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Abstract

This paper studies matching in vertical networks, generalizing the theory of matching in two-

sided markets. It gives sufficient conditions for the existence of stable networks and presents

an algorithm for finding two of them. One is the best stable network for the agents on the

“upstream” end of an industry. The other is best for the agents on the “downstream” end. The

paper describes several properties of the set of stable networks and discusses applications of

the theory to the design of matching markets with more than two types of agents and to the

empirical analysis of supply chains. (JEL C78, D40)
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The woollen coat, for example, which covers the day-labourer, as coarse and rough as

it may appear, is the produce of the joint labour of a great multitude of workmen. The

shepherd, the sorter of the wool, the wool-comber or carder, the dyer, the scribbler,

the spinner, the weaver, the fuller, the dresser, with many others, must all join their

different arts in order to complete even this homely production.

Adam Smith (1776)

Following the work of David Gale and Lloyd S. Shapley (1962), matching in two-sided markets

has been an active area of research in economics. It produced a number of successful practical

applications as well as a variety of important theoretical results on the structure of matching

markets and the close links between matching and other areas of economics, such as auction theory

and competitive equilibrium theory. This stream of research focuses on markets with two sides:

e.g., the marriage market between men and women, the admissions market between colleges and

students, or the labor market between firms and workers. Such a market is typically viewed in

isolation and interactions with other markets are ignored.

In many situations, however, markets can be closely interconnected, and an agent’s behavior in

one of them may be directly linked to his behavior and options in another. The preferences of a

consulting firm hiring college graduates depend on the number and types of its clients. The menu

that a restaurant offers to its customers depends on the availability and prices of inputs from its

suppliers. The amount of iron ore that a steel manufacturer wants to buy depends on the amount

of steel it plans to sell.

Interconnected markets can often be handled by the standard competitive equilibrium approach.

That approach, however, is ill-suited for incorporating the discreteness and the high degree of

heterogeneity of qualities, preferences, and contracts inherent in many settings. For example, on a

macro level, we can talk about the average wage of management consultants and derive predictions

about its movements in response to various shocks in the economy. Once, however, we look at that

labor market more closely, it becomes clear that contracts are unique and personalized, assigning

a specific worker to a specific firm, location, and position at a specific wage. These features are

easier to incorporate in a matching framework. The same is true about the restaurant market, the

markets for iron ore and steel, and other differentiated markets. Section V talks about several such

markets in more detail.
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This paper generalizes the results and techniques of two-sided matching literature to a particular

kind of setting with interconnected markets: supply chain networks. The basic structure of this

setting is as follows. An industry includes a number of agents: workers, producers, distributors,

retailers, and so on. Some agents supply basic inputs for the industry and do not consume any

of the outputs (e.g., wheat farmers are the suppliers of basic inputs in a “farmer → miller →

baker → retailer” supply chain). Some agents purchase the final outputs of the industry (e.g., car

manufacturers are the consumers of final goods in an “iron ore supplier → steel producer → steel

consumer” supply chain). The rest are intermediaries, who get their inputs from some agents in

the industry, convert them into outputs at a cost, and sell the outputs to some other agents (e.g.,

millers, bakers, and steel producers are intermediate agents in the above examples).

A key assumption in the two-sided matching literature is that the side to which a particular

agent belongs does not depend on market conditions: a man cannot become a woman and a

student cannot become a college. Likewise, I assume that the positions of agents in a supply chain

are exogenously fixed. Specifically, there is a pre-determined upstream-downstream partial ordering

on the set of agents: for a pair of agents A and B, either A is a potential direct or indirect supplier

for B, or B is a potential direct or indirect supplier for A, but not both; it may also be the case

that neither is a potential supplier for the other. This ordering can be very simple, with several

“tiers” of firms, each of whom buys its inputs from firms in the previous tier and sells its outputs

to firms in the next tier. It can also be more complicated, with several alternative technologies,

several paths of different lengths connecting the suppliers of basic inputs to the consumers of final

outputs, and with firms being able to trade both directly and through intermediaries. However,

it cannot have cycles: an agent cannot be a direct or an indirect supplier for one of its upstream

nodes. Note that if there are no intermediate agents, this setting reduces to a two-sided market.

Agents can trade discrete quantities of goods, with the smallest tradeable quantity (the unit

of quantity) defined ex ante. For example, one unit may correspond to one million tons of steel,

one hour of work, or one loaf of bread. In the Gale-Shapley two-sided marriage market, one unit

corresponds to marriage, and each person can “trade” at most one unit. Following the literature on

two-sided matching with wages and endogenous job characteristics (Vincent P. Crawford and Elsie

M. Knoer, 1981; Alexander S. Kelso and Crawford, 1982; Alvin E. Roth, 1984; John W. Hatfield

and Paul Milgrom, 2005), units traded in the market are represented by contracts. In my setting,

each contract specifies the buyer, the seller, the price (if monetary transfers are involved), and

3



the serial number of the traded unit (if multiple units can be traded). A network is a set of

contracts: it specifies who sells what to whom and at what price. Each agent has preferences

over sets of contracts involving it: e.g., an intermediate agent’s payoff from such a set depends

on the payments it makes for its inputs (specified in its upstream contracts) and receives for its

outputs (specified in its downstream contracts), as well as on the cost of converting the inputs into

the outputs. For a consumer of final goods, the payoff depends on the utility from the goods it

purchases and the payments it makes for these goods.

I say that a network is chain stable if there is no upstream-downstream sequence of agents (not

necessarily going all the way to the suppliers of basic inputs and the consumers of final outputs) who

could become better off by forming new contracts among themselves and possibly dropping some

of their current contracts. This condition is parallel to pairwise stability in two-sided markets,

and is tautologically equivalent to it if there are no intermediate agents in the industry. Note

that the concept of stability in networks is not strategic—I do not study the dynamics of network

formation or “what-if” scenarios analyzed by agents who may be considering temporarily dropping

or adding contracts in the hopes of affecting the entire network in a way beneficial to them, although

these considerations are undoubtedly important in many settings. The concept is closer in spirit

to general equilibrium models, where agents perceive conditions surrounding them as given, and

optimize given those conditions. Under chain stability, agents also perceive conditions surrounding

them as given (i.e., which other agents are willing to form contracts with them, and what those

contracts are), and optimize given these conditions.

Without restrictions on preferences, the set of stable matchings may be empty even in the two-

sided one-to-many setting. A commonly used restriction that is sufficient to guarantee the existence

of stable matchings in that setting is the gross substitutes condition of Kelso and Crawford (1982).

In the supply chain setting, I place an analogous pair of restrictions on preferences; these restrictions

become tautologically equivalent to the substitutes condition if there are no intermediate agents in

the industry. The restrictions are same-side substitutability and cross-side complementarity.

Same-side substitutability is a direct generalization of the gross substitutes condition. It says

that when the set of available downstream contracts of a firm expands (i.e., there are more poten-

tial customers, or the potential customers’ willingness to pay goes up), while the set of available

upstream contracts remains unchanged, the set of downstream contracts that the firm rejects also

(weakly) expands. Symmetrically, when the set of available upstream contracts expands and the
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set of available downstream contracts remains unchanged, the set of rejected upstream contracts

also expands.

