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INTRODUCTION TO MINIMAL SURFACES 3

1. Introduction

These are my lecture notes for Math 286 taught at Stanford, Winter 2025. They cover

the basic theory of minimal surfaces. The material is taken from various sources including

[Oss86, Law77, Whi16, CM11, Pér17, Whi13]. I am grateful to the attendees of the course

for spotting numerous errors during the course. I am also grateful to Jianchun Chu for

catching a huge number of typos and mistakes in an earlier version of the notes. Please write

ochodosh@stanford.edu with any comments.

Part 1. Plateau’s problem

We begin by discussing Plateau’s problem, first studied by Lagrange in 1760. We (loosely)

formulate the problem as follows:

Given some class of “submanifolds” of a Riemannian manifold (M, g), does

there exist one of least area?

The name is in honor of Joseph Plateau who studied this problem experimentally in the

1870’s using soap films.

2. The direct method

Plateau’s problem is a question in the calculus of variations, so we are led to the direct

method : show that a minimizing sequence in the class converges (possibly in some weak

topology) to a minimizer (still in the class). This is problematic in multiple ways. There

is the issue of thin “tentacles” as illustrated in Figure 1 where a minimizing sequence that

becomes dense in space is illustrated. Moreover, if we work with parametrized objects,

there’s also issues of diffeomorphism invariance of area (see Remark 3.2 below).

M1 M2 M3

Figure 1. The least area surface bounded by a planar circle is a disk. Note
that area(Mi) = area(D) + o(1), but Mi is becoming dense in R3.

To handle these issues one must either improve the minimizing sequence somehow (one

approach is discussed in Section 3 below) or else develop a sufficiently weak topology for the

convergence.

ochodosh@stanford.edu
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3. Douglas–Radó

In this section, we discuss the classical formulation of Plateau’s problem. Let D be the

open unit disk in R2. Fix Γ ⊂ Rn a smooth Jordan curve (simple closed curve). Let

CΓ = {F ∈ C0(D̄) ∩ C∞(D) : F |∂D is a ∂D weakly monotone parametrization of Γ}

If F ∈ CΓ is an immersion, then we can define a pullback Riemannian metric on D by

gij = ∂iF · ∂jF . We recall that the volume form is

dVg =
√
det g dxdy =

√
gxxgyy − (gxy)2 dxdy

so it’s reasonable to define the area of F to be

(3.1) A(F ) :=

ˆ
D

√
|∂xF |2|∂yF |2 − (∂xF · ∂yF )2 =

ˆ
D

|∂xF ∧ ∂yF |.

Note that for arbitrary F ∈ CΓ, we can use (3.1) as a definition of the area of F .1 By way of

justification, we remark that the area formula in geometric measure theory says that A(F )

agrees with the 2-dimensional Hausdorff measure of F (D) (counted with multiplicity). See

[Sim83, Theorem 3.3].

We set aΓ := infF∈CΓ A(F ). We can now rigorously state:

Problem 3.1 (The classical Plateau problem). Find F ∈ CΓ attaining aΓ.

Note that if φ : D̄ → D̄ is a diffeomorphism, then A(F ◦ φ) = A(F ) (this is essentially

coordinate invariance of the Riemannian volume form).

Remark 3.2. This raises following potential obstruction to the direct method. Suppose

that some F attains aΓ. For any sequence of diffeomorphisms φi, we have Fi ∈ CΓ with

A(Fi) = aΓ. However, for many choices of φi, Fi has no convergent subsequence.

To resolve Remark 3.2, we now introduce the energy functional. This will resolve the

diffeomorphism invariance as well as the issue illustrated in Figure 1, modulo one final

difficulty that we will need to address later.

We observe that√
|∂xF |2|∂yF |2 − (∂xF · ∂yF )2 ≤ |∂xF ||∂yF | ≤

1

2
(|∂xF |2 + |∂yF |2)

with equality if and only if

(3.2) |∂xF | = |∂yF | and ∂xF · ∂yF = 0

We call F satisfying (3.2) weakly conformal. Note that this is equivalent to the “pullback

metric” gij = ∂iF · ∂jF satisfying g = µ(dx2 + dy2) for µ ≥ 0 smooth. As such, if we define

1Note that this is a notion of unsigned area.
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the energy of F by

(3.3) E(F ) := 1

2

ˆ
D

|∂xF |2 + |∂yF |2 =
1

2

ˆ
D

|∇F |2,

we’ve proven:

Lemma 3.3. For F ∈ CΓ, we have A(F ) ≤ E(F ) with equality if and only if F is weakly

conformal on D, i.e. (3.2) holds.

We say that F : D → Rn is harmonic if each component is (and write ∆F = 0). We recall

Lemma 3.4. For G ∈ C∞(D̄), there exists F ∈ C∞(D̄) harmonic so that F |∂D = G|∂D.

Proof. Existence of F ∈ C2(D) ∩ C0(D̄) follows from the Poisson integral [GT01, Theorem

2.6]. Boundary Schauder estimates [GT01, Theorem 6.19] imply that F ∈ C∞(D̄) □

A basic property of harmonic F is that it minimizes energy among maps with the fixed

boundary data:

Lemma 3.5. For G,F : D̄ → Rn smooth with G|∂D = F |∂D and ∆F = 0 we have E(F ) ≤
E(G) with equality if and only if F = G.

Proof. Let V = G− F . Then we have

E(G) = E(F ) + E(V ) +

ˆ
D

∇F · ∇V = E(F ) + E(V )−
ˆ
D

(∆F ) · V = E(F ) + E(V ).

This completes the proof. □

Lemma 3.6. For G ∈ CΓ, there’s Gi ∈ CΓ ∩ C∞(D̄) with A(Gi) ≤ A(G) + o(1) as i→ ∞.

This proof from the proof of the Douglas-Rado Theorem in [Whi16] (Claim 1).

Proof. Let 2δ0 be sufficiently small so that the nearest point projection from the tubular

neighborhood Π : U2δ0(Γ) → Γ is smooth (and well-defined). For δ < δ0 we set

Φδ(P ) =


P P ∈ U2δ(Γ)

c

Π(P ) P ∈ Uδ(Γ)

Π(P ) + (δ−1d(p,Γ)− 1)(P − Π(P )) P ∈ U2δ(Γ) \ Uδ(Γ)

Note that if G ∈ CΓ then Φδ ◦G ∈ CΓ and A(Φδ ◦G) = A(G) + o(1) as δ → 0.

For any δ ∈ (0, δ0) we can find r ∈ (0, 1) so that A := D̄ \ Dr has F (A) = Γ and

F |∂Dr : ∂Dr → Γ is a smooth map homotopic to a parametrization of Γ. By replacing A by

a smooth homotopy to such a parametrization we can obtain G̃δ with A(G̃δ) = A(Φδ ◦ G)
and G̃δ ∈ CΓ ∩ C∞(D̄). □

Proposition 3.7. There exists Fi ∈ CΓ ∩ C∞(D̄) harmonic so that E(Fi) → aΓ.
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Proof. By Lemma 3.6, we can consider a minimizing sequence Gi ∈ CΓ ∩ C∞(D̄) with

A(Gi) → aΓ. We now show that it’s possible to find a harmonic Fi ∈ CΓ ∩ C∞(D̄) with

E(Fi) ≤ A(Gi) + o(1) as i→ ∞. This will complete the proof since E(Fi) ≥ A(Fi) ≥ aΓ.

We fix G = Gi. For s ̸= 0, we set G̃(x, y) = (G, sx, sy) ∈ Rn+2, so that G̃ is an embedding.

Thus, the pullback metric g̃ij = gij + s2δij defines a non-degenerate metric on D̄. Note that

A(G̃) = A(G) + o(1) as s → 0. By uniformization (cf. Theorem 3.9 below), there’s a

diffeomorphism φ : D̄ → D̄ so that (G̃ ◦ φ)∗gRn+2 = φ∗g̃ = λ(dx2 + dy2). In particular, we

have that G̃◦φ is conformal. Let F : D̄ → Rn denote the harmonic map agreeing with G◦φ
on ∂D. Using Lemma 3.5 we have

E(F ) ≤ E(G ◦ φ) ≤ E(G̃ ◦ φ) = A(G̃ ◦ φ) = A(G̃) ≤ A(G) + o(1)

as s→ 0. This completes the proof. □

Remark 3.8. Since A(F ) ≤ E(F ), Proposition 3.7 implies that infF∈CΓ E(F ) = aΓ.

We used the following uniformization result above:

Theorem 3.9 (Uniformization of disks). Suppose that (Σ, g) is a compact Riemannian sur-

face with boundary so that Σ is homeomorphic to a disk. Then there’s a smooth diffeomor-

phism φ : D̄ → Σ so that φ∗g = λ(dx2 + dy2) for some 0 < λ ∈ C∞(D̄).

See e.g. [Tay23, Proposition 6.4] for a simple proof.

We now recall the weak maximum principle for harmonic functions:

Lemma 3.10. If u ∈ C0(D̄) ∩ C∞(D) then maxp∈D̄ u = maxp∈∂D u.

Applying this to the coordinates of F , we see that space-filling tentacles cannot occur for

a harmonic minimizing sequence.

Choosing a harmonic minimizing sequence has also partially resolved the issue of diffeo-

morphism invariance of the area functional, but still some invariance remains: we recall that

the Möbius transformations of the form

φ(z) = eiϕ0
a+ z

1 + āz

for a ∈ C, |a| < 1, ϕ0 ∈ R are precisely the set of (orientation preserving) conformal diffeo-

morphisms D̄ → D̄.

Lemma 3.11. For φ : D̄ → D̄ a Möbius transformation, we have E(F ◦ φ) = E(F ).

Proof. Write g = φ∗δ. Then we have

(3.4)

ˆ
D

|∇g(F ◦ φ)|2g dVg =
ˆ
D

|∇δF |2δ dVδ = E(F ).
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Since φ is a conformal map we have g = µδ for µ > 0 smooth. Then |∇gf |2 = µ−1|∇δf |2

and2 dVg = µdVδ. Thus we see that

E(F ◦ φ) =
ˆ
D

|∇g(F ◦ φ)|2g dVg,

completing the proof. □

Exercise 3.1. Prove (3.4) in two ways: (i) direct computation and (ii) appealing to isometry

invariance of geometric quantities.

Corollary 3.12. If F : D̄ → Rn is harmonic and φ : D̄ → D̄ is a Möbius transformation

then F ◦ φ is harmonic.

Proof. Let F̂ be the harmonic function with boundary values F ◦ φ|∂D. Lemma 3.11 gives

E(F̂ ◦ φ−1) = E(F̂ ) ≤ E(F ◦ φ) = E(F )

so F̂ ◦ φ−1 = F . This completes the proof. □

Recalling that the set of Möbius transformations is non-compact, we still need to handle

the invariance of energy. The key tool is as follows:

Lemma 3.13 (Courant–Lebesgue). For p ∈ R2 and F : D̄ → Rn smooth, let ℓ(ρ) be the

arc-length of F |D∩∂Bρ(p). Then

min
a≤ρ≤b

ℓ(ρ)2 ≤ 4πE(F )
log b/a

for 0 < a < b <∞.

Proof. We use polar coordinates centered at p. We have that |∇F |2 = |∂rF |2 + r−2|∂θF |2.
Thus we have

ℓ(r)2 =

(ˆ
D∩∂Br(p)

|∂θF |dθ
)2

≤ 2π

ˆ
D∩∂Br(p)

|∂θF |2dθ

so ˆ b

a

ℓ(r)2

r
dr ≤ 2π

ˆ b

a

ˆ
D∩∂Br(ρ)

r−2|∂θF |2rdθdr ≤ 4πE(F ).

This proves the assertion. □

We can now solve the classical Plateau Problem 3.1.

Theorem 3.14 (Douglas–Radó). There’s F ∈ CΓ attaining aΓ = A(F ). The map F is

harmonic and weakly conformal.

Proof. Proposition 3.7 gives Fi ∈ CΓ ∩ C∞(D̄) harmonic with E(Fi) = aΓ + o(1). Fix

a, b, c ∈ ∂D distinct and A,B,C ∈ Γ with the same orientation. Recalling that Möbius

2Caution: the second expression would be µ
k
2 dVδ if D was a k-dimensional domain.
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transformations act transitively on ordered triples on ∂D, we can arrange that Fi(a) =

A,Fi(b) = B,Fi(c) = C (this will preserve Fi harmonic by Lemma 3.12 and will not change

the area thanks to diffeomorphism invariance).

By the weak maximum principle (Lemma 3.10), we have ∥Fi∥L∞(D) ≤ maxP∈Γ ||. Thus,

by higher derivative estimates for harmonic functions (Lemma 3.15) we can pass to a subse-

quence so that the Fi converge to F in C∞
loc(D). Note that F will be harmonic.

We claim that the Fi|∂D are equicontinuous. If not, there’s pi, qi ∈ ∂D with δi := |pi−qi| →
0 but |Fi(pi)− Fi(qi)| ̸→ 0. Apply the Courant–Lebesgue lemma at pi to find δi ≤ ρi ≤

√
δi

so that

ℓFi
(ρi)

2 ≤ C(Γ)

log δi
→ 0.

Since ρi → 0, for i large, up to passing to a subsequence and permuting the labels, γi :=

∂D ∩Bρi(pi) is disjoint from the arc from b to c on ∂D. Thus, the arc Fi(γi) ⊂ Γ is disjoint

from the arc from B to C on Γ. Combined with the observation that ℓFi
(ρi) → 0, the

distance between the endpoints of Fi(γi) tend to zero, we find that the length of Fi(γi) tends

to zero as i→ ∞.

Putting this together we have that the length of Fi(∂(D∩Bρi(pi)) tends to zero as i→ ∞.

Since pi, qi ∈ ∂(D ∩ Bρi(pi)) we thus have that |Fi(pi)− Fi(qi)| → 0, a contradiction. Thus

Fi|∂D are equicontinuous. Passing to a subsequence, we have that Fi|∂D are Cauchy in

C0(∂D). Since Fi − Fj is harmonic, the weak maximum principle (Lemma 3.10) gives

max
D

|Fi − Fj| = max
∂D

|Fi − Fj|,

so Fi is Cauchy in C0(D). Thus, we have that the interior F extends to a C0(D̄) function

and Fi → F in C0(D̄). Note that this preserves weak monotonicity on the boundary. Thus

F ∈ CΓ. Fatou’s lemma and Lemma 3.3 give

A(F ) ≤ E(F ) ≤ lim inf
i→∞

E(Fi) = aΓ.

Thus F ∈ CΓ attains aΓ and E(F ) = A(F ). Thus F is weakly conformal by Lemma 3.3. □

We used the following interior estimates for harmonic functions (cf. [GT01, Theorem 2.10]):

Lemma 3.15. If ∆u = 0 on D and D′ ⊂ D then supD′ |Dαu| ≤ C(α,D′) supD |u|.

Remark 3.16. In view the proof given above, we can view the classical Plateau problem as

a geometric version generalization of the Riemann mapping theorem. Indeed, if Γ ⊂ C is a

Jordan curve, the solution to Plateau’s problem for Γ will yield a conformal diffeomorphism

between D an the interior of Γ. In fact, the idea of energy minimization and the Courant–

Lebesgue lemma can be used to prove the Uniformization Theorem 3.9 used above; cf.

[Mor08, 366] and [Str88, p. 29].
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3.1. The holomorphic differential. Consider F : D̄ → Rn weakly conformal and har-

monic. We recall that we can write the harmonic condition ∆F = 0 in terms of complex

derivatives

∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y)

as

∂z̄∂zF = 0.

Thus

(ϕ1, . . . , ϕn) := ∂zF

is a Cn-valued holomorphic function on D. Note that

4ϕ2 := 4
n∑
k=1

ϕ2
k =

n∑
k=1

(
(∂xFk)

2 − (∂yFk)
2 − 2i∂xFk∂yFk

)
= |∂xF |2 − |∂yF |2 − 2i∂xF · ∂yF

and

4|ϕ|2 = |∂xF |2 + |∂yF |2

Thus, since ϕ is weakly conformal we find that ϕ2 = 0. Moreover, |ϕ|2 = 1
2
µ for µ the induced

conformal factor g = µ(dx2 + dy2).

Corollary 3.17. There is B ⊂ D with no limit points so that F |D\B is an immersion.

Proof. The function ϕ is holomorphic so its zeroes are isolated. □

We call points B ⊂ D where F fails to be an immersion branch points. We discuss this

further below.

3.2. Branched minimal immersions. We will call F : D̄ → Rn weakly conformal and

harmonic a branched minimal immersion. Take caution to note that a branched minimal

immersion need not be a minimizer for Plateau’s problem.

Note, however, that a branched minimal immersion F : D̄ → Rn is automatically a critical

point of the area functional in the following sense. Suppose that Fs is a 1-parameter family

of maps (smooth with respect to s) with F0 = F and Fs|D\K ≡ F |D\K for K ⋐ D compact.

Then for V = d
ds

∣∣
s=0

Fs, we have

d

ds

∣∣∣
s=0

E(Fs) =
ˆ
D

∇F · ∇V = −
ˆ
D

∆F · V = 0

using that V is compactly supported. On the other hand, we have A(Fs) ≤ E(Fs) with

equality at 0. This implies that
d

ds

∣∣∣
s=0

A(Fs) = 0,

as claimed.



10 OTIS CHODOSH

3.3. The reflection principle. It’s natural to ask about the regularity of the solution to

the Plateau problem at the boundary. The following result shows that F is regular up to

the boundary in a very special case:

Proposition 3.18. Consider Γ a smooth Jordan curve and F : D̄ → Rn in CΓ a branched

minimal immersion. Assume there is a line segment L ⊂ Γ. Then F extends by Schwarz

reflection across L as a branched minimal immersion.

Proof. Write D+ = {(x, y) ∈ D : y > 0} and ℓ = {(x, 0) : |x| < 1}.
We can assume that L ⊂ {x2 = · · · = xn = 0} and apply a conformal transformation D

to obtain F : D+ → Rn with F (ℓ) = L. Then F2, . . . , Fn are harmonic functions with zero

boundary values on ℓ. Thus, Schwarz reflection allows us to extend them a smooth harmonic

function on D via

F̃i(x, y) =

Fi(x, y) y ≥ 0

−Fi(x,−y) y < 0.

We now consider F1. We claim that we can extend F1 by

F̃1(x, y) =

Fi(x, y) y ≥ 0

Fi(x,−y) y < 0.

Of course we need to check that F̃1 is harmonic across ℓ. To this end, let ϕ̃ = ∂zF̃ and note

that for y < 0 we have

ϕ̃1(x, y) =
1

2
(∂xF1(x,−y) + i∂2F1(x,−y)) = ϕ̃1(x,−y)

Note that Fi = 0 along ℓ for i ≥ 2 implies that ϕ̃2, . . . , ϕ̃n are purely imaginary along ℓ.

Using that F̃ is conformal on D \ ℓ, i.e. ϕ̃2 = 0, we obtain

ϕ̃2
1 = −(ϕ̃2

2 + · · ·+ ϕ̃2
n).

Thus, Im ϕ̃1(z) → 0 as z → ℓ. Combining these facts, Schwarz reflection implies that ϕ̃1

extends holomorphically to D. Thus F̃ is harmonic. We have ϕ̃2 = 0 on D by continuity, so

F̃ is weakly conformal. This completes the proof. □

Remark 3.19. As proved by Lewy, this can be (significantly) generalized as follows: If

Γ contains a real analytic sub-arc then F can be locally extended past the boundary as a

weakly conformal harmonic map. See [Nit89, p. 287].

3.4. Boundary regularity. A similar (but easier) argument shows that the least area map

from Theorem 3.14 is strictly monotone on the boundary.

Proposition 3.20. Consider Γ a smooth Jordan curve and F : D̄ → Rn in CΓ branched

minimal immersion. Then F |∂D : ∂D → Γ is a homeomorphism.
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Proof. It suffices to prove there cannot be an arc γ ⊂ ∂D so that F is constant on γ. If

there was, then after a translation, we can assume that F (x, y) = 0 ∈ Rn for all (x, y) ∈ γ.

We can then use Schwarz reflection to extend F to a harmonic and weakly conformal map

F̃ defined on a larger domain. This is a contradiction since F̃ |γ is constant. □

We also have the following boundary regularity result (not proven here):

Theorem 3.21 (Hildebrandt). For Γ a smooth Jordan curve and F : D̄ → Rn in CΓ branched

minimal immersion, then F ∈ C∞(D̄).

See [DHKW92, §7.3], [Str88, p. 23], [Nit89, p. 274].
Note that the boundary regularity results (Remark 3.19, Theorem 3.21) assert that the

parametrization F (not just the image F (D̄)) inherits regularity of Γ. Of course, these

results can be viewed as generalizations of proofs of boundary regularity in the context of

the Riemann mapping theorem.

Exercise 3.2. Let Γ be a C1-regular Jordan curve in Rn. Suppose that F ∈ CΓ ∩ C1(D̄)

is weakly conformal and harmonic. Prove the (non-sharp) isoperimetric inequality E(F ) ≤
1
4
length(Γ)2.

Exercise 3.3. Solve the Plateau problem for C1-regular Jordan curves by approximation by

smooth Jordan curves, the methods of Theorem 3.14, and Exercise 3.2 (you can assume the

result from Theorem 3.21).

Remark 3.22. If Γ is an arbitrary Jordan curve (homeomorphic image of S1 in Rn), it

might hold that aΓ = ∞. We note that even in this case Douglas was able to find a weakly

conformal harmonic map F : D̄ → Rn with F |∂D : ∂D → Γ a homeomorphism.

3.5. Branch points. We now return to the discussion of branch points in slightly more

detail. (Recall that branch points of F : D̄ → Rn branched minimal immersion are points

in D where F fails to be an immersion.)

Definition 3.23. A false branch point is one where F locally factors as F (z) = F̃ (zQ) for

some Q ∈ N≥2 and a local immersion F̃ . In other words, F fails to be an immersion at a

false branch point due to a coordinate singularity. A true branch point is a branch point

that is not false.

Example 3.24. Branch points can occur. Complex submanifolds in Cn are area-minimizing

(we will discuss this later). In particular, F (z) = (z2, z3) ∈ C2 defines a least area map of

D → R4 with a true branch point at z = 0.

Example 3.25. Following [Law77, p. 77-78] we can construct an example of a branched

minimal surface (with a true branch point) in R3 as follows. Let ℓ1, ℓ2 denote two straight
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line segments (starting at the origin) of length 1 and 1 + ε respectively in R3 meeting at an

angle 2π
3
. Choose a curve between the endpoints that does not lie in the (ℓ1, ℓ2)-plane to

form a piecewise smooth Jordan curve Γ. Solve Plateau’s problem for Γ. (One may prove

that the solution is free of branch points in this case.) Reflect across the lines 5 times to

close up into a branched minimal surface with a branch point at the origin.

Example 3.25 gives a branched minimal immersion, but it cannot be an area minimizer

thanks to the following result.

Theorem 3.26 (Osserman [Oss70], Gulliver [Gul73]). A solution to the classical Plateau

Problem 3.1 in R3 has no branch points on D.

Sketch of the proof. Osserman ruled out true branch points (roughly) as follows. Suppose

that F has a true branch point at z0 ∈ D. One can find distinct curves γ1, γ2 : [0, ε) → D

with γi(0) = z0 and F (γ1(t)) = F (γ2(t)) is a transversal self-intersection (as an example,

consider ℓ1, ℓ2 in Example 3.25).3 Then “cut” the disk D along γ1, γ2 to introduce γ±i (cf.

Figure 2). Then glue γ+1 (t) to γ
−
1 (t) and γ

+
2 (t) to γ

−
2 (t). This gives a new piecewise smooth

map F̃ : D̄ → R3 differing only on a set of measure zero, so A(F̃ ) = A(F ). However, we can

“round the corners” to decrease area slightly, a contradiction.

z0

γ1γ2 ⇒
z+0

z−0

γ+1γ+2

γ−1γ−2

Figure 2. Osserman’s area-decreasing modification.

Gulliver ruled out false branch points (roughly) as follows. If F locally factors through

z 7→ zQ for Q ∈ N≥2 then (away from the isolated branch point) the image of F has

“multiplicity Q.” Using a unique continuation argument one can extend this multiplicity all

the way to ∂D, implying that F transverses the boundary Q times, a contradiction.4 □

Exercise 3.4. Suppose that F : D̄ → R3 is a branched minimal immersion and z0 ∈ D.

(1) Show that up to a rotation, dilation, and translation of R3 we have

F1 + iF2 = (z − z0)
Q +O(|z − z0|Q+1), F3 = O(|z − z0|Q+1)

where Q ≥ 2 if and only if z0 is a branch point.

3This is where n = 3 is used in an essential way, one should compare with z 7→ (z2, z3) ∈ C2.
4Note that F : z 7→ z2 is a weakly conformal harmonic map D̄ ⊂ C → D̄ ⊂ C but F |∂D is not a weakly
monotone parametrization.



INTRODUCTION TO MINIMAL SURFACES 13

(2) Assuming that z0 is a branch point, show that the unit normal N = Fx×Fy

|Fx×Fy | extends

continuously across z0.

(3) Let P = F (z0). Show that F is transversal to ∂Bε(P ) for all ε > 0 sufficiently small.

Let γε = F−1(∂Bε(P )) and kε denote the intrinsic geodesic curvature of γε. Compute

limε→0

´
γε
kε.

(4) Assuming that Γ is smooth, use (3) along with Gauss–Bonnet and Theorem 3.21 to

prove that F has only finitely many branch points.

There are several open problems about branch points. The following is one of the oldest

open problems in the area:

Open Question 1. For Γ ⊂ R3 a smooth Jordan curve and F : D̄ → R3 a solution to the

Plateau problem for Γ can Γ have branch points at the boundary?

