Jordan curve I' lies in the boundary of a convex set K C R"

prove that a branched minimal immersion F' spanning I":

(1) has F(D) contained in the interior of K and
(2) has no boundary branch points.

(Hint: for (1) use the strong maximum principle for some linear function of the coefficients

of F' and for (2) use the Hopf boundary point lemma.)

3.6. Embeddedness. We emphasize that even when it is free of branch points, the solution
to Plateau’s problem need not be an embedding (for example, consider I' C R3 knotted).
However, in certain cases one may prove that the least area disk is embedded. The following

holds in greater generality than stated:

Theorem 3.27 (Meeks—Yau [MYS82]). Suppose that a smooth Jordan curve I lies in the
boundary of a compact convex set K C R3. Any solution to the Plateau problem for T will

be an embedding.

See [CM11] §6] for an overview of the proof.
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4. HARMONIC MAPS

We now consider the case of the (classical) Plateau problem where R™ is replaced by a

Riemannian manifold.

Theorem 4.1 (Morrey [Mord8]). For (M, g) a closed Riemannian manifold and T" C (M, g)

a homotopically trivial smooth Jordan curve, there’s an element of Cr of least area.

Remark 4.2. Most of the various regularity results discussed above (boundary regularity,
non-existence of interior branch points in three dimensions) can be extended to the Rie-

mannian case as well.

We won’t prove Theorem [4.1] Instead we will instead discuss the work [SUSI] of Sacks—
Uhlenbeck concerning minimizing energy in a homotopy class of maps ¥ — (M, g) for ¥ a
closed oriented surface.

For simplicity, we consider the target (M, gys) to be isometrically embedded in some RY
(possible by Nash embedding). For F': ¥ — M C RY we can then define area A(F) to be

the area of F': ¥ — RY. To define the energy, fix a Riemannian metric » on ¥ and set
SUﬁh):i/|VhFFdWV
)

Note that E(F, h) only depends on the conformal class [h] (cf. Lemma [3.11)). We recall that
the existence of isothermal coordinates (cf. [Che55]), i.e. z,y with h = u(dz? + dy?) lets us
identify a conformal class [h] with a Riemann surface structure by declaring z = x + iy to

be a holomorphic chart.
Lemma 4.3. A(F) < E(F, h) with equality if and only if F is weakly conformaﬁ.

Proof. Using a partition of unity, it suffices to check the inequality in local isothermal charts

where it’s the same as Lemma [3.3] |

Lemma 4.4. If F: (3,h) — M C RY is smooth and is a critical point of E(-,h) among
compactly supported smooth variations Fy : ¥ — M C RY if and only if (AL F)" = 0.

Definition 4.5. We call F satisfying (A, F)" = 0 a harmonic map.

Proof. Given a variation Fj, note that | _ Fi(p) = F(p) == V(p) € TreyM C RY. Con-
versely, given a C* map V : ¥ — RY with

(4.1) V(p) € TppyM C RY for all p e &

Swith respect to [h]



INTRODUCTION TO MINIMAL SURFACES 15

we can let Fy(p) = expp(,(sV(p)) € M for s sufficiently small. Thus, F' will be a critical
point of energy if and only if

d

— E(Fs,h):/VhF-VhV:—/(AhF)-V:()

dsls=0 N )

for any such V. O

Suppose that X is a vector field on RY with X € Tg M for all P € M. Recall that if U,V
are vector fields tangent to M, then

DyX-V=UX-V)=X-DyV=-X-AU,V)
where A(U, V) = (DyV)* is the second fundamental form of M ¢ RY. Thus, for v = X o F,

we compute in local isothermal coordinates:

2
AF-v=> 0F v

i=1

2

i=1 -0

2
==Y OF - DyrX

=1
2
= A(O;F,0;F) - v

where we used that 0;F € T,y M in the second line. Thus, we can (somewhat imprecisely)
write the harmonic map equation as

(4.2) AF = A(dF,dF).

Note that (unlike in the M = R™ case) this is a nonlinear PDE and thus we can expect to
face difficulties in establishing existence/regularity. Take note that Ais actually the second

fundamental form of M evaluated at F'(p) so it would be more correct to write AoPF.

4.1. The Hopf differential. Given a map F : (X, h) — M we can define the Hopf differ-

ential in isothermal coordinates by
® = (|0,F|* — |0,F|* — 2i0,F - 0,F) dz* = 4(9.F)*dz".
As before, we have:
Lemma 4.6. The Hopf differential vanishes ® = 0 if and only if F is weakly conformal.

This is a quadratic differential on ¥. We recall that dz is locally a section of the holo-

morphic tangent bundle and dz? is a section of the symmetric square of the holomorphic
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tangent bundle. Thus, to check that ® is a quadratic differential we can check that under a

holomorphic change of coordinates w = w(z) then
4(0,F)?dz? = 4(0,F)*w' (2)%dz* = 4(0, F)*dw?.
We emphasize that ® need not have holomorphic coefficients. However, we have:

Lemma 4.7. For F : (X, h) — M C RY smooth harmonic map, the Hopf differential ® is

holomorphic.

Proof. In isothermal coordinates we have
1
0:(0,F)* = 20;0.F - 0.F = FAF-0.F =0

since (AF)T = 0 and 0.F is the (complex linear) combination of the tangent vectors 9, F
and 0, F'. O

Remark 4.8. Lemma 4.7 can be used to show that F' € W2(; M) that satisfy (AF)T =0
in the weak sense are actually smooth. This is false for higher-dimensional domains. See
[Sch84! [Riv95, [HéEI02).

Corollary 4.9. If F : S? — M C R" is a smooth harmonic map then it’s weakly conformal.

Proof. Combine Lemma with the fact that a holomorphic quadratic differential on S?

must vanish. ]

Exercise 4.1. Give an alternative proof of Corollary as follows. Write ® = ¢dz? in a
stereographic projection chart on S? \ {p} and show that ¢ € L'(C) is holomorphic. Using
this prove that ¢ = 0.

Corollary 4.9/ does not hold if we replaced S? by some other Riemann surface. For example,

dz? is a holomorphic quadratic differential on 72 = C/A. However:

Exercise 4.2. By computing the first variation of £(F,-) with respect to h, show that if

E(F, h) is stationary for variations of h then F' is weakly conformal.

5. SACKS—UHLENBECK

We now fix (X,h) and try to find a harmonic map F : (X,h) — M. To find a weakly

conformal harmonic map (when ¥ # S?) we can then try to vary h.

5.1. a-harmonic maps. One way to do this is to introduce the a-energy of Sacks—Uhlenbeck:

ga(F>:/E((1+|th\2)a—1) avi,
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As before, we see that ' is a critical point of &,(-) if and only if F' satisfies the a-harmonic

map equation

dVF|?-dF

AF + (o —1) [T VET?

= A(dF,dF)
(in the weak sense).

Proposition 5.1. Consider G : ¥ — M smooth and the corresponding set of homotopic
maps [G] € [, M]. Fora € (1,aq), there’s a weakly a-harmonic map F : (X, h) — M C RY

in [G] that minimizes E,(F') among maps in [G].

Proof. We can apply the direct method. Let F; € [G] be a minimizing sequence for &,. A
bound on &,(F) gives a bound on F € W'2* and thus F € C“ by Morrey—Sobolev (C.1).
Thus, a F; converges subsequentially in C° and weakly in W12® to F'. The C°-convergence
guarantee that F € [G]. O

Lemma 5.2. There’s ag = ag(X, h) > 1 so that if F € WY2*(X h) is a weak solution to the
a-harmonic map equation for a € (1,aq) then F € CY(X). Moreover, for a € [1,ay) we can

estimate
p—1

2 1
IFlbwares) < € (14 IVFILZfu(F)?)
for any p € (1,00) and C = C(M, X, h,p) independent of c.

Proof. We havd]
|AF| < 2(a — 1)|D*F| + CldF)?

Thus W?P-elliptic estimates (cf. (A.1])) give

ID?Fllze(sy < CUIF () + [AF (o)) < CUIF |z + (@ = DID*Fllzogs) + [dF||720x))
For v — 1 sufficiently small, we can absorb the Hessian term to obtain

(5.1) [Flwess) < CL+ A | La ;).

As long as @ > 1 we can take p = a and use F' € W'?*(X) yields F' € W?%(X). Thus,
Sobolev embedding (cf. (C.2))) gives F' € W1’22—7aa(2). We can take p = 5% > « in (j5.1))

2—a
and so on until we get I € W?2P for p > n in which case Morrey-Sobolev gives F' € C! as

claimed. The final estimate follows by using [, [VF[* < IVF|2%Y JoIVEP?in (.1). O
It’s important to note that C' is independent of a.

1t G, G are C° close then F (x) and F (x) are connected by a unique minimizing geodesic in M so we can
construct a homotopy by moving “linearly” along these geodesics.

7Strictly speaking, we do not know that F' € W?P? so this step is only formal. To make it rigorous, we
could freeze the lower order coefficients in the a-harmonic map and mollify the Laplacian/Hessian term.
The argument used here gives WP estimates for the mollified function, which then limit to corresponding
estimates for F'.
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5.2. Bubbling. We now choose a; N\, 1 and a;-harmonic maps F; (from Proposition .
Note that & (F}) is uniformly bounded since &,,(F;) < &,,(G) is uniformly bounded for an
arbitrary fixed G € [G] N C.

Let \; := maxy |V, F}|.

We first suppose that sup; \; < co. Lemma [5.2] gives that F; is uniformly bounded in
W24(%). Morrey-Sobolev (cf. (C.1)) embedding thus bounds F; € C'3(%). Thus, passing
to a subsequence, F; converges in C* to F € [G] N C2(X). Note that F minimizes £(-, h)
in [G]. Indeed, if F € [G] has E(F) < E(F) — 6 then F, — F in C" gives

E(F) <EF) =8 =E4(F) =6+ 0(1) <E,(F) =8 +o0(1) = E(F) — § +o(1)
This is a contradiction for ¢ sufficiently large. In particular, F' is a weakly harmonic map.

On the other hand, if A\; — oo (after passing to a subsequence), we can choose p; € ¥;

so that |V, Fi|(p;) = \i. Let hy = A?h denote the conformally changed metric. This gives
Vi Fl1oo(sy < 1. We now note that |DE F|,, = A\;?| D3 F|y, so Lemmam gives

2l=p 2l-p gp=1

ID% Fillrsng =X 7 I DiFillespy < CN 7 (14X 7 ) < C.
We now choose normal coordinates around p;. As such, we can consider Fj, h; defined on an
exhaustion of R? so that h; converges to § in Cf2. By Morrey-Sobolev (cf. (C.1))) we have that
F; is bounded in CIIO’C% and thus converges to F': R - M C R" with |[VF| < 1,|VF|(0) =1
and F € C’lloé . As above, we can prove that F' minimizes £(-) among homotopic maps fixed

outside of a compact set. Thus F' is weakly harmonic. We also observe that Fatou’s lemma
gives E(F) < oc.

5.3. Bootstrapping regularity. Given F : (X,h) or C — M weakly harmonic with F' €
CL®, we note that A(dF,dF) € C2,. Schauder estimates (cf. (A.2)) then imply that

loc ?

F e CX* Thus A(dF,dF) € CL%. Continuing this, we find that F € Cg2.
Corollary 5.3. The harmonic map obtained in the previous section is in C*°.
Similarly (using Lemma and then a similar bootstrap) we have
Lemma 5.4. If I is a harmonic map with ||V F | p~@q) < 2 then |F||crqy < C for ' € Q.

5.4. e-regularity. Given a harmonic map F : S? — M we can compose with a conformal
diffeomorphism S? — S? to obtain a new harmonic map with the same energy. Thus,
controlling £(F) is not enough to bound F in C*. However, if £(F) is sufficiently small, it

does suffice:

Theorem 5.5 (e-regularity). If a harmonic map F : (Ds,8) — M C RY has [, |[VF|* <
50(M> then ||VF||Loo(D1) S C(M)

We give a proof based on “point-picking” as opposed to the original PDE approach.
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Proof. If this fails, there’s a sequence of harmonic maps Fj : Dy — M with [, [VFj|* = 0
but ||V Fj||ze(p,) = 0o. We can adjust the domain slightly to assume that F} is smooth up
to 0D,. Thus, there is some p; € D so that

(2 = [P DIV Ej|(p;) = max ((2 — |pl)[V Fjl(p)) — o0
Let \; = |VF}|(p;) and define the dilated map
Fi(2) = Fi(p; + A '2).

If [pj] + A;'[2] < 2 then z is in the domain of Fj. Rearranging this, see that the domain of
ﬁ’j includes D(a_|p, ), := D;,. Note that r; — co. We also observe that since

VEi(2) = X'VEi(pj + A\ '2),  AFj(2) = A2AF(p + A '2),
we see that Fj is still a harmonic map to M with |[VF}|(0) = 1.
Fix R > 0 and consider z € Dpg. For j large enough so that R < r;, the choice of p; gives
(2= [pjl = A\ R)IVE|(p; + A '2) < (2= 1p; + A 2D)IVE(p; + A '2) < (2= [pi))A),

SO
R

(2= IpiDA; — R
as j — oo. Elliptic boostrapping (Lemma ) thus gives ||Z3j||ck(BR) < C(k,R) for all
(R?) to a harmonic map F : R* — M
with [VF|(0) = 1. On the other hand, we have that (by conformal invariance of energy)

| WEE< [ [vEE -0
Dr Do

from which we see that ' must be a constant harmonic map. This contradicts the fact that
IVF|(0) = 1. O

IVE;|(2) <1+ =1+o(1)

k € Z>o, R > 0, so a subsequence converges in C.

Remark 5.6. We can interpolate L> C C*NL? to improve the conclusion to [|[VF|| 1= (p,) <
CsE(F)29 for all § > 0. (See [SURI] Proposition 3.1] for § = 0.)

5.5. Removable singularity. Recall that in the case of bubbling, we obtained a harmonic
map F: C — M C RY with F € C, and £(F) < co. We claim that one can add the “point

at infinity” to obtain a smooth harmonic map F : S? — M C R¥. This follows by inverting
to F': C\ {0} — M and applying Sacks—Uhlenbeck’s removable singularity theorem:

Theorem 5.7 (Removable singularity). If F': D\ {0} — M C RY is a smooth harmonic

map with E(F) < oo then F extends to a smooth harmonic map on D.

We first have the (standard) fact that we can extend weak solutions across a set of zero

capacity.
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Lemma 5.8. AF = /Y(dF, dF) in the weak sense on D

Proof. We use a “log-cutoff.” For ¢ > 0 we set

0 r < e?
p(r)=q2- 2L 2<r<e
1 r>ec

Note that

= 1
2=9 /— dr = —— = o(1
/DWSD’ " Lo 2oge)? T Tlogel o)

as e — 0. For V € C°(D;RY) we have

/Ds@(VF - VV — A(dF,dF) - v)’ -

/ VyF- w‘ < C(V)/ IVF]> 4+ |[Ve|* = 0
D supp
as € — 0. This completes the proof. U

We change coordinates from (r,6) to (t,0) defined by r = e~*. Note that the flat metric

becomes
dr® 4 r2d0* = e~ (dt* + db?).
Since energy and the harmonic map equation are both conformally invariant, we can consider
a harmonic map F' : [0,00) x S' — M with finite energy where we use the metric dt* + d6?
on the domain. Note that
E(F|r00)x51) = 0

as T — oo. In particular, e-regularity implies that Fp(t,6) := F(t — T,6) converges sub-
sequentially in C as T — oo to a constant map. However, this constant might a priori
depend on the chosen subsequence. Morally, the key step in the proof of Theorem is to

prove that there is a unique limit (with a quantitative rate of convergence).
Lemma 5.9. f{t}xSl |0 F|?d6 = f{t}xSl |0p F|*d0

Proof. We compute
d

o (|0,F* — |05F|?)df = 2/ (OELF - O,F — Oy F - 0pF)db
{t}xS1t

{t} xSt

iy / (O2F + 0% F) - O F — 0y(OuF - 0, F))d6
{t}xS1
=0

using (AF)" = 0. Thus f{t}xsl(’atFP — |0pF|*)df = c. Finiteness of energy E(F) =
fooo fsl (|0:F | + |0oF|?) dfdt < oo gives that ¢ = 0. O

Lemma 5.10. P(t) := f{t}xsl |0g F|2d0 satisfies P(t) — 0 as t — oo and P"(t) > P(t) for
t sufficiently large.
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Proof. As discussed above, |VF|(t,0) — 0 as t — oco. We thus compute (writing A * B to
represent the product of two tensors A, B with some indices traced and then the quantity

multiplied by some uniformly bounded coefficient):

P"(t) 22/{} . (|03, F? + 8y F - 33, F) df
t} xSt

o[-
{t}xS1t

2/ (|05, F + 055 F)* — A(dF,dF) - 95 F) df
{t}xS1t

) / (188,F> + |2, F? + 04(A(dF. dF)) - 6 F) do
{t}xS1

= 2/ (|05, F|> + |05 F|* + (dF)* % (0pF)* + OF x 03, F « 0pF) d
{t} xSt

1
> / (§|6§9F]2 - —]89F\2> do
{t}XSl 2 2

for t sufficiently large. In the second to last line we note that the third term arises from
OpA = DA % OpF since A is evaluated at F. In the final step we used |VF| — 0 to absorb
the second term into the Hessian terms (and then discarded 0y F'). Since f{t}xsl OpF df =0,

the Poincaré inequality gives
[ N
{t}xS1t {t}xS1t

the assertion follows. O
<

Exercise 5.1. If P"(t) > P(t) for t € [Ty,00) and P(t) — 0 as t — oo, show that P(t)
P(Ty)e  for t € [Ty, 00).

Exercise 5.2. Prove that F(¢,0) has a unique limit as t — oo (uniformly in 6).

Proof of Removable Singularity Theorem [5.7. Combining Lemmas and with Exer-
cise 5.1 we find (in cylindrical coordinates)

| /{ Lo [TEE= 06T

Returning the polar coordinates this gives
IVF|? = O(r).
D,
Note that fD‘ ) IVE]? — 0 as z — 0. Thus, for z sufficiently small we can rescale D),(z)
to Dy (energy is unchanged) and apply e-regularity and Remark

ZlIVF|(2) = O(|>7).
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(The |z| factor arises in the gradient when scaling back.) This implies that F' € W?P for all
p € [1,4). Since F is a weak solution to the harmonic map equation on all of D (Lemma 5.8,
we can then repeat the argument used in the elliptic bootstrap to conclude that F' € C*°(D)

is a smooth harmonic map. 0
5.6. Existence of harmonic maps. In sum, we’ve obtained:

Theorem 5.11 (Sacks—Uhlenbeck [SU81]). Consider G : ¥ — M smooth. There’s either
F : (X,h) — M smooth harmonic map minimizing E(-) in [G] € [E, M] or else there’s a
nontrivial smooth harmonic map F : S* — M with [F] # 0 € ma(M).