Cross-side complementarity is a new restriction, which specifies how a firm’s purchasing and

selling decisions are interrelated and thus links the markets along the supply chain. This restriction

can be viewed as a mirror image of same-side substitutability. It says that when the set of available

downstream contracts of a firm expands, while the set of available upstream contracts remains

unchanged, the set of upstream contracts that the firm forms also weakly expands. Symmetrically,

when the set of available upstream contracts expands and the set of available downstream contracts

remains unchanged, the set of downstream contracts that the firm forms also weakly expands.

The restrictions of same-side substitutability and cross-side complementarity are natural and

flexible; however, there are several important types of preferences and production technologies that

they rule out. I discuss these restrictions in more detail in Section I.A.

The main result of the paper states that under same-side substitutability and cross-side com-

plementarity, there exists at least one chain-stable network. The proof is constructive: it presents

an algorithm for finding such a network. This algorithm is a generalization of the fixed-point algo-

rithms of Hiroyuki Adachi (2000), Federico Echenique and Jorge Oviedo (2004, 2006), and Hatfield

and Milgrom (2005), which are in turn generalizations of the Deferred Acceptance Algorithm of

Gale and Shapley (1962) and the Salary Adjustment Process of Crawford and Knoer (1981) and

are applicable only to two-sided markets.

The set of chain-stable networks has some interesting properties. The chain-stable network

formed in the constructive proof of the existence theorem is upstream-optimal: it is the most

preferred chain-stable network for all suppliers of basic inputs and the least preferred chain-stable

network for all consumers of final outputs. A slightly modified algorithm produces the downstream-

optimal chain-stable network. The existence of these side-optimal networks is a generalization of

the classic result in the theory of two-sided matching, which says that the Deferred Acceptance

Algorithm converges to the man-optimal stable matching (Gale and Shapley, 1962). Another

property of the set of stable matchings in two-sided markets is that adding agents on one side of

the market makes other agents on that side of the market weakly worse off and makes the agents on

the other side weakly better off, in the two side-optimal stable matchings (Kelso and Crawford, 1982;

Gale and Marilda Sotomayor, 1985). This result can also be extended to the supply chain setting:

Adding a new supplier of basic inputs to the industry makes other such suppliers weakly worse off
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and makes the consumers of final outputs weakly better off at both upstream- and downstream-

optimal chain-stable networks. Symmetrically, adding a new consumer of final outputs makes other

such consumers worse off and makes the suppliers of basic inputs better off.

These results are very different from the conclusions of several other papers that discuss gen-

eralizations and extensions of two-sided matching, but do not impose the supply chain structure

of this paper. Gale and Shapley (1962) show by example that the “problem of the roommates,”

whose only difference from the “marriage problem” is the absence of two sides in the market, may

fail to have a stable pairing. Ahmet Alkan (1988) shows that the “man–woman–child marriage

problem,” in which each match consists of agents of three different types, may also fail to have a

stable matching. Hernan Abeledo and Garth Isaak (1991) prove that to guarantee the existence of

stable pairings under arbitrary preferences, it has to be the case that each agent belongs to one of

two classes, and an agent in one class can match only with agents in the other class. Note that

there is no contradiction between my results and the result of Abeledo and Isaak: in their setting,

matching is one-to-one, and so for a particular agent, all acceptable matches are substitutes for

one another. In contrast, in the setting of this paper some agents are intermediaries whose prefer-

ences satisfy cross-side complementarity and who therefore do not view all acceptable matches as

substitutes. Finally, Hideo Konishi and M. Utku Ünver (2006, Theorem 3) show that in general

multi-partner matching problems with bilateral links and responsive preferences, several different

solution concepts are equivalent to pairwise stability. In their setting, however, the set of stable

matchings may be empty.

To guarantee the existence of chain-stable networks, I assume that agents’ preferences satisfy

the cross-side complementarity and same-side substitutability conditions. A similar restriction on

preferences was independently introduced by Ning Sun and Zaifu Yang (2006) in the context of

exchange economies with two types of heterogeneous indivisible objects, quasi-linear preferences,

and continuous prices. From the point of view of each agent, objects of one type are substitutes,

while objects of different types are complements. For example, from the point of view of a manufac-

turing firm, workers and machines are complements, while all workers are substitutes for each other

and all machines are also substitutes. Sun and Yang (2006) show that in this model a competitive

equilibrium always exists. I discuss the connection between this result and the results of the current

paper in Section V.C.

The rest of this paper is organized as follows. Section I formally introduces the model of
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matching in supply chains. Section II presents the constructive proof of the main result of the

paper: under same-side substitutability and cross-side complementarity, chain-stable networks are

guaranteed to exist. Section III studies the properties of the set of chain-stable networks. Section IV

discusses chain stability and alternative solution concepts. Section V talks about applications and

extensions of the model. Section VI concludes.

I. The Model of Matching in Supply Chains

Consider an industry, consisting of a finite set A of nodes (firms, countries, agents, workers, and

so on). An exogenously given “upstream–downstream” partial ordering “�” on this set determines

possible trading relationships: a � b stands for b being a downstream node for a and means that a

can potentially sell something to b. If a 6� b and b 6� a, then there can be no relationship between

a and b. By transitivity, there are no loops in the market.

Relationships between pairs of nodes are represented by bilateral “contracts.” Each contract

c represents one unit of a good sold by one node to another. It is a vector, c = (s, b, l, p), where

s ∈ A and b ∈ A are the “seller” and the “buyer” involved in the contract, s � b; l ∈ N is the

“serial number” of the unit of the good represented by the contract; and p ∈ R is the price that

the buyer pays to the seller for that unit. The seller involved in contract c is denoted by sc, the

buyer is denoted by bc, and so on.

Multiple contracts between a seller and a buyer can represent multiple units of the same good

or service, units of different types of goods or services, or both. For instance, if the unit is one

ton, and a farmer sells 5 tons of wheat and 10 tons of rye to a miller, then this relationship will be

represented by 15 contracts with 15 different serial numbers. The example in Appendix B illustrates

the use of serial numbers.

The set of possible contracts, C, is finite and is also given exogenously. In the simplest case, it

can include all possible contracts between nodes in A, with all possible serial numbers from some

finite set, and all possible prices from some finite set. It can also be more complicated: e.g., the

U.S. trade embargo on Cuba can be incorporated simply by removing all contracts between the

nodes in these countries from set C.

Note that this framework, restricted to one “tier” of sellers and one “tier” of buyers, encompasses

various two-sided matching settings considered in the literature. Setting l ≡ constant and p ≡ 0

turns this model into the marriage model of Gale and Shapley (1962), assuming that each agent
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is allowed to have at most one partner. Setting l ≡ constant turns it into the setup of Kelso and

Crawford (1982), assuming that agents on one side are restricted to having at most one link, and

into the many-to-many matching model of Roth (1984, 1985) and Charles Blair (1988), assuming

that agents on both sides are allowed to have multiple links. Setting p ≡ 0 and assuming that

all links connecting two nodes are identical turns the model into a discrete version of the schedule

matching problem of Mourad Bäıou and Michel Balinski (2002) and Alkan and Gale (2003).