Interestingly, it’s known that boundary branch points cannot exist when Γ ⊂ Rn is analytic

[Whi97] (even though interior branch points can exist in R≥4). On the other hand, the map

F : {x+ iy : x ≥ 0} → C2 z 7→ (z3, e
− 1√

z )

can be seen to define a least area solution with boundary branch point along smooth Γ ⊂ R4.

Finally, we note that a smooth Jordan curve in R3 bounding a branched minimal surface with

a boundary branch point is constructed in [Gul91], but it’s not known if F is minimizing.

Exercise 3.5. If a smooth Jordan curve Γ lies in the boundary of a convex set K ⊂ Rn

prove that a branched minimal immersion F spanning Γ:

(1) has F (D) contained in the interior of K and

(2) has no boundary branch points.

(Hint: for (1) use the strong maximum principle for some linear function of the coefficients

of F and for (2) use the Hopf boundary point lemma.)

3.6. Embeddedness. We emphasize that even when it is free of branch points, the solution

to Plateau’s problem need not be an embedding (for example, consider Γ ⊂ R3 knotted).

However, in certain cases one may prove that the least area disk is embedded. The following

holds in greater generality than stated:

Theorem 3.27 (Meeks–Yau [MY82]). Suppose that a smooth Jordan curve Γ lies in the

boundary of a compact convex set K ⊂ R3. Any solution to the Plateau problem for Γ will

be an embedding.

See [CM11, §6] for an overview of the proof.
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4. Harmonic maps

We now consider the case of the (classical) Plateau problem where Rn is replaced by a

Riemannian manifold.

Theorem 4.1 (Morrey [Mor48]). For (M, g) a closed Riemannian manifold and Γ ⊂ (M, g)

a homotopically trivial smooth Jordan curve, there’s an element of CΓ of least area.

Remark 4.2. Most of the various regularity results discussed above (boundary regularity,

non-existence of interior branch points in three dimensions) can be extended to the Rie-

mannian case as well.

We won’t prove Theorem 4.1. Instead we will instead discuss the work [SU81] of Sacks–

Uhlenbeck concerning minimizing energy in a homotopy class of maps Σ → (M, g) for Σ a

closed oriented surface.

For simplicity, we consider the target (M, gM) to be isometrically embedded in some RN

(possible by Nash embedding). For F : Σ → M ⊂ RN we can then define area A(F ) to be

the area of F : Σ → RN . To define the energy, fix a Riemannian metric h on Σ and set

E(F, h) :=
ˆ
Σ

|∇hF |2dVh.

Note that E(F, h) only depends on the conformal class [h] (cf. Lemma 3.11). We recall that

the existence of isothermal coordinates (cf. [Che55]), i.e. x, y with h = µ(dx2 + dy2) lets us

identify a conformal class [h] with a Riemann surface structure by declaring z = x + iy to

be a holomorphic chart.

Lemma 4.3. A(F ) ≤ E(F, h) with equality if and only if F is weakly conformal5.

Proof. Using a partition of unity, it suffices to check the inequality in local isothermal charts

where it’s the same as Lemma 3.3. □

Lemma 4.4. If F : (Σ, h) → M ⊂ RN is smooth and is a critical point of E(·, h) among

compactly supported smooth variations Fs : Σ →M ⊂ RN if and only if (∆hF )
⊤ = 0.

Definition 4.5. We call F satisfying (∆hF )
⊤ = 0 a harmonic map.

Proof. Given a variation Fs, note that d
ds

∣∣
s=0

Fs(p) = Ḟ (p) := V (p) ∈ TF (p)M ⊂ RN . Con-

versely, given a C∞ map V : Σ → RN with

(4.1) V (p) ∈ TF (p)M ⊂ RN for all p ∈ Σ

5with respect to [h]
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we can let Fs(p) = expF (p)(sV (p)) ∈ M for s sufficiently small. Thus, F will be a critical

point of energy if and only if

d

ds

∣∣∣
s=0

E(Fs, h) =
ˆ
Σ

∇hF · ∇hV = −
ˆ
Σ

(∆hF ) · V = 0

for any such V . □

Suppose that X is a vector field on RN with X ∈ T⊥
P M for all P ∈M . Recall that if U, V

are vector fields tangent to M , then

DUX · V = U(X · V )−X ·DUV = −X · A⃗(U, V )

where A⃗(U, V ) = (DUV )⊥ is the second fundamental form ofM ⊂ RN . Thus, for ν = X ◦F ,
we compute in local isothermal coordinates:

∆F · ν =
2∑
i=1

∂2i F · ν

=
2∑
i=1

∂i(∂iF · ν︸ ︷︷ ︸
=0

)− ∂iF · ∂iν

= −
2∑
i=1

∂iF ·D∂iFX

=
2∑
i=1

A⃗(∂iF, ∂iF ) · ν

where we used that ∂iF ∈ TF (p)M in the second line. Thus, we can (somewhat imprecisely)

write the harmonic map equation as

(4.2) ∆F = A⃗(dF, dF ).

Note that (unlike in the M = Rn case) this is a nonlinear PDE and thus we can expect to

face difficulties in establishing existence/regularity. Take note that A⃗ is actually the second

fundamental form of M evaluated at F (p) so it would be more correct to write A⃗ ◦ F .

4.1. The Hopf differential. Given a map F : (Σ, h) → M we can define the Hopf differ-

ential in isothermal coordinates by

Φ =
(
|∂xF |2 − |∂yF |2 − 2i∂xF · ∂yF

)
dz2 = 4(∂zF )

2dz2.

As before, we have:

Lemma 4.6. The Hopf differential vanishes Φ = 0 if and only if F is weakly conformal.

This is a quadratic differential on Σ. We recall that dz is locally a section of the holo-

morphic tangent bundle and dz2 is a section of the symmetric square of the holomorphic
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tangent bundle. Thus, to check that Φ is a quadratic differential we can check that under a

holomorphic change of coordinates w = w(z) then

4(∂zF )
2dz2 = 4(∂wF )

2w′(z)2dz2 = 4(∂wF )
2dw2.

We emphasize that Φ need not have holomorphic coefficients. However, we have:

Lemma 4.7. For F : (Σ, h) → M ⊂ RN smooth harmonic map, the Hopf differential Φ is

holomorphic.

Proof. In isothermal coordinates we have

∂z̄(∂zF )
2 = 2∂z̄∂zF · ∂zF =

1

2
∆F · ∂zF = 0

since (∆F )⊤ = 0 and ∂zF is the (complex linear) combination of the tangent vectors ∂xF

and ∂yF . □

Remark 4.8. Lemma 4.7 can be used to show that F ∈ W 1,2(Σ;M) that satisfy (∆F )⊤ = 0

in the weak sense are actually smooth. This is false for higher-dimensional domains. See

[Sch84, Riv95, Hél02].

Corollary 4.9. If F : S2 →M ⊂ Rn is a smooth harmonic map then it’s weakly conformal.

Proof. Combine Lemma 4.7 with the fact that a holomorphic quadratic differential on S2

must vanish. □

Exercise 4.1. Give an alternative proof of Corollary 4.9 as follows. Write Φ = ϕdz2 in a

stereographic projection chart on S2 \ {p} and show that ϕ ∈ L1(C) is holomorphic. Using

this prove that ϕ ≡ 0.

Corollary 4.9 does not hold if we replaced S2 by some other Riemann surface. For example,

dz2 is a holomorphic quadratic differential on T 2 = C/Λ. However:

Exercise 4.2. By computing the first variation of E(F, ·) with respect to h, show that if

E(F, h) is stationary for variations of h then F is weakly conformal.

5. Sacks–Uhlenbeck

We now fix (Σ, h) and try to find a harmonic map F : (Σ, h) → M . To find a weakly

conformal harmonic map (when Σ ̸= S2) we can then try to vary h.

5.1. α-harmonic maps. One way to do this is to introduce the α-energy of Sacks–Uhlenbeck:

Eα(F ) =
ˆ
Σ

(
(1 + |∇hF |2)α − 1

)
dVh
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As before, we see that F is a critical point of Eα(·) if and only if F satisfies the α-harmonic

map equation

∆F + (α− 1)
d|∇F |2 · dF
1 + |∇F |2

= A⃗(dF, dF )

(in the weak sense).

Proposition 5.1. Consider G : Σ → M smooth and the corresponding set of homotopic

maps [G] ∈ [Σ,M ]. For α ∈ (1, α0), there’s a weakly α-harmonic map F : (Σ, h) →M ⊂ RN

in [G] that minimizes Eα(F ) among maps in [G].

Proof. We can apply the direct method. Let Fi ∈ [G] be a minimizing sequence for Eα. A

bound on Eα(F ) gives a bound on F ∈ W 1,2α and thus F ∈ C
α−1
α by Morrey–Sobolev (C.1).

Thus, a Fi converges subsequentially in C0 and weakly in W 1,2α to F . The C0-convergence

guarantees6 that F ∈ [G]. □

Lemma 5.2. There’s α0 = α0(Σ, h) > 1 so that if F ∈ W 1,2α(Σ, h) is a weak solution to the

α-harmonic map equation for α ∈ (1, α0) then F ∈ C1(Σ). Moreover, for α ∈ [1, α0) we can

estimate

∥F∥W 2,p(Σ) ≤ C

(
1 + ∥∇F∥

2 p−1
p

L∞(Σ)E1(F )
1
p

)
for any p ∈ (1,∞) and C = C(M,Σ, h, p) independent of α.

Proof. We have7

|∆F | ≤ 2(α− 1)|D2F |+ C|dF |2

Thus W 2,p-elliptic estimates (cf. (A.1)) give

∥D2F∥Lp(Σ) ≤ C(∥F∥L∞(Σ) + ∥∆F∥Lp(Σ)) ≤ C(∥F∥L∞(Σ) + (α− 1)∥D2F∥Lp(Σ) + ∥dF∥2L2p(Σ))

For α− 1 sufficiently small, we can absorb the Hessian term to obtain

(5.1) ∥F∥W 2,p(Σ) ≤ C(1 + ∥dF∥2L2p(Σ)).

As long as α > 1 we can take p = α and use F ∈ W 1,2α(Σ) yields F ∈ W 2,α(Σ). Thus,

Sobolev embedding (cf. (C.2)) gives F ∈ W 1, 2α
2−α (Σ). We can take p = α

2−α > α in (5.1)

and so on until we get F ∈ W 2,p for p > n in which case Morrey–Sobolev gives F ∈ C1 as

claimed. The final estimate follows by using
´
Σ
|∇F |2p ≤ ∥∇F∥2(p−1)

L∞

´
Σ
|∇F |2 in (5.1). □

It’s important to note that C is independent of α.

6If G, G̃ are C0 close then F (x) and F̃ (x) are connected by a unique minimizing geodesic in M so we can
construct a homotopy by moving “linearly” along these geodesics.
7Strictly speaking, we do not know that F ∈ W 2,p so this step is only formal. To make it rigorous, we
could freeze the lower order coefficients in the α-harmonic map and mollify the Laplacian/Hessian term.
The argument used here gives W 2,p estimates for the mollified function, which then limit to corresponding
estimates for F .
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5.2. Bubbling. We now choose αi ↘ 1 and αi-harmonic maps Fi (from Proposition 5.1).

Note that E1(Fi) is uniformly bounded since Eαi
(Fi) ≤ Eαi

(G) is uniformly bounded for an

arbitrary fixed G ∈ [G] ∩ C∞.

Let λi := maxΣ |∇hFi|.
We first suppose that supi λi < ∞. Lemma 5.2 gives that Fi is uniformly bounded in

W 2,4(Σ). Morrey–Sobolev (cf. (C.1)) embedding thus bounds Fi ∈ C1, 1
2 (Σ). Thus, passing

to a subsequence, Fi converges in C
1 to F ∈ [G] ∩ C1, 1

2 (Σ). Note that F minimizes E(·, h)
in [G]. Indeed, if F̃ ∈ [G] has E(F̃ ) ≤ E(F )− δ then Fi → F in C1 gives

E(F̃ ) ≤ E(F )− δ = Eαi
(Fi)− δ + o(1) ≤ Eαi

(F̃ )− δ + o(1) = E(F̃ )− δ + o(1)

This is a contradiction for i sufficiently large. In particular, F is a weakly harmonic map.

On the other hand, if λi → ∞ (after passing to a subsequence), we can choose pi ∈ Σi

so that |∇hFi|(pi) = λi. Let hi = λ2ih denote the conformally changed metric. This gives

∥∇hiF∥L∞(Σ) ≤ 1. We now note that |D2
hi
F |hi = λ−2

i |D2
hF |hi so Lemma 5.2 gives

∥D2
hi
Fi∥Lp(Σ,hi) = λ

2 1−p
p

i ∥D2
hFi∥Lp(Σ,h) ≤ Cλ

2 1−p
p

i (1 + λ
2 p−1

p

i ) ≤ C.

We now choose normal coordinates around pi. As such, we can consider Fi, hi defined on an

exhaustion of R2 so that hi converges to δ in C
∞
loc. By Morrey–Sobolev (cf. (C.1)) we have that

Fi is bounded in C
1, 1

2
loc and thus converges to F : R2 →M ⊂ Rn with |∇F | ≤ 1, |∇F |(0) = 1

and F ∈ C
1, 1

2
loc . As above, we can prove that F minimizes E(·) among homotopic maps fixed

outside of a compact set. Thus F is weakly harmonic. We also observe that Fatou’s lemma

gives E(F ) <∞.

5.3. Bootstrapping regularity. Given F : (Σ, h) or C → M weakly harmonic with F ∈
C1,α

loc , we note that A⃗(dF, dF ) ∈ Cα
loc. Schauder estimates (cf. (A.2)) then imply that

F ∈ C2,α
loc . Thus A⃗(dF, dF ) ∈ C1,α

loc . Continuing this, we find that F ∈ C∞
loc.

Corollary 5.3. The harmonic map obtained in the previous section is in C∞.

Similarly (using Lemma 5.2 and then a similar bootstrap) we have

Lemma 5.4. If F is a harmonic map with ∥∇F∥L∞(Ω) ≤ 2 then ∥F∥Ck(Ω′) ≤ C for Ω′ ⋐ Ω.

5.4. ε-regularity. Given a harmonic map F : S2 → M we can compose with a conformal

diffeomorphism S2 → S2 to obtain a new harmonic map with the same energy. Thus,

controlling E(F ) is not enough to bound F in Ck. However, if E(F ) is sufficiently small, it

does suffice:

Theorem 5.5 (ε-regularity). If a harmonic map F : (D2, δ) → M ⊂ RN has
´
D2

|∇F |2 ≤
ε0(M) then ∥∇F∥L∞(D1) ≤ C(M).

We give a proof based on “point-picking” as opposed to the original PDE approach.
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Proof. If this fails, there’s a sequence of harmonic maps Fj : D2 → M with
´
D2

|∇Fj|2 → 0

but ∥∇Fj∥L∞(D1) → ∞. We can adjust the domain slightly to assume that Fj is smooth up

to ∂D2. Thus, there is some pj ∈ D2 so that

(2− |pj|)|∇Fj|(pj) = max
p∈D2

((2− |p|)|∇Fj|(p)) → ∞

Let λj = |∇Fj|(pj) and define the dilated map

F̃j(z) := Fj(pj + λ−1
j z).

If |pj| + λ−1
j |z| < 2 then z is in the domain of F̃j. Rearranging this, see that the domain of

F̃j includes D(2−|pj |)λj := Drj . Note that rj → ∞. We also observe that since

∇F̃j(z) = λ−1
j ∇Fj(pj + λ−1

j z), ∆F̃j(z) = λ−2
j ∆Fj(pj + λ−1

j z),

we see that F̃j is still a harmonic map to M with |∇F̃j|(0) = 1.

Fix R > 0 and consider z ∈ DR. For j large enough so that R < rj, the choice of pj gives

(2− |pj| − λ−1
j R)|∇Fj|(pj + λ−1

j z) ≤ (2− |pj + λ−1
j z|)|∇Fj|(pj + λ−1

j z) ≤ (2− |pj|)λj,

so

|∇F̃j|(z) ≤ 1 +
R

(2− |pj|)λj −R
= 1 + o(1)

as j → ∞. Elliptic boostrapping (Lemma 5.4) thus gives ∥F̃j∥Ck(BR) ≤ C(k,R) for all

k ∈ Z≥0, R > 0, so a subsequence converges in C∞
loc(R2) to a harmonic map F̃ : R2 → M

with |∇F̃ |(0) = 1. On the other hand, we have that (by conformal invariance of energy)ˆ
DR

|∇F̃j|2 ≤
ˆ
D2

|∇Fj|2 → 0

from which we see that F̃ must be a constant harmonic map. This contradicts the fact that

|∇F̃ |(0) = 1. □

Remark 5.6. We can interpolate L∞ ⊂ Ck∩L2 to improve the conclusion to ∥∇F∥L∞(D1) ≤
CδE(F )

1
2
−δ for all δ > 0. (See [SU81, Proposition 3.1] for δ = 0.)

5.5. Removable singularity. Recall that in the case of bubbling, we obtained a harmonic

map F : C →M ⊂ RN with F ∈ C∞
loc and E(F ) <∞. We claim that one can add the “point

at infinity” to obtain a smooth harmonic map F : S2 →M ⊂ RN . This follows by inverting

to F : C \ {0} →M and applying Sacks–Uhlenbeck’s removable singularity theorem:

Theorem 5.7 (Removable singularity). If F : D \ {0} → M ⊂ RN is a smooth harmonic

map with E(F ) <∞ then F extends to a smooth harmonic map on D.

We first have the (standard) fact that we can extend weak solutions across a set of zero

capacity.
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Lemma 5.8. ∆F = A⃗(dF, dF ) in the weak sense on D

Proof. We use a “log-cutoff.” For ε > 0 we set

φ(r) =


0 r < ε2

2− log r
log ε

ε2 ≤ r ≤ ε

1 r > ε.

Note that ˆ
D

|∇φ|2 = 2π

ˆ ε

ε2

1

r2(log ε)2
rdr =

1

| log ε|
= o(1)

as ε→ 0. For V ∈ C∞
c (D;RN) we have∣∣∣∣ˆ

D

φ(∇F · ∇V − A⃗(dF, dF ) · V )

∣∣∣∣ = ∣∣∣∣ˆ
D

∇V F · ∇φ
∣∣∣∣ ≤ C(V )

ˆ
suppφ

|∇F |2 + |∇φ|2 → 0

as ε→ 0. This completes the proof. □

We change coordinates from (r, θ) to (t, θ) defined by r = e−t. Note that the flat metric

becomes

dr2 + r2dθ2 = e−2t(dt2 + dθ2).

Since energy and the harmonic map equation are both conformally invariant, we can consider

a harmonic map F : [0,∞)× S1 →M with finite energy where we use the metric dt2 + dθ2

on the domain. Note that

E(F |[T,∞)×S1) → 0

as T → ∞. In particular, ε-regularity implies that F̃T (t, θ) := F (t − T, θ) converges sub-

sequentially in C∞
loc as T → ∞ to a constant map. However, this constant might a priori

depend on the chosen subsequence. Morally, the key step in the proof of Theorem 5.7 is to

prove that there is a unique limit (with a quantitative rate of convergence).

Lemma 5.9.
´
{t}×S1 |∂tF |2dθ =

´
{t}×S1 |∂θF |2dθ

Proof. We compute

d

dt

ˆ
{t}×S1

(|∂tF |2 − |∂θF |2)dθ = 2

ˆ
{t}×S1

(∂2ttF · ∂tF − ∂tθF · ∂θF )dθ

= 2

ˆ
{t}×S1

((∂2ttF + ∂2θθF ) · ∂tF − ∂θ(∂tF · ∂θF ))dθ

= 0

using (∆F )⊤ = 0. Thus
´
{t}×S1(|∂tF |2 − |∂θF |2)dθ ≡ c. Finiteness of energy E(F ) =´∞

0

´
S1 (|∂tF |2 + |∂θF |2) dθdt <∞ gives that c = 0. □

Lemma 5.10. P (t) :=
´
{t}×S1 |∂θF |2dθ satisfies P (t) → 0 as t → ∞ and P ′′(t) ≥ P (t) for

t sufficiently large.
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Proof. As discussed above, |∇F |(t, θ) → 0 as t → ∞. We thus compute (writing A ∗ B to

represent the product of two tensors A,B with some indices traced and then the quantity

multiplied by some uniformly bounded coefficient):

P ′′(t) = 2

ˆ
{t}×S1

(
|∂2θtF |2 + ∂θF · ∂3θttF

)
dθ

= 2

ˆ
{t}×S1

(
|∂2θtF |2 − ∂2θθF · ∂2ttF

)
dθ

= 2

ˆ
{t}×S1

(
|∂2θtF |2 + |∂2θθF |2 − A(dF, dF ) · ∂2θθF

)
dθ

= 2

ˆ
{t}×S1

(
|∂2θtF |2 + |∂2θθF |2 + ∂θ(A(dF, dF )) · ∂θF

)
dθ

= 2

ˆ
{t}×S1

(
|∂2θtF |2 + |∂2θθF |2 + (dF )2 ∗ (∂θF )2 + ∂F ∗ ∂2θ∗F ∗ ∂θF

)
dθ

≥
ˆ
{t}×S1

(
3

2
|∂2θθF |2 −

1

2
|∂θF |2

)
dθ

for t sufficiently large. In the second to last line we note that the third term arises from

∂θA = DA ∗ ∂θF since A is evaluated at F . In the final step we used |∇F | → 0 to absorb

the second term into the Hessian terms (and then discarded ∂θtF ). Since
´
{t}×S1 ∂θF dθ = 0,

the Poincaré inequality gives ˆ
{t}×S1

|∂θF |2 ≤
ˆ
{t}×S1

|∂2θθF |2

the assertion follows. □

Exercise 5.1. If P ′′(t) ≥ P (t) for t ∈ [T0,∞) and P (t) → 0 as t → ∞, show that P (t) ≤
P (T0)e

−t for t ∈ [T0,∞).

Exercise 5.2. Prove that F (t, θ) has a unique limit as t→ ∞ (uniformly in θ).

Proof of Removable Singularity Theorem 5.7. Combining Lemmas 5.9 and 5.10 with Exer-

cise 5.1 we find (in cylindrical coordinates)ˆ ∞

T

ˆ
{t}×S1

|∇F |2 = O(e−T ).

Returning the polar coordinates this givesˆ
Dr

|∇F |2 = O(r).

Note that
´
D|z|(z)

|∇F |2 → 0 as z → 0. Thus, for z sufficiently small we can rescale D|z|(z)

to D2 (energy is unchanged) and apply ε-regularity and Remark 5.6

|z||∇F |(z) = O(|z|
1
2
−δ).
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(The |z| factor arises in the gradient when scaling back.) This implies that F ∈ W 2,p for all

p ∈ [1, 4). Since F is a weak solution to the harmonic map equation on all of D (Lemma 5.8),

we can then repeat the argument used in the elliptic bootstrap to conclude that F ∈ C∞(D)

is a smooth harmonic map. □

5.6. Existence of harmonic maps. In sum, we’ve obtained:

Theorem 5.11 (Sacks–Uhlenbeck [SU81]). Consider G : Σ → M smooth. There’s either

F : (Σ, h) → M smooth harmonic map minimizing E(·) in [G] ∈ [Σ,M ] or else there’s a

nontrivial smooth harmonic map F : S2 →M with [F ] ̸= 0 ∈ π2(M).

Corollary 5.12. If π2(M) = 0 then there’s a smooth energy minimizing harmonic map

F : (Σ, h) →M in any homotopy class [Σ,M ].

Corollary 5.13. If π2(M) ̸= 0 there’s a smooth harmonic map F : S2 →M with [F ] ̸= 0 ∈
π2(M).

Note that in the bubbling case, we only proved that F minimizes among homotopic maps

that fix a neighborhood of ∞. This could be removed but it will suffice for our later appli-

cations.

5.7. Varying the conformal structure and Douglas type conditions. Suppose that

Σ ̸= S2 and π2(M) = 0. Fix a class in [Σ,M ]. Given any Riemann surface structure (Σ, h)

we can obtain a minimizing harmonic map Fh : (Σ, h) →M . To obtain a branched minimal

immersion we need to minimize [h] 7→ E(Fh, [h]) over all Riemann surface structures (cf.

Exercise 4.2). This could pose a major problem since this set is non-compact.

In certain cases the non-compactness can be avoided:

Theorem 5.14 (Schoen–Yau [SY79]). If G : Σ → M has G∗ : π1(Σ) → π1(M) injective

then there exists a branched minimal immersion Σ →M in [G] ∈ [Σ,M ].

When dimM = 3 one may obtain a least area/energy immersion in this manner by ruling

out true8 branch points as in Theorem 3.26. For example:

Corollary 5.15. If (T 3, g) is any Riemannian metric on a 3-torus, then there’s a least area

immersion F : T 2 → (T 3, g).

The basic idea of Theorem 5.14 is that if the conformal class degenerates then one may

find a very long cylindrical isothermal chart [−T, T ] × S1 in (Σ, h). Then, by an argument

as in the Courant–Lebesgue lemma we can conclude that some circle {t} × S1 is mapped to

a very short loop and is thus homotopically trivial.