Corollary 5.12. If mo(M) = 0 then there’s a smooth energy minimizing harmonic map
F:(3,h) = M in any homotopy class [2, M].

Corollary 5.13. If my(M) # 0 there’s a smooth harmonic map F : S* — M with [F] # 0 €
WQ(M).

Note that in the bubbling case, we only proved that F' minimizes among homotopic maps
that fix a neighborhood of co. This could be removed but it will suffice for our later appli-

cations.

5.7. Varying the conformal structure and Douglas type conditions. Suppose that
Y # S? and my(M) = 0. Fix a class in [X, M]. Given any Riemann surface structure (%, h)
we can obtain a minimizing harmonic map Fj, : (X,h) — M. To obtain a branched minimal
immersion we need to minimize [h] — E(F}, [h]) over all Riemann surface structures (cf.
Exercise [.2)). This could pose a major problem since this set is non-compact.

In certain cases the non-compactness can be avoided:

Theorem 5.14 (Schoen—Yau [SY79]). If G : ¥ — M has G, : m(X) — m (M) injective
then there exists a branched minimal immersion ¥ — M in [G] € [2, M].

When dim M = 3 one may obtain a least area/energy immersion in this manner by ruling
out trudj branch points as in Theorem [3.26, For example:

Corollary 5.15. If (T3, g) is any Riemannian metric on a 3-torus, then there’s a least area
immersion F : T? — (T3, g).

The basic idea of Theorem is that if the conformal class degenerates then one may
find a very long cylindrical isothermal chart [T, 7] x S' in (3, ). Then, by an argument
as in the Courant-Lebesgue lemma we can conclude that some circle {¢t} x S’ is mapped to
a very short loop and is thus homotopically trivial.
8Since X = 0 it could happen that the minimizer F is the composition of an immersion with a branched

cover X — X. By discarding the branched cover, we can find a least area immersion (at the cost of changing
the homotopy class).
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Remark 5.16. Similar considerations hold in the classical Plateau problem with higher
topology. For example, let I'1,I'y C R be disjoint (smooth) Jordan curves. Let ar, r, be

the minimal area among all maps of annuli. Douglas proved that if the “Douglass criterion”
ar,ur, < ar, + ar,

then there’s a branched minimal annulus with boundary I'; UT';. (Note that < always holds
by connecting the two minimal disks by a thin tube.) The Courant—Lebesgue lemma shows
that if the conformal class of the annuli are degenerating, then a minimizing sequence can

be “cut” into two disks of nearly the same area.

6. THE HOMOLOGICAL PLATEAU PROBLEM

The mapping problem does not seem to work well with higher dimensional domains

[Whi83|. Instead whats works is minimizing in a homology class:

Theorem 6.1 (Federer-Flemming [EFF60]). For (M", g) a closed Riemannian manifold and
o € Hy(M;Z), there ezists a singular submanifold ¥ € o of least area. When k =n —1 and
n <7, 3 will be completely smooth.

One may also consider a similar problem for I'* C R™ (or a Riemannian manifold) and
minimize area among all “submanifolds” X**1 with ¥ = I'. For k = 1, by [HS79], the
minimizer ¥ will be smooth embedded and will solve the Douglas problem for surfaces of
genus g for any g > genus ¥ (if genus ¥ > 0 there will also be a Douglas—Radé minimal disk
with boundary I" but it will have area > area(X)).

Part 2. First variation of area
We’ve seen some methods for finding least area “submanifolds.” We now turn to the
analysis of the Euler-Lagrange equations for this problem.
7. MEAN CURVATURE AND FIRST VARIATION

For an embedded submanifold ¥ C (M, g) a vector field along ¥ is a smooth map X :
¥ — TM with X(p) € T,M for all p € 2]

Definition 7.1. We define the divergence of X along ¥ by

k
dive X =Y g(De, X, ;) = trys DX

=1

where ey, ..., e, € T,X is an orthonormal basis.

9Alternatively: if F is the inclusion map F : ¥ — M then vector fields along F' are X € T'(F*TM).
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Note that D here is the connection on M, so strictly speaking we need to extend X locally
near p. However, since the e; are tangential to X the value of g(D,., X, e;) is seen to be

independent of this extension (exercise!)m

Theorem 7.2 (First variation I). Consider F; : ¥ — (M, g) a 1-parameter family of embed-
dings with F, = Fy outside of a compact set. For Fy = X the velocity, we have

dt

area, (F(X)) :/divEX

t=0 »

Proof for (M, g) = R". In a time-independent coordinate chart z',..., 2% on ¥, the induced

metric is

Ft*gR”(ai>aj) = <8iFt>8th>

so the induced volume form becomes

dpu(t) = \/det (9,5, 0;F,) dar* - - da*

in these coordinates. We assume that the coordinates are chosen so that at ¢t = 0 and at
p € X, hijj = 0;;. In particular 0, Fp, ..., 0xFp is an orthonormal basis for T,%.
We computeH

d

E det <8th,8JFt>

t=0

tr E —o (@Ft? 6th>

\det (0.F,, 0;F) =

t=0

Writing

area(F,(%)) / du(t)

b
and differentiating under the integral sign completes the proof. ([l

Essentially same proof works for general ambient (M, g) if we choose normal coordinates
near Fi(p) since the first derivatives of g vanish at the center of normal coordinatesH

We now recall that if D is the Levi-Civita connection on (M, g) then if U,V are vector
fields along ¥ C (M, g) tangent to 3 then

(7.1) DyV =VyV +AU,YV)

100ne could have defined the pullback connection F*D on F*T'M and then define divs, X using this pullback
connection.

Hyusing det(I +eA) =1 +etr A+ O(e?)

12 Alternatively, we can use the pullback connection for the space-time map F : £ x (—¢,¢) — (M, g) (one has
to check the pullback connection is symmetric, which we used above to interchange the ¢ and ¢ derivatives).
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where V is the Levi-Civita connection on ¥ (with the induced metric) and A is the second
fundamental form of 3. In fact, this is an orthogonal decomposition of Dy V' into tangential
ViV and normal fY(U, V). Recall that symmetry of the connections implies that fT(U V) is

symmetric in U and V. We define the mean curvature vector of ¥ by
k
H = tI‘Z A= ZA(GZ‘, Bi)
i=1

for eq, ..., e; an orthonormal basis for 7,3.

Theorem 7.3 (First variation II). If 0% is non-empty, let n be the outwards pointing unit

co-normal. Then for any compactly supported vector field X along 3, we have

/EdiVEX:—/Zg(ﬁ,X)+/azg(X,77).

X=Xt+XT,

Proof. Split X as

Then for ey, ..., e, orthonormal basis of T),%, we have

—

g<D€iXJ—7€i) = _g<XJ_7D6i€i) = _g<X7A<eiyei))-
We also have
g(DeiXTv e’i) = g(veiX—ra ei)'
Thus,
divy X =divX ' — g(H,X).

where the second divergence is the usual (intrinsic) divergence on ¥. We can use the diver-

/diVXT:/ g(X,n).
b ox

This completes the proof. O

gence theorem to get

We’ll define the first variation operator of 3 by
(7.2) SN(X) = / divy X = — / g(H,X) +/ g(X,n).
) b o%
It’s easy to see that for any compactly supported X, there’s F; compactly supported that
has velocity X at ¢ = 0. The above results show that £|,_g area,(F;(X)) = 6X(X) and then
how to compute 6%(X) in terms of H and the boundary term.

Corollary 7.4. ¥ C (M,g) has H = 0 if and only if Lo areay(Fy (X)) = 0 for any

compactly supported variation F, of the inclusion Fy with Fy|ox = Fylsx.

We thus call ¥ C (M, g) with H = 0 minimal surfaces (more precisely, minimal subman-

ifolds).
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Example 7.5. Consider ¥ = {(z,y,0) € R?: 2> + y*> < 1}. Then,

5Y(X) = /a _a(X.n).

since the disk is totally geodesic (and thus minimal). Thus we see:

(1) If X is tangent to ¥ and compactly supported then §3(X) = 0. This is the infinites-
imal version of the fact that area is diffeomorphism invariant.

(2) If X = (0,0,1) then §%X(X) = 0, as expected since X is the velocity field of the
upwards translation isometries.

(3) If X = (z,y,2) is a dilation vector field, then 0X(X) = 27 = %‘tzoﬂ(l +t)? as

expected.

Remark 7.6. It’s often useful to note that we actually proved the infinitesimal first variation
formula: %‘tzodp(t) = (divy X)dpu(0). If X is a normal vector field, we find the following

frequently used fact %‘tzodu(t) = —g(H, X)du(0).

7.1. Two-sided hypersurfaces. If ¥" C (M""!, g) is a hypersurface with a unit normal
N, we can write H = —HN for the scalar mean curvature H. The sig is chosen here to

simplify the first variation of area. Indeed, if we vary > with velocity X = ¢ N then we have
=(eN) = [ He
b

for u € C*°(%). It’s useful to also define the scalar second fundamental form by A(U,V) =
—A(U,V)N, so H = tr A.

Given the unit normal, we also define the shape operator by S(U) = Dy N. Since |[N|> = 1
we see that g(S(U),N) =0, s0 S, : 1,2 — T,%.

Lemma 7.7. The shape operator and scalar second fundamental form are related by g(S(U), V) =
A(U,V). In particular, S, : T, — T, is self-adjoint.

Proof. For U,V vector fields tangent to ¥, we can differentiate g(V, N) = 0 and use compat-

ibility of the metric and connection to get
0=g(DuV,N)+g(V.DyN) = —A(U,V) + g(V,S(U)).
This completes the proof. O

We call the eigenvalues A1, ..., A\, of the shape operator the principal curvatures.

BCaution: There is reasonable agreement on the definition of vector mean curvature and convention for sign
of the scalar mean curvature (anyone should agree that S? C R? has vector mean curvature pointing inwards
and scalar mean curvature is positive). However, there is not a uniform convention on how to relate the
vector to scalar mean curvature, since one might take the inwards pointing unit normal, in which case the
convention would need to be “H = Hv” or the outwards pointing unit normal in which case it’s H=—Hv
(as we do in these notes).
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Corollary 7.8. The scalar mean curvature satisﬁeﬂ H=M+- -+ X, =divg N.

Proof. We saw that H = tr A = tr S. The trace of a self-adjoint map is the sum of the eigen-
values, proving the first expression. For the second, choose e, ..., e, € T,% orthonormal

and write the trace as
H=> g(S(e:),e:) = Y _g(De,N, e;) = divy N.
i=1 i=1
This completes the proof. O

We also note for later that |A|? = A\? + -+ + \2.

7.2. Gaussian curvature of minimal surface. We recall that the Gaussian curvaturd™]
of ¥2 C R? can be defined extrinsically by K = \j\s.

Corollary 7.9. If ¥2 C R"™ is minimal then 2K = —|A[%.
Proof. Locally we can always choose N. Then A\; = —\y using H = 0. 0

In particular, minimal surfaces in R?® are negatively curved (intrinsically). Similar con-
siderations using the traced Gauss equations give that the scalar curvature of a minimal
hypersurface X" C R"™! satisfies R = —|A|? is negative. Note that the sectional/Ricci

curvatures of ¥ need not be non-positive!

Example 7.10. For example, letting ¥ = dB; C R? be the unit sphere, taking N(z) = x
to be the outwards pointing unit normal we note that DyN = U for any U € T,R3, so
we thus have H = divy N = 2. Alternatively, we could use the infinitesimal first variation
d

- t_odu(t) = Hpdu(0) where ¢ is the normal speed, combined with the variation Fy(p) =

(14 t)p to derive the same thing.

Exercise 7.1. Consider a warped product metric
g = dt* + u(t)’gn

for a smooth function u(¢) > 0 on an interval I and (V, gy) a fixed Riemannian manifold.
Show that N = 0, is a unit normal to ¥; = {t} x N. What is the (scalar) mean curvature
of Zt?

MNote that classically H was defined to be the average (mean) of the principal curvature. This is less
commonly used now, but “H = %” still appears in some references. We will use the “sum” not
“average” convention.

5Recall that 2K = R is the scalar curvature of 3.
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8. BASIC CONSEQUENCES OF MINIMALITY

Theorem 8.1 (Coordinate functions are harmonic). A submanifold % C R™ is minimal if

and only if the coordinate functions on R™ restrict to harmonic functions on X.

Proof. One may compute directly (exercise!) but we will use the first variation formula. Let
E; be a coordinate vector field on R™ and set X = pF;. Since Fj; is parallel, we find

k k
dive X =Y (D, X,e;) =Y _ Dejp(Ej,e;) = (Vsp, Ej) = (Vsp, Vsa’)

i=1 i=1
Thus, for any ¢ € C*(X\ 0%X) we find

/E pApa! = — /E (Vsp, V) = —65(pE;) = /

P

Since ¢ was arbitrary, this proves that Ayx = H (meaning that the expression holds coor-
dinate by coordinate). This proves the assertion. 0

Corollary 8.2 (Convex hull property). For ¥* C R"™ a compact minimal surface, we let
C(0%) denote the convex hull of 0X. Then ¥ C C(0Y).

This is clearly false for non-compact ¥ as can be seen by e.g. {(z,y,0) € R : 22 +¢* > 1}.
Proof. Suppose that 03 C {(z,a) < t} for a € R"\ {0} and t € R. We claim that

Y C {{z,a) < t}. If not, the maximum of (z,a) is attained at some point in the interior

of 3. However, we just saw that Ay (x,a) = 0. This contradicts the weak maximum
principleﬁ. 0
Corollary 8.3. If ¥ C R" is minimal and has 03 = 0, then ¥ is non-compact.

Corollary 8.4. Consider ¥ C R™ a compact minimal surface with boundary so that ¥ is
homeomorphic to the disk. For a compact convex set K with KNOY. = 0, it holds that KNX

18 simply connected.

Proof. Suppose that v C K N is a simple closed curve. Then v = 9D for some disk D C .
By the convex hull property and v C K we find D C K. This completes the proof. O

Exercise 8.1. Formulate and prove a generalization of Corollary that holds for higher

dimensional ¥¥ ¢ R™.

Proposition 8.5 (Flux). Suppose that ¥ C (M, g) is minimal and K is a Killing vector
on (M,g). Then, if I't,T's C 3 are oriented hypersurfaces with [I'1] = [I's] € Hx—1(X), then

/Fl 9(K,nry) =/F29(Kﬂ7r2)

16For the Laplacian on R™ this is stated in Lemma but the same result holds for a general elliptic
equation of the form: a* Dj;u 4 b*Dju > 0, cf. [GTOI, Theorem 3.1].
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for mr, the oriented co-normal to I'; in X.
Thus, this defines Fx : Hi_1(3) — R, the flur map.

Proof. Recall that a Killing vector satisfies g(Dx K, Y )+ g(Dy K, X) = 0 for any vector fields
X,Y, so in particular we see that g(Dx K, X) = 0. Tracing this over an orthonormal basis

of 1,2 we find divy K = 0. Since ¥ is minimal, we thus have
dive KT = 0.

We can then apply the divergence theorem to the vector field KT and k-chain with Q in ¥
with 02 =Ty — I'; to prove the assertion. U

9. MONOTONICITY

Proposition 9.1 (Cone inequality). Suppose that ¥* C Br(0) C R™ is a minimal subman-
ifold with 0% C OBg. Then |X| < £|0%].

Remark 9.2. Note that cone(9X) := {tp : p € 03} has area = fOR %|82|dr = 2193 so

if 3 had least area (among competitors fixing 0%) we could prove this by observing that
|X| < |cone(0%)| (assuming that the cone is a valid competitor). The proof below will only

use stationarity (3 is assumed to be minimal as opposed to area-minimizing).

Proof. Take X (z) = x. Note that DX = Id so divy X = k. Thus, the first variation formula
(Theorem yields

k\E\z/disz:/ X -1 < R[OS
) ox

This completes the proof. O

We write wy, for the volume of the unit ball in R¥.

Theorem 9.3 (Monotonicity). Suppose that X¥ C R" is a minimal submanifold with 0% N
Br=10. Then for 0 < s <r < R we have

r YN B, —s*X N By :/ 2| 7F 72|22,
$N(Br\Bs)
so in particular
YXNB,
r— —’ (z)] = Ox(z, 1)
Wpr™

18 monotone nondecreasing.

Proof. We can assume that ¥ intersects dB,, 0B, transversally. Consider X (z) = |z|*x.
Note that D|z| = % so

|z

DX = |z|™*1d —k|z| > *z @ 2.
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Thus, if ey, ..., e is an orthonormal basis of 7),%, we find that

k

divy X = k|z| 27" (\x!Q — Z(ei : 3:)2) = kl|z| 2 F|zt?

i=1
Below, we write n for the outwards pointing unit co-normal to ¥ N B, for ¢t € {s,r}. Apply

the first variation formula twice as follows:
/ x| 2 at)? = / divy X
YN(Br\Bs) YN(Br\Bs)

:rk/ 7]~ac—sk/ n-x
$NOB, ¥NOBs

=k / divez — s / divy x
SNB, SNB;

=k(r"ENB.|—s"XNB).
This completes the proof. 0

Corollary 9.4. If ¥* C R™ has 0¥ N Bg(0) = 0 and 0 € ¥ then |X N B.(0)] > wpr® with
equality if and only if ¥ N B,(0) is a flat disk.
Proof. Observe that limg o ©x(0,s) = 1 since smooth embedded submanifolds are nearly

flat at small scales. Thus, monotonicity gives

XNKB
| nr| -1 —|—w;1/ |$|—k—2|xJ_’2 Z 1.
WnT $NB,

If equality held, we would get that 2+ = 0 along ¥, i.e. ¥ is a cone centered at 0. Since ¥

is smooth it must be a flat disk. O

The monotonicity formula places strong constraints on the geometry/behavior of a minimal

surface. For example the following result rules out “tentacle” type behavior:

Corollary 9.5. Suppose that ¥; is a sequence of minimal submanifolds in By C R™ with

|X;| < A. Pass to a subsequence so that the volume measures on ¥; converge weakly, i.e. for

f € Co(B2) it holds that
/ FdVs, — / Fdy
DI

for some Radon measure on By. Then if x; € ¥; has v; — x € By then x € supp p.

Proof. For t < r < d(x,0Bs), choose f < xp,(z) so that for i large xp,_,(z,) < f. Then we
have

limsup |X; N By—¢(z;)| < lim sup/ fdVs, = /fdu < u(B,(x))
1—00 1—00 >

On the other hand, since x; € 3;, monotonicity (Corollary gives

wilr = 1)" <[ N Broe(@i)] < (B ().
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Letting ¢t — 0 we get u(B,(x)) > wpr®. This completes the proof. O

10. THE GEHRING LINK PROBLEM

This section roughly follows [BS83].

