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WITH STRATEGIC TRADERS

BY MICHAEL OSTROVSKY'

This paper studies information aggregation in dynamic markets with a finite number
of partially informed strategic traders. It shows that, for a broad class of securities,
information in such markets always gets aggregated. Trading takes place in a bounded
time interval, and in every equilibrium, as time approaches the end of the interval, the
market price of a “separable” security converges in probability to its expected value
conditional on the traders’ pooled information. If the security is “non-separable,” then
there exists a common prior over the states of the world and an equilibrium such that
information does not get aggregated. The class of separable securities includes, among
others, Arrow-Debreu securities, whose value is 1 in one state of the world and 0 in all
others, and “additive” securities, whose value can be interpreted as the sum of traders’
signals.

KEYWORDS: Information aggregation, efficient market hypothesis, rational expecta-
tions equilibrium, arbitrage, prediction markets.

1. INTRODUCTION

THE IDEA THAT FINANCIAL MARKETS have the ability to aggregate and reveal
dispersed information is an important part of economic thinking. The intuition
behind this idea is arbitrage: if the price of a security is wrong, an informed
trader will have an incentive to buy or sell this security, thus bringing the price
closer to the correct value. This intuition is very compelling when one or more
traders are fully informed and know the value of the security. It is also com-
pelling in many cases where each trader is small relative to the market and be-
haves, in essence, non-strategically, ignoring the effect his trading has on prices
and thus revealing all his information. But what happens when there is a small,
finite number of large, strategic players, and none of them is fully informed
about the value of the security? What if one trader has perfect information
about one part of a company and another trader has perfect information about
the rest of the company? Will the stock price reflect the true value of the com-
pany that the traders could estimate by pooling their information? Or is there
a chance that the price will be off? What happens when information is dis-
persed among many agents in the economy and their knowledge structure is
more complex?
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1.1. Main Result

This paper shows that, for a broad class of securities, information in dynamic
markets with partially informed strategic traders always gets aggregated. Trad-
ing takes place in a bounded time interval, and in every equilibrium, as time
approaches the end of the interval, the market price of a “separable” secu-
rity converges in probability to its expected value conditional on the traders’
pooled information. A security is “separable” if, roughly, for every nonde-
generate prior belief about the states of the world, there exists a trader who,
with positive probability, receives an informative signal. If the security is “non-
separable,” then there exists a prior and an equilibrium such that information
does not get aggregated.

The question of information revelation and aggregation in markets has
attracted the attention of many economists, beginning with Hayek (1945).
Grossman (1976) formally showed that in a market equilibrium, the result-
ing price aggregates information dispersed among n-types of informed traders,
each of whom gets a “piece of information.” In his model, individual traders
are small relative to the market, strategic foundations for players’ behavior
are lacking, and the results rely on particular functional forms (e.g., i.i.d.
normal errors in signals received by the players; normal prior; etc.). Radner
(1979) introduced the concept of Rational Expectations Equilibrium (REE)
and showed that generically, a fully revealing REE exists, with prices aggre-
gating all information dispersed among traders. Radner’s paper, however, also
lacks strategic foundations. A series of papers explored the question of con-
vergence to REE in various dynamic processes (see, e.g., Hellwig (1982), and
Dubey, Geanakoplos, and Shubik (1987), for models of centralized trading;
Wolinsky (1990), and Golosov, Lorenzoni, and Tsyvinski (2011), for models
of decentralized trading; and McKelvey and Page (1986), and Nielsen, Bran-
denburger, Geanakoplos, McKelvey, and Page (1990), for models that extend
the basic communication process of Geanakoplos and Polemarchakis (1982)
to more complex settings in which agents’ beliefs are iteratively updated in re-
sponse to repeated public observations of summary statistics of their actions).
In all of these papers, however, it is assumed that each trader ignores the ef-
fect of his behavior on the evolution of the trading process, as a result behaving
non-strategically along at least one dimension. Proper strategic foundations for
the concept of perfect competition with differentially informed agents are of-
fered by the stream of literature studying bidding behavior in single and double
auctions (Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels (1997),
Kremer (2002), Reny and Perry (2006)). Information aggregation results in
these papers, however, rely on the assumption that the market is large, that is,
the number of bidders goes to infinity and individual traders become small rel-
ative to the market. They also rely on various symmetry assumptions. No such
assumptions are made in the current paper, and the number of traders is finite
and fixed.
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Kyle (1985) offered a model of dynamic insider trading, in which the single
informed trader takes into account the nonnegligible impact of his actions on
market prices. In the continuous version of the model, as time approaches the
end of the trading interval, the price of the traded security converges to its true
value known by the insider. Foster and Viswanathan (1996) and Back, Cao,
and Willard (2000) extended the model to the case of multiple, differentially
informed strategic traders. In the continuous case, the price of the traded secu-
rity converges to its expected value conditional on the traders’ pooled informa-
tion. In the discrete case with a finite number of trading periods, convergence
is approximate. These models rely on very special functional form assumptions
(symmetry, normality, etc.), which allow the authors to construct explicit for-
mulas for particular (“linear”) equilibria. Laffont and Maskin (1990) criticized
this reliance of the results of Kyle (1985) on linear trading strategies; argued
that such models inherently have multiple equilibria; presented a model of a
trading game with a single informed trader and multiple equilibria, in some of
which the informed trader’s information is not revealed; and concluded that
“in a model in which private information is possessed by a trader who is big
enough to affect prices, the information efficiency of prices breaks down” and
“the efficient market hypothesis may well fail if there is imperfect competi-
tion.” The results of the current paper show that the conclusions of Kyle (1985),
Foster and Viswanathan (1996), and Back, Cao, and Willard (2000) regarding
the convergence of the price of a security to its expected value conditional on
the traders’ pooled information do not, in fact, depend on the specific func-
tional form assumptions or on the choice of equilibrium: if the traded security
is separable, its price converges to its expected value conditional on the pooled
information in every equilibrium. In the case of a single informed trader, as
in Laffont and Maskin (1990), every security is separable, and so information
always gets aggregated. The contrasting conclusions of Laffont and Maskin are
thus driven by the specifics of their model, not by the fact that they explicitly
consider multiple equilibria. In the case of multiple partially informed traders,
the securities considered in Foster and Viswanathan (1996) and Back, Cao,
and Willard (2000) have payoffs that are linear in traders’ signals, and so, as
the results of this paper show, information about such securities always gets
aggregated as well.

1.2. Market Scoring Rule

The framework of Kyle (1985) is the basis for the main model of trading in
the current paper. However, in that framework, the question of information
aggregation—that is, of multiple partially informed traders learning from each
other and pooling their information over time—is intertwined with the ques-
tion of information revelation—that is, of an informed trader taking advantage
of his information and eventually moving the price of the security to its correct
value. Even for the case of only one informed trader, when the issue of infor-
mation aggregation does not arise, it is far from obvious what equilibria look
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like and whether the informed trader’s information will be revealed by the end
of trading (and these questions are the focus of the Kyle (1985) paper and its
criticisms in, e.g., Laffont and Maskin (1990)). Thus, the proof of the main re-
sult needs to address both of these issues, obscuring the intuition behind the
information aggregation part.

To be able to illustrate that intuition more transparently, I also consider an
auxiliary model of dynamic trading, in which the issue of information reve-
lation does not arise: in the single-trader case, by construction, revelation is
straightforward and immediate. This model is based on the market scoring rule
(MSR) of Hanson (2003, 2007). In MSR games, there are no noise or liquidity
traders and no strategic market makers; the only players are the strategic par-
tially informed traders. There is also an automated market maker. This mar-
ket maker, in expectation, loses money (though at most a finite, ex ante known
amount), facilitating trade and price discovery. (Without a “source” of prof-
its, there would be no trading; see Milgrom and Stokey (1982) and Sebenius
and Geanakoplos (1983).) Trading proceeds as follows. The uninformed mar-
ket maker makes an initial, publicly observed prediction about the value of a
security. The first informed strategic player can revise that number and make
his own prediction, which is also observed by everyone. Then the second player
can further modify the prediction, and so on until the last player, after which
the first player can again modify the prediction, and the cycle repeats an infinite
number of times. The fact that there is an infinite number of trading periods
does not mean that the game never ends. Rather, it is a convenient discrete
analogue of continuous trading, with trades taking place at times t, < #, < ---
in a bounded time interval. Sometime after the trading is over, the true value of
the security is revealed, and each prediction is evaluated according to a strictly
proper scoring rule s (e.g., under the quadratic scoring rule, each prediction
is penalized by the square of its error; see Section 2.2 for further details). The
payoff of a player from each revision is the difference between the score of
his prediction and the score of the previous prediction—in essence, the player
“buys out” the previous prediction and replaces it with his own. The total pay-
off of a player in the game is the sum of payoffs from all his revisions. Players
are risk-neutral. The discounted MSR (Dimitrov and Sami (2008)) is similar,
except that the total payoff of a player is equal to the discounted sum of pay-
offs from all his revisions, where the payoff from a revision made at time ¢, is
multiplied by g* for some 8 < 1.

While my primary reason for studying this model is to illustrate the intu-
ition behind information aggregation in the main model and thus make that
result more transparent, information aggregation in MSR-based models is also
of independent interest, for several reasons. First, such models can be viewed
as generalizations of the communication processes of Geanakoplos and Pole-
marchakis (1982) and other papers in this tradition, in which several differen-
tially informed agents sequentially announce their beliefs about the value of a
random variable (or the probability of an event), and those beliefs eventually



INFORMATION AGGREGATION IN DYNAMIC MARKETS 2599

converge to a common posterior. In those papers, it is assumed that the agents
make truthful announcements, and strategic issues are ignored. Discounted
MSR includes this truthful process as a special case, 8 = 0 (strictly speaking,
the case B = 0 is ruled out in this paper, but it is easy to show that as 8 becomes
small, in any equilibrium, players will behave almost myopically, i.e., will reveal
their expectations almost truthfully), and at the same time makes it possible to
examine the role of strategic behavior (for B > 0). The results of this paper
show that, for separable securities, information aggregation does not depend
on whether agents behave strategically or myopically.

Second, the MSR model includes as a special case a basic model of trading
with an automated inventory-based market maker who offers to buy or sell
shares in the security at price p that is a function of the (possibly negative) net
inventory the market maker holds at that moment. Specifically, suppose the
market maker starts with zero net inventory, sets the price for the security as
a continuous decreasing function p(z), where z is the total amount of shares
he holds in his inventory (i.e., the more he holds, the less he is willing to pay
for additional shares), and commits to buying or selling shares according to
that price schedule. Thus, if his current inventory is z, and a trader decides
to sell (z; — zp) units of the security to the market maker, the market maker
will pay that trader fz? p(2)dz for the (z; — z;) units. The current price of the
security will move from p(zy) to p(z;). If the true value of the security then
turns out to be equal to x, then the trader’s payoff from this transaction will be
equal to f;l p(2)dz —x(z; —z)) = fz? (p(%2) — x) dz. Thus, it is strictly optimal
(myopically) for the trader to pick z; in such a way that p(z;) is equal to his
belief about the value of the security (assuming the image of function p(-)
includes that value). His payoff from this transaction is equal to his payoff from
moving the forecast from y, to y; in the MSR model with the strictly proper
scoring rule s(y, x) = [,” (p(2) — x) dz, where z, = p~'(y), that is, p(z,) = y.?

Finally, note that while the market maker in this setting expects to lose
money, the worst possible loss is bounded and can be controlled by adjusting
the parameters of the rule. Another attractive feature of MSR in practice (rel-
ative to, say, continuous double auctions) is that a player can instantaneously
make his prediction/trade at any time, without having to wait for another player
who is willing to take the other side of the trade or to submit a limit order and
wait for it to be filled. These features make MSR attractive for use in internal
corporate prediction markets, and it is in fact used for that purpose: compa-
nies like Consensus Point and Inkling Markets operate MSR-based prediction

2The correspondence between trading shares and eliciting beliefs from a single agent by the
means of scoring rules was first noted by Savage (1971), who also provided additional techni-
cal details. Hanson (2003), Pennock (2006), and Chen and Pennock (2007) discussed this cor-
respondence for the case of MSR. The study of automated market makers goes back to Black
(1971a, 1971b), while formal analysis of inventory-based market makers goes back to Amihud
and Mendelson (1980).
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markets for Ford, Chevron, Best Buy, General Electric, and many other large
corporations.® Thus, the question of whether information in MSR-based pre-
diction markets gets aggregated has direct practical implications.

Two recent papers have studied the equilibrium behavior of traders in MSR
games.* Chen, Reeves, Pennock, Hanson, Fortnow, and Gonen (2007) consid-
ered undiscounted games based on a particular scoring rule—logarithmic (see
Section 2.2). In their model, the security can take one of two different values,
and the number of revisions is finite. They found that if traders’ signals are in-
dependent conditional on the value of the security, then it is an equilibrium for
each trader in each period to behave myopically, that is, to make the predic-
tion equal to his posterior belief. They also provided an example of a market in
which signals are not conditionally independent and one of the traders has an
incentive to behave non-myopically. Dimitrov and Sami (2008) also considered
games based on the logarithmic scoring rule. In their models, in contrast to
Chen et al., traders observe independent signals. Each realization of the vector
of signals corresponds to a particular value of the security. The number of trad-
ing periods is infinite. Dimitrov and Sami found that, in that case, in the MSR
game with no discounting, myopic behavior is generically not an equilibrium
and, moreover, there is no equilibrium in which all uncertainty is guaranteed
to get resolved after a finite number of periods. They then introduced a two-
player, two-signal MSR game with discounting, and proved that in that game,
information gets aggregated in the limit, under the additional assumption that
the “complementarity bound” of the security is positive. They reported that,
based on their sample configurations, the bound is not always zero, but did
not provide any sufficient conditions for it to be positive. In contrast to Chen
et al. (2007) and Dimitrov and Sami (2008), the current paper’s information
aggregation results (1) do not rely on the independence or conditional inde-
pendence of signals, allowing instead for general information structures with
any number of players; (2) do not depend on discounting; and (3) provide a
sharp characterization of securities for which information always gets aggre-
gated and those for which, under some priors, price may not converge to the
expected value conditional on the traders’ pooled information.

1.3. Paper Structure and Additional Results

The remainder of this paper is organized as follows. Section 2 describes the
model of information in the market, two models of trading (the main model
based on the framework of Kyle (1985) and the auxiliary model based on the
Market Scoring Rule), and the definitions of information aggregation and sep-
arability.

*Hanson (2009), Consensus Point (2011a, 2011b), Inkling Markets (2011a, 2011b).
“These papers have been subsequently combined in Chen, Dimitrov, Sami, Reeves, Pennock,
Hanson, Fortnow, and Gonen (2010).