8Since ∂Σ = ∅ it could happen that the minimizer F is the composition of an immersion with a branched
cover Σ → Σ. By discarding the branched cover, we can find a least area immersion (at the cost of changing
the homotopy class).
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Remark 5.16. Similar considerations hold in the classical Plateau problem with higher

topology. For example, let Γ1,Γ2 ⊂ Rn be disjoint (smooth) Jordan curves. Let aΓ1∪Γ2 be

the minimal area among all maps of annuli. Douglas proved that if the “Douglass criterion”

aΓ1∪Γ2 < aΓ1 + aΓ2

then there’s a branched minimal annulus with boundary Γ1∪Γ2. (Note that ≤ always holds

by connecting the two minimal disks by a thin tube.) The Courant–Lebesgue lemma shows

that if the conformal class of the annuli are degenerating, then a minimizing sequence can

be “cut” into two disks of nearly the same area.

6. The homological Plateau problem

The mapping problem does not seem to work well with higher dimensional domains

[Whi83]. Instead whats works is minimizing in a homology class:

Theorem 6.1 (Federer–Flemming [FF60]). For (Mn, g) a closed Riemannian manifold and

σ ∈ Hk(M ;Z), there exists a singular submanifold Σ ∈ σ of least area. When k = n− 1 and

n ≤ 7, Σ will be completely smooth.

One may also consider a similar problem for Γk ⊂ Rn (or a Riemannian manifold) and

minimize area among all “submanifolds” Σk+1 with ∂Σ = Γ. For k = 1, by [HS79], the

minimizer Σ will be smooth embedded and will solve the Douglas problem for surfaces of

genus g for any g ≥ genusΣ (if genusΣ > 0 there will also be a Douglas–Radó minimal disk

with boundary Γ but it will have area ≥ area(Σ)).

Part 2. First variation of area

We’ve seen some methods for finding least area “submanifolds.” We now turn to the

analysis of the Euler–Lagrange equations for this problem.

7. Mean curvature and first variation

For an embedded submanifold Σ ⊂ (M, g) a vector field along Σ is a smooth map X :

Σ → TM with X(p) ∈ TpM for all p ∈ Σ.9

Definition 7.1. We define the divergence of X along Σ by

divΣX =
k∑
i=1

g(DeiX, ei) = trTΣDX

where e1, . . . , ek ∈ TpΣ is an orthonormal basis.

9Alternatively: if F is the inclusion map F : Σ → M then vector fields along F are X ∈ Γ(F ∗TM).
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Note that D here is the connection onM , so strictly speaking we need to extend X locally

near p. However, since the ei are tangential to Σ the value of g(DeiX, ei) is seen to be

independent of this extension (exercise!).10

Theorem 7.2 (First variation I). Consider Ft : Σ → (M, g) a 1-parameter family of embed-

dings with Ft = F0 outside of a compact set. For Ḟ0 = X the velocity, we have

d

dt

∣∣∣
t=0

areag(Ft(Σ)) =

ˆ
Σ

divΣX

Proof for (M, g) = Rn. In a time-independent coordinate chart x1, . . . , xk on Σ, the induced

metric is

F ∗
t gRn(∂i, ∂j) = ⟨∂iFt, ∂jFt⟩

so the induced volume form becomes

dµ(t) =
√

det ⟨∂iFt, ∂jFt⟩ dx1 · · · dxk

in these coordinates. We assume that the coordinates are chosen so that at t = 0 and at

p ∈ Σ, hij = δij. In particular ∂1F0, . . . , ∂kF0 is an orthonormal basis for TpΣ.

We compute11

d

dt

∣∣∣
t=0

√
det ⟨∂iFt, ∂jFt⟩ =

1

2

d

dt

∣∣∣
t=0

det ⟨∂iFt, ∂jFt⟩

=
1

2
tr
d

dt

∣∣∣
t=0

⟨∂iFt, ∂jFt⟩

=
k∑
i=1

⟨∂iX, ∂iF0⟩

= divΣX.

Writing

area(Ft(Σ)) =

ˆ
Σ

dµ(t)

and differentiating under the integral sign completes the proof. □

Essentially same proof works for general ambient (M, g) if we choose normal coordinates

near Ft(p) since the first derivatives of g vanish at the center of normal coordinates.12

We now recall that if D is the Levi-Civita connection on (M, g) then if U, V are vector

fields along Σ ⊂ (M, g) tangent to Σ then

(7.1) DUV = ∇UV + A⃗(U, V )

10One could have defined the pullback connection F ∗D on F ∗TM and then define divΣ X using this pullback
connection.
11using det(I + εA) = 1 + ε trA+O(ε2)
12Alternatively, we can use the pullback connection for the space-time map F : Σ×(−ε, ε) → (M, g) (one has
to check the pullback connection is symmetric, which we used above to interchange the i and t derivatives).
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where ∇ is the Levi-Civita connection on Σ (with the induced metric) and A⃗ is the second

fundamental form of Σ. In fact, this is an orthogonal decomposition of DUV into tangential

∇UV and normal A⃗(U, V ). Recall that symmetry of the connections implies that A⃗(U, V ) is

symmetric in U and V . We define the mean curvature vector of Σ by

H⃗ = trΣ A⃗ =
k∑
i=1

A⃗(ei, ei)

for e1, . . . , ek an orthonormal basis for TpΣ.

Theorem 7.3 (First variation II). If ∂Σ is non-empty, let η be the outwards pointing unit

co-normal. Then for any compactly supported vector field X along Σ, we haveˆ
Σ

divΣX = −
ˆ
Σ

g(H⃗,X) +

ˆ
∂Σ

g(X, η).

Proof. Split X as

X = X⊥ +X⊤.

Then for e1, . . . , ek orthonormal basis of TpΣ, we have

g(DeiX
⊥, ei) = −g(X⊥, Deiei) = −g(X, A⃗(ei, ei)).

We also have

g(DeiX
⊤, ei) = g(∇eiX

⊤, ei).

Thus,

divΣX = divX⊤ − g(H⃗,X).

where the second divergence is the usual (intrinsic) divergence on Σ. We can use the diver-

gence theorem to get ˆ
Σ

divX⊤ =

ˆ
∂Σ

g(X, η).

This completes the proof. □

We’ll define the first variation operator of Σ by

(7.2) δΣ(X) =

ˆ
Σ

divΣX = −
ˆ
Σ

g(H⃗,X) +

ˆ
∂Σ

g(X, η).

It’s easy to see that for any compactly supported X, there’s Ft compactly supported that

has velocity X at t = 0. The above results show that d
dt
|t=0 areag(Ft(Σ)) = δΣ(X) and then

how to compute δΣ(X) in terms of H⃗ and the boundary term.

Corollary 7.4. Σ ⊂ (M, g) has H⃗ ≡ 0 if and only if d
dt
|t=0 areag(Ft(Σ)) = 0 for any

compactly supported variation Ft of the inclusion F0 with Ft|∂Σ = F0|∂Σ.

We thus call Σ ⊂ (M, g) with H⃗ ≡ 0 minimal surfaces (more precisely, minimal subman-

ifolds).
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Example 7.5. Consider Σ = {(x, y, 0) ∈ R3 : x2 + y2 ≤ 1}. Then,

δΣ(X) =

ˆ
∂Σ

g(X, η),

since the disk is totally geodesic (and thus minimal). Thus we see:

(1) If X is tangent to Σ and compactly supported then δΣ(X) = 0. This is the infinites-

imal version of the fact that area is diffeomorphism invariant.

(2) If X = (0, 0, 1) then δΣ(X) = 0, as expected since X is the velocity field of the

upwards translation isometries.

(3) If X = (x, y, z) is a dilation vector field, then δΣ(X) = 2π = d
dt

∣∣
t=0
π(1 + t)2 as

expected.

Remark 7.6. It’s often useful to note that we actually proved the infinitesimal first variation

formula: d
dt

∣∣
t=0
dµ(t) = (divΣX)dµ(0). If X is a normal vector field, we find the following

frequently used fact d
dt

∣∣
t=0
dµ(t) = −g(H⃗,X)dµ(0).

7.1. Two-sided hypersurfaces. If Σn ⊂ (Mn+1, g) is a hypersurface with a unit normal

N , we can write H⃗ = −HN for the scalar mean curvature H. The sign13 is chosen here to

simplify the first variation of area. Indeed, if we vary Σ with velocity X = φN then we have

δΣ(φN) =

ˆ
Σ

Hφ

for u ∈ C∞
c (Σ). It’s useful to also define the scalar second fundamental form by A⃗(U, V ) =

−A(U, V )N , so H = trA.

Given the unit normal, we also define the shape operator by S(U) = DUN . Since |N |2 = 1

we see that g(S(U), N) = 0, so Sp : TpΣ → TpΣ.

Lemma 7.7. The shape operator and scalar second fundamental form are related by g(S(U), V ) =

A(U, V ). In particular, Sp : TpΣ → TpΣ is self-adjoint.

Proof. For U, V vector fields tangent to Σ, we can differentiate g(V,N) = 0 and use compat-

ibility of the metric and connection to get

0 = g(DUV,N) + g(V,DUN) = −A(U, V ) + g(V, S(U)).

This completes the proof. □

We call the eigenvalues λ1, . . . , λn of the shape operator the principal curvatures.

13Caution: There is reasonable agreement on the definition of vector mean curvature and convention for sign
of the scalar mean curvature (anyone should agree that S2 ⊂ R3 has vector mean curvature pointing inwards
and scalar mean curvature is positive). However, there is not a uniform convention on how to relate the
vector to scalar mean curvature, since one might take the inwards pointing unit normal, in which case the

convention would need to be “H⃗ = Hν” or the outwards pointing unit normal in which case it’s H⃗ = −Hν
(as we do in these notes).
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Corollary 7.8. The scalar mean curvature satisfies14 H = λ1 + · · ·+ λn = divΣN .

Proof. We saw that H = trA = trS. The trace of a self-adjoint map is the sum of the eigen-

values, proving the first expression. For the second, choose e1, . . . , en ∈ TpΣ orthonormal

and write the trace as

H =
n∑
i=1

g(S(ei), ei) =
n∑
i=1

g(DeiN, ei) = divΣN.

This completes the proof. □

We also note for later that |A|2 = λ21 + · · ·+ λ2n.

7.2. Gaussian curvature of minimal surface. We recall that the Gaussian curvature15

of Σ2 ⊂ R3 can be defined extrinsically by K = λ1λ2.

Corollary 7.9. If Σ2 ⊂ Rn+1 is minimal then 2K = −|A|2.

Proof. Locally we can always choose N . Then λ1 = −λ2 using H = 0. □

In particular, minimal surfaces in R3 are negatively curved (intrinsically). Similar con-

siderations using the traced Gauss equations give that the scalar curvature of a minimal

hypersurface Σn ⊂ Rn+1 satisfies R = −|A|2 is negative. Note that the sectional/Ricci

curvatures of Σ need not be non-positive!

Example 7.10. For example, letting Σ = ∂B1 ⊂ R3 be the unit sphere, taking N(x) = x

to be the outwards pointing unit normal we note that DUN = U for any U ∈ TpR3, so

we thus have H = divΣN = 2. Alternatively, we could use the infinitesimal first variation
d
dt

∣∣∣
t=0
dµ(t) = Hφdµ(0) where φ is the normal speed, combined with the variation Ft(p) =

(1 + t)p to derive the same thing.

Exercise 7.1. Consider a warped product metric

g := dt2 + u(t)2gN

for a smooth function u(t) > 0 on an interval I and (N, gN) a fixed Riemannian manifold.

Show that N = ∂t is a unit normal to Σt = {t} × N . What is the (scalar) mean curvature

of Σt?

14Note that classically H was defined to be the average (mean) of the principal curvature. This is less
commonly used now, but “H = λ1+···+λn

n ” still appears in some references. We will use the “sum” not
“average” convention.
15Recall that 2K = R is the scalar curvature of Σ.
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8. Basic consequences of minimality

Theorem 8.1 (Coordinate functions are harmonic). A submanifold Σk ⊂ Rn is minimal if

and only if the coordinate functions on Rn restrict to harmonic functions on Σ.

Proof. One may compute directly (exercise!) but we will use the first variation formula. Let

Ej be a coordinate vector field on Rn and set X = φEj. Since Ej is parallel, we find

divΣX =
k∑
i=1

⟨DeiX, ei⟩ =
k∑
i=1

Deiφ ⟨Ej, ei⟩ = ⟨∇Σφ,Ej⟩ =
〈
∇Σφ,∇Σx

j
〉

Thus, for any φ ∈ C∞
c (Σ \ ∂Σ) we findˆ

Σ

φ∆Σx
j = −

ˆ
Σ

〈
∇Σφ,∇Σx

j
〉
= −δΣ(φEj) =

ˆ
Σ

φ
〈
H⃗, Ej

〉
Since φ was arbitrary, this proves that ∆Σx⃗ = H⃗ (meaning that the expression holds coor-

dinate by coordinate). This proves the assertion. □

Corollary 8.2 (Convex hull property). For Σk ⊂ Rn a compact minimal surface, we let

C(∂Σ) denote the convex hull of ∂Σ. Then Σ ⊂ C(∂Σ).

This is clearly false for non-compact Σ as can be seen by e.g. {(x, y, 0) ∈ R3 : x2+y2 ≥ 1}.

Proof. Suppose that ∂Σ ⊂ {⟨x, a⟩ ≤ t} for a ∈ Rn \ {0} and t ∈ R. We claim that

Σ ⊂ {⟨x, a⟩ ≤ t}. If not, the maximum of ⟨x, a⟩ is attained at some point in the interior

of Σ. However, we just saw that ∆Σ ⟨x, a⟩ = 0. This contradicts the weak maximum

principle16. □

Corollary 8.3. If Σk ⊂ Rn is minimal and has ∂Σ = ∅, then Σ is non-compact.

Corollary 8.4. Consider Σ2 ⊂ Rn a compact minimal surface with boundary so that Σ is

homeomorphic to the disk. For a compact convex set K with K∩∂Σ = ∅, it holds that K∩Σ

is simply connected.

Proof. Suppose that γ ⊂ K∩Σ is a simple closed curve. Then γ = ∂D for some disk D ⊂ Σ.

By the convex hull property and γ ⊂ K we find D ⊂ K. This completes the proof. □

Exercise 8.1. Formulate and prove a generalization of Corollary 8.4 that holds for higher

dimensional Σk ⊂ Rn.

Proposition 8.5 (Flux). Suppose that Σk ⊂ (M, g) is minimal and K is a Killing vector

on (M, g). Then, if Γ1,Γ2 ⊂ Σ are oriented hypersurfaces with [Γ1] = [Γ2] ∈ Hk−1(Σ), thenˆ
Γ1

g(K, ηΓ1) =

ˆ
Γ2

g(K, ηΓ2)

16For the Laplacian on Rn this is stated in Lemma 3.10, but the same result holds for a general elliptic
equation of the form: aijD2

iju+ biDiu ≥ 0, cf. [GT01, Theorem 3.1].
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for ηΓi
the oriented co-normal to Γi in Σ.

Thus, this defines FK : Hk−1(Σ) → R, the flux map.

Proof. Recall that a Killing vector satisfies g(DXK,Y )+g(DYK,X) = 0 for any vector fields

X, Y , so in particular we see that g(DXK,X) = 0. Tracing this over an orthonormal basis

of TpΣ we find divΣK = 0. Since Σ is minimal, we thus have

divΣK
⊤ = 0.

We can then apply the divergence theorem to the vector field K⊤ and k-chain with Ω in Σ

with ∂Ω = Γ1 − Γ2 to prove the assertion. □

9. Monotonicity

Proposition 9.1 (Cone inequality). Suppose that Σk ⊂ BR(0) ⊂ Rn is a minimal subman-

ifold with ∂Σ ⊂ ∂BR. Then |Σ| ≤ R
k
|∂Σ|.

Remark 9.2. Note that cone(∂Σ) := {tp : p ∈ ∂Σ} has area =
´ R
0

rk−1

Rk−1 |∂Σ|dr = R
k
|∂Σ| so

if Σ had least area (among competitors fixing ∂Σ) we could prove this by observing that

|Σ| ≤ |cone(∂Σ)| (assuming that the cone is a valid competitor). The proof below will only

use stationarity (Σ is assumed to be minimal as opposed to area-minimizing).

Proof. Take X(x) = x. Note that DX = Id so divΣX = k. Thus, the first variation formula

(Theorem 7.3) yields

k|Σ| =
ˆ
Σ

divΣX =

ˆ
∂Σ

X · η ≤ R|∂Σ|

This completes the proof. □

We write ωk for the volume of the unit ball in Rk.

Theorem 9.3 (Monotonicity). Suppose that Σk ⊂ Rn is a minimal submanifold with ∂Σ ∩
BR = ∅. Then for 0 < s < r < R we have

r−k|Σ ∩Br| − s−k|Σ ∩Bs| =
ˆ
Σ∩(Br\Bs)

|x|−k−2|x⊥|2,

so in particular

r 7→ |Σ ∩Br(x)|
ωnrn

:= ΘΣ(x, r)

is monotone nondecreasing.

Proof. We can assume that Σ intersects ∂Br, ∂Bs transversally. Consider X(x) = |x|−kx.
Note that D|x| = x

|x| so

DX = |x|−k Id−k|x|−2−kx⊗ x♭.
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Thus, if e1, . . . , ek is an orthonormal basis of TpΣ, we find that

divΣX = k|x|−2−k

(
|x|2 −

k∑
i=1

(ei · x)2
)

= k|x|−2−k|x⊥|2

Below, we write η for the outwards pointing unit co-normal to Σ ∩ Bt for t ∈ {s, r}. Apply
the first variation formula twice as follows:ˆ

Σ∩(Br\Bs)

k|x|−2−k|x⊥|2 =
ˆ
Σ∩(Br\Bs)

divΣX

= r−k
ˆ
Σ∩∂Br

η · x− s−k
ˆ
Σ∩∂Bs

η · x

= r−k
ˆ
Σ∩Br

divΣ x− s−k
ˆ
Σ∩Bs

divΣ x

= k
(
r−n|Σ ∩Br| − s−n|Σ ∩Bs|

)
.

This completes the proof. □

Corollary 9.4. If Σk ⊂ Rn has ∂Σ ∩ BR(0) = ∅ and 0 ∈ Σ then |Σ ∩ Br(0)| ≥ ωkr
k with

equality if and only if Σ ∩Br(0) is a flat disk.

Proof. Observe that lims↘0ΘΣ(0, s) = 1 since smooth embedded submanifolds are nearly

flat at small scales. Thus, monotonicity gives

|Σ ∩Br|
ωnrn

= 1 + ω−1
n

ˆ
Σ∩Br

|x|−k−2|x⊥|2 ≥ 1.

If equality held, we would get that x⊥ ≡ 0 along Σ, i.e. Σ is a cone centered at 0. Since Σ

is smooth it must be a flat disk. □

The monotonicity formula places strong constraints on the geometry/behavior of a minimal

surface. For example the following result rules out “tentacle” type behavior:

Corollary 9.5. Suppose that Σi is a sequence of minimal submanifolds in B2 ⊂ Rn with

|Σi| ≤ Λ. Pass to a subsequence so that the volume measures on Σi converge weakly, i.e. for

f ∈ C0(B2) it holds that ˆ
Σi

fdVΣi
→
ˆ
fdµ

for some Radon measure on B2. Then if xi ∈ Σi has xi → x ∈ B2 then x ∈ suppµ.

Proof. For t < r < d(x, ∂B2), choose f ≤ χBr(x) so that for i large χBr−t(xi) ≤ f . Then we

have

lim sup
i→∞

|Σi ∩Br−t(xi)| ≤ lim sup
i→∞

ˆ
Σi

fdVΣi
=

ˆ
fdµ ≤ µ(Br(x))

On the other hand, since xi ∈ Σi, monotonicity (Corollary 9.4) gives

ωk(r − t)k ≤ |Σk ∩Br−t(xi)| ≤ µ(Br(x)).



INTRODUCTION TO MINIMAL SURFACES 31

Letting t→ 0 we get µ(Br(x)) ≥ ωkr
k. This completes the proof. □

10. The Gehring link problem

This section roughly follows [BS83].

Lemma 10.1. If a compact minimal submanifold Σk ⊂ Rn has ∂Σ ∩ BR(0) = ∅ and 0 ∈ Σ

then kωkR
k−1 ≤ |∂Σ|. Equality holds only for Σ a flat disk.

Proof. Take X(x) = |x|−kx on Σ \ Bs. As in the proof of montonicity, we can let s → 0 to

find

kωk ≤
ˆ
Σ

k|x|−2−k|x⊥|2 + kωk =

ˆ
∂Σ

|x|−kx · η.

Using |x| ≥ R on ∂Σ we find

kωk ≤ R1−k|∂Σ|

which proves the assertion. □

Corollary 10.2 (Gehring link problem). Suppose that Γ1,Γ2 are smooth Jordan curves in

R3 that have non-zero linking number and dist(Γ1,Γ2) ≥ 1. Then min{|Γ1|, |Γ2|} ≥ 2π.

Proof. Find a minimal surface Σ1 ⊂ R3 with ∂Σ1 = Γ1. Up to a translation, 0 ∈ Γ2 ∩Σ1, so

Γ1 ∩B1 = ∅. Lemma 10.1 gives |Γ1| ≥ 2π. □

To find Σ1 we could use homological area-minimization. Alternatively, we could argue

that Lemma 10.1 holds for the solution to the classical Plateau problem.

Remark 10.3. Using the homology minimizers, the result extends to all dimensions, cf.

[BS83]. In fact, for Γk ⊂ Rn closed submanifold, if we defined FillRad(Γ) to be the infimum

of r > 0 so that [Γ] = 0 ∈ Hk(Ur(Γ)) (for Ur(Γ) denote the r-tubular neighborhood) then we

can prove (in the same manner) the Euclidean filling radius inequality |Γ| ≥ kωk FillRad(Γ)
k.

See also [Mat75, ES76, Oss76, Gag80, Ere09, Gut10].

11. Fáry–Milnor

We discuss the Eckholm–White–Wienholtz proof [EWW02] of the Fáry–Milnor theorem.

Given Σk ⊂ Rn compact minimal submanifold, let

E(∂Σ) := {tx : x ∈ ∂Σ, t ≥ 1}

be the exterior cone over ∂Σ.

Proposition 11.1. Assuming that 0 ∈ Σ ⊂ BR(0) for a compact minimal surface, we have

kωkR
k−1 ≤ |E(∂Σ) ∩ ∂BR|.
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Proof. Take X = |x|−kx as before. The first variation formula givesˆ
∂Σ

ηΣ ·X = kωk +

ˆ
Σ

divΣX

ˆ
E(∂Σ)∩∂BR

|x|−1x ·X −
ˆ
∂Σ

|x|−1x ·X =

ˆ
E(∂Σ)∩BR

divE(∂Σ)X + H⃗ ·X.

Even though H⃗ may not be = 0 on E(∂Σ), we have H⃗ · x = 0 since x is tangent to the

exterior cone. Note also that |x|−1x · X = |x|−k+1 and ηΣ · X ≤ |x|−k+1 along ∂Σ. Thus,

since divΣX ≥ 0, we have

kωk ≤
ˆ
E(∂Σ)∩∂BR

|x|−1x ·X +

ˆ
∂Σ

(ηΣ ·X − |x|−1x ·X)

≤ R−k
ˆ
E(∂Σ)∩∂BR

|x|−1x · x

= R1−k|E(∂Σ) ∩ ∂BR|

This completes the proof. □

Exercise 11.1. Show that the proof of Proposition 11.1 proves that r 7→ r−k|(Σ∪E(∂Σ))∩
Br| is non-decreasing, i.e. Σ∪E(∂Σ) satisfies the monotonicity formula for all radii. This is

due to Gromov (rediscovered in [EWW02]).

We now assume that k = 2.

Lemma 11.2. Then the geodesic curvature of E(∂Σ) ∩ ∂BR ⊂ E(∂Σ) satisfies κ = R−1.

Proof. Parametrize E(∂Σ) ∩ ∂BR by unit speed as γ(t). Then, the (vector) curvature as

a curve in Rn is k⃗ = γ′′(t) and the geodesic curvature satisfies κ = −η · k⃗. Note that

η(γ(t)) = |γ(t)|−1γ(t) and since γ(t) · γ(t) is constant, we get γ′′(t) · γ(t) = −|γ′(t)|2 = −1.

Putting this together, the assertion follows. □

Thus

R−1|E(∂Σ) ∩BR| =
ˆ
E(∂Σ)∩∂BR

κ =

ˆ
E(∂Σ)∩BR

K −
ˆ
∂(E(∂Σ))

κ = −
ˆ
∂(E(∂Σ))

κ ≤
ˆ
∂Σ

|⃗k|.

We used Gauss–Bonnet and that E(∂Σ) has K = 0 (since it contains a radial line, there’s

one zero principal curvature). As such, we obtain

(11.1) 2π = ω1 ≤ R−1|E(∂Σ) ∩BR| ≤
ˆ
∂Σ

|⃗k|.

(Note that = holds if and only if Σ is a flat disk.) This is not surprising, since we know

that
´
γ
|⃗k| ≥ 2π for any closed loop in Rn. However, the argument we gave actually proves

something stronger:

Theorem 11.3 (Fáry–Milnor [Fár49, Mil50]). If Γ ⊂ R3 has
´
Γ
|⃗k| ≤ 4π then Γ is unknotted.
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Proof. Let F : D̄ → R3 be the Plateau solution for Γ. We will assume that F is an immersion

on ∂D; this could be arranged by e.g. perturbing Γ to be real analytic. Let Σ = F (D̄). The

first-variation formula will hold for Σ as well (even though it’s not necessarily embedded).