Lemma 10.1. If a compact minimal submanifold ¥* C R™ has X N Br(0) =0 and 0 € ¥
then kw,RE=1 < |0X|. Equality holds only for ¥ a flat disk.

Proof. Take X (z) = || %z on X\ B,. As in the proof of montonicity, we can let s — 0 to
find

kuwy, < / klo| 727 R |2t 2 + ko :/ |lz| 2 - .
2 ox.

Using |z| > R on 0% we find
kwy < RVF0Y

which proves the assertion. 0

Corollary 10.2 (Gehring link problem). Suppose that I'1, Ty are smooth Jordan curves in
R3 that have non-zero linking number and dist(T'y,Ty) > 1. Then min{|Ty|, |Ts|} > 27.

Proof. Find a minimal surface ¥; C R3 with 0%, = I';. Up to a translation, 0 € 'y, N Y, so
I'NB; =0. Lemmam gives |I';| > 2. d

To find ¥; we could use homological area-minimization. Alternatively, we could argue
that Lemma holds for the solution to the classical Plateau problem.

Remark 10.3. Using the homology minimizers, the result extends to all dimensions, cf.
[BS83]. In fact, for I'* C R™ closed submanifold, if we defined FillRad(T") to be the infimum
of r > 0 so that [I'] =0 € H,(U, (")) (for U,(I") denote the r-tubular neighborhood) then we
can prove (in the same manner) the Euclidean filling radius inequality || > kwy FillRad(T).

See also [Mat 75, [ES76, [Oss76l, Gag80, [Ere09l [Gutl10].

11. FARY-MILNOR

We discuss the Eckholm—White-Wienholtz proof [EWW02] of the Fary—Milnor theorem.

Given ¥ C R" compact minimal submanifold, let
E0Y) :={tx:x € 0%t > 1}
be the exterior cone over 0X.

Proposition 11.1. Assuming that 0 € ¥ C Bg(0) for a compact minimal surface, we have
kwpRF1 < |E(0X) N OBg].
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Proof. Take X = |x| %z as before. The first variation formula gives

/ UE'X:kwk—F/dngX
[2)> by

/ lz| 'z - X —/ 2|t X = / divgen X + H - X.
E(0X)NOBRr 10D E(0X)NBgr

Even though H may not be = 0 on E(Y), we have H - z = 0 since z is tangent to the
exterior cone. Note also that |z|™'z - X = |z|7*1 and 7y - X < |z|7**! along 0%. Thus,

since divy X > 0, we have

kwkg/ \x!lx-X—l—/ (s - X — |z|'2 - X)
E(0%)N0Bg ox

<R7* 2| e
E(0%)N0Bg

= R'"¥E(0%) N 0Bg|
This completes the proof. [l

Exercise 11.1. Show that the proof of Proposition [L1.1] proves that r — r~*|(S U E(9%)) N
B,| is non-decreasing, i.e. ¥ U E(JX) satisfies the monotonicity formula for all radii. This is
due to Gromov (rediscovered in [EWW02]).

We now assume that k£ = 2.
Lemma 11.2. Then the geodesic curvature of E(0X) NOBr C E(0X) satisfies k = R™!.

Proof. Parametrize E(0X) N 0Bk by unit speed as 7(t). Then, the (vector) curvature as

a curve in R" is k = ~"(t) and the geodesic curvature satisfies Kk = —n - k. Note that

n(y(t)) = [v(#)|~y(t) and since y(¢) - v(t) is constant, we get 7" (t) - v(t) = —[v'(¢)]* = —L.
Putting this together, the assertion follows. 0

Thus

Rl|E(az)mBRy:/ ﬁ:/ K- K:—/ KS/ I
E(0S)n0Bg E(0S)NBg 9(E(05)) O(E(05)) ox

We used Gauss-Bonnet and that E(0X) has K = 0 (since it contains a radial line, there’s
one zero principal curvature). As such, we obtain
(11.1) 27 = wy < RYE(O%) N By| < / I

o5
(Note that = holds if and only if ¥ is a flat disk.) This is not surprising, since we know
that fy |E\ > 27 for any closed loop in R™. However, the argument we gave actually proves

something stronger:

Theorem 11.3 (Féry-Milnor [Fard9, Mi50]). IfT € R? has [ |k| < 4 then T is unknotted.
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Proof. Let F': D — R? be the Plateau solution for I'. We will assume that F is an immersion
on D; this could be arranged by e.g. perturbing I' to be real analytic. Let ¥ = F(D). The
first-variation formula will hold for 3 as well (even though it’s not necessarily embedded).
If I' is knotted, we can assume that 0 is an immersed point for ¥, i.e. at least two sheets of
¥ cross at 0. This gives lim, ;o s 2|2 N 0B,| > 2w, = 47. As such, if we repeat the proof of
, we will get 47 < [, . ]E |. If equality held, then I" would be a convex curve contained

in a plane in which case it’s unknotted. This completes the proof. 0

Note that we did not actually need to assume that F' is an immersion since the first-
variation may be proven for branched minimal immersions (the derivation we gave works

essentially verbatim). Taking more care with the above argument we have:

Theorem 11.4 (Eckholm-White-Wienholtz). If I' C R™ is a smooth Jordan curve with
fr |12] < A7 and X 1s a branched minimal tmmersion with 02 = T then X is embedded and is

in particular free of interior and boundary branch points.

See [EWW02] for further discussion and references.

Note that the example of a branched minimal surface has boundary curve approximately
transversing a circle twice and thus has total curvature = 47 + e. See also [AT77, [Hub80].

It’s natural to ask about minimal surfaces of other topologies. For example [EWW02, §5],
there’s I' C R? smooth Jordan curve with [, \lg] < 4m but I' bounds a minimal Mobius strip.
To construct I" take two copies of a convex polygon in R?. Joining them at a common point
yields an immersed piecewise smooth of “total curvature” 4mw. Rotating each slightly (in
opposite directions) around a line containing the joined point yields a polygonal curve in R?
that has a single self-intersection. This procedure strictly decreases the total curvature since
e.g. if the angle at the (unrotated) crossing is measured via cosa = (z,9,0) - (—z,y,0) =
y? — 22 then the rotation yields cosay = (z,cosfy,sinfy) - (—x,cos by, —sinfy) = x? +
(cos? @ — sin?0)y? — 2. See Figure [3| Thus, one may smooth the curve out to yield T' of

FIGURE 3. A piecewise smooth Jordan curve in R? with total curvature < 4
that bounds a least area Mobius strip.

total curvature < 4m. Any disk with boundary I'" will approximately have area at least
2 x (area of the polygon). On the other hand, one may find a Mébius strip bounded by I’
with much less area. The Douglas criterion for non-orientable surfaces thus implies that
I" bounds a least area Mobius strip. In this direction, White recently proved the following
result using mean curvature flow (combined with the original Milnor proof of Theorem :
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Theorem 11.5 (White, [Whi22]). For I' C R?® smooth Jordan curve:

(1) If [ ]
(2) If |1
disk.

31 then any minimal surface bounded by I' must be a disk.

k| <
k| < (1.014) x 37 then any orientable minimal surface bounded by I' must be a

This raises the following:

Open Question 2. What is the least K so that if [, k| < K then any (orientable) minimal
surface bounded by I' is a disk. In the orientable case, the 4m-conjecture asks if K = 4x
(this is the largest possible in light of examples [AT77), [Hub80]).

12. THE ISOPERIMETRIC INEQUALITY

Recall the classical isoperimetric inequality says that if 2 C R™ is a compact region with
smooth boundary then |9Q|=1 > |dB|#-1|B|~'|Q| (i.e. the ball has least surface area for
fixed volume). An important property of minimal submanifold is that they continue to
satisfy the isoperimetric inequality (in many cases with the optimal constant). This section

draws from the exposition in [Bre23].

Theorem 12.1 (Carleman [Car21], Reid [Rei59], Hsiung [Hsi61]). Consider 2 C R™ com-
pact minimal submanifold with one boundary component O%.. Then |03|* > 4x|3|

Proof. By scaling, we can assume that |03| = 27. Parametrize 9% by unit speed o : ST —
0¥ C R™. Up to a translation, we can assume that fo% a(s)ds = 0. Thus, Wirtinger’s
inequality (Poincaré inequality on S') gives
2m 27
/ ai(s)? < / a(s)? = |z)? < 27.
0 0 o%

Thus, letting X = x, we have

1
2|E\:/divEX: X-n§!62\5</ W) < 2m,
Y ) [

so [X| < 7. This completes the proof. O

The generalization to higher dimensions (or all topological types) has been a long-standing
open problem with many partial results (cf. [Bre23] for citations). A recent breakthrough of

Brendle resolved this for minimal surfaces of co-dimension < 2. For hypersurfaces:

Theorem 12.2 (Brendle [Bre2l]). If X" C R™! is a compact minimal hypersurface then
057 > 0B |71 |B"[ 7[5

In co-dimension > 3 we have:



(1)
(2)
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Almgren [AIm86]: if ©* C R™ i{"|area minimizing then ¥ satisfies the sharp Euclidean
isoperimetric inequality |91 > |0BK| 1 |B*[~1|S).
Michael-Simon [MS73]: If %% C R" i™ a minimal submanifold then ¥ satisfies a

Euclidean-type isoperimetric inequality with a non-sharp constant |8Z|Tﬁl > c(k)|X).

Part 3. Examples of minimal surfaces

We now discuss examples of minimal submanifolds, particularly those without boundary.

13. EXAMPLES VIA ISOMETRIES

Recalling that isometries preserve the Levi-Civita connection, we have:

Lemma 13.1. Suppose that F : (M, qg1) — (Ma,g2) is an isometry. If ¥ C (My,q1) is
a submanifold then dF(As(U,V)) = /Tp(g)(dF(U),dF(V)) for U,V € T, and dF (Hy) =

FIF(g).

For (M, ¢1) = (M, g2) and F(X) = ¥ this can be used to give a computation free proof

that certain submanifolds are minimal.

(1)

(2)

(3)

For F(x,y,2) = (z,y,—=2), dF, preserves T,R? but is a reflection in the normal
bundle, so we see that R2 C R3 is totally geodesic (A = 0) and thus minimal. The
same proof works for any II C R™ affine subspace.

The helicoid ¥ C R? is defined by rotating a line while moving upwards. We can
define a global chart X (¢,0) := (tcos,tsin6,0) (note that then 3 = {y = xtanz}).
See Figure [dl Let F' denote the 180°-rotation around the line ¢ := {(¢,0,0) : ¢t € R},
ie. F(z,y,2) = (x,—y,—z). We observe that F'(X) = ¥ and for p € ¢, F(p) = p
but dF(N(p)) = —N(p). Thus, the above lemma gives that —Hy(p) = dF(Hx(p)) =
q ) () = Hs,(p), so Hs(p) = 0. We could have done this for any other of the lines
in ¥ so we see the helicoid is minimal. Note that dFp|r, s is not the identity (it has
one +1 eigenvalue and one —1) so we do not conclude that ¥ is totally geodesic.
Write R?T2 = R™™! x R"™ and define the Simons cone C,,,, = {(x,y) € R*"™2 :
|z| = |y|}. We claim that C,,, is minimal. Note that O(n + 1) x O(n + 1) acts
isometrically on C,, ,, so it suffices to show that the mean curvature of C,, at p =
((r,0,...,0),(r,0,...,0)) vanishes for all » > 0. Note that a normal vector to C,,, at
p is given by N(p) = ((\%,0, .., 0), (—\%,O, ...,0)). The isometry F(z,y) = (y, )
preserves C, , as a set and has F'(p) = p but dF'(N(p)) = —N(p), so this proves that

C,.n 1s minimal.

Exercise 13.1. Find J € s0(2n + 2) so that Uper(e?/C),,) x {6} is minimal.
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FIGURE 4. The helicoid. Credit: Matthias Weber, https://minimal.site
host.iu.edu/archive/

A related method can be described as follows (cf. [Law77, pp. 20-25]). Let G be a compact
connected group of isometries of a Riemannian manifold. Recall that an orbit of p € M is
G(p) = {9(p) € M : g € G} is a smooth embedded submanifold diffeomorphic to G/G,
where G, = {g € G : g(p) = p} is the isotropy subgroup (cf. [Leel3, Proposition 21.7]); in
the examples below it will be easy to verify this by hand. We say that two orbits G(p) and
G(q) are of the same type if the isotropy subgroups G,, G, are conjugate. i.e. there’s g € G
with G, = gGpg~".

Theorem 13.2 (Hsiang [Hsi66]). An orbit G(p) is a minimal submanifold if and only if it’s

a critical point of volume among all nearby orbits (of the same type).

Proof. Suppose that G(p) is critical among orbits of the same type. Let H denote the
mean curvature vector along G(p). Note that g, H, = ﬁg(p) for g € G so g(expp(tﬁp)) =
expy () (tHy(p))- As such,

5, := {exp,(tH,) : ¢ € G(p)}
is a G orbit. Moreover for p; = expp(tﬁp), we have
9€Gy, & p=glp) < exp,(th,) = glexp,(tH,)) = exp,g) (tHyy).

Since H is a normal vector (and g*ﬁp = ﬁg(p)), for ¢ small this is equivalent to g(p) = p i.e.
g € G,. Thus, G, = G, so ¥; are orbits of the same type.

ITThis also holds true for “minimizing currents,” i.e. singular minimizers.
8This also holds true for “stationary varifolds,” i.e. singular minimal surfaces.
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The velocity vector of ¥; at t = 0 is precisely H , and thus the first variation gives

d .,
2 5 = — AP
im0 == [

This completes the proof. 0

Examples:

(1) G =SO(p+1) x SO(q + 1) acts on SPT7~1 C RPT4+2 The orbit of (z,y) € RPTI2
is SP(|z|) x S%(|y|) with volume proportional to |z|P|y|?. The critical points of this

function on the sphere |z|?>+|y|* = 1 are easily computed to be when |z|> = e yl* =

+ 71 . . .
L s0 SP(y /) x S9(y /+E) € SPTT is minimal for all p, g € Zx;.

(2) Since ¥ C S"™ is minimal if and only if the cone over ¥ is minimal (Exercise!) we
can use (1) to generalize the Simons cone C,, ,, to the set of “quadratic cones” C,, =
{(z,y) € R X RT - glaf* = ply[*}.

See [LawT77, p. 24] for an example that constructs a non-totally geodesic S® — S%.

14. THE CATENOID

In this section, we look for axially symmetric minimal hypersurfaces ¥ in R*™! given by

a parametrization F : [ x S"~! — R"™! (for I C R an open interval) of the form

F(s,w) = (s,7(s)w) € R x R™.
Fixing some local coordinates on S*~! we find that

OsF(s,w) = (1,7 (s)w), i F(s,w) = (0,7(s)0,)

so the induced metric satisfies

g = (1+7"(5)*)ds* + () ggn-1.
The induced volume form satisfies

dps, = /14 1(s)2r(s)" ‘dsdpign-1.

If we vary 7(s) to r(s) + tp(s) with p(s) compactly supported, then if ¥ = 3, (,) is minimal,

then the first variation formula gived™

d
0= —
dt

area(Er(s)Hp(s))

_ |qn—1 T/(S)T(S)n_l /(s n— 7"82%7”871_2 s s
— s |/I(—(1+T,(S)2);p<>+< D+ () () p<>)d

!
Lnote that( L )z L

(1+22)3
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S””/( TQW1‘KH_DM@%“WJ+wn—wa+ﬂ@VﬁM@“ﬁp@m5

(1+7(s)2) (1+7(s)2)2

(
! LLU SRS iU
S"T o - s)ds.
- | |/( w*‘u+w@%2>M)

Thus, since p(s) is arbitrary, we can see that if > is minimal then

' (s)r(s) = (n — 1)(1 +1(s)?).

We want to find a first integral for this equation. One may do this by brute force or

appealing to Noether’s theorem, but a geometric way to do so is to use conservation of flux.
Let I's = {s} x S"7'. Then the (upwards) conormal satisfies

(1,7"(s)w)
1+177(s)?

Let K = (1,0) denote the upwards pointing parallel vector field. Then, we have that the

/5 <K7773> :%

is independent of s. Call this constant Fy. Solving for 7’(s) we find

Ns =

flux

(14.1) r'(s)2 4+ 1= Fir(s)*nY.

Exercise 14.1. Show that a solution to (14.1)) yields an axially symmetric minimal hyper-

surface in R™+1,

14.1. Catenoid in R®. When n = 2, one may check that the general solution is r(s) =
Fy ' cosh(Fy(s — sg)) for sg € R arbitrary. This yields the catenoid in R® (changing Fyy and
s represents a scaling and vertical translation). See Figures [5| and @ Note that for sy = 0,

we can write
eFos

Fyr = cosh(Fys) ~

so if we delete the circle of smallest radius r = F}; ', the catenoid can be written as the union
of two graphs on R? of the form z ~ +log(2Fyr). In particular, the catenoid in R? is not
contained in a slab of bounded height.

14.2. Catenoid in R=%. When n > 3 there is no closed form solution, but we can solve ([14.1))
to find the profile function implicitly. Instead of doing this, we’ll consider the qualitative
behavior (which is very different in higher dimensions as compared to in R?). When r(s) > 1

(assuming 7’(s) > 0) we can estimate

1

' (s5)* = Fgr(s)z(”_l) = (T(S)Q_n)/ ~—Fy(n—2)=r(s) = (C— Fo(n—2)s) 2
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4l

FIGURE 5. The profile curve of the R? catenoid (with F = 1).

FIGURE 6. The catenoid. Credit: Matthias Weber, https://minimal.site
host.iu.edu/archive/

In particular, separation of variables suggests that r(s) — oo at some finite s. It’s not hard

to prove this rigorously:


https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/

40 OTIS CHODOSH

Exercise 14.2. Show that for n > 3 and fixed flux Fjy, there’s a solution to ((14.1]), unique

up to translation in s, implicitly given by

B /r(s) dp
s = 1
Fom /F02p2(n—1) -1
for s > 0. Conclude that the catenoid in R"*! for n > 3 is contained in a slab {|z"*!| < S}
and find an integral relating S and Fy.

Exercise 14.3. For any n > 2, show that a catenoid in R"*! that’s symmetric with respect
to the 2" !-plane can be written as the union of two graphs (deleting the central S*~!) over
R™ x {0}. Show that the graphical function is approximately equal to the Green’s function
on R™.

See Figure [7| for a comparison between the R* and R?* profile curves. In particular, we
emphasize that the R? catenoid is not contained in any half-space, while an R=* catenoid is

contained in a slab.