INFORMATION AGGREGATION IN DYNAMIC MARKETS 2601

Section 3 presents the main result.

Section 4 explores a discretized version of the main model. In the main
model, traders’ action spaces are continuous and unbounded, and it is not clear
whether an equilibrium always exists in that environment. The results of Sec-
tion 4.1 show that the main model can be discretized in a natural way, so that
an equilibrium is guaranteed to exist, and in any equilibrium, information gets
aggregated.

Section 5 explores the robustness of the main result to another variation.
In the main model, even though trading happens in a finite interval, there are
infinitely many trading periods whose size shrinks to zero over time. In the
model of Section 5, there is a finite number of equally long trading periods, and
thus instead of asking whether information gets aggregated as time approaches
the end of the trading interval, the question is whether, for a sequence of games
with an increasing number of trading periods, the price of a separable security
in the last period becomes arbitrarily close, in expectation, to the true value of
the security. The answer to that question is “yes” if there is one strategic trader;
if there are several strategic traders, the answer is “yes” under an additional
condition on equilibria.

Section 6 discusses the separability assumption and presents two impor-
tant classes of separable securities: securities that can be represented as or-
der statistics of traders’ signals (including Arrow—Debreu securities) and those
that can be represented as monotone transformations of linear functions of
traders’ signals. Most of the results in this section follow from the results of
DeMarzo and Skiadas (1998, 1999), who explored a more general “separa-
bly oriented” condition in a richer environment, but I also include short self-
contained proofs for the current paper’s setting.

Section 7 concludes.

2. SETUP

There are n players, i =1, ..., n. There is a finite set of states of the world,
{2, and a random variable (“security”) X : {2 — R. As in Aumann (1976), each
player i receives information about the true state of the world, w € (2, accord-
ing to partition II; of (2 (i.e., if the true state is w, player i observes Il;(w)).
For notational convenience, without loss of generality, assume that the join
(the coarsest common refinement) of partitions I1, ..., I, consists of single-
ton sets; that is, for any two states w; # w,, there exists player i such that
I (wy) # H(wy). I = (114, ..., 11,) is the partition structure. Players have a
common prior distribution P over states in (2.

2.1. Trading: Main Model

In the main model, based on Kyle (1985), trading is organized as follows.
At time £, = 0, nature draws a state, o*, according to P, and all strategic play-
ers [ observe their information II;(w*). At time t; = %, each strategic player



2602 MICHAEL OSTROVSKY

i chooses his demand d!. At the same time, there is demand u; from noise
traders, drawn randomly from the normal distribution with mean zero and vari-
ance t; — f, = ;.> Competitive market makers observe the aggregate demand
V=, d! + uy, form their posterior beliefs about the true state of the world,
and set market price y; equal to the expected value of the security conditional
on that posterior belief.® The market clears, and all traders observe price y, and
aggregate demand v;. At time t, = %, the next auction takes place, with each

strategic player i choosing demand d; and demand from noise traders u, drawn
randomly from N(0,4 — 4, = %). Subsequently, auctions are held at times

th=1-— ;—k with demand from noise traders drawn from N (0, ;—k). The value
of the security, x* = X (w*), is revealed at some time #* > 1. Trader i’s payoff
is equal to Y~ di (x* — y;). The resulting game is denoted I'* (2, I, X, P).

An equilibrium in game I'X is a profile of players’ (possibly mixed) strategies
S; and the corresponding market makers’ pricing rule Y such that

(i) price y, set by the market makers in every period ¢, is equal to the ex-
pected value of security X conditional on the observed aggregate demands in
the market up to time #, and profile S of players’ strategies; and

(ii) for every player i, the expected payoff from following strategy S; is at
least as high as that from following any alternative strategy S/, given pricing
rule Y and the profile of strategies of other players S_;.

2.2. Trading: Auxiliary Model

In the auxiliary model, based on the market scoring rule of Hanson (2003,
2007), trading is organized as follows. At time ¢, = 0, nature takes a random
draw and selects the state, w*, according to P. The uninformed market maker

SAs in Kyle (1985), the idea behind this assumption is that during the trading period, [0, 1],
demand from noise traders arrives continuously according to a Brownian motion, and thus the
demand that accumulates between times ¢ and ¢’ is distributed normally, with mean zero and
variance proportional to ¢ — ¢. Assuming that this variance is in fact equal to ¢ — ¢ is just a
normalization.

®More formally, pricing rule Y determines price y; as a function of v;, and an equilibrium
condition requires this price to be equal to the expected value of security X .

"This model is mathematically isomorphic to a model of trading with an infinite number of
periods, in which the demand from noise traders is distributed identically in every period, but also
in every period, with probability p = 1/+/2, the true value of the security is revealed and trading

ends. To see this, one only needs to rescale the trades of all informed and noise traders by ﬁkA
in every period k; then the expected payoff of any trader in the original game with the original
strategies is equal to his expected payoff in the “reinterpreted” game with the “rescaled” strate-
gies. This isomorphism also holds for the discretized model presented in Section 4. The specific
value p = 1/+/2 is inessential for the proofs of information aggregation results in these models;
they would remain valid with virtually no changes for any p € (0, 1). Thus, these information ag-
gregation results can also be interpreted as results on information aggregation in markets with a
random deadline, which were studied by Back and Baruch (2004) and Caldentey and Stacchetti
(2010) in the case of a single informed trader.
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makes the initial prediction y, € R about the value of X (a natural initial value
for y, is the unconditional expected value of X under P, but it could also be
equal to any other real number). At time ¢ > £, player 1 makes a “revised
prediction,” y;. At time #, > #, player 2 makes his prediction, y,, and so on.
At time ¢,,, player 1 moves again and makes his new forecast, y,,;, and the
whole process repeats until time ¢, = lim,_, , #x = 1, with players taking turns
revising predictions. All predictions y, are observed by all players. The action
space is bounded, but the bounds are wide enough to allow for any prediction
consistent with random variable X, that is, each y, is a number in an interval
[y’ y]7 where y= minwe!) X(w) = MaX,en X(w) = y

At time * > 1, the true value x* = X (w*) of the security is revealed. The
players’ payoffs are computed according to a market scoring rule that is based
on a strictly proper single-period scoring rule s. More formally, a single-period
scoring rule is a function s(y, x*), where x* is a realization of a random vari-
able and y is a prediction. The scoring rule is proper if, for any random vari-
able X, the expectation of s is maximized at y = E[X]. It is strictly proper
if y = E[X] is the unique prediction maximizing the expected value of s.
Examples of strictly proper scoring rules include the quadratic scoring rule
(s(y, x*) = —(x* — y)?), due to Brier (1950), and, when random variable X is
bounded (which, of course, is the case in the current setting), the logarithmic
scoring rule (s(y, x*) = (x* —a)In(y —a) + (b — x*)In(b — y), for some a < y
and b > ¥), due to Good (1952). -

Under the basic MSR (introduced by Hanson (2003, 2007), though the idea
of repeatedly using a proper scoring rule to help forecasters aggregate infor-
mation goes back to McKelvey and Page (1990)), players get multiple chances
to make predictions, and are paid for each revision. Specifically, for each revi-
sion of the prediction from y,_; to yx, player i is paid s(y;, x*) — s(Vx_1, x*). Of
course, this number can turn out to be negative, but each player can guarantee
himself a zero payment for a revision by simply setting y, = y;_;, that is, by
not revising the forecast. Note also that if each player behaves myopically in
each period, the prediction that he will make is his posterior belief about the
expected value of the security, given his initial information and the history of
revisions up to that point, and thus the “game” turns into the communication
process of Geanakoplos and Polemarchakis (1982).

A slight modification of the game above, introduced by Dimitrov and Sami
(2008), is a discounted MSR: it is the same as the basic MSR, except that the
payment for the revision from y,_; to y is equal to B*(s(yi, X*) — s(Vi_1, X*)),
0 < B < 1. When B =1, this rule coincides with the basic MSR. The total pay-
off of each player is the sum of all payments for revisions. The players are
risk-neutral. The resulting game is denoted 'SR (0, IT, X, P, y, ¥, ¥, S, B).
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2.3. Information Aggregation

DEFINITION 1: Under a profile of players’ strategies in game 'R or under
a profile of players’ strategies and the corresponding market makers’ pricing
rule in game ', we say that information gets aggregated if sequence y, con-
verges in probability to random variable X (w*).

Since the set of possible states (2 is finite, this definition is equivalent to say-
ing that, for any ¢ > 0 and 6 > 0, there exists K such that, for any £ > K, for any
realization of the nature’s draw w* € (2, the probability that |y, — X (w*)| > ¢ is
less than 6. (Note that in addition to exogenous events, such as the realizations
of demand from noise traders in game I'X, this probability may depend on the
choices of strategic players, who may use mixed strategies.)

2.4. Separability

Consider the following example from Geanakoplos and Polemarchakis
(1982).

EXAMPLE 1: There are two agents, 1 and 2, and four states of the world, 2 =
{A4, B, C, D}. The prior is P(w) = % for every w € (2. The security is X (A) =
X(D)=1and X(B) =X (C) = —1. Partitions are II, = {{A, B}, {C, D}} and
I, ={{4, C},{B, D}}.

In the example, by construction, it is common knowledge that each player’s
expectation of the value of the security is zero, even though it is also common
knowledge that the actual value of the security is not zero, and that the traders’
pooled information would be sufficient to determine the security’s value. Thus,
even if the traders repeatedly and truthfully announce their posteriors, as in
Geanakoplos and Polemarchakis (1982), they will never learn the true value of
the security. Dutta and Morris (1997) and DeMarzo and Skiadas (1998, 1999)
studied competitive equilibria with information structures similar to that of
Example 1 and showed that they give rise to the generic existence of “Common
Beliefs Equilibria”/“partially informative REE” in which, in contrast to the
fully revealing REE of Radner (1979), equilibrium prices do not fully aggregate
traders’ information.

DeMarzo and Skiadas (1998, 1999) showed that competitive equilibrium
prices are guaranteed to fully aggregate information if and only if securities
and information structures like that of Example 1 are ruled out; that is, in their
terminology, the function mapping traders’ signals to fully informative equilib-
rium prices is “separably oriented.” Adapted to the current paper’s setup, this
condition translates into the following definition of separability, which plays a
key role in subsequent results.
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DEFINITION 2: Security X is non-separable under partition structure IT if
there exist distribution P on the underlying state space (2 and value v € R such
that:

(i) P(w) is positive on at least one state w in which X (w) # v;

(ii) For every player i and every state w with P(w) > 0,

Z P(w)X ()

o' ell;(w)

> P)

w'ellij(w)

Ep[X|ITi(w)] =.

Otherwise, security X is separable.

Note that non-separable securities are not degenerate (e.g., for any secu-
rity with payoffs close to the ones in Example 1, there is a distribution P that
would satisfy the requirements in Definition 2, and thus all such securities are
non-separable). Note also that if there is only one perfectly informed trader in
the market, then every security is separable.® Section 6 discusses the separa-
bility condition in more detail and describes some natural classes of securities
satisfying this condition.

3. MAIN RESULT

The main result of this paper is that information about separable securities
always gets aggregated in equilibrium, while for non-separable securities that
is not the case.

THEOREM 1: Consider state space (2, security X, and partition structure 11.

(i) If security X is separable under 11, then for any prior distribution P:

e in any equilibrium of the corresponding game I'X, information gets aggre-
gated;

e for any strictly proper scoring rule s, initial value y,, bounds y and y, and
discount factor B € (0,11, in any Nash equilibrium of the corresponding game
ISR [information also gets aggregated.

(i1) If security X is non-separable under 11, then there exists prior P such that:

o there exists an equilibrium of the corresponding game I'* in which informa-
tion does not get aggregated,

e forany s, Yo, v, ¥, and B, there exists a perfect Bayesian equilibrium of the

corresponding game 'SR in which information does not get aggregated.

8By assumption, the join of strategic traders’ information partitions consists of singleton sets,
and so if there is only one strategic trader in the market, he has to be perfectly informed.
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PROOF: The proof of the second statement, that for non-separable securi-
ties information does not always get aggregated, is straightforward. Consider
prior P and value v that satisty requirements (i) and (ii) of Definition 2. Then
in game ™SR it is an equilibrium for all traders to make the same prediction
yx = v in every period f; after any history, and in game I'%, it is an equilibrium
for the traders to always submit zero demand and for the competitive market
makers to set price y, = v in every period ¢, after any history (beliefs in the
equilibria of both games are never updated from the priors). In these equilib-
ria, information does not get aggregated. The proof of the first statement is in
Appendix A. Q.E.D.

The intuition behind the proof of the first statement of Theorem 1 for game
I'MSR s as follows. Fix an equilibrium and consider an uninformed outside
observer who has the same prior as the informed traders, receives no direct
information about the state of the world, and observes all predictions made
by the traders (and knows their strategies). Consider the stochastic process
that corresponds to the observer’s vector of posterior beliefs about the likeli-
hoods of the states of the world after each revision. By construction, this pro-
cess is a bounded martingale, and therefore, by the martingale convergence
theorem, converges to some vector-valued random variable Q.. If O, puts
positive weights on two states of the world in which the value of the security
is different, then separability implies that there is a player who can, in expec-
tation, make a non-vanishing positive profit by revising the prediction in any
sufficiently late period. This, in turn, can be shown to imply that the player is
not maximizing his payoff (because he never actually makes that deviation),
which is impossible in equilibrium. Thus, with probability 1, O, has to put
all weight on states in which the value of the security is the same. Since the
beliefs have to be on average correct, this is only possible if this value is the
correct one with probability 1. Now, if Q., does put all weight on the states
with the correct value of the security, but the prediction does not converge to
the same value, then even the uninformed observer could make a profitable
revision in infinitely many periods, and thus any informed player could make
such revisions as well, again contradicting the assumption of profit-maximizing
behavior. Therefore, the outside observer’s posterior beliefs, in the limit, have
to put all weight on the states with the correct value of the security, and the
prediction has to converge to the same value.” '

9The proof only considers players’ behavior on the equilibrium path, which is why the result
can be stated for Nash equilibrium rather than the more restrictive solution concepts like perfect
Bayesian equilibrium or sequential equilibrium (although, of course, it holds for those more re-
strictive concepts as well). In fact, the result would also hold for even weaker solution concepts,
such as the self-confirming equilibrium, in which players may hold incorrect beliefs about the
actions of others at information sets off the equilibrium path.

19Back and Baruch (2004) also used the martingale convergence theorem to pin down the
limit beliefs of an outside observer in a strategic dynamic trading environment, although in their
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In game I'%, the principle behind the result is the same, but the statement
that the lack of information aggregation implies the existence of non-vanishing
profitable arbitrage opportunities that some trader can actually take advantage
of becomes more delicate and requires a more elaborate proof.

