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Setup

• n risk-neutral players, i = 1, . . . , n

• Finite set of states of the world Ω

• Random variable (“security”) X : Ω→ R

• Each player i receives information about the true state ω ∈ Ω
according to partition Πi of Ω

• The join of partitions Π1, . . . ,Πn consists of singleton sets

• Π = (Π1, . . . ,Πn) is the partition structure.

• Players have a common prior distribution P over states in Ω.



Trading – two models

• model of trading based on Kyle (1985);

• model of trading based on the Market Scoring Rule (MSR)

of Hanson (2003).



Model of trading based on Kyle (1985)

• At time t0 = 0, nature draws a state, ω∗, according to P ,

and all strategic players i observe their information Πi(ω
∗).

• At time t1 = 1
2,

– Each strategic player i chooses his demand di1. There is

also demand u1 from noise traders, drawn randomly from

N(0, t1 − t0 = 1
2).

– Competitive market makers observe aggregate demand∑
i d
i
1 + u1, form their posterior beliefs about the state of

the world, and set market price y1 equal to the expected

value of the security conditional on their beliefs.

– The market clears, and all traders observe price y1 and

aggregate volume
∑
i d
i
1 + u1.



• At time t2 = 3
4, the next auction takes place, with each

strategic player i choosing demand di2 and demand from noise

traders u2 drawn randomly from N(0, t2 − t1 = 1
4).

• Subsequently, auctions are held at times tk = 1 − 1
2k

with

demand from noise traders drawn from N(0, 1
2k

).

• The true value of the security, x∗ = X(ω∗), is revealed at

some time t∗ > 1.

• Player i’s payoff is equal to
∑∞
k=1 d

i
k (x∗ − yk).



Market Scoring Rules (Hanson, 2003; Dimitrov and Sami, 2008)

• Start with prediction y0 offered by the market sponsor.

• Players take turns making predictions yk ∈ [y, y] at times
t1, t2, t3, . . . in (0,1); sequence tk converges to 1.

• At time t∗ > 1, the value x∗ of security X is revealed.

• For each revision of the prediction from yk−1 to yk, player i
is paid s(yk, x

∗)− s(yk−1, x
∗).

• Discounted MSR: for each revision of the prediction from
yk−1 to yk, player i is paid βk(s(yk, x

∗)− s(yk−1, x
∗)).

• The total payoff of each player is the sum of all payments
for revisions.



Definition. In a perfect Bayesian equilibrium of game ΓK or game

ΓMSR, information gets aggregated if sequence yk converges in

probability to random variable X(ω∗).

Since the number of possible states of the world is finite, this

definition is equivalent to saying that for any ε > 0 and δ > 0,

there exists K such that for any k > K, for any realization of the

nature’s draw ω∗ ∈ Ω, the probability that |yk−X(ω∗)| > ε is less

than δ.



Example (based on Geanakoplos and Polemarchakis, 1982)

• Two players, 1 and 2

• Ω = {A,B,C,D}

• X(A) = X(D) = 1 and X(B) = X(C) = −1

• Π1 = {{A,B}, {C,D}} and Π2 = {{A,C}, {B,D}}

If the players’ common prior P assigns probability 1
4 to every

state, then for every ω it is common knowledge that each player’s

posterior belief about the value of the security is 0.



Dutta-Morris (1997) and DeMarzo-Skiadas (1998, 1999) use

similar examples to illustrate the generic existence of not fully

informative REE. D-S also define “separable orientation”:

Definition. Security X is non-separable under partition structure

Π if there exist distribution P on the underlying state space Ω

and value v ∈ R such that:

1. P (ω) is positive on at least one state ω in which X(ω) 6= v;

2. For every player i and every state ω with P (ω) > 0,

E[X|Πi(ω)] =

∑
ω′∈Πi(ω) P (ω′)X(ω′)∑

ω′∈Πi(ω) P (ω′)
= v.

Otherwise, security X is separable.