15. THE WEIERSTRASS—ENNEPER REPRESENTATION

We now describe a powerful method (based on Riemann surface theory) for finding two-
dimensional minimal surfaces in Euclidean space. The basic idea is to combine the induced
Riemann surface structure with the fact that the coordinate functions are harmonic (Theorem
and the fact that the Gauss map is conformal (described below).

We first recall that we called weakly conformal harmonic maps F : D — R" “branched

minimal immersions” in Section 3.2l The following lemma (to be used later) shows that

2

-2

FIGURE 7. The profile curve of the R?* catenoid (for comparison, the dashed
plot is the R? profile curve with the same smallest radius).
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this terminology is consistent with the terminology used in later sections, i.e. a minimal

immersion is one with vanishing mean curvature H = 0.

Lemma 15.1. Given a Riemann surface X, consider a conformal immersion F' : > — R™.
Then F has H = 0 if and only if F' is harmonic in the sense that each coordinate function

1s a harmonic function on X.

Proof. Let g = F*grn denote the induced metric. Theorem gives AgF = H. Since F is
conformal, this completes the proof. U

Exercise 15.1. Prove this remains true (with “harmonic map” in place of “harmonic”) for

conformal maps F' : ¥ — (M, g).

15.1. The Gauss map. For ¥? C R? minimal, there are just two principal curvatures, so
Corollary gives 0 = H = A\ + A\ Thus, in some (oriented) orthonormal basis of T),%,
the shape operator S = DN : T2 — T,¥ = Ty, S* becomes diag(\, —\).

Corollary 15.2. If ¥? C R3 is minimal, the unit normal defines a weakly conformal orien-

tation reversing map N : ¥ — S2.

15.2. Holomorphic differential. We briefly review and generalize the discussion from
Section [3.1] on the holomorphic differential. Fix a Riemann surface ¥ and smooth map
F :3 — R". Let z,y be local oriented coordinates and let ( = z + iy (note that ¢ may not
be compatible with the Riemann surface structure).

Let gij = O;F - 0;F. We define a C"-valued 1-form by ¢ = (¢1,...,¢,) = O Fd( =
2(0,F — i0,F)d¢. As in Section , we have

OF)? = Gaw = Gyy — 20Gay, AOF > = guw + Gyy-
Thus, we find:

(1) ¢y is holomorphic if and only if F} is harmonic
(2) x,y are isothermal if and only if ¢ = 0.

(3) if #,y are isothermal, then F'is an immersion if and only if |¢| # 0.
As such, using Lemma [15.1} we see that finding (2-dimensional) minimal surfaces in R" can
be viewed as a problem in Riemann surface theory:
Lemma 15.3. If F': ¥ — R" is a minimal immersion and x,y are local oriented isothermal

coordinates then ¢ is a C"-valued holomorphic 1-form with

(15.1) =0 and  |¢|* #0.
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Conversely, if 3 is simply connected and ¢ = (¢1,. .., ¢n) satisﬁeﬂ then
(15.2) F =Re / o)

defines a conformal minimal immersion F : ¥ — R".

To be precise, the integral we defined above is a path integral from some fixed base-
point zp € X (often this is ignored, since a change of basepoint is equivalent to applying a
translation to the image of X).

Note that the integral is path-independent since the ¢, are holomorphic and ¥ was
assumed to be simply connected. If 3 is not simply connected then will be well-defined
if and only if f7 ¢ € 1R is purely imaginary for all closed loops 7 in 3. This is called the
period problem. Of course, since the ¢ are holomorphic, it suffices to check this on a basis
of Hi(%).

Example 15.4. Consider the cylindrical coordinate parametrization of the catenoid

cosh v cosu
F(u,v) = | coshvsinu
v
for (u,v) € R x S'. Note that
—coshvsinu sinh v cosu
OuF =] coshvcosu |, Oy F = | sinhvsinu
0 1

so using cosh? = 1 + sinh? we find that |0, F|? = |0,F|* = cosh®v and 9, F - 0,F = 0, i.e. F

is a conformal immersion. Setting ¢ = u + iv € C/Z we thus set

01 — coshvsinu — ¢sinh v cosu —sin ¢
p= || = (OF —i0,F)d( = | coshvcosu—isinhvsinu |d{=| cosC |d(
¢3 —1 —3
Note that
e [ —SINt 0
/ O = / cost | dt= 0
et i

is purely imaginary, so the periods are all zero (as expected).

15.3. Conjugate minimal surfaces. We now assume that ¢ is a C" valued holomorphic
1-form on ¥ so that fv ¢ = 0 for all closed curves v C ¥ (compare with the period problem

20A5 with the Douglas—Radé maps, one may drop the assumption that |#|? # 0 and thus consider branched
manimal surfaces.
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where we just require that each period is purely imaginary). Given any (branched) minimal
immersion F': Y — R”, this can always be achieved by considering a small patch D C ¥ or

else by passing to an appropriate coverE-I

Then
O = /¢

(choosing a basepoint) defines a holomorphic map ® : X — C™ with F' = Re ®. As such, we

can define Fy := Re(e”®). It’s easy to see that Fy is a (branched) minimal immersion.
Lemma 15.5. The metric induced on 3 by Fy is independent of 6.

Proof. We have |e?¢|? = |¢|?. O
Example 15.6. We found that

—sin ¢
o=\ cosC |dC
—1

for the catenoid ¥ = C/Z. Passing to the universal cover > = C, we can integrate to find

cos ( coshv cosu — sinh v cosu
&= |sin( | =|coshvsinu | +¢2| sinhovsinu
—iC v —u

(up to a fixed translation which we ignore) where we recall ( = u + v € C. Observe that
(up to an ambient isometry of R?), F = is a parametrization of the helicoid! In particular,
we conclude that the helicoid and catenoid are locally isometric. See https://en.wikiped

ia.org/wiki/Catenoid#/media/File:Helicatenoid.gifl

15.4. Weierstrass representation. We now assume that n = 3, i.e. we have F': ¥ — R3.
We relate the integrand ¢ = (¢1, @9, ¢3) to the Gauss map. In the sequel, it’s useful to recall
that the ratio of two holomorphic 1-forms is meromorphic (assuming the denominator does
not vanish identically) and that conformality gives ¢? + ¢35 + ¢3 = 0. We may assume that
¢3 is not identically zero. Let

b ditid

g —igy ¢s

(the second equality follows from conformality). We note that

g

¢1 = %(Cbl — iy + 1 + i) = %(9—1 — g)P3.
Similarly,

g = %(9_1 + 9) s,

2INote that the catenoid does not satisfy this condition without either restricting to a simply connected
coordinate patch or else passing to the universal cover.


https://en.wikipedia.org/wiki/Catenoid#/media/File:Helicatenoid.gif
https://en.wikipedia.org/wiki/Catenoid#/media/File:Helicatenoid.gif
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Following [HK97] we write ¢3 = dh (note the mild abuse of notation: Re ¢z = dx? is exact
but ¢3 = dr3 + i(dr®)* need not be exact unless we pass to an appropriate cover). Thus we
have

(153 o= (307 -0 gt + o)1) in

We may easily reverse this calculation:

Lemma 15.7. Given a meromorphic function g and holomorphic 1-form dh on 3, the C3-
valued 1-form ¢ = (¢1, o, ¢3) defined by satisfies ¢* = 0 and thus F = Re [ ¢ defines
a branched minimal immersion, possibly after passing to a cover of ¥ to resolve the period
problem.

Note that |¢|> = 3(|g| + |g|™")?|dh|* so we find that F is an immersion if and only if at
any zero of dh there’s a zero/pole of g of the same order.

Recall that the Gauss map N : ¥ — S? is orientation reversing conformal and inverse
stereographic projection o : S\ {N} — C is conformal and orientation reversing. We now

show that ¢ is the Gauss map:

Lemma 15.8. g=00 N.

Proof. Note that

(9" +9), 1) dh]

l
"2

dF = Re K%(g‘l ~9)

and thus we find that

1, i, 1, i, 4
= —9), = 1 Im (| = —9), = 1
Re (2(9 9): 5097 +9), ) m(2(g 9): 5097 +9),
are (linearly independent) tangent vectors to 3. On the other hand, we have
-1 (2Rega21mga ‘g|2_1)
o og=

lgl> +1

so it suffices to observe that

1, T,
(—<g gl 1+g>71) (2Reg,2Tmyg, g — 1)

2 2
_ gReg —|gPgReg +iglng +ilgPglmg o —1
l9]?
= 0.
This completes the proof. 0

We'll call g and dh the Weierstrass data and/or the Gauss map and height differential.

Exercise 15.2. Compute the Gaussian curvature and second fundamental form in terms of

the Weierstrass data.
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15.5. Examples. We can easily find the Weierstrass data for the minimal surfaces in R?

already discussed:

Exercise 15.3. Show that:
(1) the catenoid has Weierstrass data g = z,dh = % on C \ {0}

z

(2) the helicoid has Weierstrass data g = €%, dh = dz.

FIGURE 8. Enneper’s surface. Credit: Matthias Weber, https://minimal.
sitehost.iu.edu/archive/

The next simplest example is Enneper’s surface given by g = z,dh = zdz. See Figure
(note that Enneper’s surface is immersed, not embedded). An interesting feature is that the
induced metric

216 = (l2| + [2]7)?|2*|dz]* = (1 + |2[*)*|dz]?

is thus rotationally symmetric (even though the embedding is not rotationally symmetric).

Exercise 15.4. Determine § € S! so that ¢ — ¢t € C is mapped to a straight line in R?
contained in Enneper’s surface. Conclude that “half of Enneper’s surface” is an embedded

surface with straight line boundary.

The Enneper—Weierstrass representation can be used to construct many examples of em-
bedded/immersed minimal surfaces in R® (and R"™ when appropriately generalized). See
Figure [9] (and Weber’s minimal surface archive https://minimal.sitehost.iu.edu/arch

ive/).

16. CALIBRATIONS

Definition 16.1. Suppose that X* C (M, g) is an oriented submanifold. A k-form o €
QOF(M) is a calibration for M if:


https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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Costa—Hoffman—Meeks

Chen—Gackstatter Jorge—Meeks

Riemann Scherk Scherk

FIGURE 9. More examples of (complete) minimal surfaces in R3. The top and
bottom row are embedded while the middle row are immersed. The bottom
row has infinite total curvature, while the top two have finite total curvature.
Credit: Matthias Weber, https://minimal.sitehost.iu.edu/archive/|
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(1) dae =0
(2) If ey, ..., e, € T,M are orthonormal then a(es,...,e;) < 1.
(3) If ey, ..., e is an oriented basis for T,% then af(ey,...,e;) = 1.

Theorem 16.2. If « calibrates X then Y is homologically area-minimizing on compact sets.

Proof. Tt suffices to prove that if ¥ is compact and calibrated by a then |%| < |E| for all
with ¥ = 0% and [X] — [¥] = 0 € Hy(M). Find a (k + 1)-chain Q with 9Q = ¥ — %. Then,

Stokes theorem gives
O:/da:/a—/&.
Q X p)

We have that a|x = d Voly, and alg < d Volg. This completes the proof. O

Example 16.3. Suppose that (M, g) is foliated by oriented minimal surfaces. Let v denote
the unit normal to the leaves of the foliation and w denote the volume form of g. Let o = 1, w.

Since dw = 0 and Lxw = (div X) w, Cartan’s magic formula gives
da =divy w

On the other hand, we have g(D,v,v) = 0 (differentiate |v|*> = 1) and thus if ¥ is a leaf of

the foliation then divy = divy v = 0.

Remark 16.4. Implicit in the previous example is the observation that codimension one
calibrations are the same as vector fields X so that

(1) divX =0

(2) [X]<1

(3) X is a unit normal along .

Indeed we can set o = txw for w the volume form.

Example 16.5. Let w = %Z?Zl dz; Ndz; = > p_ dxj A dy; on C". One may check that
% calibrates dimensional complex submanifolds (this follows from the so-called Wirtigner’s
inequality [Wir36]) so they are all area-minimizing on compact sets (Federer [Fed65]). We
just check for k£ = 1 which follows from w(vy,ve) = g(Juvy, v2) so |w(vy,v2)| < 1 with equality
if and only if vy, vy span a complex plane in C. More generally, the same thing holds for a

Kéhler manifold (complex submanifolds are calibrated by powers of the Kéhler form).

It’s interesting to ask if all area-minimizing surfaces in C" are holomorphic (up to a
rotation/reflection). For example, we have the following question of White [Whil6]:

Open Question 3. If ¥2 C C" is an area-minimizing surface with a true branch point then

is 2 holomorphic?

22£X =dix +1xd
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See also [Mor82, Mic84, MW95, MWO06].

Remark 16.6. There are many other important classes of calibrated submanifolds. For

example in a Calabi—Yau manifold, the so-called special Lagrangian submanifolds are cali-
brated. See [HL82].

17. MINIMALITY OF THE SIMONS CONE
We recall that the Simons cone
Co = {(2,y) € R™ x R™: |z] = [y}
was seen to be a minimal hypersurface in Section [13]

Theorem 17.1. For n > 3 the Simons cone C,,, C R2"*2 minimizes area on compact sets.

This was first proven by Bombieri-De Giorgi-Giusti [BDGG69]. We note that in R” and

below no non-flat minimizing cones exist (proven by Almgren, Simons [Alm66, [Sim68§]).

Corollary 17.2. There exists I'® C R® closed oriented submanifold so that the least area
“submanifold” X7 with 0¥ = T is not smooth.

Proof. Let I' = 0C, ,, and note that C,,,, is not smooth at 0. ]

Remark 17.3. One might find this result unsatisfying since we did not prove that no smooth
area-minimizer exists. This stronger statement is true. In fact one can prove that I' does

not bound any smooth minimal surfaces.
Remark 17.4. In fact, one may show that (for p,q € Zs,) the quadratic cones C,, =
{(z,y) € RPTL x R . ¢|z|> = ply|*} are minimizing if and only if p+q +2 > 9 or else
p+qg+2=8and (p,q) £{(1,5),(5 1)}
Since C), 5, is not smooth, we should state Theorem more precisely. We let

Q= {|z] < |y} C R*?

so that 092 = C,,,,. Consider ) C R2" open with 9 smooth and
QAQ = (Q\Q)U(Q'\ Q) € Br

for some R > 0. We'll prove that
(17.1) |02 N Bg| < |09 N Bg|
following the “sub-calibration” method from [DPPQ9].

Let f(z,y) = 1(Jo|* —|y[*) and set X = %. Note that X is smooth away from (0,0) and

obviously satisfies | X| < 1 and is normal along C,, ,,. We compute

fﬂfz’ = |:13|21‘Z
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IVF? = [2]° + |y|°
S, = 2705 + 5ij|x|2

(IVF*)z, = 6lz]"z;

n+1 n+1
2 (|Vf!) 2 IV f[?

g =1

Thus we have

=1
B Z (|2[6 + |y[®) (222 + |]?) — 3|02
(2 [yl (n + 3)[f? - 3jaf®
MiE
nzf® + (n + 3)|z[2]y|®

VI
The derivatives with respect to y are the same but the sign flips. Thus we find
VAP div X = n(|af® — |y*) + (n+ 3) ||y (Jy[* — [«]*)
= (J2|* = [y (n(l=[* + y[*) = (n + 3] Ply[*).

Note that

n+3 71—}—3’|4
2 2 VY
so as long as HT% <n (i.e. n > 3), div X has the same sign as f. We now have

(n+3)[al’|yl* < j2]* +

Proof of Theorem[17.1, We prove Theorem in the special case that 2 C €, i.e. the
competitor “lies to one side.” (See Figure ) The general proof is similar but requires us
to keep track of more signs. By assumption we have that f > 0 on '\ Q and thus div X >0
on '\ Q (in fact > 0 a.e. if we keep careful track of the equality in AM-GM above). We also
observe that X is inwards pointing with respect to Q' \ Q along C,, ,,. Thus, the divergence

0</ divX = N-X—I—/ N - X.
Q\Q Chr.nNBr O0'NBR

Since N - X = —1 along C,,,, and < 1 along 9’ we thus conclude

theorem gives

(Crun N Br| < |09 N Byl

completing the proof. O

Exercise 17.1. Prove Theorem without assuming that Q@ C €. Also, use a cutoff

function to justify the choice of X in the divergence formula (since X is not smooth across

(0,0)).
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n divX <0
R’ Con
O divX >0
/ -

F1GURE 10. The vector field X is a “sub-calibration” proving that the Simons
cone C),,, minimizes area.

18. MINIMAL GRAPHS

Recall that for u: © C R" — R the area of the graph of u (denoted I',) is

:/\/l—i-\VuP.
Q

Suppose we vary u to u + to for ¢ € C2°(€2). Then

A(u+tp) = (Ve, ch =— (pdiV(L>.
Q

a1+ |Vul? V1+|Vul|?

Comparing with the first variation, we thus find that I', is minimal if and only if it satisfies

dtli=o

the minimal surface equation

, Vu B
(18.1) div (W) =0

We note that (18.1]) is a second order quasilinear elliptic PDE since one can equivalently

D?*u(Vu, Vu) = D;uDju
Ay— —— 1 7 = 0ii — I VD2 =0
“ 1+ |Vul? Z ( N ]VuP) i

write

ij=1
and observe that the equation is linear with respect to the second derivatives of u (quasilinear)

and that the matrix with coefficients

DuD;u
18.9 s Y
(182) % ((5” 1+ ]VuP)

is positive definite (elliptic).

Exercise 18. 1 Show that the eigenvalues of (a;;);;_; defined in ((18.2)) are 1 with multiplicity
n — 1 and 5 +|v |
equation is not uniformly elliptic.

—<— with multiplicity 1. Conclude that if \Vu\ — 00, the minimal surface

Theorem 18.1. If u : Q — R satisfies the minimal surface equation then its graph T',

manimizes area in 2 X R with O, fized.
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Proof. The vertical translation of T, foliates {2 x R and thus forms a calibration (Example
16.3)). O

Corollary 18.2. If u : R" — R is an entire solution to the minimal surface equation then

T, N Br(x)| < CR™.

Proof. Assume that 0Bg(z) intersects I', transversely. Then I', cuts 0Bg(x) into two re-

gions, both with area O(R"). Since I, minimizes area in R"*!, this completes the proof. [

Exercise 18.2. Solve the minimal surface equation on a square in R? by making the ansatz
u(z,y) = X(x) + Y(y). Using a reflection, construct a (complete) doubly periodic minimal
surface in R? (it will not be a graph).

Part 4. The maximum principle for minimal surfaces
19. THE MAXIMUM PRINCIPLE FOR THE MINIMAL SURFACE EQUATION

Suppose that ¥® C R"*! is an embedded minimal hypersurface. For any p € X, the

implicit function theorem gives » > 0 so that
¥ N B,(p) = graphu

for u defined on a subset of T,% (taking values in (7,%)*). Since ¥ is minimal, we thus have

that u satisfies the minimal surface equation.