A. Preferences

Each node can be involved in several contracts, some as a seller, some as a buyer, but it cannot

be involved in two contracts that differ only in price p, i.e., it cannot buy or sell the same unit

twice. Nodes have preferences over sets of contracts that involve them as the buyer or the seller.

For example, in the simplest case of quasi-linear utilities and profits, the utility of node a involved

in a set of contracts X is

Va(X) = Wa ({(sc, bc, lc)|c ∈ X}) +
∑
c∈D

pc −
∑
c∈U

pc,

where D = {c ∈ X|a = sc} and U = {c ∈ X|a = bc}, i.e., D is the set of contracts in X in which

a is involved as a seller and U is the set of contracts in which a is involved as a buyer. Wa(·)

represents the utility from the purchased contracts for the consumers at the downstream end of the

chain, the cost of producing the sold contracts for the suppliers at the upstream end of the chain,

and the cost of converting inputs into outputs for the intermediate nodes.

For an agent a ∈ A and a set of contracts X, let Cha(X) be a’s most preferred (possibly

empty) subset of X, let Ua(X) be the set of contracts in X in which a is the buyer (i.e., upstream

contracts), and let Da(X) be the set of contracts in X in which a is the seller (i.e., downstream

contracts). Subscript a will be omitted when it is clear from the context which agent’s preferences

are being considered. Preferences are strict, i.e., function Cha(X) is single-valued. In the settings

in which it is natural to assume that several different sets of contracts should result in identical

payoffs (e.g., when two nodes can trade several identical units of a good), I assume that ties are

broken in a consistent manner; e.g., lexicographically: in the case of several identical units of a

good, that would imply that seller a prefers contract (a, b, 1, p) to contract (a, b, 2, p), but would

prefer (a, b, 2, p′) to (a, b, 1, p) for any p′ > p.

8



Preferences of agent a are same-side substitutable if for any two sets of contracts X and Y such

that D(X) = D(Y ) and U(X) ⊂ U(Y ), U(X)\U(Ch(X)) ⊂ U(Y )\U(Ch(Y )) and for any two

sets X and Y such that U(X) = U(Y ) and D(X) ⊂ D(Y ), D(X)\D(Ch(X)) ⊂ D(Y )\D(Ch(Y )).

That is, preferences are same-side substitutable if, choosing from a bigger set of contracts on one

side, the agent does not accept any contracts on that side that he rejected when he was choosing

from the smaller set.

Preferences of agent a are cross-side complementary if for any two sets of contracts X and Y

such that D(X) = D(Y ) and U(X) ⊂ U(Y ), D(Ch(X)) ⊂ D(Ch(Y )) and for any two sets X and

Y such that D(X) ⊂ D(Y ) and U(X) = U(Y ), U(Ch(X)) ⊂ U(Ch(Y )). That is, preferences are

cross-side complementary if, when presented with a bigger set of contracts on one side, an agent

does not reject any contract on the other side that he accepted before.

Same-side substitutability is a generalization of the gross substitutes condition introduced by

Kelso and Crawford (1982) and used widely in the matching literature. If there are only two sides

in the supply chain market, then these two conditions become tautologically equivalent. Cross-side

complementarity is a new restriction, which is automatically satisfied in any two-sided market. In

a supply chain setting, it is this restriction that “ties together” the purchasing and selling decisions

of a node and thus links the markets along the supply chain. It can be viewed as a mirror image

of same-side substitutability: when the set of potential contracts on the node’s one side expands,

same-side substitutability says that the set of rejected contracts on that side also expands, while

cross-side complementarity says that the set of accepted contracts on the other side expands.

It is important to highlight what is allowed and what is not allowed by this pair of assumptions.

Two possibilities that they rule out are scale economies and production functions with fixed costs,

because in those cases a firm may decide not to produce one unit of a good at a certain price,

while being willing to produce ten units at the same price, violating same-side substitutability.

Complementary inputs (or outputs) are also generally ruled out.1 Another possibility that is ruled

out is an intermediary with fixed capacity (say, 1 unit) who can transform an input of type A into

an output of type A or an input of type B into an output of type B, but not both (due to the

capacity constraint). An addition of a cheap type-A input to this intermediary’s set of options

may cause him to shift from buying one type-B input and selling one type-B output to buying one

type-A input and selling one type-A output, thus violating cross-side complementarity.
1See, however, the discussion in Section V.C.
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In contrast, with substitutable inputs and outputs and decreasing returns to scale, many pro-

duction and utility functions can be accommodated. The simplest example is a firm that can take

one kind of input and produce one kind of output at a cost, with the marginal cost of production

increasing or staying constant in quantity. The input good can come from several different nodes,

and the output good may go to several different nodes, with different transportation costs. Much

more general cases are possible as well: preferences and production functions with quotas and tar-

iffs, several different inputs and outputs with discrete choice demands and production functions,

capacity constraints and increasing transportation costs, etc.

The interdependencies between different inputs or outputs can be rather complex as well. Con-

sider the following example. A firm has two plants in the same location. Each plant’s capacity is

equal to one unit. The first plant can convert one unit of iron ore into one unit of steel for q1
o or

it can convert one unit of steel scrap into one unit of steel for q1
s . The second plant can convert

one unit of iron ore into one unit of steel for q2
o or it can convert one unit of steel scrap into one

unit of steel for q2
s . Then, for a generic choice of costs and prices, the preferences of this firm will

be same-side substitutable and cross-side complementary, even though the firm’s preferences over

iron ore and scrap are not trivial (they cannot be expressed by simply saying that two alternative

inputs are perfect substitutes, with one being better than the other by a certain amount x).

This example is an analogue of “endowed assignment valuations” in two-sided matching markets

(Shapley, 1962; Hatfield and Milgrom, 2005), in which each firm has several unit-capacity jobs, each

worker has a certain productivity at each job, and each firm has an initial endowment of workers.

Even in the two-sided setting, it is an open question whether endowed assignment valuations exhaust

the set of utility functions with substitutable preferences, and so it is an open question in the supply

chain setting as well.

For the remainder of this paper, all preferences are assumed to be same-side substitutable and

cross-side complementary, and these restrictions will often be omitted from the statements of results

to avoid repetition.

B. Stable Networks

In the model, relationships between the nodes are represented by contracts. I call a collection of

relationships between the nodes in a market a network, i.e., a network is simply a set of contracts.

Let µ(a) denote the set of contracts involving a in network µ. Network µ is individually rational

10



if it does not contain any two contracts differing only in price (a firm cannot sell the same good

twice) and for any agent a, Cha(µ(a)) = µ(a), i.e., no agent would like to unilaterally drop any of

his contracts.

The most widely used solution concept in the two-sided matching literature is pairwise stability.

Its analogue in the supply chain setting is chain stability, defined as follows. A chain is a sequence

of contracts, {c1, . . . , cn}, n ≥ 1, such that for any i < n, bci = sci+1 , i.e., the buyer in contract

ci is the same node as the seller in contract ci+1. Note that the chain does not have to go all the

way from one of the most upstream nodes in the market to one of the most downstream nodes; it

can connect several nodes in the middle of the market. For notational convenience, let bi ≡ bci and

si ≡ sci . For a network µ, a chain block is a chain {c1, . . . , cn} such that

• ∀i ≤ n, ci /∈ µ,

• c1 ∈ Chs1(µ(s1) ∪ c1),

• cn ∈ Chbn(µ(bn) ∪ cn), and

• ∀i < n, {ci, ci+1} ⊂ Chbi=si+1
(µ(bi) ∪ ci ∪ ci+1).