4. EQUILIBRIUM EXISTENCE AND INFORMATION AGGREGATION IN A MODEL
WITH DISCRETE ACTION SPACES

While Theorem 1 ensures that information gets aggregated in every equi-
librium, it does not guarantee that an equilibrium does in fact exist. Also, the
standard equilibrium existence results do not apply to games I'* and I'™SR,
for a number of reasons (in particular, action spaces in those games are infi-
nite). This section presents a discretized version of game I'® and shows that,
in this version, equilibrium is guaranteed to exist and information always gets
aggregated.!!

4.1. Model

Game I is as follows. As before, there are n strategic traders; a finite set
of states of the world (2; and a random variable X :{2 — R. Each trader i
receives information about the true state of the world, w € (2, according to
partition II; of 2. The join of partitions II,, ..., II, consists of singleton sets.
Il =1, ...,11,) is the partition structure. Strategic traders have a common
prior distribution P over states in (2.

Trading is organized as follows. At time #, = 0, nature draws a state, w*, ac-
cording to P, and all strategic traders i observe their information I1;(®*). At
time #, > 0, each strategic trader i chooses his demand d| from 2M, + 1 pos-
sible actions {—Md,, —(M, — 1)d,, ..., M,d,}, where unit of discretization d;
is a positive real number and bound M, is a positive integer. At the same time,
there is demand u; from noise traders, drawn randomly from a “discretized”
normal distribution with mean zero, “variance parameter” o7 > 0, and the
same unit of discretization d;. Formally, random variable i, is drawn from
N(0, o}), and then u; is equal to i; rounded to the nearest multiple of d; (i.e.,

setting there is only one informed strategic trader and the underlying security has only two pos-
sible values. The theorem has also been used for this purpose in the literatures on information
herding (Smith and Sgrensen (2000)) and long-run reputation persistence (Cripps, Mailath, and
Samuelson (2004, 2007)).

For game 'SR a discrete version of the discounted (8 < 1) game, in which players are only
allowed to pick predictions from a finite set of values in every period, is continuous at infinity,
and therefore has a perfect Bayesian equilibrium (Fudenberg and Levine (1983)). The proof that
information in this game gets approximately aggregated (i.e., that for a sufficiently fine grid, the
expected limit of the difference between the price and the true value of security has to be small)
is very similar to the proof of Theorem 1 for game 'SR and is therefore omitted. It is an open
question whether equilibria are guaranteed to exist for the case 8 = 1.
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if &1, € [-0.5d,,0.5d,), then u; = 0; if &, € [0.5d,, 1.5d,), then u; = d;; and so
on). Competitive market makers observe aggregate demand v, = ), d} + uy,
form their posterior beliefs about the true state of the world, and set market
price y; equal to the expected value of the security conditional on that poste-
rior belief. The market clears, and all traders observe price y; and aggregate
demand v;.

At time #, > t#;, the next auction takes place, with each strategic trader i
choosing demand d}, from a set of 2M, + 1 possible actions, with the unit of dis-
cretization d,, and with demand from noise traders, u,, drawn randomly from
the discretized normal distribution with mean zero, variance parameter o7, and
unit of discretization d,. Subsequently, auctions are held at times #;, with de-
mand from noise traders drawn from the discretized normal distribution with
variance parameter o} and unit of discretization d, either until the last auc-
tion, which takes place at time #x <1 (in the case of finite games), or for an
infinite number of periods # <1 (in the case of infinite games; in that case we
say K = 00). The value of the security, x* = X (w*), is revealed at some time
t* > 1. Trader i’s payoff is equal to Y5 _, di.(x* — yc).

Strategy S, of trader i is a set of functions Sy (7, d;,...,d, |, vi,..., V1)
with values in the 2M -simplex, denoting the probability distribution over the
2M;. + 1 possible actions of trader i in period k after he observed partition 7,
submitted demands d, ..., d} , in the first k — 1 periods, and observed aggre-
gate demands vy, . .., v;_; in those periods.'? Strategy profile S is a set of strate-
gies of individual traders. Pricing rule Y is a set of functions y, (v, ..., v), for
all k.

As before, an equilibrium in game I is a profile of strategies S and the cor-
responding pricing rule Y such that

(i) forall k, price y; is equal to the expected value of security X conditional
on the observed aggregate demands in the market up to time #, and profile S
of players’ strategies; and

(ii) for every player i, the expected payoff from following strategy S; is at
least as high as that from following any alternative strategy S/, given pricing
rule Y and the strategies of other players S_;.

4.2. Results

The first result shows that for any finite (K < 0o) game I, an equilibrium
always exists. Note that this result does not immediately follow from standard

2These strategies do not formally depend on prices y;’, because those prices are uniquely de-
termined by prior aggregate demands vy, and thus including them as arguments of functions S
would be redundant. Note also that throughout the paper, it is assumed that aggregate demands
v are observed by strategic traders. Under an alternative assumption that only prices y, are
observed by strategic traders but aggregate demands vy are not observed, the results would be
the same.
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equilibrium existence results, because, first, “game” I" is not a game in the
strict game-theoretic sense (market makers are Bayesian but not strategic),
and second, while the set of possible actions of each player is finite, the set
of strategies is not: there are infinitely many possible information sets (due to
infinitely many possible demands from noise traders). The proofs of all results
in this section are in Appendix B.

THEOREM 2: For any trading game I with K < oo, an equilibrium exists.

We now construct the following game 1", with infinitely many trading peri-
ods, which is essentially a discretized version of the trading game defined in the
main model (Section 2.1). Take any integer M > 0 and any positive real num-
bers d and o. For every k, set , =1 — zlk’ My, =M, 0, =0/t —ti_1 = \}’z_k,

d
and d; = ﬁ

For this game, an equilibrium always exists, and in every equilibrium, if the

traded security is separable, information always gets aggregated.

THEOREM 3: For every M, d, and o, there exists an equilibrium of game I'™.

THEOREM 4: Take any equilibrium of game I'* and consider the stochastic
process y, arising from that equilibrium. If security X is separable, then, for any
e > 0and & > 0, there exists K' such that, for any k > K' and any realization o
of the nature’s draw, the probability that |y, — X (w)| > ¢ is less than 6.

The proof of Theorem 3 proceeds by constructing a sequence of “approx-
imations” of an equilibrium, by considering a sequence of “truncated” finite
games, for which equilibrium existence was established in Theorem 2. The
proof of Theorem 4 is essentially the same as the proof of Theorem 1.

Note that while Theorems 3 and 4 would continue to hold for considerably
more general models (e.g., it is not essential that the number of possible actions
is the same in every period and for every strategic trader, or that time intervals
decline as powers of 2), the proofs do rely on the assumption that the sizes of
the largest possible trades by strategic traders are comparable to the standard
deviations of noise traders’ demand. If the largest possible trades were much
smaller than those standard deviations (more precisely, if as k increased, they
went to zero faster than the standard deviations), then the information ag-
gregation result might fail simply due to the fact that any moves by strategic
players would be vanishingly small relative to those by noise traders, and thus
would not noticeably impact prices. On the other hand, the proof of the equi-
librium existence result relies on the fact that the size of the largest possible
trade is limited, ensuring that game I'* is continuous at infinity, that is, that
potential continuation profits after period #, go to zero as k goes to infinity.
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5. INFORMATION AGGREGATION IN A MODEL
WITH A FINITE NUMBER OF TRADING PERIODS

One feature that is different in the main model of this paper compared to
earlier work (such as Kyle (1985) and Foster and Viswanathan (1996)) is the
timing of trading. In this paper’s main model, there are countably many trad-
ing periods, shrinking in length, and information aggregation occurs in a single
game, along the sequence of trading periods. In the earlier work, there are
finitely many trading periods of equal size, and results like information aggre-
gation obtain only approximately for a given game—but the approximation
becomes arbitrarily accurate if one considers a sequence of trading games,
in which the number of trading periods increases and each trading period
becomes small." It is thus a natural question to what extent this paper’s re-
sults depend on having an infinite sequence of shrinking trading periods and
whether they would continue to hold in a model similar to that in the earlier
work, and I discuss this question below.

Consider the following model. There are n strategic traders and a finite set
of states of the world (2, with security X, partition structure II, and common
prior P, as before. Trading is organized as follows. There are K trading peri-
ods. At time ¢, = 0, nature draws a state, o*, according to P, and the strategic
traders observe their partition elements. At time #, = ¢, each strategic trader i
chooses his demand d! € R. At the same time, there is demand u; from noise
traders, drawn randomly from the normal distribution with mean zero and vari-
ance "72 Competitive market makers observe total demand v, =), d} + u,
form their posterior beliefs about the true state of the world, and set market
price y; equal to the expected value of the security conditional on that posterior
belief. Trading takes place, and price y; and aggregate volume v, are publicly
observed.

At time ¢, = %, the next auction takes place, with each strategic trader i
choosing demand d}, € R, and with demand from noise traders, u,, again drawn
randomly from the normal distribution with mean zero and variance "72 Sub-
sequently, auctions are held at times ¢, = %, k < K, with demand from noise

traders drawn from the normal distribution with variance %2 The value of the

security, x* = X (w*), is revealed at some time ¢* > 1. Trader i’s payoff is equal
t0 Y di(x* = Y.

Strategy S; of trader i is a set of functions S, denoting the probability
distribution over the set of his possible actions (R) in period k as a func-
tion of the element of his partition that he observed, his submitted demands

13See, for example, Theorem 4 in Kyle (1985) and numerical results in Section VI in Foster
and Viswanathan (1996). Back (1992) and Back, Cao, and Willard (2000) provided analogous re-
sults in models with continuous trading, where information aggregation obtains exactly. However,
some earlier papers (Back and Baruch (2004), Caldentey and Stacchetti (2010)) also considered
models with, in essence, shrinking trading periods; see footnote 7 for discussion.
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di,...,d, | inthe first kK — 1 periods, and the publicly observed aggregate de-
mands vy, ..., v, in those periods.

Pricing rule Y corresponding to strategy profile S is a set of functions
Ye(v1, ..., vr) such that y (vy, ..., v;) is equal to the conditional expectation of
the value of security X given that the true state was drawn according to prior
probability P, strategic traders played according to strategy profile S, and the
observed aggregate demands in the first k periods were vy, ..., .

The resulting trading game is denoted Ix. As before, strategy profile S and
pricing rule Y form an equilibrium of game I if Y is the pricing rule corre-
sponding to S, and under S, each strategic trader is behaving optimally given
pricing rule Y and the strategies of other players.

The results for this model are as follows. If there is only one strategic trader,
then as the number of periods increases, the expected difference between the
true value of the security, x*, and the market price in the last period, yk, always
converges to zero.

THEOREM 5: If n =1, then for any ¢ > 0, there exists K, such that, for any
K > K., for any equilibrium (S*, Y*) of game I, E[|yx — x*|] < e.

See Appendix C for the proof.

For the case n > 1, an additional assumption is needed. Take any K, any
equilibrium ($*, Y*) of game Ik, any k < K, and any player i. Take any his-
tory h;, that player i could have observed up to period k (this includes his
original signal, his actions, and the aggregate volumes of trade in periods be-
fore and including k). Define x(4, ;) as the expected value of security X con-
ditional on history #4;,. Define y(h;,) as the average expected market price
of the security in periods k£ + 1 and later, conditional on A, (i.e., y(h;;) =
E[K+k Zf,:k <1 Yelhik]). Finally, let y(0, h; ;) be the following “hypothetical”
expectation: it is equal to the average expected market price in periods &k + 1
and later, conditional on history #;,, if, following this history, player i com-
pletely stops trading and withdraws from the market, instead of following his
prescribed equilibrium strategy (without other players or market makers know-
ing about this withdrawal). Take any D > 1. We say that equilibrium (§*, Y*) is
D-destructive after history h; . if |[X(h; ) —V(hi)| > D|x(hix) — (0, h; )|, that
is, if the active presence of trader i in the market keeps prices further away (by
more than a factor of D) from the expected value of the security, compared to
where these prices would have been if the trader had not traded at all.

Now consider a sequence of equilibria (S}, Y7) of games I, (where K; <
K, < ---). We say that this sequence is infinitely destructive if, for some player i
and some ¢ > 0, for any D > 1, one can find index m and k < K,,, such that on
the path of play, the measure of histories 4, after which equilibrium (S?, Y*)
is D-destructive is greater than . In other words, no matter how large factor
D is, in some game [, , with a non-vanishing probability (greater than &), the
actions of player i distort the average prices away from the correct expected
value by more than a factor of D.
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THEOREM 6: Consider a sequence of equilibria (S},,Y) of games Ik, . If
security X is separable and the sequence is not infinitely destructive, then, for
any € > 0, there exists m, such that, for any m > m,, in equilibrium (S},,Y),
El|yk, — x*|] < e.

See the Supplemental Material (Ostrovsky (2012)) for the proof.

The proofs of Theorems 5 and 6 follow the same outline as the proof of The-
orem 1 for the Kyle-based trading game. First, I establish an upper bound on
the losses of noise traders: As time approaches the end of the trading inter-
val, in the continuation game following that time these losses become arbitrar-
ily small relative to the standard deviation of noise traders’ demand over that
time. The proof is complicated by the fact that instead of considering a single
game and its equilibrium, I now need to consider a sequence of games and their
equilibria, and thus statements like the one in the previous sentence require a
more delicate formalization (Steps 0 and 1). Also, since there is no longer an
infinite sequence of prices in any of these games, the martingale convergence
theorem does not apply, and hence I show various convergence results directly,
by decomposing the variance of X () into a sum of variances of price changes,
thus obtaining bounds on the latter. Those bounds are then used to provide a
bound on the losses of noise traders (Step 2). While not important for the
proof, it is worth noting that these bounds do not rely on the counterfactual
assumption of information non-aggregation or, in the case of Theorem 6, on
the assumption of the sequence of equilibria not being infinitely destructive;
that is, they apply to any sequence of equilibria (57, Y) of games I%,,.

Second, I establish a lower bound on the continuation profits of some strate-
gic trader for an equilibrium in which information does not get aggregated. If
information does not get aggregated and the traded security is separable, then
at least one trader, in any arbitrarily late trading period, has a belief about the
value of the security that is substantially different from the current (and ex-
pected future) prices. This trader, by trading an amount proportional to the
standard deviation of noise traders’ demand, would not move future prices too
much, and thus could make continuation profits proportional to that standard
deviation. Those profits provide a lower bound on his expected continuation
profits in equilibrium, and for a sufficiently late trading period ¢ < 1, exceed the
expected losses of noise traders (which, by the first part of the proof, become
arbitrarily small relative to the standard deviation of noise traders’ demand).
But this cannot be the case, because continuation profits of market makers are
by construction zero, continuation profits of other strategic traders (in the case
of Theorem 6) are nonnegative, and the sum of all continuation profits in the
economy is zero.