19.1. Regularity of minimal surfaces (warmup). This observation gives that local prop-
erties of ¥ can be reduced to the study of the minimal surface equation, for which one has

many tools such as the maximum principle. As a basic example, we have:

Lemma 19.1. Suppose that ¥ C R is a hypersurface that’s C%-smooth in the sense that
it can be locally written as the graph of a C*-function over its tangent plane at any point.

Assume that X2 is minimal. Then X 1s C*°-smooth.

Proof. Tt suffices to prove that if u € C2_(B) solves the minimal surface equation, then

u € Cp2(B). Write the minimal surface equation as

0=M(u) = Z aij(Du)Dinu =0
ij=1

for a;; as in (18.2). Since u € CZ (B) we see that a;; € CL.(B). Thus, Schauder theory

loc
(A2) implies that u € C>%(B), so in particular a;; € C2*(B). Differentiating the minimal

loc

surface equation and writing u, = Dyu we get

n

ij=1 =1 \ij=1
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(B) since u € CZ¥(B). Thus, we

The lower order term (in parenthesis) will be in C? o

loc

can apply Schauder estimates to this equation satisfied by u, to get v € 03’0‘(3). This

loc

(inductively) gives u € CL2.(B). O

Remark 19.2. In fact, it’s possible to conclude that ¥ is real analytic. See e.g. [Mor08], §5.8].
Note that if ¥ is O then we can already ask if it’s minimal in the sense that fz divg X =0
for any compactly supported vector field along ¥ since all we need is the volume form of X
and the unit normal (to define divy X). Both of these only depend on first derivatives of w.
Lemma is still true under this assumption. See e.g. https://cmouhot.wordpress.co
m/wp-content/uploads/1900/10/mse. pdf.

19.2. Maximum principle.

Proposition 19.3 (Maximum principle for minimal surface equation). Suppose that uy,us €

Cx(B), B C R™ solve the minimal surface equation. Assume that uy < us in B and

u1(0) = uz(0). Then u; = uy in B.

Proof. We write the minimal surface equation as M(u) = 7. a;;(Du)D}u. Let v =

ij=1
us — up so that v > 0 in B and v(0) = 0. We want to show that v satisfies a linear elliptic

PDE (so we can apply the maximum principle). We have

0= M(us) — M(ur)

= > ay(Duo)Djv + Y (ay(Duz) — a(Dur)) Djus.

ij=1 ij=1
The second term looks troublesome, but we can resolve it by setting u, = uy+ (¢t —1)(us —uq)

and observing that
> d
CLij<D'LL2) — CLij<D'LL1) = / a(aij (Dut))dt
1

2
1

2
= (/ Dkaij(Dut)dt> Dyv.
1
Thus, if we set @;; = a;;(Dus) and

n 2
by, = Z (/ Dkaij(Dut)dt) D?jul
1

1,j=1

we get
n

0= a;Djv+ i b Dyv.
k=1

ij=1


https://cmouhot.wordpress.com/wp-content/uploads/1900/10/mse.pdf
https://cmouhot.wordpress.com/wp-content/uploads/1900/10/mse.pdf
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Note that a;; is uniformly elliptic on compact subsets of B (using Exercise and u €

> (B)). The assertion thus follows from the strong maximum principle. O

loc

Corollary 19.4 (Uniqueness of solutions to the minimal surface equation). If uy,uy €
C>=(Q) N C°%Q) solve the minimal surface equation on a bounded domain Q C R"™ and

ur]ag = uz|an then uy = ug in Q.
Proof. Since €2 is compact, if t > 0, then u; < us +t on Q. Let
t* = inf{t : uy < uy+t}.

Note that since the boundary values agree, we must have t* > 0. Suppose that t* > 0. We
have that u; < uy + t* and there’s 2* € Q so that uy(z*) = up(x*) + t* (otherwise we could
take t* smaller). Since the boundary values agree x* is in the interior. We can thus apply
the maximum principle (Proposition to u; and uy + t* in a small ball B 5 z*. This is
a contradiction. Thus, t* = 0 so u; < uy. Repeating this argument with v, and u, swapped,

this proves the assertion. 0

We can now prove that not all domains and boundary values admit solutions to the

minimal surface equation (compare with Theorem [21.1)).

Corollary 19.5. There exists ¢ € C®(0), with Q = By \ By C R" so that there’s no

solution u to the minimal surface equation on Q0 with u|sg = @

Proof. Let ¢ = 0 on 0B; and A on 0B,. Since the boundary condition is rotationally sym-
metric, uniqueness of solutions (Corollary implies that a solution u with this boundary
condition must be rotationally symmetric. By the analysis in Section [14], the graph of u
must be a portion of the catenoid. However, among all catenoids that are graphical over €2,
the maximal heigh \ at » = 2 occurs precisely for the catenoid with neck at sy = 0 of radius
Fy = 1. See Exercise [19.1] O

Exercise 19.1. Prove the final statement in Corollary [19.5|

Recalling that any submanifold can be locally written as a graph over it’s tangent plane,
this also proves that two minimal hypersurfaces cannot make “one-sided” (interior) contact

(unless they agree). More precisely:

Corollary 19.6 (Geometric maximum principle). Suppose that X7, 38 C R™ are properly
embedded minimal hypersurfaces and U C R™ ! is an open set so that 0X; N U = 0 for
1=1,2. Assume that

e X NU =099 for Q C U open,

e X, NU,Y,NU are connected, and

e X,NU C .
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Then, either X1 NU =XoNU or else Yo NU C Q is disjoint from .

Proof. If X1 NYoNU # () then we find that XN, NU C ¥y NU is a non-empty subset. It’s
the intersection of two (relatively) closed sets and thus (relatively) closed. It’s (relatively)

open by the maximum principle. Thus the assertion follows U

Note that the same thing holds in a Riemannian manifold. To generalize this one would
need to obtain a form of the minimal surface equation that holds with a non-flat ambient

metric and check that the above proof applies.

Exercise 19.2. Suppose that X7, 30 are two compact minimal hypersurfaces with 3y Ny =
(. Prove that d(X1,¥s) = min{d(X;,0%,),d(X2,0%)} where d(A, B) = inf{la — b| : a €
A, b € B}. Is this still true if ¥y Ny # (7

20. HOFFMAN—MEEKS HALFSPACE THEOREM

Theorem 20.1 (Hoffman—Meeks [HM90al). Suppose that ¥* C R3 is a complete properly

embedded minimal surface contained in a half-space. Then X is a flat plane.

Note that this fails in a dramatic way in R*, since the catenoid is contained in a slab.

Proof. Assume that ¥ C {z > 0} but ¥ ¢ {z > t} for any ¢ > 0. The maximum principle
implies that X N {z = 0} = (. For ¢ > 0, let I'.,. denote the bottom half of the catenoid
with neck {(z,y,¢) : 2 + y* = r}. Note that I'. . N {z > 0} is compact. As such, since ¥ is
properly embedded, we can find € > 0 so that X is disjoint from I'. ; U (Ure(0,1)01 ). Let

R:={re(0,1]:XNT.5=0forall s € (r,1]}.

Let r = inf R. If » > 0, the maximum principle gives a contradiction. On the other hand,
as r — 0, the catenoid I'., “limits” to {# = ¢} from which get that ¥ C {# > ¢}. This is a

contradiction. O

Exercise 20.1. If ¥ C R? is a properly embedded minimal surface with compact boundary
so that ¥ C H := {z > 0} show that d(X,0H) = d(0%,0H).

For R3, the proof would work essentially the same for a proper immersion. On the other

hand, the half-space theorem is false for non-proper immersions. For example:

Theorem 20.2 (Jorge—Xaiver [JX80]). There exists a complete minimal immersion 3? — R3

so that the image 1s contained between two planes.

Sketch of the proof. Consider Weierstrass data with Gauss map g = e/ (where f is a holo-
morphic function to be chosen) and height differential dh = dz on D C C. For any choice

of holomorphic function f, the Weierstrass data gives an (unbranched) immersion with 23 is
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bounded. It thus remains to choose f so that the immersion is complete, i.e. 9D has infinite

distance from 0 € D with respect to the induced metric
1 _
5 (gl + 191 7)% =/

We consider a sequence of regions Ki, K, ... in the disk D as in Figure [[1l The key
observation is that any path to 0D with finite Euclidean length must eventually start crossing
all even K, or all odd K,,. Using Runge’s approximation theorem (cf. [Rud87, Theorem 13.9]
and [Hof88| p. 96]) we can find a holomorphic function f on D with f = ¢, (freely chosen)
on K, which allows us to force such a curve to have infinite length. U

FI1GURE 11. The regions used by Jorge—Xavier to construct the complete min-
imal immersion in a slab in R3.

Nadirashvili has generalized this to a complete minimal immersion ¥ — R?® with image
contained in a ball [Nad96]. On the other hand, we remark that Colding-Minicozzi have
proven [CMOS] that the half-space theorem holds under the assumption that ¥ is embedded

(not necessarily properly) and a topological disk.

Exercise 20.2. Prove that if 3, Y, are two minimal hypersurfaces in S™ then X; N Xy # 0

(this is known as Frankel’s theorem). Find disjoint minimal surfaces in H?.

21. RADO’S THEOREM

Consider 2 C R? convex. We would like to solve the minimal surface equation on €. This
can be done in all dimensions using PDE methods (cf. [Sim97]):
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Theorem 21.1. For Q) C R" bounded domain with smooth strictly mean—conveﬂ boundary,
if o € CO(00) then there’s u € C°(Q) N C3(Q) so that u solves the minimal surface equation
(18.1) on Q with ulgn = ¢.

Instead here we describe Radd’s solution using the classical Plateau problem.

Proof of Theorem [21.1] for n =2 and p € C*®. Let F': D — R3 be the Douglas—Radé solu-
tion to the Plateau problem for I' = graph, ¢. Using the Gulliver-Osserman Theorem [3.26]
we have that F' has no interior branch points. Since I' lies on the boundary of a convex set we
have that F' also has no boundary branch points by Exercise |3.5. For simplicity we assume
that F is an embedding so ¥ = F(D) is a smooth embedded minimal surface with 90X =T.
(It’s easy to modify the proof below to cover the case where F' is a branched immersion.)

The convex hull property implies that ¥ C € x R. The maximum principle (let ¢ be a
supporting line for {2 and consider the plane ¢ x R which cannot make interior contact with
¥ since it would necessarily be one-sided) implies that 3\ 0% C 2 x R.

Let 7 : R* — R? denote the projection. Assume there’s two points p # g € X with
7(p) = m(q). Then, we can consider ¥; = X + te3. For t > 0, ¥, N X = (). Thus, we can
decrease t (slide ¥; down) until the first time there’'s x € 3, N ¥. By assumption, ¢ > 0.
Thus, the contact is one-sided and in the interior, a contradiction to the maximum principle.

To prove that ¥ = graphg, v it remains to show that there’s no point p € 3 with horizontal
unit normal. Let P be the horizontal plane at such a point. Since P is transverse to ¥ at
p, we can choose a small neighborhood p € U C ¥ so that P divides U into two smooth
connected components Uy, U; with common boundary curve . Let U be the reflection of
Uy across P. Then U and U, are disjoint (by the previous paragraph) minimal surfaces with
a common boundary curve so that they are tangent at p. This contradicts the boundary

version of the maximum principle. 0

Exercise 21.1. State and prove a boundary version of the maximum principle used in the

previous proof.

More generally, we have that if {2 C R" is mean convex then the solution to the minimal
surface equation for given boundary data is the unique compact minimal hypersurface with

the same boundary (essentially the same proof works).

22. SHIFFMAN’S THEOREM AND THE CONVEX CURVE CONJECTURE

Theorem 22.1 (Shiffman [Shi56]). Suppose that 3* C R? x [0,1] is a minimal embedded
annulus in a slab with 9% = Ty UT; convex curves in R?* x {0,1}. Then ¥ is transversal to
R? x {t}) and the intersection Ty := ¥ N (R? x {t} is strictly convex for 0 <t < 1.

Z3Mean-convex means that Hyg points into 2 at every point. If € is strictly convex, then it’s strictly
mean-convex. In R?, the notions are the same.
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Proof. We can assume that ¥ is conformally equivalent to A = {z € C: 1 < |z| < r} and
consider ¥ as the image of F': A — R3. Up to a homothety we can assume that F'({|z| = 1})
is a convex curve in R? x {0} and F({|z| = r}) is a convex curve in R? x {logr}. In particular
Fj is a harmonic function with the same boundary values as log|z| so F3(z) = log |z|. This
implies that ¥ is transversal to each parallel plane. In particular, I'io,. is parametrized by
0 s F(ce?) and the Gauss map g is never 0 or co. Thus, the angle ¢ = argg € St is also
the angle of I, in R? X {logc}. Thus, convexity is equivalent to -£¢(ce”) non-vanishing.
Since the argument of a holomorphic function is harmonic, this follows from the fact that it

does not vanish on A and the maximum principle. O

This is known as Shiffman’s first theorem. His second theorem implies that if I'g,I';
are round circles then so are I';. This, in turn, allows one to appeal to a classification by
Riemann of such 3: it’s either a part of a catenoid (if the circles are co-axial) or else a part
of Riemann’s minimal surface (see Figure[12)). See [HMO0D, §3.3].

FIGURE 12. Riemann’s minimal surface intersects each parallel plane in a
round circle or straight line. Credit: Matthias Weber, https://minimal.si
tehost.iu.edu/archive/.

Sketch of the proof of Shiffman’s second theorem. We sketch a proof due to Meeks-White
[MWO91]. Choose a deformation T';(t) so that I';(0) = T';, T';(1) are co-axial circles, and
[';(t) are moving “to the outside.” By analyzing the moduli space of minimal annuli with
boundary in parallel planes, Meeks—White prove thaﬂ there’s a smooth family (¢) with
9%(t) = To(t)UT () and £(0) = . Theorem [22.3) (proven below) implies that any minimal
surface bounded by I'g(1) UT'; (1) is axially symmetric and thus part of a catenoid. Since we
know the catenoid (and Riemann example) explicitly, we can see that any nearby minimal
24We have skipped over the most difficult part of the argument. Note that we must use the precise nature

of the deformation, since, for example, if we shrink co-axial circles in parallel planes then eventually there’s
no catenoid with that boundary.


https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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annulus (with round boudary circles) is again of the same type. Thus, a continuity argument
from ¢ = 0 to 1 gives that ¥(0) is of this type. O

Remark 22.2. For n > 3 if ¥* C R""! is a minimal hypersurface that’s foliated by round
spheres then it’s a part of the catenoid, as proven by Jagy [Jag91]. A generalization of the

Riemann example to higher dimensions (just not foliated by round spheres) was obtained by
Kaabachi-Pacard [KP07].

Exercise 22.1. Prove Jagy’s theorem: a minimal hypersurface ¥* C R"™! (with n > 3)

that intersects each parallel plane in a round sphere is a part of the catenoid.
Closely related to the 4m-conjecture (Open Question [2)) is:

Open Question 4 (Convex curve conjecture, Meeks). If 'y, I'; are convex curves in parallel

planes then they cannot bound a compact minimal surface of positive genus.

Since the total curvature of I'yg U I'; is 4w, the method of Eckholm—White-Wienholtz
(Theorem implies that any (branched, immersed) compact minimal surface bounded
by I'p,I'1 is embedded.

We have the following partial result (see also [MWO9I] for other partial results):

Theorem 22.3 (Schoen [Sch83]). For Ty C {z =t} C R? t = 0,1 conver curves, assume
that 'y, T’y are invariant under reflection in the xz- and yz-planes. If ¥ is a compact minimal
surface with 0¥ = I'o UT'y then X is either the disks in parallel planes bounded by the I'; or

else an annulus that’s invariant under the same reflections.

Proof. The convex hull property implies that ¥ C {z € [0,1]} and the maximum principle
gives ¥\ 0¥ C {z € (0,1)} (unless ¥ are disks in parallel planes). We now use the method
of moving planes. Let ITI; = {y = s} denote a translation of the xz-plane. Let ¥* denote the
reflection of 3, := ¥ N {y < s} over II;. Starting from s > 0 we decrease s until the first
time that ¥¥ is not “strictly inside” X,. If s > 0 then since ¥*s is “weakly inside,” there
cannot be interior contact. By assumption on Iy, I'; there cannot be contact on the {z = 0}
or the {z = 1} planes.

Thus, we consider X, ¥¥ along their common boundary v, = 903, \ {z € {0,1}}. On
one hand, the boundary version of the maximum principle (Exercise says that g, 2%
cannot be tangent along 7. On the other hand, the assumptions on 'y, I'; imply that they
cannot be tangent at 0v,. As such, continuity gives that >, ¥* meet with a definite angle on
7s. Since there is no contact elsewhere we could thus decrease s slightly keeping ¥ “strictly
inside” of X, a contradiction. Thus s = 0. We can repeat the same argument from the
other side to get Xy = 2.
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This gives that I, NII consists of graphs of bounded slope over IIN{z = t}. By considering
the orthogonal plane, we see that (XN {z =t}) \ II has exactly component on both sides of
IIN{z =t}, so ¥ is an annulus. This completes the proof. O

Part 5. Second variation of area
23. COMPUTING THE SECOND VARIATION

Theorem 23.1 (Second variation I). Consider F; : ¥% — (M, g) a 1-parameter family of
embeddings with Fy, = Fy outside of a compact set. For D;Fil—g = X, D?Fi|;—og = Y the
velocity and acceleration, we have
B2
dt? li=o

k
/yDX 1?2 + (divy X Z (De, X, €)9(De, X, ) = Y Ry(X, €5, €5, X)

+ / diVEY
b

where e; is an orthonormal frame and our curvature convention is that Ry(e;, e;,ej,€;) s a

area, (F(2))

sectional curvature.

Exercise 23.1. If M, is a 1-parameter family of n X n matrices with My = Id show that
(det M;)"(0) = tr M + (tr M)? — tr M2

Proof for (M, g) = R™. This is similar to the first variation formula (Theorem . In the
Euclidean case we can set Y = FO.
Letting M;; = (0;F}, 0;F;) we have
M;; = (0:X, 0;Fy) + (0, Fp, 0;X)
M;; = 2(0,X,0;X) + (9,Y,0;Fy) + (0, F, 0;Y)
Note that

tr M = 2divy X
k

k
trM? =Y (M)} =) M
i=1 i,j=1
k k
=2 (0X,0;F)° +2 ) (0:X,0;F) (9;X,0:Fy)
i,j=1 4,7=1

=2/(DX) P +2) (09X, e:) (0;X, e5)

1,j=1
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Using (f(¢)2)"(0) = —1/(0) + 1 f"(0) for f(0) =1 we have

2 1/d > 1
— det M; = —= [ —| det M, 52|, det M,
dt? =g ¥ 4( =0 t) i 2 dt 1o
1 . 1 . 1 i
= §tI'M+ Z(tI'M>2 — §tI'M2
k
= divy Y + [DX[* + (divs X)* = [(DX)"]? = > (8:X, &) (9;X, ;)
ij=1
k
=divy Y + [(DX)* + (divy X)* = > (D, X, e;) (De, X €;) .
ij=1
This completes the proof. 0

Exercise 23.2. Generalize the proof to a non-flat Riemannian manifold.