Separability

• If n = 1, every security is separable

• Arrow-Debreu securities are separable

• Securities with additive payoffs are separable

• Securities that are order statistics (min, max, median, etc.)
of players’ signals are separable

• Monotone transformations of additive and multiplicative
securities (e.g., call options on those securities) are separable

• Securities with payoffs increasing in signals are separable if
n = 2 and may be non-separable if n > 2



Theorem. Consider n, Ω, X, and Π.

1. If X is separable under Π, then for any prior P :

• in any PBE of the corresponding game ΓK information
gets aggregated;

• for any strictly proper scoring rule s, initial value y0,
bounds y and y, and discount factor β ∈ (0,1], in any
PBE of game ΓMSR information gets aggregated.

2. If X is non-separable Π, then there exists prior P such that:

• there exists a PBE of the corresponding game ΓK in which
information does not get aggregated;

• for any s, y0, y, y, and β, there exists a PBE of game
ΓMSR in which information does not get aggregated



Proof of Statement 1 for game ΓMSR

Pick any PBE and consider the following stochastic process Q.
Q0 = (q1

0, . . . , q
|Ω|
0 ), where qw0 = P (ωw). Nature draws state ω

according to distribution P and each player i observes Πi(ω).
Then, player 1 plays according to his equilibrium strategy and
makes forecast y1. Based on y1, the strategy of player 1, and
the prior P , a Bayesian outside observer, who shares prior P with
the traders and observes all forecasts yk but does not directly
observe any information about ω, forms posterior beliefs about
the probability of each state ωw. Denote this probability by
qw1 . Q1 = (q1

1, . . . , q
|Ω|
1 ). The rest of the process is constructed

analogously: Qk = (q1
k , . . . , q

|Ω|
k ), where qwk is the posterior belief

of the observer about the probability of state ωw after time tk.

The key idea of the proof is that this process is a martingale.
By the martingale convergence theorem, it has to converge to
a random variable, Q∞ = (q1

∞, . . . , q
|Ω|
∞ ). We will show that Q∞

has to place all weight on the states with the correct value of
the security, and yk has to converge to that value as well.



Let r = (r1, r2, . . . , r|Ω|) be any probability distribution over the

states and let z be any real number. Define instant opportunity

of player i given r and z as his highest possible expected payoff

from making only one change to the forecast, if the state is

drawn according to r and the initial forecast is z, i.e.,∑
ω∈Ω

r(ω) (s(Er[X|Πi(ω)], X(ω))− s(z,X(ω))) .

Let ∆ be the set of distributions r such that there are states ωa
and ωb with r(ωa) > 0, r(ωb) > 0, and X(ωa) 6= X(ωb).

Lemma. If security X is separable, then for all r ∈∆ there exist

φ > 0 and i ∈ {1,2, . . . , n} such that for any z ∈ [y, y], the instant

opportunity of player i given r and z is greater than φ.

Now, suppose the statement of the theorem does not hold for

this equilibrium. Consider Q∞ and two possible cases.



Case 1

Suppose there is a positive probability that Q∞ assigns positive
likelihoods to two states ωa and ωb with X(ωa) 6= X(ωb). This
implies that there is a vector of posterior probabilities r =
(r1, . . . , r|Ω|) such that ra > 0, rb > 0, and for any ε > 0, the
probability that Q∞ is in the ε-neighborhood of r is positive.
Since Qk converges to Q∞, for any ε > 0, there exists K and
ζ > 0 such that for any k > K, the probability that Qk is in the
ε-neighborhood of r is greater than ζ.

Now, by the Lemma, for some player i and φ > 0, the instant
opportunity of player i is greater than φ given r and any z ∈ [y, y].
By continuity, this implies that for some ε > 0, the instant
opportunity of player i is greater than φ for any z ∈ [y, y] and
any vector of probabilities r′ in the ε-neighborhood of r.