The reason why the second part of the proof in this case is different from the
corresponding part in the proof of Theorem 1 is that now the “counterfactual”
trading by the arbitrageur has to take place over multiple periods, whereas in
the case of Theorem 1 a one-shot deviation was sufficient (due to the shrink-
ing nature of the sizes of time periods, each trading period was “large” relative
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to the subsequent continuation game). The extra assumption of the sequence
of equilibria not being infinitely destructive is used in showing that the arbi-
trage described above does in fact work. If a strategic trader’s withdrawal from
trading were to bring prices very close to his expected value of the security,
then trading a fraction of a standard deviation of noise traders’ demand would
not necessarily generate profits proportional to that standard deviation. Intu-
itively, infinitely destructive sequences of equilibria appear to be quite unnat-
ural, since prices in the model are set by Bayesian agents whom one would
expect to become less rather than more accurate if the actual behavior of the
players is different from the one these agents base their beliefs on. However,
it is still an open question whether such sequences can in fact exist, and if they
do, whether the result of Theorem 6 holds for them as well.!*

In the case of Theorem 5, this additional assumption is not needed, because
if prices do not converge to the correct value of the security (but are still un-
biased estimates of that value conditional on publicly available information),
then one can look at where the prices would be if the strategic trader stopped
trading, and the answer would have to be substantially different from the true
value of the security, with positive probability (see Step 3 and the first para-
graph of Step 4 for details).

6. SEPARABLE SECURITIES

In light of the results on information aggregation, it is important to under-
stand the restrictions the separability condition places on securities. This sec-
tion describes two natural classes of separable securities and gives an alterna-
tive “dual” characterization of the condition. This dual characterization, as well
as the result on one of the two classes (monotone transformations of additive
payoffs) is due to DeMarzo and Skiadas (1998, 1999), who studied fully and
partially informative rational expectation equilibria in rich settings with (po-
tentially) multiple securities and infinite state spaces, and provided a variety
of general results on the “separably oriented” condition, which is equivalent
to the separability of security X in my setting. However, the results presented
below also have short self-contained proofs for the current setting, which are
included for completeness. The result on the other class of separable securities
(order statistics) is new. All proofs are in Appendix D.

4One difficulty in showing that infinitely destructive sequences do not exist is the following.
Suppose, for example, that there are two strategic traders in the market, and they are both per-
fectly informed. From their point of view, as the number of trading periods becomes large, they
are facing a long repeated game. This repeated game may in principle have a large set of equi-
libria, including some convoluted ones in which the two traders collude to keep prices away from
the correct value and make moderate profits, but if one of them deviates, for example, to non-
trading, the other one quickly brings the price to the correct value. It is an open question whether
such equilibria do in fact exist.
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The first result of this section is a “dual” characterization of separability.
While this characterization appears less intuitive than Definition 2, it is very
convenient in applications, as Corollaries 1 and 2 below illustrate.

THEOREM 7: Security X is separable under partition structure 11 if and only
if, for every v € R, there exist functions \;:II; — R for i =1, ..., n such that, for
every state o with X (w) # v,

(X(0)=v) > A(lI(w)) > 0.

In other words, the condition says that, for every v € R, we can pick multipli-
ers A;(7r) for all elements 7 of partitions II; of all players i in such a way that,
for all w at which X (w) # v, the sign of (X (w) — v) is the same as the sign of
>, AT (w)).

The first corollary of Theorem 7 shows that securities that can be repre-
sented as order statistics of traders’ signals (minimum, maximum, median,
etc.) are separable. Of course, there is no notion of a “signal” in the model of
this paper; at least not one for which we can talk about relations like “lower,”
“higher,” etc. Thus, the result applies to securities for which each observation
by each player (i.e., each element of his information partition) can be meaning-
fully interpreted as a numerical signal. Note that these signals are allowed to
be less informative than the original partitions; that is, two different elements
of a partition are allowed to induce the same signal. The formal statement is
as follows.

COROLLARY 1: Consider any security X and suppose there exist functions
x;:II; - R for i =1, ...,n such that, for some j < n, for all o € 2, X(w) is
equal to the jth lowest of the n numbers x(11}(w)), x2(Il(w)), ..., x,(Il,(®)).
Then X is separable.

Corollary 1 implies that any Arrow—Debreu security, that is, random variable
X that is equal to 1 in one state of the world and to 0 in all other states, is sep-
arable, and hence by Theorem 1, information about Arrow—Debreu securities
gets aggregated. To see that, consider security X that is equal to 1 in state w*
and to 0 in all other states. For all i and 7 € II;, let x;(7) =1 if 7 = II;(w*) and
x;(m) =0if 7 £ II;(0*). Then X (w) = min;{x;(II;(w))}, and thus by Corol-
lary 1, security X is separable.

The second corollary of Theorem 7 shows that monotone transformations
of additive securities (e.g., additive securities, positive multiplicative securities,
call or put options on additive or positive multiplicative securities, and so on)
are separable, where a security is “additive” if it can be expressed as the sum
of traders’ signals (where again a “signal” is a numerical interpretation of a
trader’s information). Additive securities, of course, include a seemingly more
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general case of securities that are linear (e.g., the average) or stochastically
monotone (McKelvey and Page (1986), Bergin and Brandenburger (1990))
functions of signals, because signals can be rescaled.

COROLLARY 2: Consider any security X and suppose there exist functions
x;:II; > R fori=1,...,n and a monotone function f:R — R such that, for
all w e 2, X(w) = f(Q_,x;(Il(w))). Then X is separable.

Thus, information about securities with additive payoffs and their monotone
transformations always gets aggregated, for every distribution of priors, corre-
lation structure of signals, and so on.

7. CONCLUDING REMARKS

This paper leaves several important questions for future research. One such
question is what happens when the traded security is non-separable and the
traders’ common prior is generic. For instance, suppose the security and the
partition structure are as in Example 1, but the prior is a small generic pertur-
bation of the one in the example. Then if the players simply announced their
posterior beliefs truthfully, as in Geanakoplos and Polemarchakis (1982), in-
formation would get aggregated. What happens in the strategic trading game?
Does there exist an equilibrium in which information gets aggregated with
probability 1? Is there an equilibrium in which, with positive probability, in-
formation does not get aggregated, and instead in the limit, players get “stuck”
at (or converge to) a prediction and a profile of beliefs under which none of
them can make a profitable revision? Are the answers the same for all non-
separable securities, scoring rules, and other parameters of the game? Using
the techniques of the current paper, one can show that, in general, prices have
to converge to a random variable that is a “common knowledge/common be-
lief” equilibrium of the corresponding economy (Dutta and Morris (1997);
DeMarzo and Skiadas (1998, 1999)), but it is unclear to which of the multi-
ple equilibria they will converge. Note that in game ™R, for a generic prior,
information in any pure-strategy equilibrium will get aggregated even for non-
separable securities.’>*1° Tt is not clear, however, whether this result can be
extended in any form to game I'* or mixed-strategy equilibria of game I'™SR,

31 am grateful to an anonymous referee for this observation.

16Ty see this, note that, in any pure strategy equilibrium, after any history, the knowledge of
every agent (players and outside observers) is simply a set of states w that are consistent with the
observed history; the posterior probabilities of these states are proportional to their probabilities
under the original prior. The set of subsets of set (2 is finite, and thus for a generic prior, each
subset induces a different expected value of security X. Also, in any pure-strategy equilibrium, all
learning is guaranteed to stop before some time ¢. Consider the beliefs of players and the outside
observer at time . If the outside observer (and thus all strategic players) knows the true state of
the world w, by the same argument as in the proof of Theorem 1, forecast y, has to be equal to the
value of the security. If he does not know the true state of the world, his information is some set
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Two other open questions in the context of the current paper’s models have
been raised earlier in the paper: the existence of an equilibrium for the game
I'MSR without discounting (either in the original model or in a discretized ver-
sion) and the necessity of the “not infinitely destructive” condition in Theo-
rem 6.

There are also several interesting questions that go beyond the current pa-
per’s models. Note that while there are numerous mathematical differences be-
tween these models, the underlying principle behind the information aggrega-
tion result is the same in all of them: In a dynamic market, as time approaches
the end of trading, the beliefs of an outside observer have to converge some-
where, and thus as we get to the end of trading, they become stable. If there is a
positive probability that these limit beliefs place a positive likelihood on a state
with a wrong value of the security, then the security must also be “mispriced”
with positive probability in any sufficiently late period, and separability implies
that at least one trader is aware of this mispricing. Thus, any trading mecha-
nism that allows such a trader to make more money by taking advantage of this
mispricing than by following his supposed equilibrium strategy has to lead to
information aggregation in the limit.

This principle should continue to hold in many other market microstructure
models: with strategic or automated market makers; with or without “exter-
nal” noise; with one or many securities'’; and so on. Nevertheless, the details
of the trading process may turn out to matter for the results, and so it is impor-
tant to consider formally other dynamic microstructure models and to check in
which of them similar conclusions hold. Also, this paper focuses on informa-
tion aggregation properties of dynamic markets and abstracts away from issues
of allocative efficiency: in the models, all traders are risk-neutral, and have
pure common values. A natural direction for future research is to consider
settings with risk-averse traders and/or traders who have private or interde-
pendent components in their valuations, and see how far the principle stated
above can be pushed. A recent paper by Iyer, Johari, and Moallemi (2010) sug-
gests that it can indeed be useful in the richer markets discussed above. Iyer,
Johari, and Moallemi (2010) extended the techniques developed in the current
paper to study a market with an automated market maker, risk-averse strategic
traders, and multiple securities. They made a stronger assumption than separa-
bility on the information structure of the traders, but assumed that as a group,

' C 0, || > 1. There must be a strategic player whose information is finer than 2’ (because the
join of informed traders’ partitions consists of singletons), and the genericity assumption implies
that, under different possible information realizations of this player, the expected values of the
security must be different. Thus, he has a persistent arbitrage opportunity, which by the same
argument as in the proof of Theorem 1 is impossible in equilibrium.

"Note that for settings with multiple securities, if the market is complete (i.e., if the set of
traded securities is rich enough to span all Arrow-Debreu securities for states in (2), the results in
Section 6 suggest that information would get aggregated, although of course the precise statement
would depend on the specific assumptions about market microstructure.
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these traders are still not fully informed: there is some residual uncertainty
even after pooling all information. In that setting, not only does information
get aggregated (in the sense that all traders learn all available information), but
also the portfolios of securities they end up with by the end of trading represent
efficient risk sharing among them.

Finally, this paper assumes that traders already possess the information at
the beginning of trading, and the only concern is whether this information will
get aggregated in the market. But markets are also often viewed as an incen-
tive mechanism for traders to gather costly information, not just as an aggre-
gation mechanism. This view gives rise to more questions: What happens when
traders can acquire information at a cost? How well is information extracted
and aggregated in that case? Are some mechanisms better than others?

APPENDIX A: PROOF OF THEOREM 1

This appendix consists of three sections. The first section contains the main
parts of the proof of Theorem 1 for game 'SR, The second section formally
presents some technical details of the setup of game I'™SR and of the proof of
the information aggregation result for that game. The last section contains the
proof of Theorem 1 for game I'%.

A.1. Proof of Theorem 1 for Game ™SR

The proof of this theorem consists of four steps.

STEP 1: In this step, we state and prove an auxiliary lemma on the existence
of a uniform lower bound on the expected profits at least one strategic trader
can make from improving a forecast about the value of a separable security
under uncertainty.

Let r be some probability distribution over the states in (2 and let z be any
real number. Define instant opportunity of player i as the highest expected pay-
off that he can receive from making only one change to the forecast, if the state
is drawn according to distribution r and the current prediction is z (of course,
since s is a strictly proper scoring rule, player i would achieve this payoff by
changing the forecast to the expected value of the security given his informa-
tion). Formally, the instant opportunity of player i given r and z is equal to

(1) > r)(s(E[X|Ti(0)], X (0)) - 5(z, X (@))).

wel)

Now, let A be the set of probability distributions r such that there are states a
and b with r(a) > 0, r(b) > 0, and X (a) # X (b). In other words, for distribu-
tions in A, there is some uncertainty about the value of security X.
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LEMMA 1: If security X is separable, then, for every r € A, there exist x > 0 and
ie{l,2,...,n}such that, for every z € R, the instant opportunity of player i given
rand z is greater than x.

Before moving on to the proof of the lemma, note that the separability as-
sumption is crucial: without it, the statement would be false. Also, the order
of quantifiers in the statement of the lemma is important: in one of the subse-
quent steps of the proof of Theorem 1, it will allow us to place a lower bound
on the expected continuation profits of a trader without having to worry about
the current market forecast.

PROOF: Let x, = E,[X]—the expected value of security X under r. Since
X is separable and there is uncertainty about its value under r, by the defini-
tion of separability, for at least one player i and at least one state w, r(w) > 0
and E,[X|I];(w)] # x,. Together with x, = E,[X], this implies that there ex-
ist two states, a and b, such that r(a) > 0, r(b) > 0, and E,[ X |I];(a)] < x, <
E, [X|11;(b)].

Let 7, = II;(a)—the element of partition II; that contains state a. Let 7, =
I1;(b). Since s is a proper scoring rule, for any element 7 of partition II;, we
have

(2) > (@) (s(E[X|7], X (0)) — 5(z, X ())) = 0.

weT

Let x, denote E,[X|m,], and let x, = E,[X|m,]. Since we can rewrite “)___,”
in equation (1) as “}___, > ,_..” equation (2) implies that the instant oppor-
tunity of player i is at least as large as

3) max[z r(@)(s(xq, X () — 5(z, X (»))),

WET,

S (@) (s(x X (@) = 5(z, X(w)))}.

WETp

Now, a strictly proper scoring rule s has to be “order-sensitive,” that is, the
further away the forecast is from the true expected value, the lower is the ex-
pectation of the score (Lambert (2011, Proposition 1)). Thus, if z is greater
than or equal to x,, and thus (weakly) further away from x,, we have

> r)(s(x0, X (@) — 5(z, X (@)))

WETg

> > r()(s(x0, X (@) = 5(x,, X (0))),

WET,
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and if z < x,, we have

> rw)(s(xs, X (@) — 5(2, X (0)))

WETp

>3 r()(s(xp, X (@) = 5(x,, X (0))).