If Γ is knotted, we can assume that 0 is an immersed point for Σ, i.e. at least two sheets of

Σ cross at 0. This gives lims→0 s
−2|Σ ∩ ∂Bs| ≥ 2ω1 = 4π. As such, if we repeat the proof of

(11.1), we will get 4π ≤
´
∂Σ

|⃗k|. If equality held, then Γ would be a convex curve contained

in a plane in which case it’s unknotted. This completes the proof. □

Note that we did not actually need to assume that F is an immersion since the first-

variation may be proven for branched minimal immersions (the derivation we gave works

essentially verbatim). Taking more care with the above argument we have:

Theorem 11.4 (Eckholm–White–Wienholtz). If Γ ⊂ Rn is a smooth Jordan curve with´
Γ
|⃗k| ≤ 4π and Σ is a branched minimal immersion with ∂Σ = Γ then Σ is embedded and is

in particular free of interior and boundary branch points.

See [EWW02] for further discussion and references.

Note that the example of a branched minimal surface has boundary curve approximately

transversing a circle twice and thus has total curvature = 4π + ε. See also [AT77, Hub80].

It’s natural to ask about minimal surfaces of other topologies. For example [EWW02, §5],
there’s Γ ⊂ R3 smooth Jordan curve with

´
Γ
|⃗k| < 4π but Γ bounds a minimal Möbius strip.

To construct Γ take two copies of a convex polygon in R2. Joining them at a common point

yields an immersed piecewise smooth of “total curvature” 4π. Rotating each slightly (in

opposite directions) around a line containing the joined point yields a polygonal curve in R3

that has a single self-intersection. This procedure strictly decreases the total curvature since

e.g. if the angle at the (unrotated) crossing is measured via cosα = (x, y, 0) · (−x, y, 0) =

y2 − x2 then the rotation yields cosαθ = (x, cos θy, sin θy) · (−x, cos θy,− sin θy) = x2 +

(cos2 θ − sin2 θ)y2 − x2. See Figure 3 Thus, one may smooth the curve out to yield Γ of

Figure 3. A piecewise smooth Jordan curve in R3 with total curvature < 4π
that bounds a least area Möbius strip.

total curvature < 4π. Any disk with boundary Γ will approximately have area at least

2 × (area of the polygon). On the other hand, one may find a Möbius strip bounded by Γ

with much less area. The Douglas criterion for non-orientable surfaces thus implies that

Γ bounds a least area Möbius strip. In this direction, White recently proved the following

result using mean curvature flow (combined with the original Milnor proof of Theorem 11.3):
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Theorem 11.5 (White, [Whi22]). For Γ ⊂ R3 smooth Jordan curve:

(1) If
´
Γ
|⃗k| ≤ 3π then any minimal surface bounded by Γ must be a disk.

(2) If
´
Γ
|⃗k| ≤ (1.014)× 3π then any orientable minimal surface bounded by Γ must be a

disk.

This raises the following:

Open Question 2. What is the least K so that if
´
Γ
|⃗k| ≤ K then any (orientable) minimal

surface bounded by Γ is a disk. In the orientable case, the 4π-conjecture asks if K = 4π

(this is the largest possible in light of examples [AT77, Hub80]).

12. The isoperimetric inequality

Recall the classical isoperimetric inequality says that if Ω ⊂ Rn is a compact region with

smooth boundary then |∂Ω|
n

n−1 ≥ |∂B|
n

n−1 |B|−1|Ω| (i.e. the ball has least surface area for

fixed volume). An important property of minimal submanifold is that they continue to

satisfy the isoperimetric inequality (in many cases with the optimal constant). This section

draws from the exposition in [Bre23].

Theorem 12.1 (Carleman [Car21], Reid [Rei59], Hsiung [Hsi61]). Consider Σ2 ⊂ Rn com-

pact minimal submanifold with one boundary component ∂Σ. Then |∂Σ|2 ≥ 4π|Σ|

Proof. By scaling, we can assume that |∂Σ| = 2π. Parametrize ∂Σ by unit speed α : S1 →
∂Σ ⊂ Rn. Up to a translation, we can assume that

´ 2π
0
α(s)ds = 0. Thus, Wirtinger’s

inequality (Poincaré inequality on S1) gives
ˆ 2π

0

αi(s)
2 ≤
ˆ 2π

0

α′
i(s)

2 ⇒
ˆ
∂Σ

|x|2 ≤ 2π.

Thus, letting X = x, we have

2|Σ| =
ˆ
Σ

divΣX =

ˆ
∂Σ

X · η ≤ |∂Σ|
1
2

(ˆ
∂Σ

|x|2
) 1

2

≤ 2π,

so |Σ| ≤ π. This completes the proof. □

The generalization to higher dimensions (or all topological types) has been a long-standing

open problem with many partial results (cf. [Bre23] for citations). A recent breakthrough of

Brendle resolved this for minimal surfaces of co-dimension ≤ 2. For hypersurfaces:

Theorem 12.2 (Brendle [Bre21]). If Σn ⊂ Rn+1 is a compact minimal hypersurface then

|∂Σ|
n

n−1 ≥ |∂Bn|
n

n−1 |Bn|−1|Σ|.

In co-dimension ≥ 3 we have:
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(1) Almgren [Alm86]: if Σk ⊂ Rn is17 area minimizing then Σ satisfies the sharp Euclidean

isoperimetric inequality |∂Σ|
k

k−1 ≥ |∂Bk|
k

k−1 |Bk|−1|Σ|.
(2) Michael–Simon [MS73]: If Σk ⊂ Rn is18 a minimal submanifold then Σ satisfies a

Euclidean-type isoperimetric inequality with a non-sharp constant |∂Σ|
k

k−1 ≥ c(k)|Σ|.

Part 3. Examples of minimal surfaces

We now discuss examples of minimal submanifolds, particularly those without boundary.

13. Examples via isometries

Recalling that isometries preserve the Levi-Civita connection, we have:

Lemma 13.1. Suppose that F : (M1, g1) → (M2, g2) is an isometry. If Σ ⊂ (M1, g1) is

a submanifold then dF (A⃗Σ(U, V )) = A⃗F (Σ)(dF (U), dF (V )) for U, V ∈ TpΣ and dF (H⃗Σ) =

H⃗F (Σ).

For (M1, g1) = (M2, g2) and F (Σ) = Σ this can be used to give a computation free proof

that certain submanifolds are minimal.

(1) For F (x, y, z) = (x, y,−z), dFp preserves TpR2 but is a reflection in the normal

bundle, so we see that R2 ⊂ R3 is totally geodesic (A⃗ = 0) and thus minimal. The

same proof works for any Π ⊂ Rn affine subspace.

(2) The helicoid Σ ⊂ R3 is defined by rotating a line while moving upwards. We can

define a global chart X(t, θ) := (t cos θ, t sin θ, θ) (note that then Σ = {y = x tan z}).
See Figure 4. Let F denote the 180◦-rotation around the line ℓ := {(t, 0, 0) : t ∈ R},
i.e. F (x, y, z) = (x,−y,−z). We observe that F (Σ) = Σ and for p ∈ ℓ, F (p) = p

but dF (N(p)) = −N(p). Thus, the above lemma gives that −H⃗Σ(p) = dF (H⃗Σ(p)) =

H⃗F (Σ)(p) = H⃗Σ(p), so H⃗Σ(p) = 0. We could have done this for any other of the lines

in Σ so we see the helicoid is minimal. Note that dFp|TpΣ is not the identity (it has

one +1 eigenvalue and one −1) so we do not conclude that Σ is totally geodesic.

(3) Write R2n+2 = Rn+1 × Rn+1 and define the Simons cone Cn,n = {(x, y) ∈ R2n+2 :

|x| = |y|}. We claim that Cn,n is minimal. Note that O(n + 1) × O(n + 1) acts

isometrically on Cn,n so it suffices to show that the mean curvature of Cn,n at p =

((r, 0, . . . , 0), (r, 0, . . . , 0)) vanishes for all r > 0. Note that a normal vector to Cn,n at

p is given by N(p) = (( 1√
2
, 0, . . . , 0), (− 1√

2
, 0, . . . , 0)). The isometry F (x, y) = (y, x)

preserves Cn,n as a set and has F (p) = p but dF (N(p)) = −N(p), so this proves that

Cn,n is minimal.

Exercise 13.1. Find J ∈ so(2n+ 2) so that ∪θ∈R(eθJCn,n)× {θ} is minimal.
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Figure 4. The helicoid. Credit: Matthias Weber, https://minimal.site
host.iu.edu/archive/

A related method can be described as follows (cf. [Law77, pp. 20–25]). Let G be a compact

connected group of isometries of a Riemannian manifold. Recall that an orbit of p ∈ M is

G(p) = {g(p) ∈ M : g ∈ G} is a smooth embedded submanifold diffeomorphic to G/Gp

where Gp = {g ∈ G : g(p) = p} is the isotropy subgroup (cf. [Lee13, Proposition 21.7]); in

the examples below it will be easy to verify this by hand. We say that two orbits G(p) and

G(q) are of the same type if the isotropy subgroups Gp, Gq are conjugate. i.e. there’s g ∈ G

with Gq = gGpg
−1.

Theorem 13.2 (Hsiang [Hsi66]). An orbit G(p) is a minimal submanifold if and only if it’s

a critical point of volume among all nearby orbits (of the same type).

Proof. Suppose that G(p) is critical among orbits of the same type. Let H⃗ denote the

mean curvature vector along G(p). Note that g∗H⃗p = H⃗g(p) for g ∈ G so g(expp(tH⃗p)) =

expg(p)(tH⃗g(p)). As such,

Σt := {expq(tH⃗q) : q ∈ G(p)}

is a G orbit. Moreover for pt = expp(tH⃗p), we have

g ∈ Gpt ⇔ pt = g(pt) ⇔ expp(tH⃗p) = g(expp(tH⃗p)) = expg(p)(tH⃗gp).

Since H⃗ is a normal vector (and g∗H⃗p = H⃗g(p)), for t small this is equivalent to g(p) = p i.e.

g ∈ Gp. Thus, Gpt = Gp, so Σt are orbits of the same type.

17This also holds true for “minimizing currents,” i.e. singular minimizers.
18This also holds true for “stationary varifolds,” i.e. singular minimal surfaces.

https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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The velocity vector of Σt at t = 0 is precisely H⃗, and thus the first variation gives

d

dt

∣∣∣
t=0

area(Σt) = −
ˆ
G(p)

|H⃗|2.

This completes the proof. □

Examples:

(1) G = SO(p + 1) × SO(q + 1) acts on Sp+q−1 ⊂ Rp+q+2. The orbit of (x, y) ∈ Rp+q+2

is Sp(|x|) × Sq(|y|) with volume proportional to |x|p|y|q. The critical points of this

function on the sphere |x|2+|y|2 = 1 are easily computed to be when |x|2 = p
p+q

, |y|2 =
q
p+q

, so Sp(
√

p
p+q

)× Sq(
√

q
p+q

) ⊂ Sp+q−1 is minimal for all p, q ∈ Z≥1.

(2) Since Σ ⊂ Sn is minimal if and only if the cone over Σ is minimal (Exercise!) we

can use (1) to generalize the Simons cone Cn,n to the set of “quadratic cones” Cp,q =

{(x, y) ∈ Rp+1 × Rq+1 : q|x|2 = p|y|2}.

See [Law77, p. 24] for an example that constructs a non-totally geodesic S3 → S4.

14. The catenoid

In this section, we look for axially symmetric minimal hypersurfaces Σ in Rn+1 given by

a parametrization F : I × Sn−1 → Rn+1 (for I ⊂ R an open interval) of the form

F (s, ω) := (s, r(s)ω) ∈ R× Rn.

Fixing some local coordinates on Sn−1 we find that

∂sF (s, ω) = (1, r′(s)ω), ∂ωiF (s, ω) = (0, r(s)∂ωi)

so the induced metric satisfies

g = (1 + r′(s)2)ds2 + r(s)2gSn−1 .

The induced volume form satisfies

dµΣ =
√
1 + r′(s)2r(s)n−1dsdµSn−1 .

If we vary r(s) to r(s) + tρ(s) with ρ(s) compactly supported, then if Σ = Σr(s) is minimal,

then the first variation formula gives19

0 =
d

dt

∣∣∣
t=0

area(Σr(s)+tρ(s))

= |Sn−1|
ˆ
I

(
r′(s)r(s)n−1

(1 + r′(s)2)
1
2

ρ′(s) + (n− 1)(1 + r′(s)2)
1
2 r(s)n−2ρ(s)

)
ds

19note that

(
x

(1+x2)
1
2

)′

= 1

(1+x2)
3
2
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= |Sn−1|
ˆ
I

(
− r′′(s)r(s)n−1

(1 + r′(s)2)
3
2

− (n− 1)r′(s)2r(s)n−2

(1 + r′(s)2)
1
2

+ (n− 1)(1 + r′(s)2)
1
2 r(s)n−2

)
ρ(s)ds

= |Sn−1|
ˆ
I

(
− r′′(s)r(s)n−1

(1 + r′(s)2)
3
2

+
(n− 1)r(s)n−2

(1 + r′(s)2)
1
2

)
ρ(s)ds.

Thus, since ρ(s) is arbitrary, we can see that if Σ is minimal then

r′′(s)r(s) = (n− 1)(1 + r′(s)2).

We want to find a first integral for this equation. One may do this by brute force or

appealing to Noether’s theorem, but a geometric way to do so is to use conservation of flux.

Let Γs = {s} × Sn−1. Then the (upwards) conormal satisfies

ηs =
(1, r′(s)ω)√
1 + r′(s)2

Let K = (1, 0) denote the upwards pointing parallel vector field. Then, we have that the

flux ˆ
Γs

⟨K, ηs⟩ =
r(s)n−1√
1 + r′(s)2

is independent of s. Call this constant F0. Solving for r′(s) we find

(14.1) r′(s)2 + 1 = F 2
0 r(s)

2(n−1).

Exercise 14.1. Show that a solution to (14.1) yields an axially symmetric minimal hyper-

surface in Rn+1.

14.1. Catenoid in R3. When n = 2, one may check that the general solution is r(s) =

F−1
0 cosh(F0(s− s0)) for s0 ∈ R arbitrary. This yields the catenoid in R3 (changing F0 and

s0 represents a scaling and vertical translation). See Figures 5 and 6. Note that for s0 = 0,

we can write

F0r = cosh(F0s) ≈
eF0s

2
so if we delete the circle of smallest radius r = F−1

0 , the catenoid can be written as the union

of two graphs on R2 of the form z ≈ ± log(2F0r). In particular, the catenoid in R3 is not

contained in a slab of bounded height.

14.2. Catenoid in R≥4. When n ≥ 3 there is no closed form solution, but we can solve (14.1)

to find the profile function implicitly. Instead of doing this, we’ll consider the qualitative

behavior (which is very different in higher dimensions as compared to in R3). When r(s) ≫ 1

(assuming r′(s) > 0) we can estimate

r′(s)2 ≈ F 2
0 r(s)

2(n−1) ⇒
(
r(s)2−n

)′ ≈ −F0(n− 2) ⇒ r(s) ≈ (C − F0(n− 2)s)−
1

n−2 .
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2 4 6 8

-4

-2

0

2

4

Figure 5. The profile curve of the R3 catenoid (with F0 = 1).

Figure 6. The catenoid. Credit: Matthias Weber, https://minimal.site
host.iu.edu/archive/

In particular, separation of variables suggests that r(s) → ∞ at some finite s. It’s not hard

to prove this rigorously:

https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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Exercise 14.2. Show that for n ≥ 3 and fixed flux F0, there’s a solution to (14.1), unique

up to translation in s, implicitly given by

s =

ˆ r(s)

F
1

n−1
0

dρ√
F 2
0 ρ

2(n−1) − 1

for s ≥ 0. Conclude that the catenoid in Rn+1, for n ≥ 3 is contained in a slab {|xn+1| ≤ S}
and find an integral relating S and F0.

Exercise 14.3. For any n ≥ 2, show that a catenoid in Rn+1 that’s symmetric with respect

to the xn+1-plane can be written as the union of two graphs (deleting the central Sn−1) over

Rn × {0}. Show that the graphical function is approximately equal to the Green’s function

on Rn.

See Figure 7 for a comparison between the R3 and R4 profile curves. In particular, we

emphasize that the R3 catenoid is not contained in any half-space, while an R≥4 catenoid is

contained in a slab.

15. The Weierstrass–Enneper representation

We now describe a powerful method (based on Riemann surface theory) for finding two-

dimensional minimal surfaces in Euclidean space. The basic idea is to combine the induced

Riemann surface structure with the fact that the coordinate functions are harmonic (Theorem

8.1) and the fact that the Gauss map is conformal (described below).

We first recall that we called weakly conformal harmonic maps F : D̄ → Rn “branched

minimal immersions” in Section 3.2. The following lemma (to be used later) shows that

1 2 3 4

-2

-1

0

1

2

Figure 7. The profile curve of the R4 catenoid (for comparison, the dashed
plot is the R3 profile curve with the same smallest radius).
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this terminology is consistent with the terminology used in later sections, i.e. a minimal

immersion is one with vanishing mean curvature H⃗ = 0.

Lemma 15.1. Given a Riemann surface Σ, consider a conformal immersion F : Σ → Rn.

Then F has H⃗ = 0 if and only if F is harmonic in the sense that each coordinate function

is a harmonic function on Σ.

Proof. Let g = F ∗gRn denote the induced metric. Theorem 8.1 gives ∆gF = H⃗. Since F is

conformal, this completes the proof. □

Exercise 15.1. Prove this remains true (with “harmonic map” in place of “harmonic”) for

conformal maps F : Σ → (M, g).

15.1. The Gauss map. For Σ2 ⊂ R3 minimal, there are just two principal curvatures, so

Corollary 7.8 gives 0 = H = λ1 + λ2. Thus, in some (oriented) orthonormal basis of TpΣ,

the shape operator S = DN : TpΣ → TpΣ = TN(p)S2 becomes diag(λ,−λ).

Corollary 15.2. If Σ2 ⊂ R3 is minimal, the unit normal defines a weakly conformal orien-

tation reversing map N : Σ → S2.

15.2. Holomorphic differential. We briefly review and generalize the discussion from

Section 3.1 on the holomorphic differential. Fix a Riemann surface Σ and smooth map

F : Σ → Rn. Let x, y be local oriented coordinates and let ζ = x+ iy (note that ζ may not

be compatible with the Riemann surface structure).

Let gij = ∂iF · ∂jF . We define a Cn-valued 1-form by ϕ = (ϕ1, . . . , ϕn) := ∂ζFdζ =
1
2
(∂xF − i∂yF )dζ. As in Section 3.1, we have

4(∂ζF )
2 = gxx − gyy − 2igxy, 4|∂ζF |2 = gxx + gyy.

Thus, we find:

(1) ϕk is holomorphic if and only if Fk is harmonic

(2) x, y are isothermal if and only if ϕ2 = 0.

(3) if x, y are isothermal, then F is an immersion if and only if |ϕ| ≠ 0.

As such, using Lemma 15.1, we see that finding (2-dimensional) minimal surfaces in Rn can

be viewed as a problem in Riemann surface theory:

Lemma 15.3. If F : Σ → Rn is a minimal immersion and x, y are local oriented isothermal

coordinates then ϕ is a Cn-valued holomorphic 1-form with

(15.1) ϕ2 = 0 and |ϕ|2 ̸= 0.
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Conversely, if Σ is simply connected and ϕ = (ϕ1, . . . , ϕn) satisfies
20 (15.1) then

(15.2) F = Re

ˆ
ϕ

defines a conformal minimal immersion F : Σ → Rn.

To be precise, the integral we defined above is a path integral from some fixed base-

point z0 ∈ Σ (often this is ignored, since a change of basepoint is equivalent to applying a

translation to the image of X).

Note that the integral (15.2) is path-independent since the ϕk are holomorphic and Σ was

assumed to be simply connected. If Σ is not simply connected then (15.2) will be well-defined

if and only if
´
γ
ϕk ∈ iR is purely imaginary for all closed loops γ in Σ. This is called the

period problem. Of course, since the ϕk are holomorphic, it suffices to check this on a basis

of H1(Σ).

Example 15.4. Consider the cylindrical coordinate parametrization of the catenoid

F (u, v) =

cosh v cosu

cosh v sinu

v


for (u, v) ∈ R× S1. Note that

∂uF =

− cosh v sinu

cosh v cosu

0

 , ∂vF =

sinh v cosu

sinh v sinu

1


so using cosh2 = 1 + sinh2 we find that |∂uF |2 = |∂vF |2 = cosh2 v and ∂uF · ∂vF = 0, i.e. F

is a conformal immersion. Setting ζ = u+ iv ∈ C/Z we thus set

ϕ =

ϕ1

ϕ2

ϕ3

 = (∂uF − i∂vF )dζ =

− cosh v sinu− i sinh v cosu

cosh v cosu− i sinh v sinu

−i

 dζ =

− sin ζ

cos ζ

−i

 dζ

Note that
ˆ
{∗}×S1

ϕ =

ˆ 2π

0

− sin t

cos t

−i

 dt =

 0

0

−2πi


is purely imaginary, so the periods are all zero (as expected).

15.3. Conjugate minimal surfaces. We now assume that ϕ is a Cn valued holomorphic

1-form on Σ so that
´
γ
ϕ = 0 for all closed curves γ ⊂ Σ (compare with the period problem

20As with the Douglas–Radó maps, one may drop the assumption that |ϕ|2 ̸= 0 and thus consider branched
minimal surfaces.
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where we just require that each period is purely imaginary). Given any (branched) minimal

immersion F : Σ → Rn, this can always be achieved by considering a small patch D ⊂ Σ or

else by passing to an appropriate cover.21

Then

Φ :=

ˆ
ϕ

(choosing a basepoint) defines a holomorphic map Φ : X → Cn with F = ReΦ. As such, we

can define Fθ := Re(eiθΦ). It’s easy to see that Fθ is a (branched) minimal immersion.

Lemma 15.5. The metric induced on Σ by Fθ is independent of θ.

Proof. We have |eiθϕ|2 = |ϕ|2. □

Example 15.6. We found that

ϕ =

− sin ζ

cos ζ

−i

 dζ

for the catenoid Σ = C/Z. Passing to the universal cover Σ̃ = C, we can integrate to find

Φ =

cos ζ

sin ζ

−iζ

 =

cosh v cosu

cosh v sinu

v

+ i

− sinh v cosu

sinh v sinu

−u


(up to a fixed translation which we ignore) where we recall ζ = u + iv ∈ C. Observe that

(up to an ambient isometry of R3), Fπ
2
is a parametrization of the helicoid! In particular,

we conclude that the helicoid and catenoid are locally isometric. See https://en.wikiped

ia.org/wiki/Catenoid#/media/File:Helicatenoid.gif.

15.4. Weierstrass representation. We now assume that n = 3, i.e. we have F : Σ → R3.

We relate the integrand ϕ = (ϕ1, ϕ2, ϕ3) to the Gauss map. In the sequel, it’s useful to recall

that the ratio of two holomorphic 1-forms is meromorphic (assuming the denominator does

not vanish identically) and that conformality gives ϕ2
1 + ϕ2

2 + ϕ2
3 = 0. We may assume that

ϕ3 is not identically zero. Let

g =
ϕ3

ϕ1 − iϕ2

= −ϕ1 + iϕ2

ϕ3

(the second equality follows from conformality). We note that

ϕ1 =
1

2
(ϕ1 − iϕ2 + ϕ1 + iϕ2) =

1

2
(g−1 − g)ϕ3.

Similarly,

ϕ2 =
i

2
(g−1 + g)ϕ3,

21Note that the catenoid does not satisfy this condition without either restricting to a simply connected
coordinate patch or else passing to the universal cover.

https://en.wikipedia.org/wiki/Catenoid#/media/File:Helicatenoid.gif
https://en.wikipedia.org/wiki/Catenoid#/media/File:Helicatenoid.gif
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Following [HK97] we write ϕ3 = dh (note the mild abuse of notation: Reϕ3 = dx3 is exact

but ϕ3 = dx3 + i(dx3)∗ need not be exact unless we pass to an appropriate cover). Thus we

have

(15.3) ϕ =

(
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
dh.

We may easily reverse this calculation:

Lemma 15.7. Given a meromorphic function g and holomorphic 1-form dh on Σ, the C3-

valued 1-form ϕ = (ϕ1, ϕ2, ϕ3) defined by (15.3) satisfies ϕ2 = 0 and thus F = Re
´
ϕ defines

a branched minimal immersion, possibly after passing to a cover of Σ to resolve the period

problem.

Note that |ϕ|2 = 1
2
(|g| + |g|−1)2|dh|2 so we find that F is an immersion if and only if at

any zero of dh there’s a zero/pole of g of the same order.

Recall that the Gauss map N : Σ → S2 is orientation reversing conformal and inverse

stereographic projection σ : S2 \ {N} → C is conformal and orientation reversing. We now

show that g is the Gauss map:

Lemma 15.8. g = σ ◦N .

Proof. Note that

dF = Re

[(
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
dh

]
and thus we find that

Re

(
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
, Im

(
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
are (linearly independent) tangent vectors to Σ. On the other hand, we have

σ−1 ◦ g = (2Re g, 2 Im g, |g|2 − 1)

|g|2 + 1
.

so it suffices to observe that(
1

2
(g−1 − g),

i

2
(g−1 + g), 1

)
· (2Re g, 2 Im g, |g|2 − 1)

=
ḡRe g − |g|2gRe g + iḡ Im g + i|g|2g Im g

|g|2
+ |g|2 − 1

= 0.

This completes the proof. □

We’ll call g and dh the Weierstrass data and/or the Gauss map and height differential.

Exercise 15.2. Compute the Gaussian curvature and second fundamental form in terms of

the Weierstrass data.
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15.5. Examples. We can easily find the Weierstrass data for the minimal surfaces in R3

already discussed:

Exercise 15.3. Show that:

(1) the catenoid has Weierstrass data g = z, dh = dz
z
on C \ {0}

(2) the helicoid has Weierstrass data g = eiz, dh = dz.