In other words, a chain block of network µ is a downstream sequence of contracts not belonging to

µ, in which the buyer in one contract is the seller in the next one, such that each node involved in

these contracts is willing to add all of its contracts in the sequence to its contracts in µ, possibly

dropping some of its contracts in µ. A network is chain stable if it is individually rational and has

no chain blocks.

Note that chain stability is not a strategic concept—each node views the set of contracts available

to it as exogenously given, and maximizes its payoff given that set, analogously to how consumers

in the Walrasian equilibrium setting choose quantities taking prices as given. Hence, each node

treats its contracts independently of one another, ignoring the effect of forming one contract on other

nodes’ willingness to pay for other contracts. For example, if there are only two nodes in the market,

the seller (whose marginal cost is increasing in quantity) and the buyer (whose marginal benefit is

decreasing in quantity), who can trade multiple units of a good, then chain stability implies that the

quantity traded between those two nodes is determined by the intersection of the agents’ marginal

cost and marginal benefit curves. In more general networks, nodes also ignore various sorts of

externalities they may impose on others (e.g., limiting the supply of inputs available to competitors
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by buying too much and thus reducing the competition in the market for outputs). Hence, the

model is not directly applicable to cases in which there are several large players manipulating the

market; it is better suited to describing competitive markets with many small players, or markets

in which nodes represent countries or regions rather than firms.

C. An Example

I now turn to an example that illustrates the definitions introduced above. It consists of two simple

two-sided matching markets “stacked” on top of each other. The markets are tied together by the

restriction on the preferences of intermediate agents, who need to have a supplier in order to be able

to supply a customer. For simplicity, there are no prices or unit identifiers in this example. Another

example, presented in Appendix B, incorporates prices, unit identifiers, and more complicated trade

patterns, allowing the suppliers of basic inputs and the consumers of final outputs to trade both

directly and trough intermediaries.

Example 1: There are six agents in the market: two suppliers of basic inputs (a1, a2), two

intermediaries (b1, b2), and two consumers of final outputs (c1, c2). For all i, j, and k, ai � bj � ck.

Suppliers cannot trade directly with consumers: trade flows have to go through intermediaries.

All agents have unit capacities: each supplier can supply one unit of the good; each consumer needs

one unit; each intermediary can process one unit. There are no prices or quantities in this market.

The set C of available contracts consists of eight elements: C = {(a1, b1), (a1, b2), (a2, b1), (a2, b2),

(b1, c1), (b1, c2), (b2, c1), (b2, c2)}. Prices and unit identifiers were dropped from the contracts since

they play no role in this example.

Each supplier is willing to sell to any intermediary and prefers to sell to the intermediary with

the same index as his own rather than to the intermediary with the other index. Hence, the most

preferred set of contracts for supplier a1 is {(a1, b1)}, the second most preferred is {(a1, b2)}, and

the third is the empty set. Similarly, a2 prefers {(a2, b2)} to {(a2, b1)}, which he in turn prefers to

the empty set.

Each consumer is willing to buy from any intermediary and prefers to buy from the intermediary

with a different index rather than from the intermediary with the same index as her own. Hence, the

most preferred set of contracts for consumer c1 is {(b2, c1)}, the second most preferred is {(b1, c1)},

and the third is the empty set. Similarly, c2 prefers {(b1, c2)} to {(b2, c2)}, which she in turn prefers

to the empty set.
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Finally, an intermediary wants to trade with a consumer if and only if he also trades with

a supplier, and vice versa. He prefers to sell to the consumer with the same index as his own,

but prefers to buy from the supplier with a different index. Hence, the most preferred set of

contracts for intermediary b1 is {(a2, b1), (b1, c1)}, the next two most preferred sets (in any order)

are {(a1, b1), (b1, c1)} and {(a2, b1), (b1, c2)}, then {(a1, b1), (b1, c2)}, and finally, the empty set. The

sets containing only one element are worse for b1 than the empty set. The preference ordering for

intermediary b2 is defined analogously. It is easy to check that for the preferences of all six nodes,

same-side substitutability and cross-side complementarity hold.

Consider now the networks in Figure 1. Contracts that are in the networks are represented

by solid lines. Network µa in Figure 1(a) is empty and is not chain stable: it is blocked, for

instance, by the chain of contracts {(a1, b1), (b1, c1)}, shown in the figure by dashed lines. Network

µb, consisting of contracts (a2, b2) and (b2, c1), is also unstable: it is blocked by the single-contract

chain {(b2, c2)}. Network µc consists of one contract, (a1, b1), and is also unstable: among other

things, it is not individually rational, because node b1 would be better off dropping contract (a1, b1).

Finally, network µd is chain stable: it is individually rational and is not blocked by any chain.

II. Existence of Stable Networks

This section presents the main result of the paper: under the assumptions of Section I, chain-

stable networks are guaranteed to exist. The proof is constructive. It provides an algorithm for

finding a special chain-stable network, whose properties I will discuss in Section III. The algorithm

generalizes the fixed-point algorithms developed by Adachi (2000), Echenique and Oviedo (2004,

2006), and Hatfield and Milgrom (2005) in the context of two-sided markets. These algorithms, in

turn, are descendants of the Deferred Acceptance Algorithm of Gale and Shapley (1962) and the

Salary Adjustment Process of Crawford and Knoer (1981).

The proof relies on objects called pre-networks and on a special mapping, T , defined on the set

of pre-networks. The definitions are as follows.

A pre-network is a set of arrows from nodes in A to other nodes in A, with the following

properties. Each arrow r is a vector (or, dr, cr), where or (“origin of arrow r”) and dr (“destination

of arrow r”) are two different nodes and cr (“contract attached to arrow r”) is a contract involving

both or and dr. If or is the seller and dr is the buyer of contract cr, the arrow is “downstream.”

Otherwise, or is the buyer and dr is the seller of contract cr, and the arrow is “upstream.” For a
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pre-network ν and a node a, ν(a) denotes the set of contracts attached to arrows pointing to a, i.e.,

ν(a) = {c|r = (or, a, c) ∈ ν}.

There can be multiple arrows going from or to dr, but any two arrows going from or to dr must

have different contracts attached to them (these contracts may differ in serial numbers, prices, or

both). Arrows going in opposite directions (from node a to node b and from node b to node a)

can have identical contracts attached to them. Hence, there are two arrows corresponding to each

contract: one from the seller of the contract to the buyer, and one from the buyer to the seller. Let

R denote the set of all arrows.

Mapping T on the set of pre-networks is defined as follows. Consider any pre-network ν. Then

pre-network T (ν) consists of such arrows r that the contract attached to the arrow, cr, is in the

most preferred subset chosen by the arrow’s origin, or, from set (ν(or) ∪ cr), i.e.,

T (ν) = {r ∈ R|cr ∈ Chor (ν(or) ∪ cr)}.