WETp

These inequalities, in turn, imply that, for all z, the expression in equation (3)
is greater than or equal to

(4) min[z r(@)(s(xe, X (w)) = s(x,, X (w))),

WETg

Z r(w)(s(xp, X (@) — s(x,, X(w))):|.

(OIS

The expression in equation (4) does not depend on z, and is strictly greater
than zero: scoring rule s is strictly proper, and x, < x, < x,. This completes the
proof of Lemma 1. Q.E.D.

STEP 2: In this step, we construct a stochastic process corresponding to the
beliefs of an outside observer about the realized state w and establish its mar-
tingale properties. (Some additional technical details, such as the formal de-
scription of the underlying probability space for this process, are presented in
Section A.2.)

Let h=1,...,H index the states in (2. Let g = P(h), that is, the (com-
mon) prior probability of state 4. Take a Nash equilibrium of game ™R and
consider the following stochastic process Q in R, Q, is deterministic and is
equal to (g3, g3, - - -» q¢'). Then nature draws state w at random, according to
distribution P, and each player i observes II;(w). After that, player 1 plays
according to his (possibly mixed) equilibrium strategy and makes forecast y,.
Based on this forecast y;, the equilibrium strategy of player 1, and the prior P,
a Bayesian outside observer, who shares prior P with the traders and observes
all forecasts y;, but does not directly observe any information about the real-
ized state w, can form posterior beliefs about the probability of each state A.
Denote this probability by g%. Q; is then equal to (¢!, gt, ..., q"). The rest
of the process is constructed analogously: Oy = (q;, q3, ..., qi), where y; is
the forecast made at time # and g/ is the posterior belief of the Bayesian out-
side observer about the probability of state %, given his prior P, equilibrium
strategies of players, and their history of forecasts up to and including time #.

Note that process Q is a martingale, by the law of iterated expectations. It
is also bounded, since all its realizations are between 0 and 1. Thus, by the
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martingale convergence theorem, it has to converge to some random variable,
— (g H
QOO - (qooa ceey qoo)'

STEP 3: In this step, we show that if the statement of Theorem 1 does not
hold for this equilibrium, then we can identify a “non-vanishing arbitrage op-
portunity”: there is a player, i*, and a positive number, n*, such that the ex-
pected instant opportunity of player i* exceeds m* at infinitely many trading
times f.

Suppose the statement of Theorem 1 does not hold for this equilibrium.
Consider the limit random variable Q., and two possible cases.

Step 3, Case 1: Suppose there is a positive probability that Q,, assigns pos-
itive likelihoods to two states, a and b, with X (a) # X (b). Then there exists
a probability distribution r = (r!, ..., rf') such that r* > 0, r* > 0, and for any
& > 0, the probability that Q. is in the e-neighborhood of r is positive.'® Since
O, converges to Q.., this implies that, for any ¢ > 0, there exist K and { > 0
such that, for any k > K, the probability that Q is in the e-neighborhood of r
is greater than ¢.

Now, by Lemma 1, for some player i and y > 0, the instant opportunity of
player i is greater than y given r and any z € R. By continuity," this implies
that, for some ¢ > 0, the instant opportunity of player i is greater than y for
any z and any vector of probabilities ' in the e-neighborhood of .

Therefore, for some i, x > 0, #¢, and ¢ > 0, the instant opportunity of player
i at any time ¢,,,; > tx is greater than y with probability at least £, and thus
for i, tx, and n = x{ > 0, the expected instant opportunity of player i at any
time f,,.; > tx is greater than 7.

Step 3, Case 2: Now suppose there is zero probability that O, assigns positive
likelihoods to two states a and b with X (a) # X (b), that is, in the limit, the
outside observer believes with certainty that the value of the security is equal to
some x. Almost surely (i.e., with probability 1), Q.. has to assign some positive
likelihood to the true state 4, and thus for every realization /& of nature’s
draw, with probability 1, O, will place likelihood 1 on the value of the security
being equal to X (4). In other words, in the limit, the outside observer’s belief
about the value of the security converges to its true value (even though his
belief about the state of the world itself does not have to converge to the truth,
if there are multiple states in which the security has the same value).

18See Section A.2.3 for the proof of this statement.

9 A proper scoring rule does not need to be a continuous function. However, E, [s(E,[X], X)]
has to be convex (and thus continuous) in r for any proper scoring rule s: if r = ar’ + (1 —
a)r” for a € (0,1), then E[s(E,[X], X)] = aE/[s(E,[X], X)] + (1 — &)E[s(E,[X], X)] <
aE, [s(E/[X], X)] + (1 — )E[s(E»[X], X)] (this argument is due to Savage (1971)). This,
in turn, implies that the expression in equation (1) is continuous in r.

2See Section A.2.4 for the proof of this statement.
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Suppose now that process y, does not converge in probability to the true
value of the security. That is, there exist state 4 € {2 and numbers ¢ > 0 and
8 > 0 such that, after state £ is drawn by nature, for any K, there exists k > K
such that the probability that |y, — X (h)| > ¢ is greater than &. This, together
with the fact that even for the uninformed outsider the belief about the value
of the security converges to the correct one with probability 1, implies that for
some player i and n > 0, for any K, there exists time #,,.,; > tx at which the
expected instant opportunity of player i is greater than 7.

Crucially, in both Case 1 and Case 2, there exist player i* and value n* > 0
such that there is an infinite number of times ¢, in which the expected in-
stant opportunity of player i* is greater than n*. Fix i* and n*.

STEP 4: This step concludes the proof, by showing that the presence of a
“non-vanishing arbitrage opportunity” is impossible in equilibrium.

Let 5, be the expected score of prediction y, (where the expectation is over
all draws of nature and realizations of moves by players). The expected payoff
to the player who moves in period #; (it is always the same player) from the
forecast revision made in that period is B*(5; — 5i_1).

The rest of the proof proceeds separately for cases 8 =1and 8 < 1.

Step 4, Case “B = 1": Take any player i. His expected payoff is equal to
> (Sucsi — Sucri—1)- In equilibrium, the players’ expected payoffs exist and
are finite, so the infinite sum has to converge. Therefore, for any ¢ > 0, there
exists K such that, for any k > K, | o_, (Suesi — Swesio1)| < €. But in both
Case 1 and Case 2 of Step 3, that contradicts the assumption that players
are profit-maximizing after any history. To see that, it is enough to consider
player i* identified in Step 3 and some period ¢, such that the expected in-
stant opportunity of i* is greater than n* and | >_"_ (Suwyi — Spwsis—1)] 18 less
than n*.

Step 4, Case “B < 17: If we knew that expected scores 5, converged to a limit
as k increased, the proof of this case would be essentially identical to that of
the previous one. However, we do not know a priori that these scores do in fact
converge, and so the proof needs to be somewhat more involved.

Take any period #,. Let ¥, be the sum of all players’ expected continuation
payoffs from the forecast revisions made in periods #, and later, divided by
ﬁk: 1Ifk = (Ek — Ekfl) + ﬁ(glﬁq — Ek) + B2(§k+2 — §k+l) + ---. We can make two
observations about V. First, it is nonnegative, because each player can guar-
antee himself a payoff of zero. Second, for a similar reason, it is greater than or
equal to the expected instant opportunity of the player who makes the forecast
at time ;.

Consider now limg_, o, Zf: 1 Yk. On one hand, under both Case 1 and Case 2
of Step 3, this limit has to be infinite, because each term ¥, is nonnegative, and
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an infinite number of them are greater than n*. On the other hand, for any K,

K
SW=  G-5%) + BE-5) + BG-5) +--
=1
+ (;—=5) + BG3—%) + PFEa-—5) +--
+ :
+ Sk —Sk-1) + BBk —Sk) + B*Gria — Skp1) + -+

= 5k —50) + BGks1—51) + B*Gra—5) +--
< 2M/(1-B),

A

where M = maXyery, 31,001 15y, X (0))]. Hence, both Cases 1 and 2 are impos-
sible, and so y, must converge in probability to the true value of security X.

A.2. Additional Technical Details for Game I'™SR

This section contains some additional mathematical formalism for the setup
of game ™SR as well as formal proofs of three technical statements used in
the proof of Theorem 1 for 'SR,

A.2.1. Setup

The initial uncertainty about the value of the security and about the infor-
mation possessed by the players is captured by state of nature w. However,
once the game starts, players can use mixed strategies, thus introducing addi-
tional uncertainty into the economy. We formalize this additional uncertainty
as follows. Assume that in each period #, the player who moves in that period
observes a realization of a random variable ¢;, drawn from the uniform distri-
bution on [0, 1]. These draws are independent of each other and of the initial
state w. The “full” state of the world (including initial uncertainty and random-
ization by players in the trading game) is described by state ¢ = (w, ¢y, ta, .. .).
The space of possible states is thus the product space @ = 0 x [0, 1]". We
denote the corresponding product probability space by (®, F, P).

For player i and time ¢, such that k = i + nk for some « (i.e., player i makes
a forecast at time #), the strategy of player i at time t, is a measurable function
oI x [y, y1*! x [0, 1] — [y, y], denoting the forecast y, made by player i
given the element of partition I1; he observed prior to trading, the history of
forecasts (y;, ..., Yx_1) up to time #, and the realization of the random vari-
able v,. The strategy of player i, denoted o, is a set of strategies of player i at
all times when it is his turn to make a forecast.

Given a profile of strategies o = (o7, ..., 0,,), any realization of uncertainty
(i.e., state ¢) determines a sequence of forecasts: y; (o, ¢), (0, ¢), .... For
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B < 1 (discounted MSR), we say that profile o is a Nash equilibrium of game
I'MSR if, for every player i and every alternative strategy o] (and the corre-
sponding profile of strategies o' = (o1, ..., 0/,...,0,)), we have

1

5) E[Z B (s(Visnc (0, ), X (@) = S(Visn-1(0 @), X(cp)))}

k=0

= E|:Z BH—nK(s(yiJrnK(O-/a QD)a X(QD)) - S(Yi+m<71 (OJ? QD)’ X((P))):| ’

k=0

where expectations are taken with respect to probability measure P, and X (¢)
is the value of the security when the “full” state is ¢, determined by the first
component of ¢: X (¢) = X (w(¢)).

Since forecasts are limited to the interval [y, y], the scores (and thus differ-

ences in scores) are uniformly bounded, and therefore the infinite sums and
their expectations in (5) are guaranteed to be finite and well-defined when

B<1.
For the case of undiscounted MSR (B8 = 1), we say that profile o is a Nash

equilibrium of game 'SR if, for every player i, the limit

K
(6) lim E[Z(s(yi+nk(0-a ¢)a X(¢)) - S(yi+nx—1(o-7 QD)a X(¢))):|

K—o0
k=0

exists, and for every alternative strategy o] (and the corresponding profile of
strategies ¢’ = (07, ..., 0}, ..., 0,)) such that the limit

(7) Igifch[Z(S(ymK(a’, ©), X (@) = S(Yicne1(0', @), X(@)))}

k=0
exists, we have (6)>(7).

A.2.2. Formal Statement of Step 2 of the Proof of Theorem 1 for ™SR

Fix equilibrium strategy profile ¢. Index states in 2 by h =1, ..., H. De-
fine H-dimensional stochastic process Q on (@, F, P) as follows. Q, is deter-
ministic: it is equal to (g}, g3, - - ., qi'), where g{ = P(h). For every k > 1 and
realization of uncertainty ¢*, set Oy (¢*) = (¢ (¢*), ..., g (¢*)), where

QZ(gD*) = F(w(go) = h|y1(0-7 QD) =N (0-7 gD*)’ YZ(UG ()D) :)’2(0> (P*)’ LR
yi(o, @) = yi (o, ¢%)).

By the law of iterated expectations, stochastic process Q is a martingale. It is
also bounded, since all g} are between 0 and 1. Thus, it is uniformly integrable,
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and so by the martingale convergence theorem, there exists a random variable
Q. on (P, F, P) such that Q.. (¢) =lim,_, o, Q;(¢) almost everywhere (P) and

/IIQk—QOO||dI_3—>O as k — oo.
@

(For concreteness, we will use the Euclidean distance || - ||, although many other
distance functions would work just as well.)

A.2.3. Additional Argument in Step 3.1

Suppose that, for states @ and b in (2, the probability (P) that ¢° (¢) and
q". (@) are both positive is greater than some & > 0. Then it has to be the case
that, for some positive integer L, the probability that ¢° (¢) and ¢ (¢) are

1

both greater than + is greater than & (because {¢|qs (@) > 0, () >0} =

ULenl®lgs (@) > 1, q5(¢) > 1}). Fix that L.

Consider the H-dimensional box By = [0, 1] x [0,1] x --- X [%, 1] x---x
[0,1] x -+ x [+,1] x --- x [0, 1] (where intervals [1, 1] are at dimensions a
and b, and intervals [0, 1] are everywhere else). By construction, the probabil-
ity P that Q. is in that box is greater than 8. By taking midpoints of the H
intervals, splitting each interval into two subintervals, and considering various
combinations of these subintervals, we can represent the box as a union of 27
equally sized closed boxes. Clearly, for at least one of these boxes, O, belongs
to that box with probability at least 2% Denote this box by B;.

Proceeding by analogy, we construct a sequence of boxes B, such that the
size of each box in the sequence is equal to half the size of the previous one
in the sequence (along each dimension), and the probability that Q. is in box
B, is greater than ;. Let r = (), B, (this intersection has to be a singleton).
For any ¢ > 0, there exists / large enough that the entire box B; belongs to
the e-neighborhood of r, and thus with probability greater than z,iH > 0, vector
Q. belongs to that e-neighborhood. Note that it has to be the case that r is a
distribution, that is, the sum of its coordinates is equal to 1 (otherwise, for a
sufficiently small &, no point in the e-neighborhood of r is a distribution, and
thus that neighborhood cannot ever contain distribution Q). Note also that
by construction, it has to be the case that r* and r” are greater than or equal to
1
2 > 0.

A.2.4. Additional Argument in Step 3.2

Consider state h € Q. Let & = {p|lw(¢) = h,q" (¢) = 0} and 5* =
{elq" (¢) = 0}. In words, @~ is the set of “full” states of the world ¢ such
that the security is in state & (w (¢) = h), but the outside observer, in the limit,
assigns likelihood zero to that event (¢” (¢) = 0). 5~ is the set of ¢ in which
the outside observer, in the limit, assigns likelihood zero to state 4. Clearly,
o C 5~
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By Lévy’s zero-one law, ¢ (¢) = P(w = h|y,(¢), (@), ...), that is, ¢". is the
probability of being in state 4 conditional on the observed infinite sequence of
forecasts yi, y,, .... Therefore, by the definition of conditional probability,

P(®*) = /_ * q" () dP(¢).