If > is minimal, then the first variation formula gives that the Y term does not matter.
(This is a geometric version of the usual fact that for a smooth manifold with no fixed
Riemannian metric, the Hessian of a function is well-defined at a critical point but not
elsewhere.) We thus define

k k
/| (DX)*? + (dive X Z (De, X, €)g(De, X e0) = > Ry(X,ei,€:, X).

=1

Theorem 23.2 (Second variation I1). Assume that X% C (M, g) is a minimal submanifold

and X is a normal vector field along 3. Then
= / (DX)H? = |X - AP — trps Ry(X, -, -, X).
b
Proof. Since X is normal and H =0 we have divy X = 0. Moreover,
9(De, X, e;) = —g(X, D.e;) = =X - A(es, e)).
This completes the proof. O
Remark 23.3. Note the proof also gives | X - A2 = |(DX)T|2.

Theorem 23.4 (Second variation III). Assume that " C (M™"! g) is a minimal hypersur-

face with unit normal v
PE(9) = PEev) = [ IVl = AP  Ricy (1)
2
for any p € CX(X).

Proof. Since v is a unit vector field, we see that g(Dv,v) =0 so (Dv)*+ = 0. O
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24. SECOND VARIATION AND CURVATURE

We call X" C (M™*, g) two-sided if it admits a smooth unit normal.

Corollary 24.1. If (M, g) has Ric, > 0 then there are no closed, two-sided stable minimal
hypersurfaces. In particular if M is oriented then H,(M;Z) = 0.

Proof. Take ¢ =1 to get
/ |AJ* 4 Ric, (v, v) <0.
b

This is a contradiction. If H, (M;Z) # 0 then we could minimize area in a homology class

to find a two-sided stable minimal hypersurface. ([l

Lemma 24.2 (Doubly traced Gauss equations). If ¥ C (M, g) is a two-sided hypersurface
then

(24.1) R, = Ry + 2Ric,(v,v) + |A]* — H?

along ¥. Here Ry, Rs, is the ambient, intrinsic scalar curvatures, Ricy is the ambient Ricci
curvature, |AJ* is the norm of the scalar second fundamental form of ¥ and H the scalar

mean curvature.

Proof. Recall that
DxY =VyxY — A(X,Y)v

for X,Y tangent to X. We assume that X,Y, Z, W are tangent vector fields that are V-
parallel at the point under consideration (so in particular [X, Y] = 0 and so on) and compute

the ambient curvature as
Rmy(X,Y,Z, W) =g(DxDyZ — DyDxZ,W)
=9(VxVyZ - VyVxZ, W)
— 9(Dx(A(Y, Z)v) — Dy (A(X, Z)v), W)
=Rmy (X, Y, Z, W)+ A(X, Z2)A(Y, W) — A(Y, Z)A(X,W).

(We used g(v, W) = 0 twice and Vxv = A(X,) as proven in Lemma[7.7) For ey, ..., e, an
orthonormal basis of T}, we can trace Y = Z = e; to get

Ricy (X, W) — Ry (X, v,v, W) = Ries (X, W) + Y~ A(X, e;)A(e;, W) — A(X,W)H.
i=1
(Note that this shows that for ¥ C R™"! minimal we have Ricy < 0.) Tracing again for
X, W =e; we get
R, — 2Ric,(v,v) = Ry + |A]> — H?

This proves the assertion. O



62 OTIS CHODOSH

Theorem 24.3 (Schoen—Yau). If (M3, g) has positive scalar curvature R > 0 then any
connected two-sided stable minimal surface ¥? C (M, g) iﬂ topologically S®.

Proof. As before, we take ¢ = 1 to get
/ A2 + Ricy (1, 1) < 0.
b

Since we have not assumed that Ric > 0, this is not a contradiction. Instead we recall that

the intrinsic Gaussian curvature is related to the intrinsic scalar curvature as Ky = 2Rx.
Thus the (doubly traced) Gauss equations (24.1) (and H = 0) give

2(Ricy (1, ) + |A]?) = R, + |A]? — 2K

/Rg+|A|2§2/K.
% %

Since we assumed that R, > 0, Gauss-Bonnet gives x(3) > 0. O

Thus

Corollary 24.4 (Schoen—Yau, Gromov-Lawson). There’s no metric g on T° with positive

scalar curvature.

Proof. We saw (Corollary [5.15) that there is a least area immersion F : T2 — (T%, g) (among
maps homotopic to T? — T2 x {*}). This minimal surface will be two-sided stable (immer-
sion) and the previous analysis can apply to give that it must be a sphere (contradiction).
Alternatively, one may minimize in Ho(T?) = Z3 to find ¥? C (T3, g) of least area. Each
component of ¥ would need to be a sphere. However, a sphere in 72 bounds a ball (lift to

the universal cover) and is thus homologically trivial. 0

25. THE BERNSTEIN PROBLEM

Theorem 25.1 (Bernstein). Suppose that u is an entire solution to the minimal surface

equation on R? then u is affine, i.e. the graph of u is a flat plane.

The proof given below is not the original proof (which used complex analysis and PDE
methods).

Proof. Let ¥ be the graph of u. We have that ¥ is area-minimizing (Theorem and thus
stable. It’s two-sided so Theorem [23.4] gives

/ AP / Vol?
>

2R P2 is possible if M is nonorientable
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for all p € C(X). We also recall that Corollary gives |X N Bg| < CR?*. We use a
log-cutoff function as in Lemma [5.8}

1 lz] <R
pla) = d2— 25 |y ¢ (R R
0 |z] > R?.

It’s easy to see that ¢ can be used in the stability inequality (even though it’s only piecewise
smooth). Note that
1 2
Vspl? < |Vesy|? = § el =€ [/ 7
0 otherwise.
We thus need to estimate fm(B
dyadically for R = 2F

\Bp) # using the quadratic area growth. We do this
R
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Thus we get (for R = 2*) that

1
2 < 1 =o(1).
[ 196 < G tog B = o)

Since ¢ — 1 pointwise as R — oo Fatou’s lemma thus gives

/ |A]* <0.
2

Thus |A| = 0 so X is flat. This completes the proof. O

There are several natural generalizations:

(1) Is an entire minimal graph over R™ a flat hyperplane? (This is “Bernstein’s problem”).
This is true for n < 7 [Fle62, [DGGE5, [AIm66, [Sim68] but non-flat examples exist for
n > 8 [BDGGGI).



64 OTIS CHODOSH

(2) Is a complete stable minimal hypersurface a hyperplane? (This is the “stable Bern-
stein problem”). Since minimal graphs are stable this generalizes the Bernstein prob-
lem. This is true in R"*! for n+1 < 6 [Pog81], [FCSK0, [dCP79, [CL.24, [CT.23| [CMR24,
CLMS24], Maz24] and false for n+1 > 8 ([BDGG69]. The problem is open in R7 (cf.
[SSYT75, [CSZ97, [SS81, Bel25]).

A related problem is:

Open Question 5. If ¥" — R*™! is a complete, two-sided stable minimal immersion must

¥ have intrinsic/extrinsic volume O(R™) volume growth estimates?

26. STABLE MINIMAL CONES
Recall that for 3 C S™ the cone C'(X) C R™™! is minimal if and only if ¥ is. For "' C S”
minimal we define

. Je VO = [AP)?
o= = AP =t S

It’s standard to see that Ay is the lowest eigenvalue of the operator —Ay, — |A|%. Note that
this is not exactly the second variation of area since we have dropped the Ricgsn = n — 1

term.

Proposition 26.1 (Simons [SIm68]). The cone C(3) C R is stable if and only if Ao >
_(77,—2)2
Tl

We consider only test functions ¢ € C°(C(X)\ {0}), i.e. those who fix the tip of the cone.

It’s easy to consider a larger class of ¢ via a cutoff argument.

Proof. 1t’s easy to check that |A¢|*> = r—2|Ag|?. Thus, C'(X) is stable if and only if

/ /gp r 2|A |2 "dusdr </ / ,,go r_2|Vg<p|2)r”_1dung

for all p € C°(C(X)). We change variables ¢ = log r. (One could view the calculation below
as re-writing stability in the conformal metric § = r~2¢g = dt? + g5, which is the product
metric R x X.) Note that 9,0 = r~10,¢ and dr = rdt so we get

/ /cp |Ag e~ 2td,ugolt</ / (0,0) + | V|2 e Ddusdt

We can replace ¢ by e="7 fp (since ¢ € CF(R x ¥) this does not change stability). Note
that
(n—2)?° ,

(O "F )% = (919)° — (n — Dplip + g

oo 1 o0
| voo=5 [ av-o

and
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Thus we find that stability is equivalent to

n—2 2 00 0 o)
- 7 ) / /SOQdMEdtS/ /(|st0|2—|Azl2<p2) dﬂzdt+/ /(@w)Qduzdt
—o0 J X —o0 J X —o0 J XU

We're now ready to prove the assertion.
Suppose that C'(X) is stable. For any ¢ € C'*(X) we can take a cutoff function n € C°(R)
with n =1 on [-R,R],n=0on [-2R,2R]%, and || < CR™. We get

n—2
D [ s < [ (9500~ 1) a4 = th/wdz
Letting R — oo we find A\g > —@.
(n-2)?

Conversely, suppose that \g > — . For ¢ € C*(R x C) we can apply this to ¢, =

o(t,-) for t fixed to get
(n —2)*

o [etdus < [ (Vs = |AsPe?) dus
b b

Integrating this over ¢t € R we get

(”_2)2 > 2 > 2 2 2
- ¢ it < Z(|st0| — [As¢?) dusdt

which implies stability. 0

4

Minimal cones in R? are flat (since the link is a geodesic in S?) so we next conisder:
Theorem 26.2 (Almgren [AIm66]). If C(3) C R* is a stable minimal cone then it’s flat R3.

Proof. Note that ¥ C S? is a minimal surface. By Exercise [20.2] 3 is connected. Taking

¢:11H>\02—@:—}1gives

1
/ | AsPdus < Z|E|
b
On the other hand, the (doubly traced) Gauss equations ([24.1)) give
6=2K+4+|As]? = |Ag’=2-2K
since Ricgs = 2 and Rgs = 6. Thus
[ Vs i = 215] - 4mx(s),
)
Putting these facts together we get
16
DEENG
so X is a topological sphere. Thus, the assertion follows from Theorem below. 0

Theorem 26.3 (Almgren [AIm66]). If > C S? is a minimal sphere then it’s totally geodesic.
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Proof. We need some preliminary results. We consider isothermal coordinates z = x + iy
on Y. Recall the complex tangent vectors d,,0;. We need to understand the action of
the connection on these vector fields (i.e. we need to compute the Christoffel symbols).

Recall that (extending the metric complex bilinearly) ¢(0.,0,) = oz — Gyy — 192y = 0 and

g(aza 62) = GQuz + Gyy SO
0 = g(vagaz7 82)

Thus V.0, = AQ,. Symmetry of the connection gives V. 0 = A0,. On the other hand,
differentiating ¢(0s,0s) = 0 in the 0, direction gives Vg, 0; = B0ds. Thus A = B = 0 so
V.0, = V5.0: = 0. Finally, we have

0= g(v&am az)

so we get Vg, 0, =10, (and V.05 = f‘ﬁg).m
We also need the Codazzi equations We recall that for 3 a two-sided hypersurface, the

ambient connection decomposes as
DxY =VyxY — AX,Y)v.

We consider vector fields X,Y tangent to ¥ that are V-parallel at the point under consid-

eration:
Rmy(X.,Y,Z,v) = g(DxDyZ — DyDxZ,v)
= 9(Dy (A(X, Z)v) — Dx(A(Y, Z)v),v)
= Y(A(X, 2)) - X(A(Y, 2))
= (VyA)(X, Z) = (VxA)(Y, 2).
We used [X,Y] = VxY — Vy X above. Since the ambient space is S3, the left-hand side is
=g9(X,v)9(Y,Z) — g(X,Z)g(Y,v) = 0. Thus VA is totally symmetric in all three indices.

We now compute

0:(A(0,,0.)) = (Vo A) (0, 0,) (mixed Christoffel symbols vanish)
= (V. A)(0.,05) (Codazzi equations)
= 0,(A(0,,05)) — A(Vo,0,,05) (mixed Christoffel symbols vanish)
= 0,(A(0,,0;5)) — T'A(0., 0) (mixed Christoffel symbols vanish).

We have
4A(0,,05) = A(0y, 0x) + A(ay, 8y) =0

26This is a general fact that holds in a Kihler manifold: Christoffel symbols that mix holomorphic and
anti-holomorphic coordinates vanish.
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since tr A = 0 and z, y are isothermal (so |0,| = |0,| = 0). Thus we find that
4A(0,,0,) = A0y, 0y) — A(0y, 0y) — 2iA(0x, 0y)

is holomorphic. As such
® = A(0,,0.)dz*

defines a holomorphic quadratic differential on S?, so ® = 0. Thus, ¥ is totally geodesic. [

Exercise 26.1. Show that 32 C R? a topological sphere with constant mean curvature is a

round sphere (Hopf).

Remark 26.4. Brendle proved [Brel3a] the Lawson conjecture which says that an embedded
minimal torus in S? is a rotation of Sl(\%) x S1(J5) = CopN'S? (the Clifford torus). On
the other hand, there’s infinitely many immersed minimal tori in S so this proof combines
a Hopf differential argument as in Theorem with a geometric argument that brings in
embeddedness. Note that Lawson has constructed [Law70] an embedded minimal surface in

S? of every genus. See [Brel3b] for an overview.

To generalize Theorem to the full range we need (not proven here) the following

inequality

Lemma 26.5 (Simons [Sim68]). For "' C (S",g) a minimal hypersurface, the second

fundamental form satisfies
|A|As| Al + |A[* > (n — 1)| A%
This easily gives the sharp dimensional restriction on stable minimal cones.

Corollary 26.6 (Simons [SIm68]). If C'(X) C R™*! is a stable non-flat minimal hypercone
thenn > 7.

Proof. Take ¢ = |A| in A\o(—A — |A]?) > —@. We have

n—2)?
R Iy A
> >

=L%MMMMMV

<—(n-1) [ 147,

4n—-1)<(n-2>% =n>T1.

As such, if ¥ is non-flat then

This completes the proof. O
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Part 6. Limits of minimal surfaces
27. EXAMPLES

We first describe several possible examples of limiting behaviors of minimal surfaces.

Let 3 be a catenoid in R? (see Figure @ We have the following examples:
(1) Let x; € ¥ diverge and consider the shifted catenoid ¥; := ¥ — x;. Then 3J; becomes

flatter and flatter so we would like to say that X; converges to a flat plane “smoothly
on compact sets.” Note that we need to say “on compact sets” since X; always has
a region of high curvature, it’s just further and further away from the origin.

(2) Let \; — 0 and consider the scaled catenoid 3; = A\;X. Since the catenoid grows
sublinearly at infinity, away from the origin ¥; will consist of two sheets that are
close to planar. However, the curvature of ¥; satisfies | Ay, |(x) = A\;'|As|(\sx) and
thus 3J; has curvature blowing up at the origin. We can thus say that >; “smoothly”
converges to R? \ {0} on compact subsets of R\ {0} with “multiplicity two.”

More general phenomenon are possible.

FiGureE 13. The Hoffman—Meeks deformation family of the Costa surface.
Credit: Matthias Weber, https://minimal.sitehost.iu.edu/archive/

(3) Let ¥; be (diverging) members of the “Hoffman—Meeks deformation family” of the
Costa surface (See Figure . Then for appropriate A\;, x;, ¥; = \>X — x; can
”converge” to one of:

(a) a flat plane with multiplicity one,

(b) a flat plane with multiplicity three,

(c) a flat plane with multiplicity three punctured at one or three points (where the
convergence is on compact sets away from these points), or

(d) a catenoid with multiplicity one.

(4) Let ¥; be a sequence of “genus g; — o0” Costa—Hoffman—Meeks surfaces (Figure
. Then »; “converges” to a catenoid U plane smoothly away from the intersection
circle. Appropriate rescalings/translations Y, = \Y; — 2; would converge to:

(a) a flat plane with multiplicity one,


https://minimal.sitehost.iu.edu/archive/
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F1GURE 14. The high genus Costa—Hoffman—Meeks surface. Credit: Matthias
Weber, https://minimal.sitehost.iu.edu/archive/

(b) a flat plane with multiplicity three,

(c) a flat plane with multiplicity three punctured at one point,

(d) two planes meeting orthogonally, each with multiplicity one, or
)

(e) Sherk’s singly periodic surface (Figure [15).

FIGURE 15. Scherk’s singly periodic surface. Credit: Matthias Weber,
//minimal .sitehost.iu.edu/archive/|

(5) Let ¥ be the helicoid (Figure [4). Then appropriate scalings and translations %;
converge to
(a) the helicoid,
(b) a flat plane, or
(c) the foliation of R3 by parallel planes (where the convergence may be non-smooth

on a line).

28. MINIMAL SURFACES WITH BOUNDED CURVATURE AND AREA

We first show that the second fundamental form of a graph is related to the Hessian of

the graphing function. (Loosely speaking |A| ~ |D?w].)


https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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Lemma 28.1. The second fundamental form of the graph of w satisfies

| D?w|

—o S SIS

(14 [Vw/?)2 (1+[Vw/?)2
at (x,w(x)).
Proof. The vector fields E; = e; + d;we,+1 form a basis of T,% at each point. Note that
gij = E; - E; = 0;; + O;wd;w has eigenvalues 1 (with multiplicity n — 1) and 1+ |Vw|? (with
multiplicity n). As such Id < g < (1 + |[Vw|?) Id. We now compute

DEiEj = (9fjw €nil-

—Vw+tenii

so using v = SVl we get
14| Vw|?

This proves the assertion. O

We now consider X" C ) C R**! a properly embedded hypersurface in an open subset of
R with X N Q = 0. (One could also consider a Riemannian manifold in place of £ but
some computations will become more involved.) For p € ¥ suppose there’s w : B, C T, —
(T,%)* so that w(0) = 0,

(28.1) r Y w| + |[Vw| + r|Viw| < 1,

and graph w C X. In this case we say that X(p; r) := graph w exists. Since every hypersurface
can locally be written as a graph of w with w(0) = Vw(0) = 0, we can always find r > 0
depending on p so that such a graphical region 3(p;r) exists.