Figure 8. Enneper’s surface. Credit: Matthias Weber, https://minimal.
sitehost.iu.edu/archive/

The next simplest example is Enneper’s surface given by g = z, dh = zdz. See Figure 8

(note that Enneper’s surface is immersed, not embedded). An interesting feature is that the

induced metric

2|ϕ|2 = (|z|+ |z|−1)2|z|2|dz|2 = (1 + |z|2)2|dz|2

is thus rotationally symmetric (even though the embedding is not rotationally symmetric).

Exercise 15.4. Determine θ ∈ S1 so that t 7→ eiθt ∈ C is mapped to a straight line in R3

contained in Enneper’s surface. Conclude that “half of Enneper’s surface” is an embedded

surface with straight line boundary.

The Enneper–Weierstrass representation can be used to construct many examples of em-

bedded/immersed minimal surfaces in R3 (and Rn when appropriately generalized). See

Figure 9 (and Weber’s minimal surface archive https://minimal.sitehost.iu.edu/arch

ive/).

16. Calibrations

Definition 16.1. Suppose that Σk ⊂ (M, g) is an oriented submanifold. A k-form α ∈
Ωk(M) is a calibration for M if:

https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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Costa Wohlgemuth Costa–Hoffman–Meeks

Chen–Gackstatter Jorge–Meeks

Riemann Scherk Scherk

Figure 9. More examples of (complete) minimal surfaces in R3. The top and
bottom row are embedded while the middle row are immersed. The bottom
row has infinite total curvature, while the top two have finite total curvature.
Credit: Matthias Weber, https://minimal.sitehost.iu.edu/archive/

https://minimal.sitehost.iu.edu/archive/
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(1) dα = 0

(2) If e1, . . . , ek ∈ TpM are orthonormal then α(e1, . . . , ek) ≤ 1.

(3) If e1, . . . , ek is an oriented basis for TpΣ then α(e1, . . . , ek) = 1.

Theorem 16.2. If α calibrates Σ then Σ is homologically area-minimizing on compact sets.

Proof. It suffices to prove that if Σ is compact and calibrated by α then |Σ| ≤ |Σ̃| for all Σ̃
with ∂Σ̃ = ∂Σ and [Σ]− [Σ̃] = 0 ∈ Hk(M). Find a (k+1)-chain Ω with ∂Ω = Σ− Σ̃. Then,

Stokes theorem gives

0 =

ˆ
Ω

dα =

ˆ
Σ

α−
ˆ
Σ̃

α.

We have that α|Σ = dVolΣ and α|Σ̃ ≤ dVolΣ̃. This completes the proof. □

Example 16.3. Suppose that (M, g) is foliated by oriented minimal surfaces. Let ν denote

the unit normal to the leaves of the foliation and ω denote the volume form of g. Let α = ινω.

Since dω = 0 and LXω = (divX)ω, Cartan’s magic formula22 gives

dα = div ν ω

On the other hand, we have g(Dνν, ν) = 0 (differentiate |ν|2 = 1) and thus if Σ is a leaf of

the foliation then div ν = divΣ ν = 0.

Remark 16.4. Implicit in the previous example is the observation that codimension one

calibrations are the same as vector fields X so that

(1) divX = 0

(2) |X| ≤ 1

(3) X is a unit normal along Σ.

Indeed we can set α = ιXω for ω the volume form.

Example 16.5. Let ω = i
2

∑n
j=1 dzj ∧ dz̄j =

∑n
k=1 dxj ∧ dyj on Cn. One may check that

ωk

k!
calibrates dimensional complex submanifolds (this follows from the so-called Wirtigner’s

inequality [Wir36]) so they are all area-minimizing on compact sets (Federer [Fed65]). We

just check for k = 1 which follows from ω(v1, v2) = g(Jv1, v2) so |ω(v1, v2)| ≤ 1 with equality

if and only if v1, v2 span a complex plane in C. More generally, the same thing holds for a

Kähler manifold (complex submanifolds are calibrated by powers of the Kähler form).

It’s interesting to ask if all area-minimizing surfaces in Cn are holomorphic (up to a

rotation/reflection). For example, we have the following question of White [Whi16]:

Open Question 3. If Σ2 ⊂ Cn is an area-minimizing surface with a true branch point then

is Σ holomorphic?

22LX = dιX + ιXd
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See also [Mor82, Mic84, MW95, MW06].

Remark 16.6. There are many other important classes of calibrated submanifolds. For

example in a Calabi–Yau manifold, the so-called special Lagrangian submanifolds are cali-

brated. See [HL82].

17. Minimality of the Simons cone

We recall that the Simons cone

Cn,n := {(x, y) ∈ Rn+1 × Rn+1 : |x| = |y|}

was seen to be a minimal hypersurface in Section 13.

Theorem 17.1. For n ≥ 3 the Simons cone Cn,n ⊂ R2n+2 minimizes area on compact sets.

This was first proven by Bombieri–De Giorgi–Giusti [BDGG69]. We note that in R7 and

below no non-flat minimizing cones exist (proven by Almgren, Simons [Alm66, Sim68]).

Corollary 17.2. There exists Γ6 ⊂ R8 closed oriented submanifold so that the least area

“submanifold” Σ7 with ∂Σ = Γ is not smooth.

Proof. Let Γ = ∂Cn,n and note that Cn,n is not smooth at 0. □

Remark 17.3. One might find this result unsatisfying since we did not prove that no smooth

area-minimizer exists. This stronger statement is true. In fact one can prove that Γ does

not bound any smooth minimal surfaces.

Remark 17.4. In fact, one may show that (for p, q ∈ Z≥1) the quadratic cones Cp,q =

{(x, y) ∈ Rp+1 × Rq+1 : q|x|2 = p|y|2} are minimizing if and only if p + q + 2 ≥ 9 or else

p+ q + 2 = 8 and (p, q) ̸∈ {(1, 5), (5, 1)}.

Since Cn,n is not smooth, we should state Theorem 17.1 more precisely. We let

Ω := {|x| < |y|} ⊂ R2n+2

so that ∂Ω = Cn,n. Consider Ω
′ ⊂ R2n open with ∂Ω′ smooth and

Ω∆Ω′ := (Ω \ Ω′) ∪ (Ω′ \ Ω) ⋐ BR

for some R > 0. We’ll prove that

(17.1) |∂Ω ∩BR| < |∂Ω′ ∩BR|

following the “sub-calibration” method from [DPP09].

Let f(x, y) = 1
4
(|x|4−|y|4) and set X = ∇f

|∇f | . Note that X is smooth away from (0, 0) and

obviously satisfies |X| ≤ 1 and is normal along Cn,n. We compute

fxi = |x|2xi
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|∇f |2 = |x|6 + |y|6

fxixj = 2xixj + δij|x|2

(|∇f |2)xi = 6|x|4xi

Thus we have
n+1∑
i=1

(
fxi
|∇f |

)
xi

=
n+1∑
i=1

fxixi |∇f |2 − 1
2
fxi(|∇f |2)xi

|∇f |3

=
n+1∑
i=1

(|x|6 + |y|6)(2x2i + |x|2)− 3|x|6x2i
|∇f |3

=
(|x|6 + |y|6)(n+ 3)|x|2 − 3|x|8

|∇f |3

=
n|x|8 + (n+ 3)|x|2|y|6

|∇f |3
.

The derivatives with respect to y are the same but the sign flips. Thus we find

|∇f |3 divX = n(|x|8 − |y|8) + (n+ 3)|x|2|y|2(|y|4 − |x|4)

= (|x|4 − |y|4)(n(|x|4 + |y|4)− (n+ 3)|x|2|y|2).

Note that

(n+ 3)|x|2|y|2 ≤ n+ 3

2
|x|4 + n+ 3

2
|y|4

so as long as n+3
2

≤ n (i.e. n ≥ 3), divX has the same sign as f . We now have

Proof of Theorem 17.1. We prove Theorem 17.1 in the special case that Ω ⊂ Ω′, i.e. the

competitor “lies to one side.” (See Figure 10.) The general proof is similar but requires us

to keep track of more signs. By assumption we have that f > 0 on Ω′ \Ω and thus divX ≥ 0

on Ω′ \Ω (in fact > 0 a.e. if we keep careful track of the equality in AM-GM above). We also

observe that X is inwards pointing with respect to Ω′ \ Ω along Cn,n. Thus, the divergence

theorem gives

0 <

ˆ
Ω′\Ω

divX =

ˆ
Cn,n∩BR

N ·X +

ˆ
∂Ω′∩BR

N ·X.

Since N ·X = −1 along Cn,n and ≤ 1 along ∂Ω′ we thus conclude

|Cn,n ∩BR| < |∂Ω′ ∩BR|

completing the proof. □

Exercise 17.1. Prove Theorem 17.1 without assuming that Ω ⊂ Ω′. Also, use a cutoff

function to justify the choice of X in the divergence formula (since X is not smooth across

(0, 0)).
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Ω

Rn

Rn

Cn,n

Ω′ divX > 0

divX < 0

Figure 10. The vector field X is a “sub-calibration” proving that the Simons
cone Cn,n minimizes area.

18. Minimal graphs

Recall that for u : Ω ⊂ Rn → R the area of the graph of u (denoted Γu) is

A(u) =

ˆ
Ω

√
1 + |∇u|2.

Suppose we vary u to u+ tφ for φ ∈ C∞
c (Ω). Then

d

dt

∣∣∣
t=0

A(u+ tφ) =

ˆ
Ω

⟨∇u,∇φ⟩√
1 + |∇u|2

= −
ˆ
Ω

φ div

(
∇u√

1 + |∇u|2

)
.

Comparing with the first variation, we thus find that Γu is minimal if and only if it satisfies

the minimal surface equation

(18.1) div

(
∇u√

1 + |∇u|2

)
= 0.

We note that (18.1) is a second order quasilinear elliptic PDE since one can equivalently

write

∆u− D2u(∇u,∇u)
1 + |∇u|2

=
n∑

i,j=1

(
δij −

DiuDju

1 + |∇u|2

)
D2
iju = 0

and observe that the equation is linear with respect to the second derivatives of u (quasilinear)

and that the matrix with coefficients

(18.2) aij :=

(
δij −

DiuDju

1 + |∇u|2

)
is positive definite (elliptic).

Exercise 18.1. Show that the eigenvalues of (aij)
n
i,j=1 defined in (18.2) are 1 with multiplicity

n − 1 and 1
1+|∇u|2 with multiplicity 1. Conclude that if |∇u| → ∞, the minimal surface

equation is not uniformly elliptic.

Theorem 18.1. If u : Ω → R satisfies the minimal surface equation then its graph Γu

minimizes area in Ω× R with ∂Γu fixed.
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Proof. The vertical translation of Γu foliates Ω × R and thus forms a calibration (Example

16.3). □

Corollary 18.2. If u : Rn → R is an entire solution to the minimal surface equation then

|Γu ∩BR(x)| ≤ CRn.

Proof. Assume that ∂BR(x) intersects Γu transversely. Then Γu cuts ∂BR(x) into two re-

gions, both with area O(Rn). Since Γu minimizes area in Rn+1, this completes the proof. □

Exercise 18.2. Solve the minimal surface equation on a square in R2 by making the ansatz

u(x, y) = X(x) + Y (y). Using a reflection, construct a (complete) doubly periodic minimal

surface in R3 (it will not be a graph).

Part 4. The maximum principle for minimal surfaces

19. The maximum principle for the minimal surface equation

Suppose that Σn ⊂ Rn+1 is an embedded minimal hypersurface. For any p ∈ Σ, the

implicit function theorem gives r > 0 so that

Σ ∩Br(p) = graphu

for u defined on a subset of TpΣ (taking values in (TpΣ)
⊥). Since Σ is minimal, we thus have

that u satisfies the minimal surface equation.

19.1. Regularity of minimal surfaces (warmup). This observation gives that local prop-

erties of Σ can be reduced to the study of the minimal surface equation, for which one has

many tools such as the maximum principle. As a basic example, we have:

Lemma 19.1. Suppose that Σn ⊂ Rn+1 is a hypersurface that’s C2-smooth in the sense that

it can be locally written as the graph of a C2-function over its tangent plane at any point.

Assume that Σ is minimal. Then Σ is C∞-smooth.

Proof. It suffices to prove that if u ∈ C2
loc(B) solves the minimal surface equation, then

u ∈ C∞
loc(B). Write the minimal surface equation as

0 = M(u) =
n∑

i,j=1

aij(Du)D
2
iju = 0

for aij as in (18.2). Since u ∈ C2
loc(B) we see that aij ∈ C1

loc(B). Thus, Schauder theory

(A.2) implies that u ∈ C2,α
loc (B), so in particular aij ∈ C1,α

loc (B). Differentiating the minimal

surface equation and writing uk = Dku we get

n∑
i,j=1

aij(Du)D
2
ijuk +

n∑
ℓ=1

(
n∑

i,j=1

Dℓaij(Du)D
2
iju

)
Dℓuk = 0
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The lower order term (in parenthesis) will be in Cα
loc(B) since u ∈ C2,α

loc (B). Thus, we

can apply Schauder estimates to this equation satisfied by uk to get u ∈ C3,α
loc (B). This

(inductively) gives u ∈ C∞
loc(B). □

Remark 19.2. In fact, it’s possible to conclude that Σ is real analytic. See e.g. [Mor08, §5.8].
Note that if Σ is C1 then we can already ask if it’s minimal in the sense that

´
Σ
divΣX = 0

for any compactly supported vector field along Σ since all we need is the volume form of Σ

and the unit normal (to define divΣX). Both of these only depend on first derivatives of u.

Lemma 19.1 is still true under this assumption. See e.g. https://cmouhot.wordpress.co

m/wp-content/uploads/1900/10/mse.pdf.

19.2. Maximum principle.

Proposition 19.3 (Maximum principle for minimal surface equation). Suppose that u1, u2 ∈
C∞

loc(B), B ⊂ Rn solve the minimal surface equation. Assume that u1 ≤ u2 in B and

u1(0) = u2(0). Then u1 = u2 in B.

Proof. We write the minimal surface equation as M(u) =
∑n

i,j=1 aij(Du)D
2
iju. Let v =

u2 − u1 so that v ≥ 0 in B and v(0) = 0. We want to show that v satisfies a linear elliptic

PDE (so we can apply the maximum principle). We have

0 = M(u2)−M(u1)

=
n∑

i,j=1

aij(Du2)D
2
ijv +

n∑
i,j=1

(aij(Du2)− aij(Du1))D
2
iju1.

The second term looks troublesome, but we can resolve it by setting ut = u1+(t−1)(u2−u1)
and observing that

aij(Du2)− aij(Du1) =

ˆ 2

1

d

dt
(aij(Dut))dt

=

ˆ 2

1

Dkaij(Dut)Dk(
d
dt
ut)dt

=

(ˆ 2

1

Dkaij(Dut)dt

)
Dkv.

Thus, if we set ãij = aij(Du2) and

b̃k :=
n∑

i,j=1

(ˆ 2

1

Dkaij(Dut)dt

)
D2
iju1

we get

0 =
n∑

i,j=1

ãijD
2
ijv +

n∑
k=1

b̃kDkv.

https://cmouhot.wordpress.com/wp-content/uploads/1900/10/mse.pdf
https://cmouhot.wordpress.com/wp-content/uploads/1900/10/mse.pdf
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Note that ãij is uniformly elliptic on compact subsets of B (using Exercise 18.1 and u ∈
C∞

loc(B)). The assertion thus follows from the strong maximum principle. □

Corollary 19.4 (Uniqueness of solutions to the minimal surface equation). If u1, u2 ∈
C∞(Ω) ∩ C0(Ω̄) solve the minimal surface equation on a bounded domain Ω ⊂ Rn and

u1|∂Ω = u2|∂Ω then u1 = u2 in Ω.

Proof. Since Ω̄ is compact, if t≫ 0, then u1 < u2 + t on Ω̄. Let

t∗ = inf{t : u1 ≤ u2 + t}.

Note that since the boundary values agree, we must have t∗ ≥ 0. Suppose that t∗ > 0. We

have that u1 ≤ u2 + t∗ and there’s x∗ ∈ Ω̄ so that u1(x
∗) = u2(x

∗) + t∗ (otherwise we could

take t∗ smaller). Since the boundary values agree x∗ is in the interior. We can thus apply

the maximum principle (Proposition 19.3) to u1 and u2 + t∗ in a small ball B ∋ x∗. This is

a contradiction. Thus, t∗ = 0 so u1 ≤ u2. Repeating this argument with u1 and u2 swapped,

this proves the assertion. □

We can now prove that not all domains and boundary values admit solutions to the

minimal surface equation (compare with Theorem 21.1).

Corollary 19.5. There exists φ ∈ C∞(∂Ω), with Ω = B2 \ B1 ⊂ Rn so that there’s no

solution u to the minimal surface equation on Ω with u|∂Ω = φ

Proof. Let φ = 0 on ∂B1 and λ on ∂B2. Since the boundary condition is rotationally sym-

metric, uniqueness of solutions (Corollary 19.4) implies that a solution u with this boundary

condition must be rotationally symmetric. By the analysis in Section 14, the graph of u

must be a portion of the catenoid. However, among all catenoids that are graphical over Ω,

the maximal heigh λ at r = 2 occurs precisely for the catenoid with neck at s0 = 0 of radius

F0 = 1. See Exercise 19.1. □

Exercise 19.1. Prove the final statement in Corollary 19.5.

Recalling that any submanifold can be locally written as a graph over it’s tangent plane,

this also proves that two minimal hypersurfaces cannot make “one-sided” (interior) contact

(unless they agree). More precisely:

Corollary 19.6 (Geometric maximum principle). Suppose that Σn
1 ,Σ

n
2 ⊂ Rn+1 are properly

embedded minimal hypersurfaces and U ⊂ Rn+1 is an open set so that ∂Σi ∩ U = ∅ for

i = 1, 2. Assume that

• Σ1 ∩ U = ∂Ω for Ω ⊂ U open,

• Σ1 ∩ U,Σ2 ∩ U are connected, and

• Σ2 ∩ U ⊂ Ω.
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Then, either Σ1 ∩ U = Σ2 ∩ U or else Σ2 ∩ U ⊂ Ω is disjoint from Σ1.

Proof. If Σ1∩Σ2∩U ̸= ∅ then we find that Σ1∩Σ1∩U ⊂ Σ1∩U is a non-empty subset. It’s

the intersection of two (relatively) closed sets and thus (relatively) closed. It’s (relatively)

open by the maximum principle. Thus the assertion follows □

Note that the same thing holds in a Riemannian manifold. To generalize this one would

need to obtain a form of the minimal surface equation that holds with a non-flat ambient

metric and check that the above proof applies.

Exercise 19.2. Suppose that Σn
1 ,Σ

n
2 are two compact minimal hypersurfaces with Σ1∩Σ2 =

∅. Prove that d(Σ1,Σ2) = min{d(Σ1, ∂Σ2), d(Σ2, ∂Σ1)} where d(A,B) = inf{|a − b| : a ∈
A, b ∈ B}. Is this still true if Σ1 ∩ Σ2 ̸= ∅?

20. Hoffman–Meeks halfspace theorem

Theorem 20.1 (Hoffman–Meeks [HM90a]). Suppose that Σ2 ⊂ R3 is a complete properly

embedded minimal surface contained in a half-space. Then Σ is a flat plane.

Note that this fails in a dramatic way in R4, since the catenoid is contained in a slab.

Proof. Assume that Σ ⊂ {z ≥ 0} but Σ ̸⊂ {z ≥ t} for any t > 0. The maximum principle

implies that Σ ∩ {z = 0} = ∅. For ε > 0, let Γε,r denote the bottom half of the catenoid

with neck {(x, y, ε) : x2 + y2 = r}. Note that Γε,r ∩ {z ≥ 0} is compact. As such, since Σ is

properly embedded, we can find ε > 0 so that Σ is disjoint from Γε,1 ∪ (∪r∈(0,1]∂Γε,r). Let

R := {r ∈ (0, 1] : Σ ∩ Γε,s = ∅ for all s ∈ (r, 1]}.

Let r = infR. If r > 0, the maximum principle gives a contradiction. On the other hand,

as r → 0, the catenoid Γε,r “limits” to {z = ε} from which get that Σ ⊂ {z ≥ ε}. This is a
contradiction. □

Exercise 20.1. If Σ ⊂ R3 is a properly embedded minimal surface with compact boundary

so that Σ ⊂ H := {z ≥ 0} show that d(Σ, ∂H) = d(∂Σ, ∂H).

For R3, the proof would work essentially the same for a proper immersion. On the other

hand, the half-space theorem is false for non-proper immersions. For example:

Theorem 20.2 (Jorge–Xaiver [JX80]). There exists a complete minimal immersion Σ2 → R3

so that the image is contained between two planes.

Sketch of the proof. Consider Weierstrass data with Gauss map g = ef (where f is a holo-

morphic function to be chosen) and height differential dh = dz on D ⊂ C. For any choice

of holomorphic function f , the Weierstrass data gives an (unbranched) immersion with x3 is
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bounded. It thus remains to choose f so that the immersion is complete, i.e. ∂D has infinite

distance from 0 ∈ D with respect to the induced metric

1

2
(|g|+ |g|−1)2|dz|2.

We consider a sequence of regions K1, K2, . . . in the disk D as in Figure 11. The key

observation is that any path to ∂D with finite Euclidean length must eventually start crossing

all even Kn or all odd Kn. Using Runge’s approximation theorem (cf. [Rud87, Theorem 13.9]

and [Hof88, p. 96]) we can find a holomorphic function f on D with f ≈ cn (freely chosen)

on Kn, which allows us to force such a curve to have infinite length. □

D

Kn

Kn+1

Figure 11. The regions used by Jorge–Xavier to construct the complete min-
imal immersion in a slab in R3.

Nadirashvili has generalized this to a complete minimal immersion Σ → R3 with image

contained in a ball [Nad96]. On the other hand, we remark that Colding–Minicozzi have

proven [CM08] that the half-space theorem holds under the assumption that Σ is embedded

(not necessarily properly) and a topological disk.

Exercise 20.2. Prove that if Σ1,Σ2 are two minimal hypersurfaces in Sn then Σ1 ∩ Σ2 ̸= ∅
(this is known as Frankel’s theorem). Find disjoint minimal surfaces in H3.

21. Radó’s theorem

Consider Ω ⊂ R2 convex. We would like to solve the minimal surface equation on Ω. This

can be done in all dimensions using PDE methods (cf. [Sim97]):
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Theorem 21.1. For Ω ⊂ Rn bounded domain with smooth strictly mean-convex23 boundary,

if φ ∈ C0(∂Ω) then there’s u ∈ C0(Ω)∩C2(Ω) so that u solves the minimal surface equation

(18.1) on Ω with u|∂Ω = φ.

Instead here we describe Radó’s solution using the classical Plateau problem.

Proof of Theorem 21.1 for n = 2 and φ ∈ C∞. Let F : D̄ → R3 be the Douglas–Radó solu-

tion to the Plateau problem for Γ = graph∂Ω φ. Using the Gulliver–Osserman Theorem 3.26,

we have that F has no interior branch points. Since Γ lies on the boundary of a convex set we

have that F also has no boundary branch points by Exercise 3.5. For simplicity we assume

that F is an embedding so Σ = F (D̄) is a smooth embedded minimal surface with ∂Σ = Γ.

(It’s easy to modify the proof below to cover the case where F is a branched immersion.)

The convex hull property implies that Σ ⊂ Ω × R. The maximum principle (let ℓ be a

supporting line for Ω and consider the plane ℓ×R which cannot make interior contact with

Σ since it would necessarily be one-sided) implies that Σ \ ∂Σ ⊂ Ω× R.
Let π : R3 → R2 denote the projection. Assume there’s two points p ̸= q ∈ Σ with

π(p) = π(q). Then, we can consider Σt = Σ + te3. For t ≫ 0, Σt ∩ Σ = ∅. Thus, we can

decrease t (slide Σt down) until the first time there’s x ∈ Σt ∩ Σ. By assumption, t > 0.

Thus, the contact is one-sided and in the interior, a contradiction to the maximum principle.

To prove that Σ = graphΩ u it remains to show that there’s no point p ∈ Σ with horizontal

unit normal. Let P be the horizontal plane at such a point. Since P is transverse to Σ at

p, we can choose a small neighborhood p ∈ U ⊂ Σ so that P divides U into two smooth

connected components U1, U2 with common boundary curve γ. Let U∗
1 be the reflection of

U1 across P . Then U
∗
1 and U2 are disjoint (by the previous paragraph) minimal surfaces with

a common boundary curve so that they are tangent at p. This contradicts the boundary

version of the maximum principle. □

Exercise 21.1. State and prove a boundary version of the maximum principle used in the

previous proof.

More generally, we have that if Ω ⊂ Rn is mean convex then the solution to the minimal

surface equation for given boundary data is the unique compact minimal hypersurface with

the same boundary (essentially the same proof works).

22. Shiffman’s theorem and the convex curve conjecture

Theorem 22.1 (Shiffman [Shi56]). Suppose that Σ2 ⊂ R2 × [0, 1] is a minimal embedded

annulus in a slab with ∂Σ = Γ0 ∪ Γ1 convex curves in R2 × {0, 1}. Then Σ is transversal to

R2 × {t}) and the intersection Γt := Σ ∩ (R2 × {t} is strictly convex for 0 < t < 1.