=1

Thus, P(®*) =0, since by construction, ¢" (¢) =0 for all ¢ € 5*.

A.3. Proof of Theorem 1 for Game T'*

STEP 0: Fix an equilibrium of game I'%.

STEP 1: In this step, we obtain a bound on the expected losses of noise
traders as time approaches the end of the trading interval.

Take any k£ > 0 and let ¥, denote the unconditional expected total payoff of
noise traders arriving after period #;, multiplied by (—«/fk), that is,

W, = (—fzk)E[ > —yk/)uk}

k'=k+1

where the expectation is over the draws of state w € (2, the realizations of noise
traders’ demands, and (if the equilibrium is in mixed strategies) the random-
izations of strategic traders’ actions (the formal construction of the probability
space is analogous to that in Section A.2, and is therefore omitted).

Since each strategic trader’s expected continuation payoff after any period #
is nonnegative (because a strategic trader can always guarantee himself a pay-
off of zero by simply not trading), and the expected continuation payoff of mar-
ket makers is zero (by construction), the expected payoff of noise traders arriv-
ing after period ¢, cannot be positive, and so ¥, > 0. Moreover, for any k' > k,
since y; is independent of u, and E[y;] = E[x*], we have E[(x* — y)uyp] =0
and so

¥ =(—v2E| I (v - yk/)ukr:|

oo

= (—V2)E[ ¥ (v _yk)uk} + (—ﬁk)E[ i (Vi —yk/)uk/j|

|_k'=k+1 k'=k+1

= (—v2)E

Z ke — yk’)uk’:|

| k'=k+1
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[e°]

= (—v2) 3 E[x — you]

k'=k+1

<v2' 3 B[k - vt B 2],
k

'=k+1

by the Cauchy-Schwarz inequality. Since process y, is a uniformly bounded
martingale, by the martingale convergence theorem, for any & > 0 there exists
K such that, for any k > K and k' > k, E[(yx — yv)*] < €%, and so

% <v2 Y B[k — yo?]E[e ]

K =k+1
< 2k Z e+/ Var(uy)
K=k+1
Eoon 1
=\/§ & Z —
Kmir1 V2
=e(1++2).

Therefore, W, converges to zero as #, goes to 1. Note that for any strate-
gic trader, the unconditional expected continuation payoff after period ¢ is at

k . . . . . .
most W/ ﬁ , because in expectation, in the continuation game, noise traders

lose ¥,/ «/Ek, market makers break even, and other strategic players do not
lose money.

STEP 2: Let Q, be the stochastic process in R’ denoting the posterior be-
lief of an uninformed outside observer (or, in this case, a competitive mar-
ket maker) about the true state of the world. Note that (i) Q is a uniformly
bounded martingale, and (ii) by construction, for each k > 1, y; is equal to
the expected value of X under Q,. Take the limit random variable Q. If with
probability 1, it places all weight on the states in which the value of the security
is the same, then by the same argument as in the proof of the theorem for game
I'™SR | this value has to be the correct one with probability 1, and we are done.

STEP 3: Suppose instead that there is a positive probability that O, places
positive weights on two states in which the value of security X is different. Then
there exists distribution r over states in (2 such that r places positive weights
on two states in which the value of security X is different, and for any ¢ > 0
there exist 6 > 0 and K such that, for any k > K, the probability that QO is in
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the e-neighborhood of r is greater than 6.*' Fix distribution r for the rest of
the proof and let x, = E,[X].

STEP 4: In this step, we begin to identify “mispricings” and show that they
occur with a non-vanishing positive probability. This is the step in which we use
the assumption that security X is separable.

Since security X is separable, there exist trader i and elements 7, and ), of
his information partition such that r(,) > 0, r(m,) > 0, and x, = E,[X|7,] <
X, < xp = E,[X|m]. Define 7= (x, — x,)/5 and p = r(7,)/2. Pick v > 0 such
that, for any 7' in the (2v)-neighborhood of r, differences |x, — E,[X]| and
|x, — E.[X|m,]| are less than 7 and probability r’(7r,) is greater than p. By the
choice of r in Step 3, there exist { > 0 and K, such that, for any k& > K, the
probability that O is in the v-neighborhood of 7 is greater than ¢. (Note: this is
not a typo; we want Q; to be in the v-neighborhood of r and then, conditional
on that, will ensure that O, is in the (2v)-neighborhood with probability close
to 1.) Fix v for the rest of the proof.

STEP 5: The remaining steps show how trader i can take advantage of the
“mispricings” identified in the previous step.

From this point on, it is convenient to introduce more formal notation, along
the lines of Section A.2 (fully formal definitions are similar to those in that
section, and are omitted). As in that section, the value of the security is de-
termined by state w € (2, but the description of the “full” state of the world,
¢ € @, also includes more information. First, it includes the realized demands
u; from noise traders in each period k. Second, it includes randomizations by
strategic traders in each period, which we assume are driven by independent
draws Lj( (for trader i in period k) from the uniform distribution on [0, 1]. De-
note the corresponding product probability space by (®, F, P).

Let ¢! denote all information about the full state ¢ available to trader i in
period k, and let ¢ denote that information and in addition the draw .},
that drives the randomization of player i in period k + 1 (for the analysis of
pure-strategy equilibria, this would be unnecessary, but it is needed for the
analysis of mixed-strategy ones). In other words, ¢! uniquely determines the
action of player i in period k + 1. Note that it also uniquely determines Q;
that is, before making his move in period k + 1, player i knows the beliefs of
an outside observer after period k. Hence, we can talk about functions like
Qi (¢h) without ambiguity. Also, let ¢, denote all public information up to
period k; likewise, we can talk about Oy (¢y).

2 For concreteness, in this proof we will use the L* norm to define distances between dis-
tributions on (2, and so the e-neighborhood of r is the set of 7 such that, for every w € (2,
[r(w) —r'(w)| <e.
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STEP 6: Let X(¢}) = X(¢,) denote the expected value of security X con-
ditional on the information available to trader i up to period k. Consider all
public histories ¢, such that O, (¢;) is in the v-neighborhood of r (also, de-
note that neighborhood as B,(r) and the (2v)-neighborhood of r as B,,(r)).
We know that for k > K, the probability of such a history is greater than (.

We also know (by construction in Step 4) that conditional on every such
history, the probability that the true state w is in 77, is greater than p. Thus, with
probability greater than {p, the history ¢/ observed by player i up to period k
is such that he knows that w € m, and Qy(¢}) € B,(r). Let us call this set of
histories A;.

Note that

(8) Ep[%(¢1)19, € Ai] = Ep[ X (@ € m,) and (Qx(¢x) € B,(1)]

>Xp— T,

where the inequality follows by construction from Step 4: for every r' €
B,(r) C B,,(r), we have E. [X|w € m,] > x;, — 7, and thus E3[X|(w € 7,) and
(Ok(@r) =) =E [X|w € 7] > x, — 7, which in turn implies Ez[X|(w €
my) and (Qx (¢r) € B, ()] > x, — 7. A ‘
Let B be the subset of A, consisting of histories ¢; such that X(¢}) >
x, — 27. Since security X is bounded, the inequality in (8) implies that, for
some ¢ > 0, for any sufficiently large k, P(Bi|Ax) > £, and thus P(By) > {pé.

STEP 7: In this step, we use the bound on the losses of noise traders (which
is also a bound on the profits of any strategic trader) from Step 1 to show that
in the states identified above, a strategic trader cannot be buying or selling too
many units of the security, since otherwise either his immediate profits or his
subsequent continuation profits would violate the bound.

By the arguments in Step 1, the total expected continuation payoff of player

i after period ¢, is bounded by ¥,/ «/fk, and ¥, converges to 0 as k increases.
Let us show that this implies that, for any A > 0, conditional on event By, the

probability that player i buys more than A/ ﬁkH units of the security at time
t11 (i.e., more than A times the standard deviation of noise traders’ demand in
that period) must converge to 0 as #, goes to 1.

Indeed, suppose it does not, and instead has some limit point « > 0. Take a

large k for which the probability of player i buying more than A/ ﬁkH units
conditional on B; exceeds «/2. Let C, be the subset of histories in B, following
which player i buys more than A/ ﬁk+1 units. Since P(Cy|By) > «/2, we have

P(Cy) > {péaj2.
Let us place a lower bound on the unconditional expected continuation pay-
off of player i following period k.
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Since sequence Q. converges, for any ¢ > 0, for any sufficiently large &, the
unconditional probability that ||Q;,; — Ol > v is less than &. Hence, the prob-
ability that ¢} € C; and then Q. is inside the (2v)-neighborhood of r (B, (r))
is at least {péa/2 — &, which, by choosing any sufficiently small ¢ (i.e., any
sufficiently large k), can be made arbitrarily close to {péa/2. Take any é > 0,
and let D, (8) denote the subset of C; consisting of histories ¢} for which the
probability of O, being in B,,(r), following &, is at least 1 — §.

Note that for any 8, as k goes to infinity, conditional probability P(D(8)|Cr)
converges to 1, and thus for any 8, for any sufficiently large k, P(Dy(8)) is
greater than or close to {péa/2. Also, since the value of security X is bounded,
we can pick such 8, that knowing that the probability of Oy, € B,,(r) is greater
than 1— 8, guarantees that the expected price in period k + 1 is at most x, + 27
(since Qi1 € By, (r) implies y,; < x, + 7). Combining all of the above, we
find that for any sufficiently large k, following every history ¢} € Dy (8,), the

expected continuation profit of player i is at least A /ﬁk+l((xb —27) — (x, +

k+1 . . . . . .
27)) = TA/V/2 ’ , and since following any history his expected continuation
profit is nonnegative, his unconditional expected continuation profit following

any sufficiently large period k is greater than or close to ({péa/2)-(7A/ «/Ekﬂ).

. . . . . k
Since ¥, converges to 0 as k increases, this expression is greater than ¥, /v/2
for any sufficiently large k, contradicting prior assumptions.

Showing that the probability that player i sells more than A/ «/§k+1 units
of the security at time #,,; must converge to 0 as #, goes to 1 follows a re-
lated logic: If this probability does not converge to zero, then, for a sufficiently
large k, the expected losses incurred by player i from these large sales are of

the order 2(1/ «/Ek) and cannot be offset by any subsequent continuation prof-

its after period #,,, which by Step 1 must be of the order o(1/ ﬁk). Thus, such
a strategy would result in negative expected continuation payoffs, which cannot
happen in equilibrium.

STEP 8: In this step, we prove an auxiliary lemma that implies, roughly, that
by changing his demand by a number of shares (at most) proportional to the
standard deviation of noise traders’ demand, a strategic trader does not move
the beliefs of market makers (and thus prices) too much.

LEMMA 2: Forany A >0,y >0, o > 0, there exists 6 > 0 such that, for any
z € [—A, A] and any measurable set S C R whose probability under N (0, o) is
less than or equal to 8, the probability of set (S — o z) under N (0, o) is less than
or equal to vy, that is, knowing that the probability of set S is at most 6 guarantees
that the probability of the “shifted” set (S — oz) is at most .

PROOF: By rescaling, it is enough to prove the lemma for o = 1. Let ®(-)
denote the c.d.f. of N(0, 1) and, without loss of generality, assume that y < 1.
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Let u be the solution of the equation ®(u — A) =1— 2. Let §, = %e‘”z/z. For
the rest of the proof, “the probability of a set” refers to its probability under
N (0, 1) and, slightly abusing notation, is denoted “®.”

Take any set S whose probability is less than or equal to 8,. Take any z €
[—A, A]. Then

DS —2)=P((S—2)N[-u+ A,u— A
+®((S—2)N ((—00, —u+ A)U (u— A, 0))).

By the choice of u, for the second term of this sum we have ®((S — z) N
(=00, —u+ A)U(u— A,00))) <P((—o0, —u+ A)U(u— A,00)) = 1.

Also, (S N [—u, u]) < P(S) < §;. The density of the normal distribution
is at least \/%e‘“z/z everywhere on [—u, u], and so the Lebesgue measure of
S N [—u, u] is at most szﬁ Hence, the Lebesgue measure of ((S —z) N
[Fu+A,u—AD)Cc(S—2)N[-u—z,u—z]) = (SN [—u,u]) — z) is also

at most ——2——. But then, since the density of the normal distribution is at
(1/V2m)e=1/2

most J% everywhere, the probability of (S — z) N [—u + A, u — A] under the
normal distribution is at most

1 80 _ 80 _ z
NI e o2 2"
N2

Therefore, &S — 2) =P S —2)N[-u+ A,u — A]) + (S — 2) N
((=00, —u+ A)U (u— A,00))) < 7 + 7 =7, and we can set § = §, to fin-
ish the proof. Q.E.D.

STEP 9: This step concludes the proof by using Lemma 2 to show that, by
trading an amount proportional to the standard deviation of noise traders’ de-
mand, a strategic trader can take advantage of mispricings identified in earlier
steps and make expected profits that exceed the bound established in Step 1.

Take any A > 0. Take a small ¢ > 0 and a large & (how small ¢ should be and
how large k should be will be clear later in the step).

Recall from Step 6 that Ay is the set of histories ¢} such that Oy (¢}) € B,(r)
and o € m,, and B, is the subset of A, consisting of histories ¢} such that
X(¢4) > x;, — 27. Also recall that for any sufficiently large &, P(By) > {pé > 0.

Let G, be the set of histories in B, following which player i buys or sells

at most A/ «/§k+1 units of the security in period k£ + 1. By Step 7, as k — oo,
P(GO)/P(By) — 1.

Take any 6 > 0 and let H,;(6) be the set of histories in G, following which
the probability that O, is in B,,(r) is at least 1 — 6. By the same argument
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as for sets D, (8) and C, in Step 7, we know that, for any 6 > 0, as k — oo,
P(H(8))/P(Gr) — 1. _

Fix some small 6 > 0 and a large k, and take some history ¢; € H; (). Sup-
pose, following this history, in period k + 1, player i buys A/ «/Ekﬂ units of the
security (recall that ¢! includes player i’s randomization in period k + 1, and
thus uniquely determines his action in that period). Let F denote the distribu-
tion of the sum of other strategic traders’ demands in period k£ + 1 following
history ¢} (denote it by d, '), and recall that the distribution of noise traders’
demands (u;) is independent of all prior history and is given by N (0, 1/2¢+1).
Let Z denote the realizations of d;" after which the probability of Oy, being
outside B,,(r) is greater than /8. Clearly, the probability of Z under F is less
than +/8 (otherwise the probability of Q. being outside of B,,(r) following
¢! would exceed /8 - /8 = 8). Following the remaining realizations, —Z, with
probability at least 1 — NE) Q1 will be inside B,,(r) (and thus price y;,; will
be within 7 of x,).