Pre-network ν∗ is a fixed point of mapping T if T (ν∗) = ν∗.

The first step of the proof is Lemma 1 below. It shows that fixed points of mapping T play

a very special role: there is a one-to-one correspondence between the set of chain-stable networks

and the set of fixed points of mapping T . Thus, to prove the main result, it will be sufficient to

construct a fixed-point pre-network.

Formally, define mapping F from the set of pre-networks to the set of networks as follows. Take

any pre-network ν, and consider any contract c. Contract c belongs to µ = F (ν) if and only if

both the arrow from the seller of c to the buyer of c with c attached and the arrow from the buyer

of c to the seller of c with c attached are contained in ν. I.e.,

F (ν) = {c ∈ C|(sc, bc, c) ∈ ν and (bc, sc, c) ∈ ν}.

LEMMA 1: For any pre-network ν∗ such that T (ν∗) = ν∗, network µ∗ = F (ν∗) is chain stable.

Moreover, for any chain-stable network µ∗, there exists exactly one fixed-point pre-network ν∗ such

that µ∗ = F (ν∗).

Only the first statement of Lemma 1 is used to prove the existence of chain-stable networks:

it shows how to turn a fixed-point pre-network into a stable network, and I will explain below
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how to construct a fixed-point pre-network. The second statement of the lemma comes into play

in Section III, where I will use the one-to-one correspondence between the set of fixed points of

mapping T and the set of chain-stable networks to establish several properties of the latter.

To see the intuition behind Lemma 1, note that for any pre-network ν, in the pre-network

T (ν), each node a “points” to the nodes with contracts that it would like to form, if it assumes

that it can also choose from all contracts attached to the arrows pointing to it in ν. Hence, in a

fixed-point pre-network ν∗ = T (ν∗), each node a “points” to the contracts that it would like to

form, if it assumes that it can also choose from all the contracts pointing to it. Mapping F simply

takes “mutually acceptable” contracts (i.e., attached to arrows pointing from both the seller to the

buyer and from the buyer to the seller), puts them in the network µ∗ = F (ν∗), and throws out

the contracts that are acceptable to only one or none of the nodes. Network µ∗ is individually

rational, because only “acceptable” contracts were kept in the network. Also, it is not blocked by

any chain of contracts: in any such chain, the buyers and sellers of all contracts would have to

be willing to form these contracts; this would imply that ν∗ contains all arrows going along this

chain, in both direction; and this in turn would violate the assumption that these contracts formed

a chain block and thus did not belong to network µ∗ = F (ν∗). To prove that for any chain-stable

network µ∗, there exists exactly one fixed-point pre-network ν∗ such that µ∗ = F (ν∗), I construct

an iterative algorithm that for any chain-stable network µ∗ finds a fixed-point pre-network ν∗ such

that F (ν∗) = µ∗. All formal proofs are in Appendix A.

To prove that chain-stable networks exist, it is now sufficient to show that mapping T has a

fixed point. To find a fixed point, I first introduce a partial ordering on the set of pre-networks,

as follows. Let ν1 and ν2 be two pre-networks. Then ν1 is said to be less than or equal to ν2

(ν1 ≤ ν2) if the set of downstream arrows in ν1 is a subset of the set of downstream arrows in ν2,

while the set of upstream arrows in ν1 is a superset of the set of upstream arrows in ν2. Let νmin

be the pre-network that includes all possible upstream arrows and no downstream arrows, and let

νmax be the pre-network that includes no upstream arrows and all possible downstream arrows. By

construction, for any pre-network ν, νmin ≤ ν ≤ νmax.

The following key lemma shows that mapping T is isotone, i.e., order-preserving.

LEMMA 2: For any pair of pre-networks ν1 and ν2 such that ν1 ≤ ν2, we have T (ν1) ≤ T (ν2).

Intuitively, if ν1 ≤ ν2, then in ν1 each node a has fewer “options” (i.e., contracts attached
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to arrows pointing to it) from potential sellers and more “options” from potential buyers than in

ν2. Then, by same-side substitutability and cross-side complementarity, given its options in ν1

node a will be less “picky” in forming contracts with potential sellers and more “picky” in forming

contracts with potential sellers than it would be given its options in ν2. Hence, for any node a

there will be more arrows pointing upstream from a (and fewer arrows pointing downstream) in

T (ν1) than in T (ν2).

It is now easy to construct an algorithm for finding a chain-stable network. Namely, take the

smallest pre-network, νmin. Apply mapping T to it, getting T (νmin). Since νmin is the smallest

pre-network, by definition, νmin ≤ T (νmin). Now apply mapping T to T (νmin). By Lemma 2,

T (νmin) ≤ T (T (νmin)) = T 2(νmin). Applying mapping T repeatedly, we get an increasing sequence

of pre-networks: {νmin, T (νmin), T 2(νmin), T 3(νmin), . . . }. Since the set of all pre-networks is finite,

after a finite number of steps this sequence has to converge to a fixed point ν∗min. We can now apply

mapping F to this fixed-point pre-network to get a chain-stable network µ∗min. This completes the

description of the algorithm, and also proves Theorem 1, stated below.

THEOREM 1: There exists a chain-stable network.

One can also use pre-network νmax instead of νmin as the starting point of the algorithm above.

Then the algorithm would converge to a possibly different fixed point, ν∗max, resulting in a possibly

different chain-stable network, µ∗max. In Section III, I describe some special properties of fixed-point

pre-networks ν∗min and ν∗max and the corresponding chain-stable networks µ∗min and µ∗max. Before

moving on to the properties of these networks, however, I illustrate the algorithm presented above

using the setting of Example 1.

A. T -Algorithm: An Example

Recall the setting of Example 1, with two suppliers, two intermediaries, and two consumers. In

this example, for any two nodes that can trade, there can be only one contract (since there are no

prices or unit identifiers), and so in discussing pre-networks, we can simply talk about the arrow

−→xy going from node x to node y. This market has 16 different arrows: four downstream arrows

from suppliers to intermediaries, four downstream arrows from intermediaries to consumers, four

upstream arrows from intermediaries to suppliers, and four upstream arrows from consumers to

intermediaries. Pre-network νmin, which contains no downstream arrows and all eight upstream

arrows, is shown in Figure 2(a).
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To find a chain-stable network, we first need to iterate mapping T , starting with νmin, un-

til we converge to a fixed point. Figure 2(b) shows the first iteration, T (νmin). Compared to

νmin, it has two new arrows:
−−→
a1b1 and

−−→
a2b2. To check that, say, arrow

−−→
a1b1 is in T (νmin), note

that νmin(a1) = {(a1, b1), (a1, b2)} and (a1, b1) ∈ Cha1 (νmin(a1) ∪ (a1, b1)) = {(a1, b1)}. To check

that, say, arrow
−−→
b1c2 is not in T (νmin), note that νmin(b1) = {(b1, c1), (b1, c2)} and (b1, c2) /∈

Chb1 (νmin(b1) ∪ (b1, c2)) = ∅. The remaining 14 arrows can be checked analogously.