23Mean-convex means that H⃗∂Ω points into Ω at every point. If Ω is strictly convex, then it’s strictly
mean-convex. In R2, the notions are the same.
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Proof. We can assume that Σ is conformally equivalent to A = {z ∈ C : 1 ≤ |z| ≤ r} and

consider Σ as the image of F : A→ R3. Up to a homothety we can assume that F ({|z| = 1})
is a convex curve in R2×{0} and F ({|z| = r}) is a convex curve in R2×{log r}. In particular

F3 is a harmonic function with the same boundary values as log |z| so F3(z) = log |z|. This
implies that Σ is transversal to each parallel plane. In particular, Γlog c is parametrized by

θ 7→ F (ceiθ) and the Gauss map g is never 0 or ∞. Thus, the angle ϕ = arg g ∈ S1 is also

the angle of Γlog c in R2 × {log c}. Thus, convexity is equivalent to d
dθ
ϕ(ceiθ) non-vanishing.

Since the argument of a holomorphic function is harmonic, this follows from the fact that it

does not vanish on ∂A and the maximum principle. □

This is known as Shiffman’s first theorem. His second theorem implies that if Γ0,Γ1

are round circles then so are Γt. This, in turn, allows one to appeal to a classification by

Riemann of such Σ: it’s either a part of a catenoid (if the circles are co-axial) or else a part

of Riemann’s minimal surface (see Figure 12). See [HM90b, §3.3].

Figure 12. Riemann’s minimal surface intersects each parallel plane in a
round circle or straight line. Credit: Matthias Weber, https://minimal.si
tehost.iu.edu/archive/.

Sketch of the proof of Shiffman’s second theorem. We sketch a proof due to Meeks–White

[MW91]. Choose a deformation Γi(t) so that Γi(0) = Γi, Γi(1) are co-axial circles, and

Γi(t) are moving “to the outside.” By analyzing the moduli space of minimal annuli with

boundary in parallel planes, Meeks–White prove that24 there’s a smooth family Σ(t) with

∂Σ(t) = Γ0(t)∪Γ1(t) and Σ(0) = Σ. Theorem 22.3 (proven below) implies that any minimal

surface bounded by Γ0(1)∪Γ1(1) is axially symmetric and thus part of a catenoid. Since we

know the catenoid (and Riemann example) explicitly, we can see that any nearby minimal

24We have skipped over the most difficult part of the argument. Note that we must use the precise nature
of the deformation, since, for example, if we shrink co-axial circles in parallel planes then eventually there’s
no catenoid with that boundary.

https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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annulus (with round boudary circles) is again of the same type. Thus, a continuity argument

from t = 0 to 1 gives that Σ(0) is of this type. □

Remark 22.2. For n ≥ 3 if Σn ⊂ Rn+1 is a minimal hypersurface that’s foliated by round

spheres then it’s a part of the catenoid, as proven by Jagy [Jag91]. A generalization of the

Riemann example to higher dimensions (just not foliated by round spheres) was obtained by

Kaabachi–Pacard [KP07].

Exercise 22.1. Prove Jagy’s theorem: a minimal hypersurface Σn ⊂ Rn+1 (with n ≥ 3)

that intersects each parallel plane in a round sphere is a part of the catenoid.

Closely related to the 4π-conjecture (Open Question 2) is:

Open Question 4 (Convex curve conjecture, Meeks). If Γ0,Γ1 are convex curves in parallel

planes then they cannot bound a compact minimal surface of positive genus.

Since the total curvature of Γ0 ∪ Γ1 is 4π, the method of Eckholm–White–Wienholtz

(Theorem 11.4) implies that any (branched, immersed) compact minimal surface bounded

by Γ0,Γ1 is embedded.

We have the following partial result (see also [MW91] for other partial results):

Theorem 22.3 (Schoen [Sch83]). For Γt ⊂ {z = t} ⊂ R3, t = 0, 1 convex curves, assume

that Γ0,Γ1 are invariant under reflection in the xz- and yz-planes. If Σ is a compact minimal

surface with ∂Σ = Γ0 ∪ Γ1 then Σ is either the disks in parallel planes bounded by the Γi or

else an annulus that’s invariant under the same reflections.

Proof. The convex hull property implies that Σ ⊂ {z ∈ [0, 1]} and the maximum principle

gives Σ \ ∂Σ ⊂ {z ∈ (0, 1)} (unless Σ are disks in parallel planes). We now use the method

of moving planes. Let Πs = {y = s} denote a translation of the xz-plane. Let Σ∗
s denote the

reflection of Σs := Σ ∩ {y ≤ s} over Πs. Starting from s ≫ 0 we decrease s until the first

time that Σ∗
s is not “strictly inside” Σs. If s > 0 then since Σ∗s is “weakly inside,” there

cannot be interior contact. By assumption on Γ0,Γ1 there cannot be contact on the {z = 0}
or the {z = 1} planes.

Thus, we consider Σs,Σ
∗
s along their common boundary γs = ∂Σs \ {z ∈ {0, 1}}. On

one hand, the boundary version of the maximum principle (Exercise 21.1) says that Σs,Σ
∗
s

cannot be tangent along γs. On the other hand, the assumptions on Γ0,Γ1 imply that they

cannot be tangent at ∂γs. As such, continuity gives that Σs,Σ
∗
s meet with a definite angle on

γs. Since there is no contact elsewhere we could thus decrease s slightly keeping Σ∗
s “strictly

inside” of Σs, a contradiction. Thus s = 0. We can repeat the same argument from the

other side to get Σ0 = Σ∗
0.
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This gives that Γt∩Π consists of graphs of bounded slope over Π∩{z = t}. By considering

the orthogonal plane, we see that (Σ ∩ {z = t}) \Π has exactly component on both sides of

Π ∩ {z = t}, so Σ is an annulus. This completes the proof. □

Part 5. Second variation of area

23. Computing the second variation

Theorem 23.1 (Second variation I). Consider Ft : Σ
k → (M, g) a 1-parameter family of

embeddings with Ft = F0 outside of a compact set. For DtFt|t=0 = X,D2
tFt|t=0 = Y the

velocity and acceleration, we have

d2

dt2

∣∣∣
t=0

areag(Ft(Σ))

=

ˆ
Σ

|(DX)⊥|2 + (divΣX)2 −
k∑

i,j=1

g(DeiX, ej)g(DejX, ei)−
k∑
i=1

Rg(X, ei, ei, X)

+

ˆ
Σ

divΣ Y

where ei is an orthonormal frame and our curvature convention is that Rg(ei, ej, ej, ei) is a

sectional curvature.

Exercise 23.1. If Mt is a 1-parameter family of n × n matrices with M0 = Id show that

(detMt)
′′(0) = tr M̈ + (tr Ṁ)2 − tr Ṁ2.

Proof for (M, g) = Rn. This is similar to the first variation formula (Theorem 7.2). In the

Euclidean case we can set Y = F̈0.

Letting Mij = ⟨∂iFt, ∂jFt⟩ we have

Ṁij = ⟨∂iX, ∂jF0⟩+ ⟨∂iF0, ∂jX⟩

M̈ij = 2 ⟨∂iX, ∂jX⟩+ ⟨∂iY, ∂jF0⟩+ ⟨∂iF0, ∂jY ⟩

Note that

tr Ṁ = 2divΣX

tr Ṁ2 =
k∑
i=1

(Ṁ)2ii =
k∑

i,j=1

Ṁ2
ij

= 2
k∑

i,j=1

⟨∂iX, ∂jF0⟩2 + 2
k∑

i,j=1

⟨∂iX, ∂jF0⟩ ⟨∂jX, ∂iF0⟩

= 2|(DX)⊤|2 + 2
k∑

i,j=1

⟨∂iX, ei⟩ ⟨∂jX, ej⟩
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Using (f(t)
1
2 )′′(0) = −1

4
f ′(0)2 + 1

2
f ′′(0) for f(0) = 1 we have

d2

dt2

∣∣∣
t=0

√
detMt = −1

4

(
d

dt

∣∣∣
t=0

detMt

)2

+
1

2

d2

dt2

∣∣∣
t=0

detMt

=
1

2
tr M̈ +

1

4
(tr Ṁ)2 − 1

2
tr Ṁ2

= divΣ Y + |DX|2 + (divΣX)2 − |(DX)⊤|2 −
k∑

i,j=1

⟨∂iX, ei⟩ ⟨∂jX, ej⟩

= divΣ Y + |(DX)⊥|2 + (divΣX)2 −
k∑

i,j=1

⟨DeiX, ei⟩
〈
DejX, ei

〉
.

This completes the proof. □

Exercise 23.2. Generalize the proof to a non-flat Riemannian manifold.

If Σ is minimal, then the first variation formula gives that the Y term does not matter.

(This is a geometric version of the usual fact that for a smooth manifold with no fixed

Riemannian metric, the Hessian of a function is well-defined at a critical point but not

elsewhere.) We thus define

δ2Σ(X) :=

ˆ
Σ

|(DX)⊥|2 + (divΣX)2 −
k∑

i,j=1

g(DeiX, ei)g(DejX, ei)−
k∑
i=1

Rg(X, ei, ei, X).

Theorem 23.2 (Second variation II). Assume that Σk ⊂ (M, g) is a minimal submanifold

and X is a normal vector field along Σ. Then

δ2Σ(X) =

ˆ
Σ

|(DX)⊥|2 − |X · A⃗|2 − trTΣRg(X, ·, ·, X).

Proof. Since X is normal and H⃗ = 0 we have divΣX = 0. Moreover,

g(DeiX, ej) = −g(X,Deiej) = −X · A⃗(ei, ej).

This completes the proof. □

Remark 23.3. Note the proof also gives |X · A⃗|2 = |(DX)⊤|2.

Theorem 23.4 (Second variation III). Assume that Σn ⊂ (Mn+1, g) is a minimal hypersur-

face with unit normal ν

δ2Σ(φ) := δ2Σ(φν) =

ˆ
Σ

|∇φ|2 − |A|2φ2 − Ricg(ν, ν)φ
2

for any φ ∈ C∞
c (Σ).

Proof. Since ν is a unit vector field, we see that g(Dν, ν) = 0 so (Dν)⊥ = 0. □
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24. Second variation and curvature

We call Σn ⊂ (Mn+1, g) two-sided if it admits a smooth unit normal.

Corollary 24.1. If (Mn+1, g) has Ricg > 0 then there are no closed, two-sided stable minimal

hypersurfaces. In particular if M is oriented then Hn(M ;Z) = 0.

Proof. Take φ = 1 to get ˆ
Σ

|A|2 +Ricg(ν, ν) ≤ 0.

This is a contradiction. If Hn(M ;Z) ̸= 0 then we could minimize area in a homology class

to find a two-sided stable minimal hypersurface. □

Lemma 24.2 (Doubly traced Gauss equations). If Σ ⊂ (M, g) is a two-sided hypersurface

then

(24.1) Rg = RΣ + 2Ricg(ν, ν) + |A|2 −H2

along Σ. Here Rg, RΣ is the ambient, intrinsic scalar curvatures, Ricg is the ambient Ricci

curvature, |A|2 is the norm of the scalar second fundamental form of Σ and H the scalar

mean curvature.

Proof. Recall that

DXY = ∇XY − A(X, Y )ν

for X, Y tangent to Σ. We assume that X, Y, Z,W are tangent vector fields that are ∇-

parallel at the point under consideration (so in particular [X, Y ] = 0 and so on) and compute

the ambient curvature as

Rmg(X, Y, Z,W ) = g(DXDYZ −DYDXZ,W )

= g(∇X∇YZ −∇Y∇XZ,W )

− g(DX(A(Y, Z)ν)−DY (A(X,Z)ν),W )

= RmΣ(X, Y, Z,W ) + A(X,Z)A(Y,W )− A(Y, Z)A(X,W ).

(We used g(ν,W ) = 0 twice and ∇Xν = A(X, ·) as proven in Lemma 7.7.) For e1, . . . , en an

orthonormal basis of TpΣ we can trace Y = Z = ei to get

Ricg(X,W )− Rmg(X, ν, ν,W ) = RicΣ(X,W ) +
n∑
i=1

A(X, ei)A(ei,W )− A(X,W )H.

(Note that this shows that for Σ ⊂ Rn+1 minimal we have RicΣ ≤ 0.) Tracing again for

X,W = ej we get

Rg − 2Ricg(ν, ν) = RΣ + |A|2 −H2

This proves the assertion. □
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Theorem 24.3 (Schoen–Yau). If (M3, g) has positive scalar curvature R > 0 then any

connected two-sided stable minimal surface Σ2 ⊂ (M, g) is25 topologically S2.

Proof. As before, we take φ = 1 to getˆ
Σ

|A|2 +Ricg(ν, ν) ≤ 0.

Since we have not assumed that Ric > 0, this is not a contradiction. Instead we recall that

the intrinsic Gaussian curvature is related to the intrinsic scalar curvature as KΣ = 2RΣ.

Thus the (doubly traced) Gauss equations (24.1) (and H = 0) give

2(Ricg(ν, ν) + |A|2) = Rg + |A|2 − 2K

Thus ˆ
Σ

Rg + |A|2 ≤ 2

ˆ
Σ

K.

Since we assumed that Rg > 0, Gauss–Bonnet gives χ(Σ) > 0. □

Corollary 24.4 (Schoen–Yau, Gromov–Lawson). There’s no metric g on T 3 with positive

scalar curvature.

Proof. We saw (Corollary 5.15) that there is a least area immersion F : T 2 → (T 3, g) (among

maps homotopic to T 2 → T 2 × {∗}). This minimal surface will be two-sided stable (immer-

sion) and the previous analysis can apply to give that it must be a sphere (contradiction).

Alternatively, one may minimize in H2(T
3) = Z3 to find Σ2 ⊂ (T 3, g) of least area. Each

component of Σ would need to be a sphere. However, a sphere in T 3 bounds a ball (lift to

the universal cover) and is thus homologically trivial. □

25. The Bernstein problem

Theorem 25.1 (Bernstein). Suppose that u is an entire solution to the minimal surface

equation on R2 then u is affine, i.e. the graph of u is a flat plane.

The proof given below is not the original proof (which used complex analysis and PDE

methods).

Proof. Let Σ be the graph of u. We have that Σ is area-minimizing (Theorem 18.1) and thus

stable. It’s two-sided so Theorem 23.4 givesˆ
Σ

|A|2φ2 ≤
ˆ
Σ

|∇φ|2

25RP 2 is possible if M is nonorientable
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for all φ ∈ C∞
c (Σ). We also recall that Corollary 18.2 gives |Σ ∩ BR| ≤ CR2. We use a

log-cutoff function as in Lemma 5.8:

φ(x) =


1 |x| ≤ R

2− log |x|
logR

|x| ∈ [R,R2]

0 |x| ≥ R2.

It’s easy to see that φ can be used in the stability inequality (even though it’s only piecewise

smooth). Note that

|∇Σφ|2 ≤ |∇R3φ|2 =

 1
|x| logR |x| ∈ [R,R2]

0 otherwise.

We thus need to estimate
´
Σ∩(BR2\BR)

1
|x|2 using the quadratic area growth. We do this

dyadically for R = 2k

ˆ
Σ∩(B

22k
\B

2k
)

1

|x|2
≤

2k−1∑
j=k

ˆ
Σ∩(B

2j+1\B2j
)

1

|x|2

≤
2k−1∑
j=k

2−2j|Σ ∩ (B2j+1 \B2j)|

≤
2k−1∑
j=k

2−2j|Σ ∩B2j+1|

≤ C
2k−1∑
j=k

2−2j22j

≤ Ck = C log 2k.

Thus we get (for R = 2k) thatˆ
Σ

|∇φ|2 ≤ 1

(logR)2
logR = o(1).

Since φ→ 1 pointwise as R → ∞ Fatou’s lemma thus givesˆ
Σ

|A|2 ≤ 0.

Thus |A| = 0 so Σ is flat. This completes the proof. □

There are several natural generalizations:

(1) Is an entire minimal graph over Rn a flat hyperplane? (This is “Bernstein’s problem”).

This is true for n ≤ 7 [Fle62, DG65, Alm66, Sim68] but non-flat examples exist for

n ≥ 8 [BDGG69].
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(2) Is a complete stable minimal hypersurface a hyperplane? (This is the “stable Bern-

stein problem”). Since minimal graphs are stable this generalizes the Bernstein prob-

lem. This is true in Rn+1 for n+1 ≤ 6 [Pog81, FCS80, dCP79, CL24, CL23, CMR24,

CLMS24, Maz24] and false for n+1 ≥ 8 ([BDGG69]. The problem is open in R7 (cf.

[SSY75, CSZ97, SS81, Bel25]).

A related problem is:

Open Question 5. If Σn → Rn+1 is a complete, two-sided stable minimal immersion must

Σ have intrinsic/extrinsic volume O(Rn) volume growth estimates?

26. Stable minimal cones

Recall that for Σ ⊂ Sn the cone C(Σ) ⊂ Rn+1 is minimal if and only if Σ is. For Σn−1 ⊂ Sn

minimal we define

λ0(−∆Σ − |A|2) := inf
0̸=ψ∈C∞(Σ)

´
Σ
|∇ψ|2 − |A|2ψ2´

Σ
ψ2

It’s standard to see that λ0 is the lowest eigenvalue of the operator −∆Σ − |A|2. Note that

this is not exactly the second variation of area since we have dropped the RicSn = n − 1

term.

Proposition 26.1 (Simons [Sim68]). The cone C(Σ) ⊂ Rn+1 is stable if and only if λ0 ≥
− (n−2)2

4
.

We consider only test functions φ ∈ C∞
c (C(Σ)\{0}), i.e. those who fix the tip of the cone.

It’s easy to consider a larger class of φ via a cutoff argument.

Proof. It’s easy to check that |AC |2 = r−2|AΣ|2. Thus, C(Σ) is stable if and only ifˆ ∞

0

ˆ
Σ

φ2r−2|AΣ|2rn−1dµΣdr ≤
ˆ ∞

0

ˆ
Σ

((∂rφ)
2 + r−2|∇Σφ|2)rn−1dµΣdr

for all φ ∈ C∞
c (C(Σ)). We change variables t = log r. (One could view the calculation below

as re-writing stability in the conformal metric g̃ = r−2g = dt2 + gΣ which is the product

metric R× Σ.) Note that ∂rφ = r−1∂tφ and dr = rdt so we getˆ ∞

−∞

ˆ
Σ

φ2|AΣ|2e(n−2)tdµΣdt ≤
ˆ ∞

−∞

ˆ
Σ

((∂tφ)
2 + |∇Σφ|2)e(n−2)tdµΣdt

We can replace φ by e−
n−2
2
tφ (since φ ∈ C∞

c (R × Σ) this does not change stability). Note

that

(∂te
−n−2

2
tφ)2e(n−2)t = (∂tφ)

2 − (n− 2)φ∂tφ+
(n− 2)2

4
φ2

and ˆ ∞

−∞
φ∂tφ =

1

2

ˆ ∞

−∞
∂tφ

2 = 0.
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Thus we find that stability is equivalent to

−(n− 2)2

4

ˆ ∞

−∞

ˆ
Σ

φ2dµΣdt ≤
ˆ ∞

−∞

ˆ
Σ

(
|∇Σφ|2 − |AΣ|2φ2

)
dµΣdt+

ˆ ∞

−∞

ˆ
Σ

(∂tφ)
2dµΣdt

We’re now ready to prove the assertion.

Suppose that C(Σ) is stable. For any ψ ∈ C∞(Σ) we can take a cutoff function η ∈ C∞
c (R)

with η = 1 on [−R,R], η = 0 on [−2R, 2R]c, and |η′| ≤ CR−1. We get

−(n− 2)2

4

ˆ
Σ

ψ2dµΣdt ≤
ˆ
Σ

(
|∇Σψ|2 − |AΣ|2ψ2

)
dµΣ +

´∞
−∞(η′)2dt´∞
−∞ η2dt

ˆ
Σ

ψ2dµΣ

Letting R → ∞ we find λ0 ≥ − (n−2)2

4
.

Conversely, suppose that λ0 ≥ − (n−2)2

4
. For φ ∈ C∞

c (R × C) we can apply this to φt =

φ(t, ·) for t fixed to get

−(n− 2)2

4

ˆ
Σ

φ2
tdµΣ ≤

ˆ
Σ

(
|∇Σφt|2 − |AΣ|2φ2

t

)
dµΣ

Integrating this over t ∈ R we get

−(n− 2)2

4

ˆ ∞

−∞

ˆ
Σ

φ2dµΣdt ≤
ˆ ∞

−∞

ˆ
Σ

(
|∇Σφ|2 − |AΣ|2φ2

)
dµΣdt

which implies stability. □

Minimal cones in R3 are flat (since the link is a geodesic in S2) so we next conisder:

Theorem 26.2 (Almgren [Alm66]). If C(Σ) ⊂ R4 is a stable minimal cone then it’s flat R3.

Proof. Note that Σ ⊂ S3 is a minimal surface. By Exercise 20.2, Σ is connected. Taking

ψ = 1 in λ0 ≥ − (n−2)2

4
= −1

4
gives ˆ

Σ

|AΣ|2dµΣ ≤ 1

4
|Σ|

On the other hand, the (doubly traced) Gauss equations (24.1) give

6 = 2K + 4 + |AΣ|2 ⇒ |AΣ|2 = 2− 2K

since RicS3 = 2 and RS3 = 6. Thusˆ
Σ

|AΣ|2dµΣ = 2|Σ| − 4πχ(Σ).

Putting these facts together we get

|Σ| ≤ 16

3
πχ(Σ)

so Σ is a topological sphere. Thus, the assertion follows from Theorem 26.3 below. □

Theorem 26.3 (Almgren [Alm66]). If Σ ⊂ S3 is a minimal sphere then it’s totally geodesic.
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Proof. We need some preliminary results. We consider isothermal coordinates z = x + iy

on Σ. Recall the complex tangent vectors ∂z, ∂z̄. We need to understand the action of

the connection on these vector fields (i.e. we need to compute the Christoffel symbols).

Recall that (extending the metric complex bilinearly) g(∂z, ∂z) = gxx − gyy − igxy = 0 and

g(∂z, ∂z̄) = gxx + gyy so

0 = g(∇∂z̄∂z, ∂z)

Thus ∇∂z̄∂z = A∂z. Symmetry of the connection gives ∇∂z∂z̄ = A∂z. On the other hand,

differentiating g(∂z̄, ∂z̄) = 0 in the ∂z direction gives ∇∂z∂z̄ = B∂z̄. Thus A = B = 0 so

∇∂z̄∂z = ∇∂z∂z̄ = 0. Finally, we have

0 = g(∇∂z∂z, ∂z)

so we get ∇∂z∂z = Γ∂z (and ∇∂z̄∂z̄ = Γ̄∂z̄).
26

We also need the Codazzi equations We recall that for Σ a two-sided hypersurface, the

ambient connection decomposes as

DXY = ∇XY − A(X, Y )ν.

We consider vector fields X, Y tangent to Σ that are ∇-parallel at the point under consid-

eration:

Rmg(X, Y, Z, ν) = g(DXDYZ −DYDXZ, ν)

= g(DY (A(X,Z)ν)−DX(A(Y, Z)ν), ν)

= Y (A(X,Z))−X(A(Y, Z))

= (∇YA)(X,Z)− (∇XA)(Y, Z).

We used [X, Y ] = ∇XY −∇YX above. Since the ambient space is S3, the left-hand side is

= g(X, ν)g(Y, Z)− g(X,Z)g(Y, ν) = 0. Thus ∇A is totally symmetric in all three indices.

We now compute

∂z̄(A(∂z, ∂z)) = (∇∂z̄A)(∂z, ∂z) (mixed Christoffel symbols vanish)

= (∇∂zA)(∂z, ∂z̄) (Codazzi equations)

= ∂z(A(∂z, ∂z̄))− A(∇∂z∂z, ∂z̄) (mixed Christoffel symbols vanish)

= ∂z(A(∂z, ∂z̄))− ΓA(∂z, ∂z̄) (mixed Christoffel symbols vanish).

We have

4A(∂z, ∂z̄) = A(∂x, ∂x) + A(∂y, ∂y) = 0

26This is a general fact that holds in a Kähler manifold: Christoffel symbols that mix holomorphic and
anti-holomorphic coordinates vanish.
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since trA = 0 and x, y are isothermal (so |∂x| = |∂y| = 0). Thus we find that

4A(∂z, ∂z) = A(∂x, ∂x)− A(∂y, ∂y)− 2iA(∂x, ∂y)

is holomorphic. As such

Φ = A(∂z, ∂z)dz
2

defines a holomorphic quadratic differential on S2, so Φ = 0. Thus, Σ is totally geodesic. □

Exercise 26.1. Show that Σ2 ⊂ R3 a topological sphere with constant mean curvature is a

round sphere (Hopf).

Remark 26.4. Brendle proved [Bre13a] the Lawson conjecture which says that an embedded

minimal torus in S3 is a rotation of S1( 1√
2
) × S1( 1√

2
) = C2,2 ∩ S3 (the Clifford torus). On

the other hand, there’s infinitely many immersed minimal tori in S3 so this proof combines

a Hopf differential argument as in Theorem 26.3 with a geometric argument that brings in

embeddedness. Note that Lawson has constructed [Law70] an embedded minimal surface in

S3 of every genus. See [Bre13b] for an overview.

To generalize Theorem 26.2 to the full range we need (not proven here) the following

inequality

Lemma 26.5 (Simons [Sim68]). For Σn−1 ⊂ (Sn, g) a minimal hypersurface, the second

fundamental form satisfies

|A|∆Σ|A|+ |A|4 ≥ (n− 1)|A|2.

This easily gives the sharp dimensional restriction on stable minimal cones.

Corollary 26.6 (Simons [Sim68]). If C(Σ) ⊂ Rn+1 is a stable non-flat minimal hypercone

then n ≥ 7.