Lemma 28.2. Suppose that r < \%d(p, 0). Then if X(p,r) exists we have

X' (p;r) C X(p;r) C XN B 5,(p)

where the left-hand-side is the connected component of ¥ N B,.(p) containing p.

Lemma 28.3. Suppose that a hypersurface ¥ C Q0 with 0X N Q = () satisfies supyqx |As| <
B(K) for all K € Q). Then for any K € Q there’sr = r(K) < \%d(K, 00) so that X(p;r)
exists for allp € XN K.

Proof. Choose K € K' € Q). Below we’ll always work in balls contained in K’. We’ll choose
r <ro(K, K’, 5) below.

For p € ¥ N K, consider the intrinsic ball Bj.(p) C XN K'. For ¢ € B3.(p) let v : [0,2r] —
B3.(p) be a geodesic from p to ¢. Integrating [9,v(7(t))] < |A|(v()) < B we get

lv(q) — v(p)| < 2rp,
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so taking r small, we find that 7 : ¥ — T,,% is a local diffeomorphism at any point in B3.(p).
Let v(t) be a geodesic from p to any ¢ € 9B3.(p). We have

10 ('(£),7'(0)) | < |A|(v(1)) < B
which yields
g —pl = {a—p,7'(0)) > 2r — 2%
after integrating twice. Taking r sufficiently small, this is > % Finally, a similar argument
gives
”
[{g—p )| <28 < 5
for any g € Bj.(p) (after taking r smaller if necessary). Let  be the projection to T,3. Note
that for ¢ € dBj.(p) we have
or? r?
— <=’ =Ir(0) = pI* + (0 — . v(0)" < I7(0) —pI +
so this gives d(m(0Bj.(p)),p) > r. Thus, putting this together we find that the connected
component of XN (B, C T,%) x (T,X)* containing p is the graph of a function w defined on
B, C T,X. We also have

_ <1-2rp

V1+ | Vw|?
so taking r sufficiently small, we have |Vw| < C. This lets us use Lemma to write
|D2w| < (14 |[Vw|?)? supgqpr |A] < (1 + C2)23(K') := B on B,. Taylors theorem gives
|[Vw| < 7B and rHw| < rB so

rHw| 4+ |Vw| + r|D*w| < 3Br

Taking r even smaller, this is < 1. This completes the proof. U

Corollary 28.4. Suppose that X; is a sequence of minimal hypersurfaces ¥; C Q with
0XNQ =10 and SUDs:, ¢ |As| < B(K) for all K € Q2. If p; € ¥, N K then up to passing
to a subsequence, p; — Poo, Ty, 25 converges to I1 and the graphical functions w; : B, — R
converge to we i C* on B,jy. The graph of ws over Il at ps, is a minimal hypersurface
Yoo With 03 N B, j2(pso) = 0.

Proof. The functions w; satisfy the minimal surface equation and have bounded C*-norm,
so the assertion follows from Schauder theory (cf. Lemma |19.1]). O

Theorem 28.5. Consider 37 C Q2 C R™ minimal hypersurfaces with 9X,;NQ = 0. Assume
that for all K € Q) we have:

(1) area(X; N K) < o(K) and
(2) sups;n [As,| < B(K).
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Then up to passing to a subsequence, there’s Yo, C €2 smooth minimal hypersurface so that

25 limits to X “with finite multiplicity” in the following sense:

(1) there’s a locally constant function M : Yo, — Z>1 measuring the “multiplicity,”
(2) there’s an exhaustion Wi @ Wy € ... X4 of pre-compact open sets,
8) there’s a collection of ordered functions wy; < --- < wyr; defined on W, so that
J J J
wy,; — 0 in Cps, and
(4) ;N K; C Uggraphy, wy; for K1 € Kz € ... an ezhaustion of 2 by compact sets.

(Note the mild abuse of notation since M may change between components of >,.) Note

that the notation for graph means the graph defined using a fixed choice of unit normal:

graphy, w := {p + w(p)v(p) : p € W}.

Proof. Let p; denote the area measure of ¥;. By (1) we can pass to a weakly convergent limit
[ = fhoo. Let oo = supp feo. Pick ps € Yoo and choose r (depending on ps) a uniform
graphical radius as in Lemma (choosing r sufficiently small so that the subsequent
arguments remain a bounded distance from 052).

Considering ¥, pick a maximal collection of points pi j,...,pr; € £; N B,/4(pss) so that
2;(pej;7/10) are pairwise disjoint.

Claim 28.6. ;N B, /4(poo) C U1 Z;(peji7/2)

Proof. For z € %; N B,j4(pss) we have 3;(z;7/10) N X;(p;r/10) for some p = py;. Us-
ing Lemma we get that B g, 10(2) N B g,10(p) # 0 so X;(z;7/10) C B s,/0(2) C
By 5.10(P) C Brj2(p). Since X;(p;7/2) contains the connected component of 3; N B, /2(p)
containing p and X;(z;7/10) is connected we see that z € 3;(z;r/10) C X;(p;r/2). This

proves the claim. O

Since area(X;(pe;;7/10)) > Cr™ we assumption (1) gives that L is uniformly bounded.
Thus, by Corollary we can pass to a subsequence and pass each X;(py;;7/2) to the
limit to obtain X (ps;7/2). Note that the minimal hypersurfaces ¥;(ps;;7/2) N By ja(poo)
are pairwise disjoint and have no boundary (in B,4(pss)). Thus, the maximum principle

implies that Yo (pe;7/2) N B, /4(pss) are either pairwise disjoint or else equal. As such,

Yoo N Brja(pos) = Uit Soc(pe57/2) N By ja(poo)

is a smooth embedded minimal hypersurface. Since p,, was arbitrary, we see that >, C 2
is a smooth embedded minimal hypersurface.

It remains to prove that >; converges to X, as claimed. Let P denote the nearest point
projection to Yo, and let P; = P|g,. For a fixed compact set K, we have that P is smooth

at least on X; N K for j sufficiently large. Moreover, we have that (dF;), = PrOj7y, ) S 7,5, -
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Note that]

sup vy, (p) — ve. (P5(p))| = 0.
peEX;NK

Thus, we find that (dP;), is invertible for all p € ;N K as long as we take j sufficiently large
(depending on K). The inverse function theorem thus shows that ¥; is locally graphical over
Yoo (with multiplicity), i.e. for p,, € 3o, N K, taking j sufficiently large depending only on
K, there’s wy j < --+ < wyr; defined on some B < (p.,) so that graphw,; C ;. Covering
Y N K by finitely many sets of this form, we can patch the graphs together to complete
the proof. O

For example, if 3, is the blow-down sequence of catenoids, then the curvature and area
are uniformly bounded on compact subsets of R3\ {0}. The previous theorem makes precise

the notion of “convergence” of ¥; to R?\ {0} with multiplicity 2.

29. MINIMAL SURFACES WITH BOUNDED AREA

Consider ¥ € Q € R"*! minimal hypersurfaces (without boundary in €2).

Lemma 29.1. Suppose there’s p; € ¥; so that p; — ps € Q and |Asx;|(p;) — oo. Then

there’s q; € ¥; with ¢; — peo and so that for \; = |Ayx,|(q;) — oo we have that f]j =

N (X5 — qj) has uniformly bounded curvature on compact subsets of R™™ and \Aij\(()) =1
Proof. Let r; < d(p;,09) tend to zero sufficiently slowly so that

| A, [(pj)d(p;, 0B, (p;)) — o0

and X; th B,,(p;). Then by the point-picking argument used in the proof of e-regularity for

harmonic maps (Theorem [5.5) we can choose g; achieving

max )\Azj!(Q)d(qaaBrj@j))-

Since |Ag, [(z) = A As;, |(g; 4 Ajx), the same calculation as in Theorem [5.5( applies to show

that X, has uniformly bounded curvature on compact sets. 0

We now assume that for all K € 2 we have area(X; N K) < a(K). Let pi be the limiting

area measure. Note that for a.e. » > 0 we have that

lim area(X; N B, (p)) = pteo(Br(p)),

j—00
which implies (via the monotonicity formula, Theorem that
o0 BT’
r = @Moo(p7 7") = M
Wpr™

27If this failed at p; € ¥; N K we can find a uniform graphical region ¥;(p;,7/2) that converges to some
part of ¥, which implies that T},,¥; converges to T Yoo and Pj(p;) — poo; this is a contradiction
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is non-decreasing. Thus we can set ©,__(p) := lim,n 00, (p,7).

Lemma 29.2. The blow-up surfaces ZNIJ- from Lemma have uniform area bounds on
compact sets and thus pass to a subsequential limit in
Yoo C R with 05 = 0, |Ag| < |Ag|(0) =1, and

o0

>0 (R™1) to a minimal hypersurface

. |ioo M Br(m)|

wWp ™

Os, (2,7): < O (P)

for any x € R and r > 0.
Proof. The monotonicity formula implies that
@ij (z,7) = Og,(q; + /\j_lx, )\j_lr) < Ox,(q; + )\j_lx, s) = 04 (P, 8)

for a.e. s > 0 and j sufficiently large so that A\;» < s. This implies that i)j has uniform area
bounds on compact subsets of R"™! so we can apply Theorem to pass to a subsequential
limit Yoo (with no boundary). The previous inequality passes to the limit for a.e. r > 0
giving

O5_(2.7) < Oy (. 5).
Sending s — 0 completes the proof. U

In particular ©5_ (00) := lim, 0 O5 (2, 7) is < O, (Poo)-

Exercise 29.1. Show that O5_(00) is independent of the choice of x.

Example 29.3. Consider XJ; the Costa—Hoffman-Meeks surface with genus — oo so that ;
converges to catenoid Uplane. Note that ©,_ (ps) = 2 for ps in the intersection circle. The
blow-up procedure will produce the singly periodic Scherk’s surface Yo, with Og_(00) = 2.

One can also have strict inequality by a slight modification. Let A\; — 0 so that \;¥;
converges to a plane with multiplicity three, smoothly away from p,, = 0. In this case we
have O, (ps) = 3 but still O5_(oc0) = 2.

30. WHITE’S EASY ALLARD

Consider the setup in the previous section: X; C ) are minimal hypersurfaces with
uniformly bounded area on compact sets and the curvature of ; blows up at p, € €. Let
llso be the limiting area measure.

The following is a form of e-regularity in this context.
Theorem 30.1 (White’s Allard theorem [AII72, Whi05]). ©,_ (ps) > 1.

Proof. Since we normalized by the second fundamental form we have Y., is non-flat. Thus,

we can apply the monotonicity formula at z € S to get

1=05 (2) <O (z,7) = O(Xx) < O, (Do)
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since equality cannot hold in the monotonicity formula. 0

Note that this proof only applies to the limit of smooth objects, whereas Allard’s result
applies to arbitrary “weak solutions” (stationary varifolds). On the other hand, Allard’s
proof is much more involved.

One may improve this slightly using:

Theorem 30.2. If X" C R"™™ 4s a smooth non-flat minimal hypersurface with |As| <
|Ax|(0) =1 then ©(X) > 1+ ¢ for e =e(n).

Proof. Assume there’s ¥; as in the theorem with ©(X;) N\, 1. They have uniformly bounded
curvature and area on compact sets and thus we can pass to a subsequential limit Y. Note
that |Ax|(0) = 1 so 3 is non-flat. On the other hand, we have
Ox(0,r) = lim Ox,(0,r) < lim 6(%;) =1
j—o0o j—oo

for a.e. > 0. Thus ©(X) = 1 a contradiction. O
Open Question 6. What’s the optimal value of e(n)?

It’s known that 1 4 €(2) = 2 (e.g. attained by the catenoid) by geometric measure theory
methods and that 1+¢(3) = § ~ 1.57 (attained by smooth minimal hypersurface asymptotic
to the quadratic cone Cyo, cf. [Mazl7]) by Marques—Neves’s resolution of the Willmore
conjecture [MN14] but there’s no qualitative estimate for e(> 4) (see however [[W15, [ BW24]).

31. BOUNDED TOTAL CURVATURE

Remark 31.1. Suppose that X2 C (M, g) is a closed minimal surface in a closed (or homo-
geneously regular) 3-manifold. The traced Gauss equations give |A|* = R, — 2 Ric,(v,v) —
QKZ S Cg - QKE SO

[ 1P < cylzi - amx(®) < O3] ()
b
Motivated by this remark, we study the compactness of X7 C 2 C R™ with

(31.1) / A" <A
X

and area uniformly bounded on compact sets. (If we generalized the previous section to
limits in Riemannian manifolds this discussion would apply to e.g. bounded area and genus
minimal surfaces in a 3-manifold.)

Let po denote the limiting area measure and consider p,, € SUPP [l = L SO that the
curvature blows up at p,.. Lemma gives a blow-up Yo at pe with @(ioo) < O, (Po)
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and |Ag_|(0) = 1. Since (31.1)) is scale invariant and Yo is non-flat we have

0 </ Ag " < limsuplimsup/ |As,|"
Yoo r—0 j—o0 3,;NBr (Poc)

(which is < A).

We can make this uniform as follows:
Lemma 31.2. If ¥" C R™™ is complete with |As| < |As|(0) =1 then [, |A|" > e(n) > 0.

Proof. Suppose there’s ¥; as in the theorem with [, [A]" — 0. Theres a uniform r >
J

0 so that the graphical region ¥;(0,r) exists and 3,(0,r/2) converges as graphs to some

Yso(0,7/2). Note this limit cannot be flat since we normalized |Ay,|(0) = 1. Thus

/ A" = lim AP < hm/ A" =
Yoo (0,7/2) 790 J3,(0,r/2)

This is a contradiction. O

As such, we find that

0<e(n) < / |Ag | < limsuplimsup/ |As, "
~00 = b)) mBr(pw)

r—0 J—0o0

This can only happen at < % points. Let B be the set of such points. For p € B and
o = 3d(p,0) we note that (B, (p)) < C since s is a Radon measure. Since fin
satisfies the monotonicity of area ratios, we see that (B, (p)) < Cr" for r < ro.

In sum, we obtain:

Theorem 31.3. There’s a finite set of points B with |B| < % so that after passing to
a subsequence ¥; converges smoothly with finite multiplicity on compact subsets of Q \ B

to Yoo C Q\ B a smooth minimal hypersurface with bounded area on compact subsets,

Js [As " <00, and [Eoo N B, (p)| < Cr" forp € B and r < d(p, 09).

In the next section we show that >, is smooth across B even if the convergence is not.

One should keep in mind the examples of the Catenoid or Hoffman—Meeks deformation
family that converge away from a finite set of points to a plane with multiplicity. On the
other hand, the Costa-Hoffman-Meeks surfaces with unbounded genus can converge to a
minimal surface with a circle of singularities.

We conclude this section with the following important observation. We assume that B has
the property that ¥; does not converge smoothly near any point in B (we can just discard

points in B where there’s smooth convergence).

Lemma 31.4. Suppose that there’s a component ¥ of Yo with X N B # 0. Then 3 occurs
with multiplicity > 1.
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Proof. Suppose that ¥ occurs with multiplicity 1 but there’s p € ¥ N B. Then, writing s
for the limit of the area measures, we have ©,_(p) = 1. Thus by the converse of the Allard
regularity theorem (Theorem [30.1)) we get that the curvature cannot blowup at p. This is a

contradiction. O

32. REMOVABLE SINGULARITIES

Suppose that X" C B\ {0} is a minimal hypersurface with bounded area on compact sets,
XN B,| < Crforr < 1and [ |A" < oo. Let A\; = oo and set ¥; := A;X; be any blow-up
sequence. Note that for K € R"™ \ {0} we have

/ |A|" — 0
EjﬁK

and |X; N K| < a(K) by the area growth bound for . Thus by the compactness theorem
just proven (Theorem [31.3) we can pass to a subsequential limit ¥, € R"*\ {0}. Note
that there are no curvature concentration points since for j > 0 the total curvature will be

< e. We have that
[ 1ar=o

SO Y is flat. Assuming that n > 2 this implies that ¥, is a finite union of parallel

hyperplanes. Let f be the restriction of |z| to ¥ N By.

Lemma 32.1. For r < 1, any critical point of f on ¥ N B, is a non-denenerate local

minimum and in particular f is Morse on .

Proof. Consider p; € ¥ with p; — 0 and (df),, = 0. Let A\; = |p;|! and take ¥; = \;¥
as above. Pass to a subsequence so that 3; converges in C22(R™™!\ {0}) to X a union of
parallel hyperplanes and \jp; = pe € Yoo N OBy. Let fi be the restriction of |z| to L.
Since the p; were critical points of f, p,, must be a critical point of fo. Thus ¥ must
contain the plane through p., that’s tangent to dB; at ps. Thus p. is a non-degenerate
local minimum of f.,. This implies that for j large, p; was a non-degenerate local minimum

of f. This proves the asseriton. O

Without loss of generality (dilate ¥) we can assume that this holds for all » < 1 and that
¥ hOB;.

Lemma 32.2. Let ' be a connected component of 3. If f has any critical points on ¥ then

Y is a smooth minimal surface in By with 0 & Y.

Proof. Consider ¥} := XN f~(t). Passing a critical point corresponds to attaching a n-disk
and thus exactly component of ¥} disappears at each critical point as t decreases from 1

towards 0. Since Y is connected, the only possibility is that >’ has exactly one critical point
after which ¥} = (). Thus f is bounded below on ¥'. O
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Lemma 32.3. There’s rq € (0,1] so that if ' is a component of ¥ with X' N By, # 0 then

f has no critical points on .

Proof. 1f not, there’s XX} a component of X with a critical point of f so that ¥’ N Bj-1 # 0.
Lemma [32.2] gives that they’re each smooth minimal hypersurfaces in B that avoid 0. Thus,
we can pass to a subsequence all of the ¥, are pairwise disjoint. As such, the monotonicity
formula gives [X7N By 5| > ¢. This contradicts the assumption that [¥N By | < C(1/2)". O

We can thus dilate ¥ so as to assume that f has no critical points and > M 0Bj.

Proposition 32.4. Let ¥ be a connected component of ¥ and let \j — oco. Let ¥ = \;3.
Up to passing to a subsequence, Z; converges to X a hyperplane through the origin with

multiplicity one.

Proof. If ¥/ has a component that does not pass through the origin then repeating the proof
of Lemma we can see that f has a critical point on Y, contradiction. Thus, it remains
to prove that the multiplicity is one. Note that ¥’ M 0B, for all ¢ € (0,1] and the Morse
theoretic argument as in Lemma [32.2] imply that distinct components of ¥’ N dB; remain

disconnected for all £. Thus, we have that ¥’ is disconnected, a contradiction. U

Without loss of generality, we can thus replace ¥ by one component and show that this
component extends across {0}. (Note that a posteriori there’s only one component of X:
any two components would have 0 in their extension and thus would necessarily agree by

the maximum principle.)
Theorem 32.5. 3 extends across {0}

(Compare with uniqueness of the limit in removable singularities for harmonic maps The-
orem[5.7]) There are many proofs of this result. This proof is based on [Whilg] (cf. [BS1S]).