Consider the following deviation by player i following history ¢ € H,(d)

chosen above: instead of buying A/ \kaH units, buy A/ \/EkJrl units. Let us see
how that impacts price y;.;. With probability at most +/8, the realization of d; "
is in Z, in which case what we know about the price is that its absolute value is
always at most max,, | X (w)|. With probability at least 1 — /8, the realization
of d;" is in —Z. Fix any such realization d*. Let U be the set of realizations of
noise traders’ demands such that, added to A/ ﬁkH + d*, they result in Q4
being in B,,(r). By construction, the probability of &/ under the normal distri-
bution N (0, 1/2¢+) is at least 1 — /8. Now, let i/ =U — ()\/x/ikﬂ — A/«/§k+1).
Note that U/’ is exactly the set of realizations of noise traders’ demands such
that, added to the A/ ﬁkH + d*, they result in O, being in B,,(r). And by
Lemma 2, for any vy > 0, by choosing +/6 (and thus &) appropriately small, we
can ensure that the probability of /' under N (0, 1/2¢*!) is at least 1 — . Thus,
under the alternative strategy, for this realization d,' € —Z, with probability
1 — v, price y;,; will be less than x, + 7.

Thus, following any history ¢} € H;(8), the expected profit from the alter-
native strategy in period k + 1 is at least

k+1

%((xb —27) — V/Emax| X ()|

— (1= VB (=@ + )+ ymax| X ()] )),

which for a sufficiently small 6 (and thus v) is greater than

AT

2k+l :

A
F((xb —27) = (x,+27)) =
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Recall also tllat for any &, limy_. oo P(H,(8))/P(By) =1 and fo_r any suffi-
ciently large k, P(By) > {p¢& > 0. Thus, for any sufficiently large k, P(H(8)) >
{p&/2, and the unconditional expected continuation profit of trader i follow-

ing period k must be greater than ({p&/2) - (A7/ \/Ekﬂ) (because a feasible
strategy for trader i is to not trade in any period later than k + 1, and in pe-

riod k + 1 only trade following histories in H, (8), buying A/ ﬁkH units). This

is greater than £/+/2 for a sufficiently small £, contradicting the assumption
that the original strategy was optimal for trader i.

APPENDIX B: PROOFS OF RESULTS IN SECTION 4
B.1. Proof of Theorem 2

Recall that strategy S;. of player i at time #, assigns a probability to each
of the 2M, + 1 possible actions as a function of element = € II; observed by
the player at time #, demands d!, ..., d. | he has previously submitted, and
aggregate market demands vy, ..., v,_; observed in prior periods. Other than
the aggregate market demands, all other values above come from finite sets.
The proof will proceed by embedding the set of possible profiles of strategies
into an appropriate topological vector space, considering the best response
correspondence, and showing that all the conditions of a generalization of the
Kakutani fixed point theorem are satisfied.

We first introduce some notation. Take any m and let F™ denote the set of
bounded functions f:Z™ — R. For any function f € F™, define its norm || f||
as

1
Ifl= > @l

X=(X1,..c, Xy )EZM

Define distance between functions and the corresponding topology accord-
ingly.

For every period k, player i, index j (denoting one of 2M + 1 possible ac-
tions of player i in period k), element 7 € II;, and possible prior demands
di,....,d, ,, let Hyijmai, ai | = F*1. Let H be the Cartesian product of
H, jomdidi for all possible combinations of indices. Note that this Carte-

sian product is finite. For any 4 € H, define its norm ||%| as the sum of the
norms of all its individual elements, and define the induced distance and topol-
ogy accordingly. Note that H is thus a normed vector space, and is therefore
Hausdorff and locally convex (these properties will be used later in the proof,
to invoke the appropriate fixed point theorem). Note also that set = of pos-
sible strategy profiles is a nonempty, compact, and convex subset of space H:
it is the set of profiles S € H such that, for any k, i, j, m, and di,...,d} ,,
element Sy;(m,di,...,d, ;) is a nonnegative function, and, for any k, i, ,
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and di,...,d,_,, the sum Z?f{‘“ Ski(m, di,...,d;_,) is a constant function
equal to 1 everywhere. The compactness of set S follows from the facts that any
uniformly bounded infinite sequence of functions f™” € F™ has a subsequence
converging pointwise to some limit function f*, and that under the topology
induced by the norm above, pointwise convergence of such a sequence of func-
tions implies convergence in that topology.

Now, take any strategy profile S = (Si,...,S5,). We say that strategy Z; of
trader i is a best response to S if in every continuation game, after every pos-
sible history (including the ones where trader i has played actions inconsistent
with §), for any other strategy Z; of trader i, the expected payoff from playing
Z; is at least as high as that from playing Z!, provided that prices are updated
using pricing rule Y corresponding to S and other traders follow their strate-
gies prescribed by S. Let BR;(S) be the set of best responses of trader i to
strategy profile S and let BR(S) = BR; x --- x BR,. We need to show that
there exists strategy profile S such that S € BR(S).

The existence of a fixed point S of mapping BR follows from a generaliza-
tion of the Kakutani fixed point theorem to locally convex Hausdorff spaces
(Glicksberg (1952)). To use the theorem, we need to show that BR has a closed
graph and that, for any §, set BR(S) is convex and non-empty.

Take any trader #, any period k, any history /& observed by trader i up to k
(i.e., his own demands and aggregate market demands prior to period k), any
strategy profile S, and any strategy Z; of trader i. Let W(i, k, h, Z;, S) denote
the expected continuation profit of trader i, starting with period &, following
history 4, when he plays according to strategy Z;, other strategic traders play
according to their strategies in S, and the pricing rule is consistent with S.
Note that function W is continuous in both Z; and S. This, together with the
compactness of set =, implies that for any S, BR(S) is non-empty and that the
graph of BR is closed.

To see that for any S € &, set BR(S) is convex, let Z', Z” € BR(S) and let
Zi=aZ + (1 —a)Z"; for some a € (0,1). Let us show that Z; is a best re-
sponse to S after any history. The proof is by induction, going from the last
period forward. Let k = K, and take any history up to k. Following that his-
tory, any action taken with positive probability under either Z’' or Z” has to
result in the same expected payoff, and so after any history, the expected con-
tinuation payoff from Z’, Z”, and Z has to be the same. Suppose we have
shown that after any history up to period k = k' + 1, expected continuation
payoffs under Z’, Z”, and Z are the same. Take any history % up to period
k = k'. By assumption, the continuation payoffs under Z’ and Z” are the same
(and the best attainable). Suppose the continuation payoff under Z is less than
that. Consider “strategy” Z, under which, following history #, trader i plays
according to Z’ with probability @ and plays according to Z” with probability
1 — « (this is not a strategy according to our definition, but we can still compute
expected payoffs under that behavior rule). Clearly, the expected continuation

payoff from Zis equal to that from Z’ and Z”. Moreover, after any history in
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period k + 1, the expected continuation payoff from Zis equal to that from Z’
and Z”, and thus, by induction hypothesis, to that from Z. But in period &, the

probability distributions of actions of trader i under Z and Z are identical, and
thus the expected payoff in period k£ under the two strategies is also the same.
Therefore, the continuation payoff following history 4 under strategy Z is the

same as under Z , which in turn is equal to that under Z’ and Z”, and therefore
Z is also a best response.

Thus, all the conditions of the fixed point theorem are satisfied, and mapping
BR(S) has a fixed point S*.

B.2. Proof of Theorem 3

Consider sequence Ik of games obtained from I"* by removing all trading
periods following period K. By Theorem 2, each of these games has an equilib-
rium, Sy. Consider sequence S. Take any period K’, and for K > K', let S¢ ;.
denote the sequence of strategy profiles Sy restricted to the first K’ periods.
By the compactness of the set of strategy profiles in game [k (in the corre-
sponding normed space Hy, as in the proof of Theorem 2), sequence Sy ;, has
a limit point for any K’. We can now construct equilibrium S$* of game I" as fol-
lows. Take the limit point of S ; (say, Z;), and take subsequence of equilibria
Seq, converging to it. In period 1, under S*, traders act according to Z;. Now,
consider the restriction of Seq, to the first two periods. In that subsequence,
strategies in the first period converge to Z;, by construction. Strategies in the
second period also have a limit point (call it Z,) and a subsequence Seq, of
Seq, converging to it. In period 2, under §*, let traders act according to Z,.
Proceeding analogously, we add Zs, Z4, etc., to $*, ending up with a profile of
strategies.

The fact that $* is an equilibrium follows from the facts that (i) game ">
is continuous at infinity (i.e., for any ¢ > 0, one can find K’ such that the pay-
offs of players are affected by their actions after period K’ by less than &),
and (ii) as in the proof of Theorem 2, “counterfactual” continuation payoffs
W (i, k,h, Z;,S) in any finite restriction of I" are continuous in strategies.

B.3. Proof of Theorem 4

The proof follows the same steps as the proof of Theorem 1 for I'*. More-
over, Steps 0 and 2-8 are unchanged, and only Steps 1 and 9 need to be slightly
adjusted, to address discretization, as described below.

STEP 1: Only the last equation in this step needs to be changed. In that equa-
tion, Var(u,) is now equal to V. ,/2¥ instead of 1/2¥, where V,, is the vari-
ance of the discretized normal distribution with mean 0, variance parameter
o?, and unit of discretization d. This difference, however, does not change the
conclusion (the last paragraph) of the step.
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STEP 9: This step needs two minor modifications. First, we cannot pick an
arbitrary A, so we pick a specific one: let A =d (i.e., the smallest allowed posi-
tive unit of discretization).

Second, in the paragraph on the original and “shifted” sets of realizations of
draws from the normal distribution (4 and /'), instead of being interpreted as
the actual realizations of noise traders’ demands (as in the proof of Theorem 1
for I'*) these sets should now be interpreted as sets of normal draws i, that
are subsequently rounded to determine the actual demands from noise traders.

APPENDIX C: PROOF OF THEOREM 5

STEP 0: Suppose that for some ¢ > 0, the statement is not true. Then one can
find an increasing sequence K,, and a corresponding sequence of equilibria
of games Ik, (S, Y), such that in these equilibria, for each m, E[|yx, —
X (w)|] > e. Consider this sequence.

STEP 1: In this step, we select a “well-behaved” subsequence from the above
sequence.

Pick any m and consider equilibrium (S?,, Y). Take any k < K,,. Define
residual variance 3(k,m) as the expected square of the difference between
price y, and the true value of the security, that is, 3(k, m) = E[(X (@) — y)?],
where the expectation is taken over all possible draws of the original state
and noise traders’ demands, as well as the (possibly) mixed strategy of the
strategic trader. By construction, y, is an unbiased estimator of X (w), and
so we have E[X (w)|y] = », E[X(w) — y|y] = 0, and hence E[X (w) —
vir] =0 and Cov(X (w) — yx, yx) = 0. Thus, Var(X (w)) = Var((X (w) — yx) +
yi) = Var(X (o) — yi) + Var(y) +2Cov(X (@) — yi, ye) = E[(X (0) — y)*1 +
Var(y,) = 3(k, m) + Var(y).

Let V) = 3( L%mj , m), that is, the residual variance after approximately half
of the trading has occurred. Sequence V! is bounded (by Var(X (w))), and so
it must have a converging subsequence. Consider any such subsequence, Seq,,
and let ! be the limit of I} along this subsequence.

Next, let 12 = 3( L%m] , m), that is, the residual variance after approximately
three quarters of the trading has occurred. Consider sequence V> for m re-
stricted to subsequence Seq,. It also must have a converging subsequence,
Seq,. Let 12 be the limit of }/? along this subsequence.

Proceeding analogously, we obtain subsequences Seq, and the correspond-
ing limits I’ for all / > 1. Now, let m, be the first element of subsequence Seq,,
m, > m, be the second element of subsequence Seq,, and so on. The resulting
subsequence m; has the property that, for every /, the limit of V! along this
subsequence is equal to /. Without loss of generality, to simplify the notation,
assume that this subsequence is the original sequence {1, 2, 3,...}.
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Note that by construction, for any /, V! > I'*! > (0.2 Thus, as  goes to infin-
ity, V! converges to some V> > 0.

STEP 2: In this step, we obtain an upper bound on the expected losses of
noise traders as time approaches the end of trading, for equilibria in the chosen
subsequence.

Take any m and k < K,,. Let ¥(k, m) denote the unconditional expected
total profit of noise traders arriving after period k, that is,

Km
1I’(k, m) = E[ Z (X(w) — yk’)uk’}-

k'=k+1

Since the strategic trader’s expected continuation payoff after any period k
is nonnegative (because he can always guarantee himself a payoff of zero by
simply not trading), and the expected continuation payoff of market makers is
zero (by assumption), the expected payoff of noise traders arriving after period
k cannot be positive, and so ¥'(k, m) < 0. In the remainder of this step, we will
obtain an upper bound on |V (k, m)|.

Since E[uy] = 0 and uy is independent of anything that happened be-
fore period k', we have E[X(w)up] = E[X (w)]E[ur] =0, Elyp_jup] =
E[yk’—l]E[uk’] =0, and thus E[(X (@) — y)uw] = E[(y—1 — ys)uw]. There-
ore,

K’”
Y(k,m)= E|: Z (V-1 — Yk’)uk/:|'
K'=k+1

Take any A and B such that 1 < A < B < K,, and consider E[Zf/:AH()’k/—l —
Vi )i ]. We have

B
E|: Z (Y1 _yk’)uk’:|
v

=A+1

B

Z E[(Yer-1 — yu )t ]

K'=A+1

B
< Z |E[(yer—1 — ye)uw]|

k'=A+1

2To see this, take any m > 1 and any k' and k” such that 1 < k' < k” < m. We have
Var(X (w)) = 3(k', m) + Var(yy) = 3(k”, m) + Var(y,), and since sequence y; is a martingale,
we also have Var(y) < Var(y). Thus, 3(k', m) > 3(k", m).
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= Z \/E [er = ye)?]E[(u)?]

=A+1

«/_ Z VE[ o1 — yi)?

k'=A+1

where the last inequality follows from the Cauchy-Schwarz inequality and the
last equality follows from the original assumption about the distribution of u, .
Now, each y; is equal to the expectation of X (w) based on the publicly avail-
able information up to period k, and thus changes in y, prior to period B are
uncorrelated with each other and with X (@) — yp. Thus, we have

E[(X(an—yA)z]=E[((X(w>—y3 Z (e = Vi 1)) }

=A+1

B

= E[(X(w) - J’B)z] + Z E[(yk’—l — Yk’)2]7

k'=A+1

and so

B

> E[w-1— ye)?] = 3(A, m) — 3(B, m).

k'=A+1

Since square root is a concave function, Jensen’s inequality implies that

B
> VEIQw1 — )7

K'=A+1

Z E[(ye-1— y0)?] = (B— A)

=A+1

B—-A

B
Y Bl — )’
< (B— A) kK'=A+1

B— A
=B — AJ3(A, m) — 3(B, m).