Proof. Take ψ = |A| in λ0(−∆− |A|2) ≥ − (n−2)2

4
. We have

−(n− 2)2

4

ˆ
Σ

|A|2 ≤
ˆ
Σ

|∇|A||2 − |A|4

=

ˆ
Σ

−|A|∆Σ|A| − |A|4

≤ −(n− 1)

ˆ
Σ

|A|2.

As such, if Σ is non-flat then

4(n− 1) ≤ (n− 2)2 ⇒ n ≥ 7.

This completes the proof. □
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Part 6. Limits of minimal surfaces

27. Examples

We first describe several possible examples of limiting behaviors of minimal surfaces.

Let Σ be a catenoid in R3 (see Figure 6). We have the following examples:

(1) Let xi ∈ Σ diverge and consider the shifted catenoid Σi := Σ− xi. Then Σi becomes

flatter and flatter so we would like to say that Σi converges to a flat plane “smoothly

on compact sets.” Note that we need to say “on compact sets” since Σi always has

a region of high curvature, it’s just further and further away from the origin.

(2) Let λi → 0 and consider the scaled catenoid Σi = λiΣ. Since the catenoid grows

sublinearly at infinity, away from the origin Σi will consist of two sheets that are

close to planar. However, the curvature of Σi satisfies |AΣi
|(x) = λ−1

i |AΣ|(λix) and
thus Σi has curvature blowing up at the origin. We can thus say that Σi “smoothly”

converges to R2 \ {0} on compact subsets of R3 \ {0} with “multiplicity two.”

More general phenomenon are possible.

Figure 13. The Hoffman–Meeks deformation family of the Costa surface.
Credit: Matthias Weber, https://minimal.sitehost.iu.edu/archive/

(3) Let Σi be (diverging) members of the “Hoffman–Meeks deformation family” of the

Costa surface (See Figure 13). Then for appropriate λi, xi, Σi := λiΣ − xi can

”converge” to one of:

(a) a flat plane with multiplicity one,

(b) a flat plane with multiplicity three,

(c) a flat plane with multiplicity three punctured at one or three points (where the

convergence is on compact sets away from these points), or

(d) a catenoid with multiplicity one.

(4) Let Σi be a sequence of “genus gi → ∞” Costa–Hoffman–Meeks surfaces (Figure

14). Then Σi “converges” to a catenoid ∪ plane smoothly away from the intersection

circle. Appropriate rescalings/translations Σ̃i := λiΣi − xi would converge to:

(a) a flat plane with multiplicity one,

https://minimal.sitehost.iu.edu/archive/
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Figure 14. The high genus Costa–Hoffman–Meeks surface. Credit: Matthias
Weber, https://minimal.sitehost.iu.edu/archive/

(b) a flat plane with multiplicity three,

(c) a flat plane with multiplicity three punctured at one point,

(d) two planes meeting orthogonally, each with multiplicity one, or

(e) Sherk’s singly periodic surface (Figure 15).

Figure 15. Scherk’s singly periodic surface. Credit: Matthias Weber, https:
//minimal.sitehost.iu.edu/archive/

(5) Let Σ be the helicoid (Figure 4). Then appropriate scalings and translations Σi

converge to

(a) the helicoid,

(b) a flat plane, or

(c) the foliation of R3 by parallel planes (where the convergence may be non-smooth

on a line).

28. Minimal surfaces with bounded curvature and area

We first show that the second fundamental form of a graph is related to the Hessian of

the graphing function. (Loosely speaking |A| ∼ |D2w|.)

https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
https://minimal.sitehost.iu.edu/archive/
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Lemma 28.1. The second fundamental form of the graph of w satisfies

|D2w|
(1 + |∇w|2) 3

2

≤ |A| ≤ |D2w|
(1 + |∇w|2) 1

2

at (x,w(x)).

Proof. The vector fields Ei = ei + ∂iwen+1 form a basis of TpΣ at each point. Note that

gij = Ei ·Ej = δij + ∂iw∂jw has eigenvalues 1 (with multiplicity n− 1) and 1 + |∇w|2 (with

multiplicity n). As such Id ≤ g ≤ (1 + |∇w|2) Id. We now compute

DEi
Ej = ∂2ijw en+1.

so using ν = −∇w+en+1√
1+|∇w|2

we get

A(Ei, Ej) = −
∂2ijw√

1 + |∇w|2
.

This proves the assertion. □

We now consider Σn ⊂ Ω ⊂ Rn+1 a properly embedded hypersurface in an open subset of

Rn+1 with ∂Σ ∩ Ω = ∅. (One could also consider a Riemannian manifold in place of Ω but

some computations will become more involved.) For p ∈ Σ suppose there’s w : Br ⊂ TpΣ →
(TpΣ)

⊥ so that w(0) = 0,

(28.1) r−1|w|+ |∇w|+ r|∇2w| ≤ 1,

and graphw ⊂ Σ. In this case we say that Σ(p; r) := graphw exists. Since every hypersurface

can locally be written as a graph of w with w(0) = ∇w(0) = 0, we can always find r > 0

depending on p so that such a graphical region Σ(p; r) exists.

Lemma 28.2. Suppose that r < 1√
2
d(p, ∂Ω). Then if Σ(p, r) exists we have

Σ′(p; r) ⊂ Σ(p; r) ⊂ Σ ∩B√
2r(p)

where the left-hand-side is the connected component of Σ ∩Br(p) containing p.

Lemma 28.3. Suppose that a hypersurface Σ ⊂ Ω with ∂Σ ∩Ω = ∅ satisfies supΣ∩K |AΣ| ≤
β(K) for all K ⋐ Ω. Then for any K ⋐ Ω there’s r = r(K) < 1√

2
d(K, ∂Ω) so that Σ(p; r)

exists for all p ∈ Σ ∩K.

Proof. Choose K ⋐ K ′ ⋐ Ω. Below we’ll always work in balls contained in K ′. We’ll choose

r ≤ r0(K,K
′, β) below.

For p ∈ Σ∩K, consider the intrinsic ball BΣ
2r(p) ⊂ Σ∩K ′. For q ∈ BΣ

2r(p) let γ : [0, 2r] →
BΣ

2r(p) be a geodesic from p to q. Integrating |∂tν(γ(t))| ≤ |A|(γ(t)) ≤ β we get

|ν(q)− ν(p)| ≤ 2rβ,
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so taking r small, we find that π : Σ → TpΣ is a local diffeomorphism at any point in BΣ
2r(p).

Let γ(t) be a geodesic from p to any q ∈ ∂BΣ
2r(p). We have

|∂t ⟨γ′(t), γ′(0)⟩ | ≤ |A|(γ(t)) ≤ β

which yields

|q − p| ≥ ⟨q − p, γ′(0)⟩ ≥ 2r − 2r2β

after integrating twice. Taking r sufficiently small, this is > 3r
2
. Finally, a similar argument

gives

| ⟨q − p, ν(p)⟩ | ≤ 2r2β <
r

2
for any q ∈ BΣ

2r(p) (after taking r smaller if necessary). Let π be the projection to TpΣ. Note

that for q ∈ ∂BΣ
2r(p) we have

9r2

4
≤ |p− q|2 = |π(q)− p|2 + ⟨p− q, ν(p)⟩2 ≤ |π(q)− p|2 + r2

4

so this gives d(π(∂BΣ
2r(p)), p) > r. Thus, putting this together we find that the connected

component of Σ∩ (Br ⊂ TpΣ)× (TpΣ)
⊥ containing p is the graph of a function w defined on

Br ⊂ TpΣ. We also have
1√

1 + |∇w|2
≤ 1− 2rβ

so taking r sufficiently small, we have |∇w| ≤ C. This lets us use Lemma 28.1 to write

|D2w| ≤ (1 + |∇w|2) 3
2 supΣ∩K′ |A| ≤ (1 + C2)

3
2β(K ′) := B on Br. Taylors theorem gives

|∇w| ≤ rB and r−1|w| ≤ rB so

r−1|w|+ |∇w|+ r|D2w| ≤ 3Br

Taking r even smaller, this is < 1. This completes the proof. □

Corollary 28.4. Suppose that Σj is a sequence of minimal hypersurfaces Σj ⊂ Ω with

∂Σ ∩ Ω = ∅ and supΣj∩K |AΣ| ≤ β(K) for all K ⋐ Ω. If pj ∈ Σj ∩ K then up to passing

to a subsequence, pj → p∞, TpjΣj converges to Π and the graphical functions wj : Br → R
converge to w∞ in C∞ on Br/2. The graph of w∞ over Π at p∞ is a minimal hypersurface

Σ∞ with ∂Σ∞ ∩Br/2(p∞) = ∅.

Proof. The functions wj satisfy the minimal surface equation and have bounded C2-norm,

so the assertion follows from Schauder theory (cf. Lemma 19.1). □

Theorem 28.5. Consider Σn
j ⊂ Ω ⊂ Rn+1 minimal hypersurfaces with ∂Σj∩Ω = ∅. Assume

that for all K ⋐ Ω we have:

(1) area(Σj ∩K) ≤ α(K) and

(2) supΣj∩K |AΣj
| ≤ β(K).
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Then up to passing to a subsequence, there’s Σ∞ ⊂ Ω smooth minimal hypersurface so that

Σj limits to Σ “with finite multiplicity” in the following sense:

(1) there’s a locally constant function M : Σ∞ → Z≥1 measuring the “multiplicity,”

(2) there’s an exhaustion W1 ⋐ W2 ⋐ . . .Σ∞ of pre-compact open sets,

(3) there’s a collection of ordered functions w1,j < · · · < wM,j defined on Wj so that

wℓ,j → 0 in C∞
loc, and

(4) Σj ∩Kj ⊂ ∪ℓ graphWj
wℓ,j for K1 ⋐ K2 ⋐ . . . an exhaustion of Ω by compact sets.

(Note the mild abuse of notation since M may change between components of Σ∞.) Note

that the notation for graph means the graph defined using a fixed choice of unit normal:

graphW w := {p+ w(p)ν(p) : p ∈ W}.

Proof. Let µj denote the area measure of Σj. By (1) we can pass to a weakly convergent limit

µj ⇀ µ∞. Let Σ∞ = suppµ∞. Pick p∞ ∈ Σ∞ and choose r (depending on p∞) a uniform

graphical radius as in Lemma 28.3 (choosing r sufficiently small so that the subsequent

arguments remain a bounded distance from ∂Ω).

Considering Σj, pick a maximal collection of points p1,j, . . . , pL,j ∈ Σj ∩ Br/4(p∞) so that

Σj(pℓ,j; r/10) are pairwise disjoint.

Claim 28.6. Σj ∩Br/4(p∞) ⊂ ∪Lℓ=1Σj(pℓ,j; r/2)

Proof. For z ∈ Σj ∩ Br/4(p∞) we have Σj(z; r/10) ∩ Σj(p; r/10) for some p = pℓ,j. Us-

ing Lemma 28.2 we get that B√
2r/10(z) ∩ B√

2r/10(p) ̸= ∅ so Σj(z; r/10) ⊂ B√
2r/10(z) ⊂

B3
√
2r/10(p) ⊂ Br/2(p). Since Σj(p; r/2) contains the connected component of Σj ∩ Br/2(p)

containing p and Σj(z; r/10) is connected we see that z ∈ Σj(z; r/10) ⊂ Σj(p; r/2). This

proves the claim. □

Since area(Σj(pℓ,j; r/10)) ≥ Crn we assumption (1) gives that L is uniformly bounded.

Thus, by Corollary 28.4 we can pass to a subsequence and pass each Σj(pℓ,j; r/2) to the

limit to obtain Σ∞(pℓ; r/2). Note that the minimal hypersurfaces Σj(pℓ,j; r/2) ∩ Br/4(p∞)

are pairwise disjoint and have no boundary (in Br/4(p∞)). Thus, the maximum principle

implies that Σ∞(pℓ; r/2) ∩Br/4(p∞) are either pairwise disjoint or else equal. As such,

Σ∞ ∩Br/4(p∞) = ∪Lℓ=1Σ∞(pℓ; r/2) ∩Br/2(p∞)

is a smooth embedded minimal hypersurface. Since p∞ was arbitrary, we see that Σ∞ ⊂ Ω

is a smooth embedded minimal hypersurface.

It remains to prove that Σj converges to Σ∞ as claimed. Let P denote the nearest point

projection to Σ∞ and let Pj = P |Σj
. For a fixed compact set K, we have that P is smooth

at least on Σj ∩K for j sufficiently large. Moreover, we have that (dPj)p = projTP (p)Σ∞ |TpΣj
.
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Note that27

sup
p∈Σj∩K

|νΣj
(p)− νΣ∞(Pj(p))| → 0.

Thus, we find that (dPj)p is invertible for all p ∈ Σj∩K as long as we take j sufficiently large

(depending on K). The inverse function theorem thus shows that Σj is locally graphical over

Σ∞ (with multiplicity), i.e. for p∞ ∈ Σ∞ ∩K, taking j sufficiently large depending only on

K, there’s w1,j < · · · < wM,j defined on some BΣ∞
r (p∞) so that graphwℓ,j ⊂ Σj. Covering

Σ∞ ∩ K by finitely many sets of this form, we can patch the graphs together to complete

the proof. □

For example, if Σj is the blow-down sequence of catenoids, then the curvature and area

are uniformly bounded on compact subsets of R3 \ {0}. The previous theorem makes precise

the notion of “convergence” of Σj to R2 \ {0} with multiplicity 2.

29. Minimal surfaces with bounded area

Consider Σn
j ⊂ Ω ⊂ Rn+1 minimal hypersurfaces (without boundary in Ω).

Lemma 29.1. Suppose there’s pj ∈ Σi so that pj → p∞ ∈ Ω and |AΣj
|(pj) → ∞. Then

there’s qj ∈ Σj with qj → p∞ and so that for λj := |AΣi
|(qj) → ∞ we have that Σ̃j :=

λj(Σj − qj) has uniformly bounded curvature on compact subsets of Rn+1 and |AΣ̃j
|(0) = 1

Proof. Let rj < d(pj, ∂Ω) tend to zero sufficiently slowly so that

|AΣj
|(pj)d(pj, ∂Brj(pj)) → ∞

and Σj ⋔ ∂Brj(pj). Then by the point-picking argument used in the proof of ε-regularity for

harmonic maps (Theorem 5.5) we can choose qj achieving

max
q∈Σj∩Brj (pj)

|AΣj
|(q)d(q, ∂Brj(pj)).

Since |AΣ̃j
|(x) = λ−1

j |AΣj
|(qj +λjx), the same calculation as in Theorem 5.5 applies to show

that Σ̃j has uniformly bounded curvature on compact sets. □

We now assume that for all K ⋐ Ω we have area(Σj ∩K) ≤ α(K). Let µ∞ be the limiting

area measure. Note that for a.e. r > 0 we have that

lim
j→∞

area(Σj ∩Br(p)) = µ∞(Br(p)),

which implies (via the monotonicity formula, Theorem 9.3) that

r 7→ Θµ∞(p, r) :=
µ∞(Br(p))

ωnrn

27If this failed at pj ∈ Σj ∩ K we can find a uniform graphical region Σj(pj , r/2) that converges to some
part of Σ∞ which implies that Tpj

Σj converges to Tp∞Σ∞ and Pj(pj) → p∞; this is a contradiction
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is non-decreasing. Thus we can set Θµ∞(p) := limr↘0Θµ∞(p, r).

Lemma 29.2. The blow-up surfaces Σ̃j from Lemma 29.1 have uniform area bounds on

compact sets and thus pass to a subsequential limit in C∞
loc(Rn+1) to a minimal hypersurface

Σ̃∞ ⊂ Rn+1 with ∂Σ̃∞ = ∅, |AΣ̃| ≤ |AΣ̃|(0) = 1, and

ΘΣ̃∞
(x, r) :=

|Σ̃∞ ∩Br(x)|
ωnrn

≤ Θµ∞(p∞)

for any x ∈ Rn+1 and r > 0.

Proof. The monotonicity formula implies that

ΘΣ̃j
(x, r) = ΘΣj

(qj + λ−1
j x, λ−1

j r) ≤ ΘΣj
(qj + λ−1

j x, s) → Θµ∞(p∞, s)

for a.e. s > 0 and j sufficiently large so that λjr ≤ s. This implies that Σ̃j has uniform area

bounds on compact subsets of Rn+1 so we can apply Theorem 28.5 to pass to a subsequential

limit Σ̃∞ (with no boundary). The previous inequality passes to the limit for a.e. r > 0

giving

ΘΣ̃∞
(x, r) ≤ Θµ∞(p∞, s).

Sending s→ 0 completes the proof. □

In particular ΘΣ̃∞
(∞) := limr→∞ΘΣ̃j

(x, r) is ≤ Θµ∞(p∞).

Exercise 29.1. Show that ΘΣ̃∞
(∞) is independent of the choice of x.

Example 29.3. Consider Σj the Costa–Hoffman–Meeks surface with genus → ∞ so that Σj

converges to catenoid∪ plane. Note that Θµ∞(p∞) = 2 for p∞ in the intersection circle. The

blow-up procedure will produce the singly periodic Scherk’s surface Σ̃∞ with ΘΣ̃∞
(∞) = 2.

One can also have strict inequality by a slight modification. Let λj → 0 so that λjΣj

converges to a plane with multiplicity three, smoothly away from p∞ = 0. In this case we

have Θµ∞(p∞) = 3 but still ΘΣ̃∞
(∞) = 2.

30. White’s easy Allard

Consider the setup in the previous section: Σj ⊂ Ω are minimal hypersurfaces with

uniformly bounded area on compact sets and the curvature of Σj blows up at p∞ ∈ Ω. Let

µ∞ be the limiting area measure.

The following is a form of ε-regularity in this context.

Theorem 30.1 (White’s Allard theorem [All72, Whi05]). Θµ∞(p∞) > 1.

Proof. Since we normalized by the second fundamental form we have Σ̃∞ is non-flat. Thus,

we can apply the monotonicity formula at x ∈ Σ̃∞ to get

1 = ΘΣ̃∞
(x) < ΘΣ̃∞

(x, r) → Θ(Σ̃∞) ≤ Θµ∞(p∞)
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since equality cannot hold in the monotonicity formula. □

Note that this proof only applies to the limit of smooth objects, whereas Allard’s result

applies to arbitrary “weak solutions” (stationary varifolds). On the other hand, Allard’s

proof is much more involved.

One may improve this slightly using:

Theorem 30.2. If Σn ⊂ Rn+1 is a smooth non-flat minimal hypersurface with |AΣ| ≤
|AΣ|(0) = 1 then Θ(Σ) ≥ 1 + ε for ε = ε(n).

Proof. Assume there’s Σj as in the theorem with Θ(Σj) ↘ 1. They have uniformly bounded

curvature and area on compact sets and thus we can pass to a subsequential limit Σ. Note

that |AΣ|(0) = 1 so Σ is non-flat. On the other hand, we have

ΘΣ(0, r) = lim
j→∞

ΘΣj
(0, r) ≤ lim

j→∞
Θ(Σj) = 1

for a.e. r > 0. Thus Θ(Σ) = 1 a contradiction. □

Open Question 6. What’s the optimal value of ε(n)?

It’s known that 1 + ε(2) = 2 (e.g. attained by the catenoid) by geometric measure theory

methods and that 1+ε(3) = π
2
≈ 1.57 (attained by smooth minimal hypersurface asymptotic

to the quadratic cone C2,2, cf. [Maz17]) by Marques–Neves’s resolution of the Willmore

conjecture [MN14] but there’s no qualitative estimate for ε(≥ 4) (see however [IW15, BW24]).

31. Bounded total curvature

Remark 31.1. Suppose that Σ2 ⊂ (M, g) is a closed minimal surface in a closed (or homo-

geneously regular) 3-manifold. The traced Gauss equations give |A|2 = Rg − 2Ricg(ν, ν) −
2KΣ ≤ Cg − 2KΣ so ˆ

Σ

|A|2 ≤ Cg|Σ| − 4πχ(Σ) ≤ C(|Σ|, χ(Σ)).

Motivated by this remark, we study the compactness of Σn
j ⊂ Ω ⊂ Rn+1 with

(31.1)

ˆ
Σj

|A|n ≤ Λ

and area uniformly bounded on compact sets. (If we generalized the previous section to

limits in Riemannian manifolds this discussion would apply to e.g. bounded area and genus

minimal surfaces in a 3-manifold.)

Let µ∞ denote the limiting area measure and consider p∞ ∈ suppµ∞ := Σ∞ so that the

curvature blows up at p∞. Lemma 29.2 gives a blow-up Σ̃∞ at p∞ with Θ(Σ̃∞) ≤ Θµ∞(p∞)
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and |AΣ̃∞
|(0) = 1. Since (31.1) is scale invariant and Σ̃∞ is non-flat we have

0 <

ˆ
Σ̃∞

|AΣ̃∞
|n ≤ lim sup

r→0
lim sup
j→∞

ˆ
Σj∩Br(p∞)

|AΣj
|n

(which is ≤ Λ).

We can make this uniform as follows:

Lemma 31.2. If Σn ⊂ Rn+1 is complete with |AΣ| ≤ |AΣ|(0) = 1 then
´
Σ
|A|n ≥ ε(n) > 0.

Proof. Suppose there’s Σj as in the theorem with
´
Σj

|A|n → 0. Theres a uniform r >

0 so that the graphical region Σj(0, r) exists and Σj(0, r/2) converges as graphs to some

Σ∞(0, r/2). Note this limit cannot be flat since we normalized |AΣj
|(0) = 1. Thusˆ

Σ∞(0,r/2)

|A|n = lim
j→∞

ˆ
Σj(0,r/2)

|A|n ≤ lim
j→0

ˆ
Σj

|A|n = 0.

This is a contradiction. □

As such, we find that

0 < ε(n) ≤
ˆ
Σ̃∞

|AΣ̃∞
|n ≤ lim sup

r→0
lim sup
j→∞

ˆ
Σj∩Br(p∞)

|AΣj
|n.

This can only happen at ≤ Λ
ε
points. Let B be the set of such points. For p ∈ B and

r0 = 1
2
d(p, ∂Ω) we note that µ∞(Br0(p)) ≤ C since µ∞ is a Radon measure. Since µ∞

satisfies the monotonicity of area ratios, we see that µ∞(Br(p)) ≤ Crn for r < r0.

In sum, we obtain:

Theorem 31.3. There’s a finite set of points B with |B| ≤ Λ
ε

so that after passing to

a subsequence Σj converges smoothly with finite multiplicity on compact subsets of Ω \ B
to Σ∞ ⊂ Ω \ B a smooth minimal hypersurface with bounded area on compact subsets,´
Σ∞

|AΣ∞ |n <∞, and |Σ∞ ∩Br(p)| ≤ Crn for p ∈ B and r ≤ 1
2
d(p, ∂Ω).

In the next section we show that Σ∞ is smooth across B even if the convergence is not.

One should keep in mind the examples of the Catenoid or Hoffman–Meeks deformation

family that converge away from a finite set of points to a plane with multiplicity. On the

other hand, the Costa–Hoffman–Meeks surfaces with unbounded genus can converge to a

minimal surface with a circle of singularities.

We conclude this section with the following important observation. We assume that B has

the property that Σj does not converge smoothly near any point in B (we can just discard

points in B where there’s smooth convergence).

Lemma 31.4. Suppose that there’s a component Σ of Σ∞ with Σ ∩ B ̸= ∅. Then Σ occurs

with multiplicity > 1.
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Proof. Suppose that Σ occurs with multiplicity 1 but there’s p ∈ Σ ∩ B. Then, writing µ∞

for the limit of the area measures, we have Θµ∞(p) = 1. Thus by the converse of the Allard

regularity theorem (Theorem 30.1) we get that the curvature cannot blowup at p. This is a

contradiction. □

32. Removable singularities

Suppose that Σn ⊂ B \{0} is a minimal hypersurface with bounded area on compact sets,

|Σ∩Br| ≤ Crn for r < 1 and
´
Σ
|A|n <∞. Let λj → ∞ and set Σj := λjΣj be any blow-up

sequence. Note that for K ⋐ Rn+1 \ {0} we haveˆ
Σj∩K

|A|n → 0

and |Σj ∩K| ≤ α(K) by the area growth bound for Σ. Thus by the compactness theorem

just proven (Theorem 31.3) we can pass to a subsequential limit Σ∞ ⊂ Rn+1 \ {0}. Note

that there are no curvature concentration points since for j ≫ 0 the total curvature will be

< ε. We have that ˆ
Σ∞

|A|n = 0

so Σ∞ is flat. Assuming that n ≥ 2 this implies that Σ∞ is a finite union of parallel

hyperplanes. Let f be the restriction of |x| to Σ ∩B1.

Lemma 32.1. For r ≪ 1, any critical point of f on Σ ∩ Br is a non-denenerate local

minimum and in particular f is Morse on Σ.

Proof. Consider pj ∈ Σ with pj → 0 and (df)pj = 0. Let λj = |pj|−1 and take Σj = λjΣ

as above. Pass to a subsequence so that Σj converges in C
∞
loc(Rn+1 \ {0}) to Σ∞ a union of

parallel hyperplanes and λjpj → p∞ ∈ Σ∞ ∩ ∂B1. Let f∞ be the restriction of |x| to Σ∞.

Since the pj were critical points of f , p∞ must be a critical point of f∞. Thus Σ∞ must

contain the plane through p∞ that’s tangent to ∂B1 at p∞. Thus p∞ is a non-degenerate

local minimum of f∞. This implies that for j large, pj was a non-degenerate local minimum

of f . This proves the asseriton. □

Without loss of generality (dilate Σ) we can assume that this holds for all r ≤ 1 and that

Σ ⋔ ∂B1.

Lemma 32.2. Let Σ′ be a connected component of Σ. If f has any critical points on Σ′ then

Σ′ is a smooth minimal surface in B1 with 0 ̸∈ Σ′.