Proof. Up to a rotation we can assume that for some \; — oo, A\;X converges to Iy :=
R"™ x {0}. Our first goal is to prove that all blow-up limits are Iy (not some rotation).

By definition of convergence, there’s ¢; € C*(0B; N1ly) so that the graph of ¢, agrees
with (A\;2;)N((0B1N1l) x R) and ¢; — 0 in C*°. Let v, solve the minimal surface equation
on B; NIl with boundary data ¢;. Note that v; can be found via the implicit function
theorem since the linearization of the minimal surface equation at u = 0 is dM|y : w — Aw.
The implicit function theorem proof also gives that v; — 0 in C*°(B; N1ly). Let h; € R be
chosen so that 0 € graph(v; + h;). Note that h; — 0.

Without loss of generality we can assume that h; > 0. Let s; be the infimum of s > h; so
that graph(v; + s) lies above ¥ in (By N1Ily) x R. Since h; > 0, graph(v; + s) cannot make
contact with ¥ at the boundary when s > h;. Similarly, by definition of h;, graph(v; + s)

lies above the origin. Thus, if s; > h; then we would have interior one-sided contact, so
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¥ = graph(v; + s;) \ {0}, a contradiction since s; > h; so the surfaces are disjoint at the
boundary. Thus we see that s; = h; so X lies below I'; := graph(v; + h;).

Now if S\j — 00 has 5\]-2 converging to some other plane II;, we can pass to a subsequence
so that ij = A\jpu; with p; — 0o. By the previous paragraph, we know that S\JE = pi(\X)
lies below p;I'; in (By N1ly) x R. Note that y;I'; limits to the limit of the tangent planes to
I'; at 0, which is Iy since v; — 0 in C'. On the other hand, SVE limits to II; # Ily. This is
a contradiction.

Thus we find that the unit normal v to X limits to e,; as we approach the origin. Thus
A2 U {0} is the graph over By NI, of a C'-function w;. As in Proposition there’s a
second order elliptic operator L; so that L;(v; —w;) = 0. Examining the proof, we see that
the coefficients of L; depend on the C'-norm of v; and w; and the second derivatives of one
of them (which we can choose to be w;). Thus, the coefficients of L; are C* which suffices
to apply the strong maximum principle to conclude that v; = w;. Thus ¥ extends smoothly

across {0}, completing the proof. d

33. MULTIPLICITY AND STABILITY

In this section we prove:

Theorem 33.1. Suppose that 3; C Q C R with uniformly bounded area and total curva-
ture (31.1)) converge to 3, in C2(X\ B). If a two-sided component of Yo, has multiplicity

loc

> 1 then this component is stable.
We begin with a warmup calculation.

Lemma 33.2. Suppose that wy ), < way are smooth functions on the unit ball B C R"
solving the minimal surface equation and with wy g, wer — 0 in C°. Then vy, 1= %
converges subsequently in C32. to a positive harmonic function v on B with v(0) = 1.

Proof. In the proof of Proposition we saw that for a;;(p) = d;; — 225 we can write

1+[p|?

n n 2
(33.1) 0= Z aij(Dngk)Dizj’Uk + Z (/ Dgaij(Dwt7k)dt) Dﬂ)k
1

ij=1 0ij=1
for wyy, = wyp + (t — 1)(wap — wyg). Since wyy, way converge smoothly to zero, this is a

strictly elliptic PDE of the form

n

0= Lkvk = Z al(f)Dlszk + Z bék)Dg’Uk

irj =1
where az(-f) — 0;; and bék) — 0 in C'*°. Thus, the Harnack inequality (B.1] implie that for
any B’ @ B we have supg v, < C and infg v, > C~!. As such, we can apply Schauder

288ince the coefficients are converging smoothly, we can rewrite the equation for v, in divergence form with
controlled coefficients.
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estimates (A.2)) and Arzela-Ascoli to pass vy to a subsequential limit in C7°.. The limit v

will be harmonic and will have v(0) = 1. O

This remains true for graphs over non-flat minimal surfaces in the following form:

Proposition 33.3. Suppose that ¥ C Q C R is a connected, two-sided, minimal hy-
persurface. Suppose that Wi € Wy € X is an exhaustion by compact sets so that there’s
wij < wa; defined on W with graphy, we; is a minimal surface and we; — 0 in CF ().
Fixing p € Wy, define vy, =

Wa g~ W1,k
(wa,k—w1,1)(P) "

in C2 (%) to v > 0 solving Lxv = 0 for Ly, = Ax, + |A|? the second variation operator.

loc

Then after passing to a subsequence, vy converges

This remains true in an ambient Riemannian manifold except L = Ay + |A|* 4 Ricy (v, v).

Proof. Observe that when we derived (33.1)) above what we really did was a Taylor expansion
of differential operators. Write H(u) for the mean curvature of the graph of u over ¥. We

have
0= H(wsy) — H(wz) = /1 O (H (wy) .

Note that

d
Oy(H (wy i) = T S:0H<wt,k + s(waok — w1 k) = Ly(wor — wi k)

is simply the linearization (derivative) of H(-) at w;,. We can argue that Ly is uniformly
elliptic on compact sets (similarly as above) and thus after normalizing the graphs, we get a
solution to Lv = 0 where L, converges to L, the linearization of H(-) at 0).

To determine L we thus need to compute the directional derivative of H at 0. For w, ¢ €
CX (W), W e X let I's; := graphy, (sw+tg). For (s,t) sufficiently close to (0,0) this will be
a smooth hypersurface. Write I'y = I'; o and S, T for the velocity of this family with respect

to s,t. The first variation formula gives

0
Ot l1=o area(ls;) = . Hy, (T, vr,) dpr,
Differentiate this at s = 0 with respect to s. Since Hr, = Hy = 0 we get
92
Fs — 85H 5= d .
8t88 s=t=0 area( ’t) r, 1—‘s| 0(;0 ,LLZ

Set Q(u,u) =[5 |Vul> — |A|*u (the second variation operator for normal variations). Note

that @) is a bilinear form. Thus, we have

o = 2+2 2—8—2—8—2 area(l's;)
0 |\Ot 0s) o 95| *

201503
= Q(w+p,w+¢) = Q(w,w) — Q(p, »)
= QQ(U),(,D)
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2
- / (Vw, Vig) — |APwidps
b))

= — /(Aw + |APPw)edpus.
)
Since ¢ was arbitrary, this gives that

asHFS

s=0 — —sz.

Thus, if we repeat the Taylor’s theorem argument as in Lemma [33.2] we see that vy solves
Liv, = 0 where the coefficients of Ly limit to Ly. The proof can then be completed as
before. O

Proposition 33.4 (Barta [Bar37]). Suppose that there’s a positive function v € C*®(X) with
Lsv =0. Then X s stable.

Proof. Let w = logv. We compute Vw = % and

A
Aw = TU ~ |Vl < —|AP — [Vl

For ¢ € C°(X) we thus have

/ AP < / (—Aw — [Vo?)g? < / AoVl Vo] — Va2 < / Vol
> > > >

This completes the proof. O

In the context of Theorem this implies that any component > C >, that occurs
with multiplicity > 1 has X\ B stable. Now, the assertion follows from:

Lemma 33.5. If ¥\ {p} is stable then ¥ is stable.

Proof. The log-cutoff trick (cf. Lemma lets us approximate any ¢ € C°(X) with ¢; €
C>(X\ {p}) with [ |Ve,|* = [;|Ve]* and p; — ¢ pointwise. O

34. CHOI-SCHOEN COMPACTNESS

Recall (see Remark|31.1]) that Gauss-Bonnet gives that for $? C (M3, g) minimal, we have
J5 [A]? < C(|%], genus(X)). As such, an appropriate generalization of the previous sections

to account for the background Riemannian metric proves:

Theorem 34.1. Suppose that ¥; C (M?3,g) is a sequence of closed minimal surfaces in a
closed 3-manifold with uniformly bounded area and genus. Then, theres a closed minimal
surface ¥ C (M, g) and finite set of points B so that ¥; converges in C2(M \ B) to Y,

possibly with multiplicity > 1 on some components. Any two-sided component that intersects
B is stable.
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Since two-sided stable minimal surfaces do not exist in 3-manifolds with Ric > 0 we
see that multiplicity and non-smooth convergence cannot happen for (two-sided) limits of
minimal surfaces of bounded genus and area in positive Ricci curvature.

We now improve this result by showing that if 3 C (M?3,g) is a minimal surface in a
3-manifold with Ric > 0 then |X| < C(genus(X)), i.e. the area bound follows automatically

from the genus bound. The proof is surprisingly indirect.

34.1. Choi—Wang’s eigenvalue bound. Consider ({2, g) a compact Riemannian manifold
with smooth boundary ¥. (In practice, 2 will be the closure of some component of M \ X.)

The Bochner formula gives
1 .
§A\Vf|2 —g(VAL,Vf) = |D*f| + Ric(Vf, Vf)

Integrating this over € (terms with no subscript are ambient terms and terms with respect
to the induced metric on ¥ will have a ¥ subscript; the outwards pointing unit normal will

be v) we get
2 2 . 1 2
[ 1D P+ RtV 190 = [ SAFE - (VA1 V5)
Q Q
2 1 2
- /Q (Af) + / VIVIP ANV,
- / (Af) + / D*f(Vf.v) — (Af)V,
Q >
- / (Af)+ / Df(Vsf,v) — (Af — D*f(v, 1))V, /.
Q >

For X € TY we have
Xg(Vf,v)=D*f(X,v)+g(Vf Dxv) = D*f(X,v) + A(Vsf,X)

SO
D*f(Vsf,v) = g(Vsf,Vs(V,f)) — A(Vsf, Vs f).

We also have that if eq,..., e, is an orthonormal frame for ¥ then

Af =trD*f

= D*f(v,v) + Z 9(De,Vf,ei)
i=1

n

= D2f(V7 V) +Zg(D€iV2f7 ei) +Zg(Dei(vay)7€i>

i=1 =1

= D*f(v,v) + Z 9(Ve,Vsfe)+ V., f Zg(Deil/, e;)

=1 =1
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= D2f(v,v) + Asf + HV,f.

Remark 34.2. This is a useful formula. Note that it generalizes the well-known expression
for the Laplacian in spherical coordinates since the sphere of radius » in R"*! has mean

cuvature 2 (with the outwards pointing unit normal) so we get Af = 92 f + 20, f + T%Agn f.

Exercise 34.1. If 3" C S"™ prove that n is an eigenvalue of the Laplacian on X (with

eigenfunctions given by restrictions of coordinate functions from R"*?).

Thus, we can rearrange the expression above to read
[ar =102 = [ Rie(vr.v5)
Q Q
+ [ ~o(Vsf. V(D01 + A(Vsf. Vsf) + (Bsf + HY.S)V.f
~ [ Rie(v£.95)
Q

+ /2(2A2f+HV,,f)VZ,f+A(V2f, Vsf).

This is the Reilly formula [ReiTT].

Exercise 34.2. Prove that if €2 is compact with Ric > 0 and 02 has H = 0 then 902 must
be connected. (Compare with Exercise [20.2)).

Theorem 34.3 (Choi-Wang [CWR&3]). Suppose that (M", g) is orientable and has Ric > k.
Then if 3™ C (M, g) is a two-sided minimal hypersurface then

k
M (Ay) > 5

where A1 (Ayx) > 0 is the lowest non-zero eigenvalue of the Laplacian.

Proof. Since H,(M) = 0 (see Corollary we see that 3 separates M into two compact
manifolds 2, Q with 9Q = 9Q = X.

Let Axp + Ap = 0 be a non-trivial eigenfunction on >. Choose the unit normal v so that
that [, A(Vsp, Vsg) > 0 and then adjust the labeling so that v points out of Q. Solve
Af =0on Q with f|lagg = ¢. Then the Reilly formula gives

02k [ 1947+ [ 28509

2k/Q\Vf|2—2A/EfVVf
— (k-2 [ IVIP,

If fQ IV f|?> = 0 then f and thus ¢ is constant. This cannot occur by assumption so we thus
have £ < 2)\. This completes the proof. O
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Corollary 34.4. If ¥" C S™*! is an embedded minimal hypersurface then A\ (Ax) > 2.
Proof. The round sphere S**! has Ric = n. U

The following is a famous open problem in the area. It looks innocuous but would have

many important applications to classification problems. See [LY82, Brel3b].

Open Question 7 (Yau’s conjecture on the eigenvalue). If ¥* C S™™! is an embedded
minimal hypersurface then is it true that A;(Ay) > n. (This would be sharp by Exercise
31.1])

34.2. Yang—Yau eigenvalue bound. For ¥? C (M3, ¢g) a minimal surface in an ambient
manifold of Ric > 2, we have that A\;(Ay) > 1. The following estimate lets us convert this

into a bound for the area of .

Theorem 34.5 (Yang—Yau [YYS80]). Let (X, g) be a closed surface of genus ~y. If g is any

Riemannian metric on > then
3
M(As)[E] < 87 L%J

Proof. The variational characterization of eigenvalues gives

. [Vel? 0
A1<Az>=mf{f2—2‘:soeo EN\ (0} [ o=ol.
% b
Consider @ : ¥ — S§? C R? coming from a meromorphic function on ¥ (choose the Riemann
surface structure compatible with g). Using a fixed point argument, we can compose ¢ with

a conformal automorphsim S? — S? so as to assume that

by

for i = 1,2,3. Indeed, we can parametrizd®’| the conformal group of S? by points in the ball
g : B — PGL(2;C) so that limy_,y5g = Idpp. Then B 3 y — f,Pog, isamap B — B
that extends to the identity 0B — 0B

Since ® is conformal and orientation preserving we find that

3
Z/ IV, |? = 28(®) = 2A(P) = 8w deg
i=1 7%

Note that the area of ® is proportional to the degree since ® is always orientation preserving
and thus covers a.e. point exactly deg ® times.
On the other hand, since [ ®; =0, it’s a valid test function in A\;(Ay). Thus we have

nas) [ o2 < [ v
> >

o 2 *
B Explicitly take g, (z) = (‘lell? (z+y)+ y) for =* = 2.
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Summing i = 1,2, 3 and using |®|? = 1 we have
A (Ax)|X] < 8mdeg .

Finally, we need to use Riemann surface theory to find a (nonconstant) meromorphic
function on ¥ with at most d(v) poles (this bounds the degree of the corresponding map
¥ — S%. Riemann—Roch implieﬂ that we can take d(v) = v + 1. Improved estimates from
“Brill-Noether theory” give the asserted bound (the exact form not relevant for us here) see
[EST84, [Kar19). O

34.3. Compactness. Combining the Choi-Wang eigenvalue bound (Theorem [34.3)) and the
Yang—Yau eigenvalue bound (Theorem [34.5)) we find that if ¥ C (M, g) is a minimal surface

in a 3-manifold with Ric > k > 0 then its area is bounded in terms of its genus
k
"8l < mas)lsl < 0().

Combined with the compactness result (Theorem [34.1) we thus conclude:

Theorem 34.6 (Choi-Schoen [CS85], cf. [Whi8T]). Suppose that (M?,g) has Ric > 0 and
does not contain any embedded one-sided surfaces. Then if ¥; is a sequence of minimal
surfaces with uniformly bounded genus and area a subsequence converges to a minimal surface

Yiso Smoothly with multiplicity one.
This applies to any metric on S® with Ric > 0, e.g. the round metric.

34.4. Applications to the moduli space of minimal surfaces. Let M, denote the
set of embedded minimal surfaces in the round S* of genus v (modulo ambient isometries).
Theorem implies that M., is compact for each v (with respect to C* convergence with
multiplicity one).

Almgren proved that (Theorem M has one element (the equatorial S5?). As dis-
cussed in Remark [26.3] Brendle proved [Brel3a) that M; has one element (the Clifford torus)
and Lawson proved [Law70] that M., # 0 for all 4. There are many well-known questions
about M.,.

Open Question 8. What is M,? Is M, always equal to a finite set? Can there exist a
non-trivial 1-parameter family of embedded minimal surfaces ¥; C S$*? If M., is not a finite

set, is it a smooth manifold?

For a “generic” Riemannian manifold (M3, g) with Ric > 0 more is known. Combining
Theorem with White’s “bumpy metric” theorem [Whi9l], for a generic (in the Baire
sense) metric g, there’s at most finitely many minimal surfaces of each genus.
30For a divisor D with degree v 4 1, Riemann-Roch gives that £(D) > deg(D) — v + 1 = 2 where /(D) is

the set of meromorphic functions with poles only in D (counting order). Thus, we can find a non-constant
merormorphic function with at most « + 1 poles.
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Appendices and references
APPENDIX A. ELLIPTIC ESTIMATES

Recall the Sobolev norm [|ullyrs = >, <, [D%ul[re. Clearly [|Aullyrs < Cllullyrren.
Elliptic regularity says that this can (almost) be reversed. We recall the following three
estimates for ' € Q C R™.

The first is W*P-elliptic regularity [GT0I, Theorem 9.11]. For k € Zso and p € (1, 00):

(A1) HUHW’”?’P(Q’) S llullze) + HAUHW’W(Q)
These estimates hold for more general operators but we will not need them in the text.
Next we have Schauder estimates [GT01, Problem 6.1]. For k € Z>, and « € (0, 1):
(A.2) [ullerrza@y S llullco@) + | Auflorao)
Schauder estimates hold for a general non-divergence form operator
L = Z aijD?j + ijDj +c
ij=1 j=1

in place of A where the constant depends on estimates for (a;;) > A1d and a,b,c € C*.

APPENDIX B. HARNACK INEQUALITY

We now recall the Harnack inequality [GT01), Theorem 8.2] for elliptic operators. Suppose

that u € W%(Q) is a weak solution to a divergence form equation

i,j=1 i=1

where (a;;) > A1d, and a,b,c € L. Then for Br C 2 we have:

(B.1) supu < C'infu
Br Br

where C' depends on A, the L* bounds, and R.

APPENDIX C. SOBOLEV INEQUALITIES

We recall the Morrey—Sobolev inequalityﬂ [GT01, Theorem 7.26]. For p € [n,00) and
k € Zzoi

(c.) ol -3 gy S sl

Similarly, we have the Sobolev inequality [GT01, Theorem 7.26]. For p € [1,n) and k > Z>¢:

(C2) il s S Nilhwnsroge

n—p
' np (Q/)

31This actually holds up to the boundary assuming 9 is sufficiently regular.
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