Figure 2(c) shows the next iteration, T 2(νmin), which contains two new arrows. This iteration

turns out to be a fixed point: one can check that T 3(νmin) = T 2(νmin). Hence, in this example,

ν∗min = T 2(νmin). Finally, we need to apply mapping F to ν∗min, erasing one-directional arrows and

replacing reciprocal arrows with the corresponding contracts. The resulting chain-stable network,

µ∗min, is shown in Figure 2(d).

III. Properties of Stable Networks

Theorem 1 states that the set of chain-stable networks is not empty. In this section, I present several

results concerning the properties of this set, generalizing similar results concerning the properties

of the set of pairwise-stable matchings in various two-sided settings.

By Lemma 1, there is a one-to-one correspondence between the set of fixed points of mapping

T and the set of chain-stable networks. I will now rely on this result to establish several properties

of the latter, using an auxiliary lemma. This lemma describes the special structure of the set of

fixed points of mapping T . Pre-networks ν∗min and ν∗max are, respectively, its lowest and highest

fixed points, and the set of fixed points of mapping T is a lattice contained between them. This

result is a direct corollary of Tarski’s fixed point theorem for isotone functions on lattices, but I

also give a short independent proof for completeness.

LEMMA 3: The set of fixed points of mapping T is a lattice. Its lowest element is ν∗min and its

highest element is ν∗max.

Now, let A = {a ∈ A : Ua(C) = ∅} and A = {a ∈ A : Da(C) = ∅}, i.e., A and A are the sets of

suppliers of basic inputs for the market (“suppliers”) and consumers of final outputs (“consumers”),

respectively. In the two-sided matching setup, one side of the market can be viewed as A and the

other as A; in more general networks, there is also a set of “intermediate” nodes, A\(A ∪A).
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The following theorem shows that all suppliers of basic inputs are at least as well off in network

µ∗min as they are in any other chain-stable network, and all consumers of final outputs are at most as

well off in network µ∗min as they are in any other chain-stable network. Symmetrically, all suppliers

of basic inputs are at most as well off in network µ∗max as they are in any other chain-stable network,

and all consumers of final outputs are at least as well off in network µ∗max as they are in any other

chain-stable network.

THEOREM 2: Let µ∗min = F (ν∗min), µ∗max = F (ν∗max), and let µ∗ be a chain-stable network. Then

any a ∈ A (weakly) prefers µ∗min to µ∗ and µ∗ to µ∗max, and any a ∈ A (weakly) prefers µ∗max to µ∗

and µ∗ to µ∗min.

Recall the setting of Example 1. The set of chain-stable networks in this example is shown in

Figure 3. It is easy to check that networks µ∗min and µ∗max are side-optimal. Note also that in this

particular example, the most preferred chain-stable network for both intermediate nodes is µ∗4, and

their least preferred chain-stable network is µ∗3. Generally, however, stable networks most or least

preferred by all of the intermediate nodes need not exist.

The final result of this section shows that when a new supplier of basic inputs is added to the

market, the set of chain-stable networks (or, more precisely, the boundaries of this set—networks

µ∗min and µ∗max) moves in the direction favorable to the consumers of final outputs and unfavorable

to the suppliers of basic inputs. Symmetrically, when a new consumer of final outputs is added,

the set of chain-stable networks moves in the opposite direction. In other words, more competition

on one end of an industry is bad for the agents on that end and good for the agents on the other

end. Of course, removing a supplier of basic inputs or a consumer of final outputs has the opposite

effect on the remaining nodes.

More formally, let A′ = A∪a′ and let µ′min and µ′max be the smallest and the largest chain-stable

matchings in A′.

THEOREM 3: If Ua′(A) = ∅, i.e., a′ is a supplier of basic inputs, then each a ∈ A is at least as

well off in µ∗max as in µ′max and at least as well off in µ∗min as in µ′min; each a ∈ A is at most as

well off in µ∗max as in µ′max and at most as well off in µ∗min as in µ′min.

Symmetrically, if Da′(A) = ∅, i.e., a′ is a consumer of final outputs, then each a ∈ A is at most

as well off in µ∗max as in µ′max and at most as well off in µ∗min as in µ′min; each a ∈ A is at least as

well off in µ∗max as in µ′max and at least as well off in µ∗min as in µ′min.
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Recall again the setting of Example 1, and suppose supplier of basic inputs a1 is removed from

the market. According to Theorem 3, the other supplier of basic inputs (a2) should benefit from

the reduced competition, while the consumers of final outputs (c1 and c2) should suffer. Indeed,

this smaller market has only one stable network, which consists of contracts (a2, b2) and (b2, c2)—

this can be verified by running the T -algorithm twice, starting from the two extreme pre-networks.

In this network, node a2 is connected with its preferred intermediary, and is therefore at least

as well off as in both networks µ∗min and µ∗max in the larger market. Node c1 is left without an

intermediary, and is therefore strictly worse off than it was in networks µ∗min and µ∗max. Finally,

node c2 is connected with its least preferred intermediary, and is therefore at most as well off as in

µ∗min and µ∗max.

As before, the change in the welfare of intermediate agents is ambiguous; it can go either way.

Also, adding new intermediate nodes can have opposite effects on different extreme nodes (e.g.,

some suppliers of basic inputs may become better off, while others may become worse off), as well

as on other intermediate nodes.

IV. Chain Stability and Alternative Solution Concepts

The model introduced and studied in this paper involves a new solution concept: chain stability.

In this section, I discuss some alternative solution concepts, argue that chain stability is a natural

one to use in the present setting, and establish results on the connections between chain stability,

tree stability, and the weak core.

In two-sided one-to-one matching markets, the set of pairwise-stable matchings coincides with

the core and with other solution concepts proposed in the matching literature. In more general

models, this is no longer true, even when preferences are substitutable. In one-to-many matching

markets, the set of pairwise-stable matchings is equal to the weak core but not to the strict core.

In two-sided many-to-many matching markets, even that result no longer holds: Example 2.6 in

Blair (1988) shows that the set of pairwise-stable matchings and the core may be disjoint, i.e.,

pairwise-stable matchings may not be in the core and matchings in the core may not be pairwise

stable. Several other solution concepts for the many-to-many matching model have also been

studied, including setwise stability (Roth, 1984; Sotomayor, 1999), bargaining set (Echenique and

Oviedo, 2006), and credible group stability (Konishi and Ünver, 2006). Nevertheless, pairwise

stability remains the preferred solution concept for studying matching even in two-sided many-to
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many markets, due to its simplicity, natural interpretation, and apparent empirical success. As

Roth and Sotomayor (1990, p. 156) argue, “identifying and organizing large coalitions may be

more difficult than making private arrangements between two parties, and the experience of those

regional [many-to-many matching] markets in the United Kingdom that are built around stable

mechanisms suggests that pairwise stability is still of primary importance in these markets.”