Therefore, for some player i, time tK, and η > 0, the expected
(over all realizations of stochastic process Q) instant opportunity
of player i at any time tnκ+i > tK is greater than η.



Case 2

Now suppose there is zero probability that Q∞ assigns positive
likelihoods to two states ωa and ωb with X(ωa) 6= X(ωb). Then,
for every realization ω of the nature’s draw, with probability 1,
Q∞ will place likelihood 1 on the value of the security being equal
to X(ω), i.e., in the limit, the outside observer’s belief about the
value of the security converges to its true value.

Suppose now that process yk does not converge in probability
to the true value of the security. That is, there exist state
ω and numbers ε > 0 and δ > 0 such that after state ω is
drawn by nature, for any K, there exists k > K such that
Prob(|yk−X(ω)| > ε) > δ. This, together with the fact that even
for the uninformed outsider the belief about the value of the
security converges to the correct one with probability 1, implies
that for some player i and η > 0, for any K, there exists time
tnκ+i > tK at which the expected instant opportunity of player i
is greater than η.



Crucially, in both Case 1 and Case 2, there exist player i∗ and

value η∗ > 0 such that there is an infinite number of times tnκ+i∗

in which the expected instant opportunity of player i∗ is greater

than η∗. Fix i∗ and η∗.

Let Sk be the expected score of prediction yk (where the

expectation is over all draws of nature and moves by players).

The expected payoff to the player who moves in period tk (it is

always the same player) from the forecast revision made in that

period is βk(Sk − Sk−1).

The rest of the proof is split into two parts, depending on the

value of parameter β: β < 1 and β = 1.



Part “β < 1”

Let Ψk = (Sk−Sk−1)+β(Sk+1−Sk)+β2(Sk+2−Sk+1)+. . . . Then
(i) Ψk ≥ 0 and (ii) it is greater than or equal to the expected
instant opportunity of the player who makes the forecast at tk.

Consider now limK→∞
∑K
k=1 Ψk. On the one hand, under both

Case 1 and Case 2, this limit has to be infinite, because each
term Ψk is non-negative, and an infinite number of them are
greater than η∗. On the other hand, for any K,

∑K
k=1 Ψk =

(S1 − S0) + β(S2 − S1) + β2(S3 − S2) · · ·
+

(S2 − S1) + β(S3 − S2) + β2(S4 − S3) · · ·
+

...
+

(SK − SK−1) + β(SK+1 − SK) + β2(SK+2 − SK+1) · · ·

=
∑∞
k=0 β

k(Sk+K − Sk) < 2M
1−β for some M.



Part “β = 1”

Take any player i. His expected payoff is equal to

∞∑
j=1

(Si+nj − Si+nj−1).

In equilibrium, the players’ expected payoffs exist and are finite,

so the infinite sum has to converge. Therefore, for any ε > 0,

there exists J such that ∀j > J, |
∑∞
j′=j(Si+nj′ − Si+nj′−1)| < ε.

But in both Case 1 and Case 2, that contradicts the assumption

that players are profit-maximizing after any history. To see that,

it is enough to consider player i∗ and some period tnj+i∗ such

that the expected instant opportunity of i∗ is greater than η∗ and

|
∑∞
j′=j(Si∗+nj′ − Si∗+nj′−1)| is less than η∗.



Open Questions

• Within the current model

– Existence; slight variations (discretization, finite games,

etc.) – next version of the paper (I hope)

– For non-separable securities, under a generic prior,

one can show that price converges to a “common

knowledge/common belief” equilibrium of Dutta-Morris

and DeMarzo-Skiadas. Can we find out to which one?

∗ Are there multiple equilibria, under which information

convergences to different points?

∗ Is this question easier to answer in a continuous-time

model?



• Beyond the current model: open-ended questions

– Other dynamic microstructures

– Multiple securities

– Risk-averse traders (with different utility functions)

– Costly information

– Information changes over time (e.g., “Insider Trading with

a Random Deadline” by Caldentey and Stacchetti)