Proof. Consider Σ′
t := Σ∩ f−1(t). Passing a critical point corresponds to attaching a n-disk

and thus exactly component of Σ′
t disappears at each critical point as t decreases from 1

towards 0. Since Σ′ is connected, the only possibility is that Σ′ has exactly one critical point

after which Σ′
t = ∅. Thus f is bounded below on Σ′. □
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Lemma 32.3. There’s r0 ∈ (0, 1] so that if Σ′ is a component of Σ with Σ′ ∩ Br0 ̸= ∅ then

f has no critical points on Σ′.

Proof. If not, there’s Σ′
j a component of Σ with a critical point of f so that Σ′

j ∩ Bj−1 ̸= ∅.
Lemma 32.2 gives that they’re each smooth minimal hypersurfaces in B that avoid 0. Thus,

we can pass to a subsequence all of the Σ′
j are pairwise disjoint. As such, the monotonicity

formula gives |Σ′
j∩B1/2| ≥ c. This contradicts the assumption that |Σ∩B1/2| ≤ C(1/2)n. □

We can thus dilate Σ so as to assume that f has no critical points and Σ ⋔ ∂B1.

Proposition 32.4. Let Σ′ be a connected component of Σ and let λj → ∞. Let Σ′
j = λjΣ

′.

Up to passing to a subsequence, Σ′
j converges to Σ′

∞ a hyperplane through the origin with

multiplicity one.

Proof. If Σ′
∞ has a component that does not pass through the origin then repeating the proof

of Lemma 32.1 we can see that f has a critical point on Σ′, contradiction. Thus, it remains

to prove that the multiplicity is one. Note that Σ′ ⋔ ∂Bt for all t ∈ (0, 1] and the Morse

theoretic argument as in Lemma 32.2 imply that distinct components of Σ′ ∩ ∂Bt remain

disconnected for all t. Thus, we have that Σ′ is disconnected, a contradiction. □

Without loss of generality, we can thus replace Σ by one component and show that this

component extends across {0}. (Note that a posteriori there’s only one component of Σ:

any two components would have 0 in their extension and thus would necessarily agree by

the maximum principle.)

Theorem 32.5. Σ extends across {0}

(Compare with uniqueness of the limit in removable singularities for harmonic maps The-

orem 5.7.) There are many proofs of this result. This proof is based on [Whi18] (cf. [BS18]).

Proof. Up to a rotation we can assume that for some λj → ∞, λjΣ converges to Π0 :=

Rn × {0}. Our first goal is to prove that all blow-up limits are Π0 (not some rotation).

By definition of convergence, there’s φj ∈ C∞(∂B1 ∩ Π0) so that the graph of φj agrees

with (λjΣj)∩ ((∂B1∩Π0)×R) and φj → 0 in C∞. Let vj solve the minimal surface equation

on B1 ∩ Π0 with boundary data φj. Note that vj can be found via the implicit function

theorem since the linearization of the minimal surface equation at u = 0 is dM|0 : w 7→ ∆w.

The implicit function theorem proof also gives that vj → 0 in C∞(B1 ∩ Π0). Let hj ∈ R be

chosen so that 0 ∈ graph(vj + hj). Note that hj → 0.

Without loss of generality we can assume that hj ≥ 0. Let sj be the infimum of s ≥ hj so

that graph(vj + s) lies above Σ in (B1 ∩ Π0)× R. Since hj ≥ 0, graph(vj + s) cannot make

contact with Σ at the boundary when s > hj. Similarly, by definition of hj, graph(vj + s)

lies above the origin. Thus, if sj > hj then we would have interior one-sided contact, so
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Σ = graph(vj + sj) \ {0}, a contradiction since sj > hj so the surfaces are disjoint at the

boundary. Thus we see that sj = hj so Σ lies below Γj := graph(vj + hj).

Now if λ̃j → ∞ has λ̃jΣ converging to some other plane Π1, we can pass to a subsequence

so that λ̃j = λjµj with µj → ∞. By the previous paragraph, we know that λ̃jΣ := µj(λjΣ)

lies below µjΓj in (B1 ∩Π0)×R. Note that µjΓj limits to the limit of the tangent planes to

Γj at 0, which is Π0 since vj → 0 in C1. On the other hand, λ̃jΣ limits to Π1 ̸= Π0. This is

a contradiction.

Thus we find that the unit normal ν to Σ limits to en+1 as we approach the origin. Thus

λjΣ ∪ {0} is the graph over B1 ∩ Π0 of a C1-function wj. As in Proposition 19.3 there’s a

second order elliptic operator Lj so that Lj(vj −wj) = 0. Examining the proof, we see that

the coefficients of Lj depend on the C1-norm of vj and wj and the second derivatives of one

of them (which we can choose to be wj). Thus, the coefficients of Lj are C
0 which suffices

to apply the strong maximum principle to conclude that vj = wj. Thus Σ extends smoothly

across {0}, completing the proof. □

33. Multiplicity and stability

In this section we prove:

Theorem 33.1. Suppose that Σj ⊂ Ω ⊂ Rn+1 with uniformly bounded area and total curva-

ture (31.1) converge to Σ∞ in C∞
loc(Σ \ B). If a two-sided component of Σ∞ has multiplicity

> 1 then this component is stable.

We begin with a warmup calculation.

Lemma 33.2. Suppose that w1,k < w2,k are smooth functions on the unit ball B ⊂ Rn

solving the minimal surface equation and with w1,k, w2,k → 0 in C∞. Then vk :=
w2,k−w1,k

(w2,k−w1,k)(0)

converges subsequently in C∞
loc to a positive harmonic function v on B with v(0) = 1.

Proof. In the proof of Proposition 19.3 we saw that for aij(p) = δij − pipj
1+|p|2 we can write

(33.1) 0 =
n∑

i,j=1

aij(Dw2,k)D
2
ijvk +

n∑
ℓ,i,j=1

(ˆ 2

1

Dℓaij(Dwt,k)dt

)
Dℓvk

for wt,k = w1,k + (t − 1)(w2,k − w1,k). Since w1,k, w2,k converge smoothly to zero, this is a

strictly elliptic PDE of the form

0 = Lkvk =
n∑
i,j

a
(k)
ij D

2
ijvk +

n∑
ℓ=1

b
(k)
ℓ Dℓvk

where a
(k)
ij → δij and b

(k)
ℓ → 0 in C∞. Thus, the Harnack inequality (B.1) implies28 that for

any B′ ⋐ B we have supB′ vk ≤ C and infB′ vk ≥ C−1. As such, we can apply Schauder

28Since the coefficients are converging smoothly, we can rewrite the equation for vk in divergence form with
controlled coefficients.
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estimates (A.2) and Arzelà–Ascoli to pass vk to a subsequential limit in C∞
loc. The limit v

will be harmonic and will have v(0) = 1. □

This remains true for graphs over non-flat minimal surfaces in the following form:

Proposition 33.3. Suppose that Σ ⊂ Ω ⊂ Rn+1 is a connected, two-sided, minimal hy-

persurface. Suppose that W1 ⋐ W2 ⋐ Σ is an exhaustion by compact sets so that there’s

w1,j < w2,j defined on Wj with graphWj
wℓ,j is a minimal surface and wℓ,j → 0 in C∞

loc(Σ).

Fixing p ∈ W1, define vk =
w2,k−w1,k

(w2,k−w1,k)(p)
. Then after passing to a subsequence, vk converges

in C∞
loc(Σ) to v > 0 solving LΣv = 0 for LΣ = ∆Σ + |A|2 the second variation operator.

This remains true in an ambient Riemannian manifold except L = ∆Σ + |A|2 +Ricg(ν, ν).

Proof. Observe that when we derived (33.1) above what we really did was a Taylor expansion

of differential operators. Write H(u) for the mean curvature of the graph of u over Σ. We

have

0 = H(w2,k)−H(w1,k) =

ˆ 2

1

∂t(H(wt,k))dt.

Note that

∂t(H(wt,k)) =
d

ds

∣∣∣
s=0

H(wt,k + s(w2,k − w1,k) = Lk(w2,k − w1,k)

is simply the linearization (derivative) of H(·) at wt,k. We can argue that Lk is uniformly

elliptic on compact sets (similarly as above) and thus after normalizing the graphs, we get a

solution to Lv = 0 where Lk converges to L, the linearization of H(·) at 0).
To determine L we thus need to compute the directional derivative of H at 0. For w,φ ∈

C∞
c (W ), W ⋐ Σ let Γs,t := graphW (sw+ tφ). For (s, t) sufficiently close to (0, 0) this will be

a smooth hypersurface. Write Γs = Γs,0 and S, T for the velocity of this family with respect

to s, t. The first variation formula gives

∂

∂t

∣∣∣
t=0

area(Γs,t) =

ˆ
Γs

HΓs ⟨T, νΓs⟩ dµΓs

Differentiate this at s = 0 with respect to s. Since HΓ0 = HΣ = 0 we get

∂2

∂t∂s

∣∣∣
s=t=0

area(Γs,t) =

ˆ
Γs

∂sHΓs|s=0φdµΣ.

Set Q(u, u) =
´
Σ
|∇u|2 − |A|2u (the second variation operator for normal variations). Note

that Q is a bilinear form. Thus, we have

2
∂2

∂t∂s

∣∣∣
s=t=0

=

[(
∂

∂t
+

∂

∂s

)2

− ∂2

∂t2
− ∂2

∂s2

]
s=t=0

area(Γs,t)

= Q(w + φ,w + φ)−Q(w,w)−Q(φ, φ)

= 2Q(w,φ)
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=

ˆ
Σ

⟨∇w,∇φ⟩ − |A|2wφdµΣ

= −
ˆ
Σ

(∆w + |A|2w)φdµΣ.

Since φ was arbitrary, this gives that

∂sHΓs|s=0 = −LΣw.

Thus, if we repeat the Taylor’s theorem argument as in Lemma 33.2 we see that vk solves

Lkvk = 0 where the coefficients of Lk limit to LΣ. The proof can then be completed as

before. □

Proposition 33.4 (Barta [Bar37]). Suppose that there’s a positive function v ∈ C∞(Σ) with

LΣv = 0. Then Σ is stable.

Proof. Let w = log v. We compute ∇w = ∇v
v

and

∆w =
∆v

v
− |∇w|2 ≤ −|A|2 − |∇w|2.

For φ ∈ C∞
c (Σ) we thus haveˆ

Σ

|A|2φ2 ≤
ˆ
Σ

(−∆w − |∇w|2)φ2 ≤
ˆ
Σ

2|φ||∇φ||∇w| − |∇w|2φ2 ≤
ˆ
Σ

|∇φ|2.

This completes the proof. □

In the context of Theorem 33.1, this implies that any component Σ ⊂ Σ∞ that occurs

with multiplicity > 1 has Σ \ B stable. Now, the assertion follows from:

Lemma 33.5. If Σ \ {p} is stable then Σ is stable.

Proof. The log-cutoff trick (cf. Lemma 5.8) lets us approximate any φ ∈ C∞
c (Σ) with φj ∈

C∞
c (Σ \ {p}) with

´
Σ
|∇φj|2 →

´
Σ
|∇φ|2 and φj → φ pointwise. □

34. Choi–Schoen compactness

Recall (see Remark 31.1) that Gauss–Bonnet gives that for Σ2 ⊂ (M3, g) minimal, we have´
Σ
|A|2 ≤ C(|Σ|, genus(Σ)). As such, an appropriate generalization of the previous sections

to account for the background Riemannian metric proves:

Theorem 34.1. Suppose that Σj ⊂ (M3, g) is a sequence of closed minimal surfaces in a

closed 3-manifold with uniformly bounded area and genus. Then, theres a closed minimal

surface Σ∞ ⊂ (M, g) and finite set of points B so that Σj converges in C∞
loc(M \ B) to Σ∞,

possibly with multiplicity > 1 on some components. Any two-sided component that intersects

B is stable.
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Since two-sided stable minimal surfaces do not exist in 3-manifolds with Ric > 0 we

see that multiplicity and non-smooth convergence cannot happen for (two-sided) limits of

minimal surfaces of bounded genus and area in positive Ricci curvature.

We now improve this result by showing that if Σ ⊂ (M3, g) is a minimal surface in a

3-manifold with Ric > 0 then |Σ| ≤ C(genus(Σ)), i.e. the area bound follows automatically

from the genus bound. The proof is surprisingly indirect.

34.1. Choi–Wang’s eigenvalue bound. Consider (Ω, g) a compact Riemannian manifold

with smooth boundary Σ. (In practice, Ω will be the closure of some component of M \Σ.)
The Bochner formula gives

1

2
∆|∇f |2 − g(∇∆f,∇f) = |D2f |+Ric(∇f,∇f)

Integrating this over Ω (terms with no subscript are ambient terms and terms with respect

to the induced metric on Σ will have a Σ subscript; the outwards pointing unit normal will

be ν) we getˆ
Ω

|D2f |2 +Ric(∇f,∇f) =
ˆ
Ω

1

2
∆|∇f |2 − g(∇∆f,∇f)

=

ˆ
Ω

(∆f)2 +

ˆ
Σ

1

2
∇ν |∇f |2 − (∆f)∇νf

=

ˆ
Ω

(∆f)2 +

ˆ
Σ

D2f(∇f, ν)− (∆f)∇νf

=

ˆ
Ω

(∆f)2 +

ˆ
Σ

D2f(∇Σf, ν)− (∆f −D2f(ν, ν))∇νf.

For X ∈ TΣ we have

Xg(∇f, ν) = D2f(X, ν) + g(∇f,DXν) = D2f(X, ν) + A(∇Σf,X)

so

D2f(∇Σf, ν) = g(∇Σf,∇Σ(∇νf))− A(∇Σf,∇Σf).

We also have that if e1, . . . , en is an orthonormal frame for Σ then

∆f = trD2f

= D2f(ν, ν) +
n∑
i=1

g(Dei∇f, ei)

= D2f(ν, ν) +
n∑
i=1

g(Dei∇Σf, ei) +
n∑
i=1

g(Dei(∇νfν), ei)

= D2f(ν, ν) +
n∑
i=1

g(∇ei∇Σf, ei) +∇νf
n∑
i=1

g(Deiν, ei)
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= D2f(ν, ν) + ∆Σf +H∇νf.

Remark 34.2. This is a useful formula. Note that it generalizes the well-known expression

for the Laplacian in spherical coordinates since the sphere of radius r in Rn+1 has mean

cuvature n
r
(with the outwards pointing unit normal) so we get ∆f = ∂2rf +

n
r
∂rf +

1
r2
∆Snf .

Exercise 34.1. If Σn ⊂ Sn+1 prove that n is an eigenvalue of the Laplacian on Σ (with

eigenfunctions given by restrictions of coordinate functions from Rn+2).

Thus, we can rearrange the expression above to readˆ
Ω

(∆f)2 − |D2f |2 =
ˆ
Ω

Ric(∇f,∇f)

+

ˆ
Σ

−g(∇Σf,∇Σ(∇νf)) + A(∇Σf,∇Σf) + (∆Σf +H∇νf)∇νf

=

ˆ
Ω

Ric(∇f,∇f)

+

ˆ
Σ

(2∆Σf +H∇νf)∇νf + A(∇Σf,∇Σf).

This is the Reilly formula [Rei77].

Exercise 34.2. Prove that if Ω is compact with Ric > 0 and ∂Ω has H = 0 then ∂Ω must

be connected. (Compare with Exercise 20.2).

Theorem 34.3 (Choi–Wang [CW83]). Suppose that (Mn+1, g) is orientable and has Ric ≥ k.

Then if Σn ⊂ (M, g) is a two-sided minimal hypersurface then

λ1(∆Σ) ≥
k

2

where λ1(∆Σ) > 0 is the lowest non-zero eigenvalue of the Laplacian.

Proof. Since Hn(M) = 0 (see Corollary 24.1) we see that Σ separates M into two compact

manifolds Ω, Ω̃ with ∂Ω = ∂Ω̃ = Σ.

Let ∆Σφ+ λφ = 0 be a non-trivial eigenfunction on Σ. Choose the unit normal ν so that

that
´
Σ
A(∇Σφ,∇Σφ) ≥ 0 and then adjust the labeling so that ν points out of Ω. Solve

∆f = 0 on Ω with f |∂Ω = φ. Then the Reilly formula gives

0 ≥ k

ˆ
Ω

|∇f |2 +
ˆ
Σ

2(∆Σφ)∇νf

≥ k

ˆ
Ω

|∇f |2 − 2λ

ˆ
Σ

f∇νf

= (k − 2λ)

ˆ
Ω

|∇f |2.

If
´
Ω
|∇f |2 = 0 then f and thus φ is constant. This cannot occur by assumption so we thus

have k ≤ 2λ. This completes the proof. □



84 OTIS CHODOSH

Corollary 34.4. If Σn ⊂ Sn+1 is an embedded minimal hypersurface then λ1(∆Σ) ≥ n
2
.

Proof. The round sphere Sn+1 has Ric = n. □

The following is a famous open problem in the area. It looks innocuous but would have

many important applications to classification problems. See [LY82, Bre13b].

Open Question 7 (Yau’s conjecture on the eigenvalue). If Σn ⊂ Sn+1 is an embedded

minimal hypersurface then is it true that λ1(∆Σ) ≥ n. (This would be sharp by Exercise

34.1.)

34.2. Yang–Yau eigenvalue bound. For Σ2 ⊂ (M3, g) a minimal surface in an ambient

manifold of Ric > 2, we have that λ1(∆Σ) ≥ 1. The following estimate lets us convert this

into a bound for the area of Σ.

Theorem 34.5 (Yang–Yau [YY80]). Let (Σ, g) be a closed surface of genus γ. If g is any

Riemannian metric on Σ then

λ1(∆Σ)|Σ| ≤ 8π

⌊
γ + 3

2

⌋
Proof. The variational characterization of eigenvalues gives

λ1(∆Σ) = inf

{´
Σ
|∇φ|2´
Σ
φ2

: φ ∈ C∞(Σ) \ {0},
ˆ
Σ

φ = 0

}
.

Consider Φ : Σ → S2 ⊂ R3 coming from a meromorphic function on Σ (choose the Riemann

surface structure compatible with g). Using a fixed point argument, we can compose Φ with

a conformal automorphsim S2 → S2 so as to assume thatˆ
Σ

Φi = 0

for i = 1, 2, 3. Indeed, we can parametrize29 the conformal group of S2 by points in the ball

g : B → PGL(2;C) so that limg→∂B g = Id∂B. Then B ∋ y 7→
ffl
Σ
Φ ◦ gy is a map B → B

that extends to the identity ∂B → ∂B

Since Φ is conformal and orientation preserving we find that

3∑
i=1

ˆ
Σ

|∇Φi|2 = 2E(Φ) = 2A(Φ) = 8π deg Φ

Note that the area of Φ is proportional to the degree since Φ is always orientation preserving

and thus covers a.e. point exactly deg Φ times.

On the other hand, since
´
Φi = 0, it’s a valid test function in λ1(∆Σ). Thus we have

λ1(∆Σ)

ˆ
Σ

Φ2
i ≤
ˆ
Σ

|∇Φi|2.

29Explicitly take gy(x) =
(

1−|y|2
|x+y|2 (x+ y) + y

)∗
for z∗ = z

|z|2 .
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Summing i = 1, 2, 3 and using |Φ|2 = 1 we have

λ1(∆Σ)|Σ| ≤ 8π deg Φ.

Finally, we need to use Riemann surface theory to find a (nonconstant) meromorphic

function on Σ with at most d(γ) poles (this bounds the degree of the corresponding map

Σ → S2. Riemann–Roch implies30 that we can take d(γ) = γ + 1. Improved estimates from

“Brill–Noether theory” give the asserted bound (the exact form not relevant for us here) see

[ESI84, Kar19]. □

34.3. Compactness. Combining the Choi–Wang eigenvalue bound (Theorem 34.3) and the

Yang–Yau eigenvalue bound (Theorem 34.5) we find that if Σ ⊂ (M, g) is a minimal surface

in a 3-manifold with Ric ≥ k > 0 then its area is bounded in terms of its genus

k

2
|Σ| ≤ λ1(∆Σ)|Σ| ≤ C(γ).

Combined with the compactness result (Theorem 34.1) we thus conclude:

Theorem 34.6 (Choi–Schoen [CS85], cf. [Whi87]). Suppose that (M3, g) has Ric > 0 and

does not contain any embedded one-sided surfaces. Then if Σj is a sequence of minimal

surfaces with uniformly bounded genus and area a subsequence converges to a minimal surface

Σ∞ smoothly with multiplicity one.

This applies to any metric on S3 with Ric > 0, e.g. the round metric.

34.4. Applications to the moduli space of minimal surfaces. Let Mγ denote the

set of embedded minimal surfaces in the round S3 of genus γ (modulo ambient isometries).

Theorem 34.6 implies that Mγ is compact for each γ (with respect to C∞ convergence with

multiplicity one).

Almgren proved that (Theorem 26.3) M0 has one element (the equatorial S2). As dis-

cussed in Remark 26.3, Brendle proved [Bre13a] thatM1 has one element (the Clifford torus)

and Lawson proved [Law70] that Mγ ̸= ∅ for all γ. There are many well-known questions

about Mγ.

Open Question 8. What is M2? Is Mγ always equal to a finite set? Can there exist a

non-trivial 1-parameter family of embedded minimal surfaces Σt ⊂ S3? If Mγ is not a finite

set, is it a smooth manifold?

For a “generic” Riemannian manifold (M3, g) with Ric > 0 more is known. Combining

Theorem 34.6 with White’s “bumpy metric” theorem [Whi91], for a generic (in the Baire

sense) metric g, there’s at most finitely many minimal surfaces of each genus.

30For a divisor D with degree γ + 1, Riemann–Roch gives that ℓ(D) ≥ deg(D) − γ + 1 = 2 where ℓ(D) is
the set of meromorphic functions with poles only in D (counting order). Thus, we can find a non-constant
merormorphic function with at most γ + 1 poles.
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Appendices and references

Appendix A. Elliptic estimates

Recall the Sobolev norm ∥u∥Wk,p =
∑

|α|≤k ∥Dαu∥Lp . Clearly ∥∆u∥Wk,p ≤ C∥u∥Wk+2,p .

Elliptic regularity says that this can (almost) be reversed. We recall the following three

estimates for Ω′ ⋐ Ω ⊂ Rn.

The first is W k,p-elliptic regularity [GT01, Theorem 9.11]. For k ∈ Z≥0 and p ∈ (1,∞):

(A.1) ∥u∥Wk+2,p(Ω′) ≲ ∥u∥Lp(Ω) + ∥∆u∥Wk,p(Ω)

These estimates hold for more general operators but we will not need them in the text.

Next we have Schauder estimates [GT01, Problem 6.1]. For k ∈ Z≥0 and α ∈ (0, 1):

(A.2) ∥u∥Ck+2,α(Ω′) ≲ ∥u∥C0(Ω) + ∥∆u∥Ck,α(Ω)

Schauder estimates hold for a general non-divergence form operator

L =
n∑

i,j=1

aijD
2
ij +

n∑
j=1

bjDj + c

in place of ∆ where the constant depends on estimates for (aij) ≥ λ Id and a, b, c ∈ Cα.

Appendix B. Harnack inequality

We now recall the Harnack inequality [GT01, Theorem 8.2] for elliptic operators. Suppose

that u ∈ W 1,2(Ω) is a weak solution to a divergence form equation

n∑
i,j=1

Di(aijDju) +
n∑
i=1

biDiu+ cu = 0

where (aij) ≥ λ Id, and a, b, c ∈ L∞. Then for BR ⊂ Ω we have:

(B.1) sup
BR

u ≤ C inf
BR

u

where C depends on λ, the L∞ bounds, and R.

Appendix C. Sobolev inequalities

We recall the Morrey–Sobolev inequality31 [GT01, Theorem 7.26]. For p ∈ [n,∞) and

k ∈ Z≥0:

(C.1) ∥u∥
C

k,1−n
p (Ω′)

≲ ∥u∥Wk+1,p(Ω)

Similarly, we have the Sobolev inequality [GT01, Theorem 7.26]. For p ∈ [1, n) and k ≥ Z≥0:

(C.2) ∥u∥
W

k,
n−p
np (Ω′)

≲ ∥u∥Wk+1,p(Ω).

31This actually holds up to the boundary assuming ∂Ω is sufficiently regular.
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[Fár49] István Fáry, Sur la courbure totale d’une courbe gauche faisant un nœud, Bull. Soc. Math. France

77 (1949), 128–138. MR 33118

[FCS80] Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in

3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211.

MR 562550 (81i:53044)

[Fed65] Herbert Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965),

43–67. MR 168727

[FF60] Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72

(1960), 458–520. MR 0123260 (23 #A588)

[Fle62] Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962),

69–90. MR 157263

[Gag80] Michael E. Gage, A proof of Gehring’s linked spheres conjecture, Duke Math. J. 47 (1980), no. 3,

615–620. MR 587169

https://www.math.purdue.edu/~eremenko/dvi/gehring.pdf
https://www.math.purdue.edu/~eremenko/dvi/gehring.pdf


INTRODUCTION TO MINIMAL SURFACES 89

[GT01] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order,

Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. MR 1814364

[Gul73] Robert D. Gulliver, II, Regularity of minimizing surfaces of prescribed mean curvature, Ann. of

Math. (2) 97 (1973), 275–305. MR 0317188 (47 #5736)

[Gul91] Robert Gulliver, A minimal surface with an atypical boundary branch point, Differential geom-

etry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991,

pp. 211–228. MR 1173043 (93d:53011)

[Gut10] Larry Guth, Metaphors in systolic geometry, Proceedings of the International Congress of Math-

ematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 745–768. MR 2827817
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