Since the model of this paper includes two-sided many-to-many matching models as special

cases, different solution concepts can result in different predictions; e.g., the core and the set of

chain-stable networks may be disjoint. However, just like pairwise stability in the two-sided setting,

chain stability is a natural solution concept in the supply chain environment. The reason for that

is that chain blocks are particularly easy to identify and organize: A customer just needs to pick

up the phone and call a potential supplier asking him whether he would like to form a contract; the

potential supplier, after receiving that phone call, in turn calls one of his potential suppliers, and so

on. If there is a chain block, it can be easily identified in this way, and subsequently the contracts

can be formed. In fact, firms are often organized in a way that helps them identify chain blocks

(or, more precisely, the parts of chain blocks that concern them). Sales and marketing departments

identify available downstream contracts and keep track of which ones may potentially be available

in the future. Procurement departments identify upstream options. Top management identifies

ways of forming profitable combinations of upstream and downstream contracts. It is common

for companies to view themselves as members of supply chains and to mention their suppliers to

potential customers 2 and vice versa.3

In contrast, coalitions involving several competing firms require much more coordination and

information exchange between the agents. Many firms do invest in “competitive intelligence,”

trying to learn what their competitors are doing or planning to do. The goal, however, is to figure

out how to respond to the behavior of competitors, or to learn the latest technologies or innovations

from them, but not to identify large coalitional deviations that would involve these competitors.

Moreover, such deviations would often be illegal, as violations of antitrust laws. Hence, while
2E.g., a steel processor in the U.K. writes on its website: “Sourcing steel from all over the world, primarily Western

Europe, Steel & Alloy currently process over 320,000 tonnes of steel per annum. We are approved processors for
both Arcelor and Corus and are the preferred processor for Salzgitter within the U.K. Automotive Sector. These
partnerships give us the stability and technical support needed to provide a total supply solution for our customers.”
http://www.steelalloy.co.uk, accessed July 20, 2006.

3E.g., a trading company in India looking for a timber supplier writes in its online ad, “Our client is a sup-
plier of packing and packaging wooden materials to large scale factories in and around Chennai. [. . . ] We would
like to know, what type of wood you will be able to supply us, in break bulk/in containers? [. . . ]” http://
www.alibaba.com/manufacturer/13917627/Buy Logs And Timber.html, accessed July 20, 2006.
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deviations involving competing agents are conceivable in principle, they must be rare in practice,

at least in industries that comply with antitrust laws. Thus, while chain stability may not be an

attractive solution concept for modeling industries with monopolies and cartels, it is a natural one

in competitive markets.

Solution concepts based on deviations by large coalitions involving competing agents also suffer

from an additional, theoretical problem: the set of such solutions may be empty, even under very

strong restrictions on preferences. Example 3 in Sotomayor (1999) shows that the set of setwise-

stable matchings in two-sided markets may be empty.4 Example 2 in Konishi and Ünver (2006)

shows that the core in a two-sided many-to-many matching problem may also be empty, even under

responsive preferences. In contrast, as the results of this paper show, a chain-stable network is

guaranteed to exist, at least under same-side substitutability and cross-side complementarity, just

like a pairwise-stable matching is guaranteed to exist in any two-sided many-to-many matching

market under substitutability. Of course, the similarity between the empirical and theoretical

arguments behind pairwise stability in the two-sided case and chain stability in the more general

case is not a coincidence: chain stability reduces to pairwise stability if there are no intermediate

agents.

Still, it is important to understand the differences and similarities between various solution

concepts in matching markets. Several papers address these issues in two-sided markets (see, e.g.,

the recent papers by Echenique and Oviedo, 2006, and Konishi and Ünver, 2006, and references in

those papers). The following two results provide a starting point for the analysis of the relationship

between chain stability and other solution concepts in supply chain networks.

The first result shows that under same-side substitutability and cross-side complementarity,

blocking by “trees” is equivalent to blocking by chains. More formally, a sequence of contracts

c1, . . . , ci is a path from node a to node b if: (i) node a is involved in contract c1 and not involved

in any contract cj for j > 1; (ii) node b is involved in contract ci and not involved in any contract

cj for j < i; and (iii) any other node x involved in one of the contracts cj for 1 ≤ j ≤ i is involved

in exactly two such contracts, and these two contracts are adjacent in the sequence (i.e., if one of

the contracts is ck, then the other is either ck−1 or ck+1). Note that while each chain is a path,

there are paths that are not chains: e.g., a pair of contracts with the same buyer and two different
4A matching is setwise stable if, roughly, there are no coalitions of agents who can form additional links or remove

existing ones among themselves and possibly remove some of the links to other agents in such a way that they all
become better off.
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sellers is a path connecting the two sellers, but is not a chain. A tree is a set of contracts such that

for any two nodes involved in these contracts, there exists exactly one path in this set connecting

the two nodes. Note that every chain is a tree. A network, µ, is blocked by a tree, τ , if τ ∩ µ = ∅

and for every node a involved in τ , τ(a) ⊂ Cha(µ(a) ∪ τ(a)). A network is tree stable if it is not

blocked by any tree.

THEOREM 4: Under same-side substitutability and cross-side complementarity, the set of tree-

stable networks is equal to the set of chain-stable networks.

The final result of this section shows that in a special case, in which each node is restricted to

having at most one upstream contract and at most one downstream contract, the set of chain-stable

networks coincides with the weak core of the matching game. Network µ is in the weak core of

the matching game if and only if there is no other network µ′ and set M of nodes such that (i) for

every node a ∈ M , for every contract c involving a, the other node involved in c is also in set M ;

(ii) every node a ∈ M weakly prefers the set of contracts in which it is involved in µ′ to the set of

contracts in which it is involved in µ; and (iii) at least one node a ∈ M strictly prefers the set of

contracts in which it is involved in µ′ to the set of contracts in which it is involved in µ.

THEOREM 5: If each node a ∈ A can have at most one upstream contract and at most one

downstream contract and has same-side substitutable and cross-side complementary preferences,

then the set of chain-stable networks is equal to the weak core of the matching game.

V. Applications and Extensions

Applications of matching theory have traditionally been found in market design literature, which

views stability as a desirable property of a mechanism and uses the deferred acceptance algorithm

or its extensions to match market participants (see Roth, 2007, for a historical overview). Recently,

however, researchers have also started using it as a positive theory, imposing stability as a restriction

on market outcomes and using this restriction to estimate various parameters of interest: e.g.,

Donald Boyd et al. (2003) use it to study the labor market for public school teachers, Patrick

Bajari and Jeremy T. Fox (2005) impose it in their analysis of the outcomes of FCC spectrum

auctions, and Morten Sørensen (forthcoming) relies on it to model the matching of start-ups to

venture capitalists.
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The theory of matching in supply chains can also be used in both kinds of applications. First,

T -algorithm or its extensions could potentially be used in market design. Second, the model can

be viewed as a positive theory of matching in vertical networks, allowing researchers to impose

chain stability restriction to estimate various parameters of interest and to run counterfactual

policy simulations. Not every supply chain can be modeled in this framework: e.g., the presence

of economies of scale or multiple complementary inputs would not fit the model’s assumptions. At

the same time, there is a wide range of markets to which the theory can be applied; some examples

of such markets are discussed below.

A. Market Design

A natural area for design applications of the results of this paper are professional services markets.

Such markets often consist of three groups of agents: workers providing these services who sign

contracts with firms (and view these firms as substitutes), clients who also sign contracts with

the firms (and view them as substitutes), and the firms who sign contracts with the workers and

the clients. From the point of view of a firm, workers are substitutes for one another, clients are

substitutes as well, and workers and clients are complements: the more clients the firm has, the

more workers it is willing to hire, and vice versa.