We can now obtain a bound on |¥(k, m)|. Pick any ¢ > 0. Recall the se-
quence V! constructed in Step 1. It decreases monotonically and converges
to 17*°. Take the smallest a such that 1V — '™ < (¢/4)*. Take the smallest
b > a such that ;,, V't < (¢/4)? (such b exists because sequence V' is bounded).
Now, for any large m (e.g., such that K,, > 2°*1), let k(¢p, m) be the largest k
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such that = <1 — 5 and let g(¢, m) be the largest g such that £ <1— 5.2
Then we have

W (k(@, m), m)|

Km
E|: Z (Yk’l_yk’)uk’:|

K'=k(g,m)+1

Km
< \/OI-{—m B Z E[(ye-1 — y)?]

8(@,m)
( Z E[ (V-1 — y)?]

K'=k(gm)+1
K"l
+ Z E[(yi—1 — ye)?
k'=g(@,m)+1

F(Jg(¢,m) k(. m)y/ S(k(g, m),m) — X(g(¢, m), m)

+ VKo = 8o (g(pum).m) = (K m)

K — k(g
a(@\mk(cp, m), m) — 3(g(¢, m), m)
+\/@ Z(g(so,m),m))-

From earlier arguments, and by construction, we know that as m goes to infin-
1ty,
(i) F2=de converges to 3; and £2=£9 converges to

(i) 3(g(p, m), m) converges to Vb, and

(iii) X(k(@, m), m) — 3(g(p, m), m) converges to V* — V? which is less
than or equal to V* — I*°.
Moreover, a and b were chosen in such a way that V* — 1> < (£)* and V"’ 5; % <
(£)?5;. Combining all of the above, we find that for any & > 1, for a sufficiently

2b ’

BThat is, k(z;m”’) ~1- % and g“‘ " ~1— %, and so 3(k(¢,m),m) ~ V* and 3(g(e, m),
m) =~ Vb,
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1e 1o
<o 55+ (35).

and so, in particular, by setting £ = 2 we find that, for a sufficiently large m,

1
|lI/(k((p, m), m)| < goa'\/;.

To interpret this bound, recall that "‘;;;m’") is, by construction, approximately

equal to 1 — 5;, and that a was chosen only based on ¢. Thus, this bound tells

us that for any arbitrarily small but positive ¢, there exists time 1 =1 — 5 <1
such that the expected loss of noise traders in the continuation of the game
from period ¢ until the end of trading is less than ¢ o+/1 — ¢, for any sufficiently
large m.

large m,

STEP 3: In this step, we identify potential arbitrage opportunities.

Pick any m and consider the corresponding K,, and (S}, Y). Also, take
any k < K,,. By assumption, E[|yx, — X (w)|] > &, which implies E[(yk, —
X (@0))’1= (Ellyk, — X (0)|])* > &

This, in turn, implies that for any k < K,,,, E[(yx — X (®))?] > &%

Let Q(k, m) be the random variable (with values in the [{2|-dimensional
unit simplex) denoting the beliefs of a market maker (or any other outside ob-
server) about the true state w, after period k in game Ik, under equilibrium
(S5 V3.

By the law of iterated expectations, we can rewrite the last inequality as

Eguem[E[ (3 — X (0))’10k, m)]] = &,

which, together with the fact that y, = E[X (w)|Q(k, m)], in turn implies that
for some &; > 0, depending only on the primitives of the model and on the
chosen ¢, but not on k or m, with probability at least &;, the realization of
Q(k, m) is such that

Var(X(w)IQ(k, m)) > g.

Let us call such realizations of Q(k, m) “arbitrageable.”

Next, since set {2 is finite, we can find 6 > 0 such that, for any arbitrageable
realization g, we can find two states, w; and w,, such that the probability of
each of them under ¢ is greater than 8 and also | X (@) — X (w;)| > 6.

*To see this, take any & < 1/|{2| and any arbitrageable realization q. Take any state wg
such that g(wg) > 1/|2| > 8. We have Var(X(w)|q) <Y .0 q(0)( X (o) — X (wy))?. If for
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Crucially, &, and 6 depend only on the £ chosen in Step 0 and on the primi-
tives of the model, but not on m and k.

STEP 4: In this step, we show how the strategic trader can take advantage of
the potential arbitrage opportunities identified in the previous step. More for-
mally, we obtain a lower bound on the expected profits of the strategic trader
following such opportunities.

Take any m, k < K,,, any arbitrageable realization Q(k, m), and the states
of nature w; and w, identified in Step 3. Consider any public history /A,
(i.e., a sequence of aggregate demands vy, v, ..., v;) leading to this realiza-
tion. Consider a counterfactual trading policy for the strategic trader following
this history: he completely stops trading. Denote by y(0) the expectation of
ﬁ Z,’f’i w1 Vi (i-e., the expected average market price of the security after
period k) under that policy following history 4,. Clearly, at least one of X (w;)
or X (w,) differs from y(0) by at least g; assume for concreteness that it is
X (w1). Also, note that conditioning on the true state of the world does not
change the expectation of the average future price, since under this counter-
factual (non)trading policy, the true state has no influence on the future evo-
lution of prices. Without loss of generality, assume that X (w;) —y(0) > g (the
case when X (w;) — y(0) < —2 is completely symmetric: instead of buying the
security, as below, the trader would sell it).

Consider now the following continuation trading strategy for the strategic
trader after history 4. If the true state of the world is not w;, do not trade. If
the true state of the world is w4, buy cA units of security in every period, where
¢ is a constant to be determined below and A = —Z——. Note thatif c =1,

A/ Km(Km—k)

then over the K,, — k trading periods remaining after history 4, the trader

Kn—k
Km

deviation of the total demand from noise traders over that period.

We now need to carefully choose the constant c. Let y(vii1, Vii2, - - -5 Uk,,)
be the average price of the security during periods k£ + 1 through K,, when the
public history of total demands is %y, Vi1, - . ., Uk, . By definition,

will end up buying a total of o units, which is equal to one standard

y(o) = / 7(uk+1’ uk+2’ ey uKm )f(ﬁ) dﬁ’
RKm—k
where

K Km—k
m 2) o~ Km/ Q)L+ +ug )

F@= ({3

every ', we have g(w') < 6 or |[X (') — X(wo)| < 8, then this expression is less than
|2]8(2max,, {X (w)})? + |£2|82, which is smaller than &, for a sufficiently small §.
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is the density of the multivariate normal distribution of noise traders’ demands
in periods k + 1 and later.

Now, let y(z) denote the expected average price of the security following
history A, when the strategic trader buys z units in every period k&’ > k. We
have

y(Z):/ Y(Ukﬂ‘f‘z, Mk+2+Z,...,MKm+Z)
RKm—k

K K=k 2 2 2
« ( 5 m2> o~ Km/ QoW etk ) g
mTo

We will now pick ¢ € (0, 1), independent of k and m, in such a way that
[y(cA)—y(0)] is small. Let y* = max,o{| X (w)|}. Clearly, |y()| is never greater
than y*. Also, let M > 0 be such that the probability that the absolute value of
a random variable drawn from the standard normal distribution (with mean 0
and variance 1) is greater than M is equal to ; ;7 Both y* and M are indepen-
dent of k and m.

Consider |[y(cA) — y(0)|. We have

[F(cd) — 3(0)| = ‘ / Y+ A f (@) dit — / Y f (@) di
RKm—k R

Km—k

b

/ Y(ﬁ)f(ﬁ—CA)dﬁ—/ y(u)f(u)du
RKm—k RKm—k

where the second equality is obtained by the change of variables under the first
integral.
We will now break up the last expression into several parts. Let 1] be the

subset of R¥»~* in which | Zf,’ikﬂ uy| <M+ 1o Kl'g—;k and let V, = RKn—k\
Vi. Then,

[¥(cd) —3(0)| <

/ y(@)(f (& —cA) — f(a)) da
"

_l’_

[ s ead
V2

+

/ y(@) f(u)du
V2

Since for any u € V3, |y(u)| < v* and (because ¢ < 1 and (K,, — k)A =
o /Kz—;k) both |Y ux| and | Y (ur — cA)| are greater than Mo, /%X==k and

K'ﬂ
also because ) uy is distributed normally with mean zero and standard devi-

K

ation o,/ ;g‘k , by the choice of M we know that each of the last two terms is
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bounded by y* -2~ and thus we have

167+

¥(cA) —3(0)| <

/ y(@)(f (i —cA) — f(w)) du| + 3
"

Now,

/ y(@) (f (@t = cd) - f(@)) dit
14

—1’f( )du.

[ 4]t
161

f(i—cA) e Km/Qo)(uysr—cdP 4 t(ug, —cd))

f (u )
Next,

F@) e, e,

— o Km/ QNS (g —cdP =3, ))

— o Kn/QIN(Km—k)?A=2cA T uyr)

fu—c4),

Since i € V;, we can place a bound on In O

‘ f(u—cA)

2 A2 K, —k
f( ) _2 2((K — k)" A"+ 2cAM + 1) o I )

m

Bl erimn)
=202\ Niaresys)

o K, —k
-I-ZC(—iKm(Km_k))(M—l—l)O' K. )
2
= 2] +c(M +1).

Crucially, this bound does not depend on m or k, and so we can pick constant
¢ > 0 such that In £ T <2 is arbitrarily close to 0. Hence, e <2 — 1 can also be
made arbitrarily close to zero for an appropriate choice of ¢ > 0; in particular,

its absolute value can be made less than . Choose such c. Then

5

0|
-lklc/;

[F(cd) — 3(0)] < / —f(u)du+
12

Since by construction, X (w;) —y(0) > > ,we have X (w,) —y(cA) > 2. Thus,
following public history 4,, when the true state of nature is w;, by buylng cA
units in each period k +1, ..., K,,, the strategic trader can obtain the expected
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profit of

(X (1) = ¥(cA)) (K, — k)cA > §co- Ko k.
4 K,

By construction, conditional on having an arbitrageable realization of
Q(k, m), with probability at least 6 > 0, the true state of the world is such
that the strategic trader can obtain this profit. The probability of having an
arbitrageable realization (for any k and m) is at least &;. Finally, in all other
cases, the continuation value of the strategic trader is nonnegative. Combin-
ing these facts, we find that for A = £,62¢ > 0, for any k and m, the expected
continuation value of the strategic trader in equilibrium (S}, Y};) of game Ik,

following period  is at least Ao, /1 — .

m

Combined with the fact that the expected continuation profit of market mak-
ers following any period k is zero, this bound contradicts the finding in Step 2
that, for any ¢ > 0, for a sufficiently large m, the expected loss of noise traders

following period k(¢, m) ~ K,,(1 — 5) is less than <pa\/21a.

APPENDIX D: PROOFS OF RESULTS IN SECTION 6
D.1. Proof of Theorem 7

The “if” direction of the theorem is, in essence, proved in Proposition 3 of
DeMarzo and Skiadas (1999) using the following “adding-up” argument, which
also clarifies the intuition behind the condition. Suppose X is non-separable
and take P and v satisfying the requirements of non-separability. Take func-
tions A; as in the statement of the theorem. Consider the unconditional expec-
tation E[(X (w) — v) ) _; A;(I];(w))] under P. On one hand, by the choice of
functions A;, the expectation is strictly positive. On the other hand,

E[(X(w) —v) Z )\,«(Hi(w))] = ZE[(X(w) — )\ (I1i())]

=Y > P(mM(mE[X (w) —v|7]

i well;
-0,
where the last equality follows from requirement (ii) of Definition 2.

The “only if” direction follows from Proposition 4 of DeMarzo and Skiadas
(1999), but also has the following short self-contained proof.> Suppose security

2] am grateful to Yury Makarychev for this proof.
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X is separable. Take any v € R. Ignore all states w with X (w) =v and let 4 =
1, ..., H denote the remaining states. Let m =1, ..., M denote the elements
ar of all players’ partitions; if the same element 7 belongs to partitions of two
(or more) players, it should be indexed correspondingly many times.

Construct an M x H matrix A as follows. If state / belongs to element m of
players’ partitions, then the entry in row m and column / of the matrix is equal
to X (h) — v. Otherwise, it is equal to zero.

By Gordan’s transposition theorem,” exactly one of the following two sys-
tems of equations and inequalities has a solution:

1. Ax=0,x>0,x#0 (where x € R);

2. A"y > 0 (where y € RM).

Note that if system (1) has a solution, then the security is non-separable.
(Take solution x of system (1); rescale it so that its elements sum to 1; and
use these rescaled probabilities as the common prior P.) Hence, if security
X is separable, system (1) does not have a solution, which in turn implies that
system (2) does. Take any solution y, and for every player i and element m € I1;,
let A;(m) = y,,. Then for any o € (2 such that X (w) # v, we have (X (w) —
v) Zi Aillli(w)) > 0.

D.2. Proof of Corollary 1

Let xj,(w) denote the jth lowest of the n numbers (x;(Il;(w)))—1,. .. Take
any v € R. For every i and w, set A;(Il;(w)) equal to 1 if x;(II;(w)) > v and

to —’}j{;; if x,(II(w)) < v. Then X (0) > v & xj(@) >v= >, AI[(w)) >

Ln=j+ ) ==5-(-D=m—-j+ D0~ 45 >0and X(0) <ve&
X (j)(w) <U=>Z,-/\i(ni(w))§1'(n—j)—%J;'j<(n—j)—(n—j+1) <0.
Thus, X (w) #v= (X (w) —v) >, A;(II;(w)) > 0, and since the initial choice
of v was arbitrary, by Theorem 7 security X is separable.

D.3. Proof of Corollary 2

Assume that function f is increasing (the proof for the opposite case is
analogous) and continuous and unbounded (since security X takes only a
finite number of values, this is w.l.0.g.). Take any v € R. Take any z such
that f(z) = v. Setting A;(Il;(w)) = x;(Il;(w)) — % for every player i and
state w, we get X (0) # v = (X(0) —v) X, k(L)) = (F(2, x:(1(0)))
f(2) - O x(II;(w)) — z) > 0 (the inequality is strict, because X (w) =
fO, xi(Ili(w))) # v = f(z) implies ), x;(II;(w)) # z). Since the initial
choice of v was arbitrary, Theorem 7 implies that security X is separable.

%http://eom.springer.de/m/m130240.htm.
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