For example, high school students in New York City are currently matched to public schools via

a mechanism based on an extension of the deferred acceptance algorithm (Atila Abdulkadiroğlu,

Parag A. Pathak, and Roth, 2005). The schools also participate in another matching market—the

labor market for teachers (see Boyd et al., 2003, for the analysis of this market in a matching

framework). At present, the organization of the latter market is similar to that of most other

labor markets: schools interview candidates and make them offers and then the candidates choose

whether to accept or reject them (the terms of these offers, however, are substantially restricted by

the agreement between the NYC Department of Education and the United Federation of Teachers).

In the future, given the success of the student matching mechanism, the NYC DOE and the UFT

may want to run a similar program for matching teachers to schools. In that case, T -algorithm and

the framework of this paper could be used to coordinate these two matching markets and ensure

that the number of teachers matched to each school is in line with student enrollment there.

The experience of two-sided market design suggests that the mechanism would require some

modifications (e.g., the algorithm for matching medical residents to hospitals had to deal with the
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issue of married couples and the algorithm for matching students to public schools had to deal

with the issue of breaking indifferences; see Roth, 2007). Nevertheless, the deferred acceptance

algorithm and the theory of stability in two-sided markets are at the heart of the mechanisms that

were eventually implemented, and similarly the core ideas behind T -algorithm and the theory of

matching in supply chains could form the basis for the mechanisms in more complicated markets.

Another caveat is incentive compatibility. In theory, even with only two sides, at least for

some agents it is not a dominant strategy to report their preferences truthfully (Roth, 1982). This

lack of incentive compatibility automatically carries over to the more general setting of supply

chain networks. In practice, however, the lack of incentive compatibility does not seem to cause

problems in two-sided markets (Roth and Elliott Peranson, 1999), most likely due to the fact that

the number of agents in these markets is large (Nicole Immorlica and Mohammad Mahdian, 2005;

Fuhito Kojima and Pathak, 2007). It is an open question whether these results generalize to the

supply chain setting.

B. Positive Theory of Stability in Supply Chain Networks

In markets that lack coordinating bodies like the DOE and the UFT, implementing a centralized

matching mechanism may be infeasible. The theory of matching in supply chains, however, may

still be applicable to such markets: it can be viewed in a descriptive light, like, for example, various

equilibrium concepts in the empirical industrial organization literature.

One class of markets to which the theory is particularly well-suited are industries with the

following feature. There is one key good (or type of good) that moves along the supply chain.

It may be transformed, repackaged, processed, transported, etc., by intermediaries, but crucially,

has to remain the key input and output for firms at each stage of the chain. Of course, in all

industries there will be some other complementary inputs used by the firms in the chain (e.g.,

firms in all industries use computers, printers, office supplies, etc.), but as long as the cost of

these complementary inputs is small or these inputs are simple and homogeneous, they can be

modeled simply as an expense, included in the cost of converting inputs into outputs. In some

industries (e.g., construction), firms along supply chains combine several complementary inputs to

produce final goods, with inputs themselves consisting of multiple complementary parts, many of

them heterogeneous, complex, and an important part of the final cost of the outputs. For such

industries, the theory developed in the current paper is not applicable. In many others, however,
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this “key good” can be easily identified. Wheat, which is turned into flour, is such a good in the

farmer–miller–baker supply chain. Many other agricultural supply chains have similar key goods

(milk, fish, coffee, grapes, and so on). Oil and natural gas industries have long and complicated

supply chains involving production, transportation, refining and distribution among other steps,

but the key good moving along the chain is easily identifiable. Various manufacturing supply chains

also have such goods: e.g., wood in the supply chain for wooden furniture; iron ore and scrap metal

in the steel supply chain; and cotton, wool, and linen in the textile supply chain. Some less typical

industries also have this feature. For example, supply chains for illegal drugs, such as heroin and

cocaine, involve, in essence, moving just one good from the source of production to destination, with

only a small amount of processing along the way and extreme trade barriers and transportation

costs, resulting in a high degree of price heterogeneity.

C. Two-Sided Markets with Complementarities

The results of this paper rely on same-side substitutability. There is, however, one special case

in which this restriction can be partially relaxed: two-sided matching markets with two types of

agents or objects on one of the sides. The agents of one type are substitutes for one another, but

the agents of different types are complements, from the point of view of agents on the other side

of the market. For example, workers and machines may be complements from the point of view of

a manufacturing firm, while workers are substitutes for one another and machines are substitutes

for one another as well. A similar model is analyzed by Sun and Yang (2006), who assume that

firms’ preferences are quasi-linear and prices are continuous. They show that in such a market, a

competitive equilibrium always exists.

The model of the current paper contains the discrete price version of Sun and Yang’s model as a

special case. Indeed, suppose prices can take only a finite number of values (e.g., have to be multiples

of one cent and cannot exceed some arbitrarily large amount) and consider a “supply chain market”

in which machines are viewed as suppliers of basic inputs, firms are viewed as intermediaries, and

workers are viewed as consumers of final outputs. Then the complementarity of the two types of

agents on one side of the two-sided market becomes equivalent to the cross-side complementarity

of firms’ preferences in the “supply chain market,” and all of the assumptions of the current paper

are satisfied. Hence, all of the conclusions remain valid. Stable networks exist. Such networks form

a lattice with the one most preferred by the machines and the one most preferred by the workers as
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the extreme elements. At these extreme networks, the payoffs of workers will weakly decrease and

the payoffs of machines will weakly increase if a worker is added to the market (and vice versa).

Sun and Yang (2006) do not present any results on the lattice structure, the opposition of interests,

or the comparative statics. Note also that these results do not require quasi-linear preferences and

continue to hold even if prices are fixed or not fully flexible and workers and machines can contract

with multiple firms and may care not just about the payments they receive but also about the

identities of the firms they contract with.

Moreover, the results can be extended to a setting in which the suppliers of these complementary

goods are themselves intermediaries in two distinct vertical networks. For instance, if the producers

of machines in the example above require steel to make them, we can consider the steel producers →

machine producers → manufacturing firms → manufacturing firm workers “supply chain market”

and apply to it the results of Sections II, III, and IV.

VI. Conclusion

This paper introduces and studies matching in supply chain networks. The model allows for match-

ing both with and without prices and can incorporate endogenously determined quantities and types

of traded goods or more general contracts. The results rely on two important assumptions. First,

the roles of agents in an industry are pre-determined. There is an “upstream–downstream” partial

ordering, which specifies who can be a supplier and who can be a customer for each node. This

ensures that trade proceeds only in one direction, from the suppliers of basic inputs to the con-

sumers of final outputs. Second, the preferences of all agents satisfy same-side substitutability and

cross-side complementarity. Each agent views its inputs and outputs as complements, views its

inputs as substitutes for one another, and also views its outputs as substitutes for one another.

In this setting, the paper studies chain-stable networks. A chain-stable network is a set of bilat-

eral contracts such that no upstream-downstream sequence of agents can add a chain of contracts

(and drop, if necessary, some other contracts) that would make them all better off. The main result

of the paper is that under same-side substitutability and cross-side complementarity, chain-stable

networks are guaranteed to exist. There is an iterative algorithm for finding a chain-stable network.

This algorithm converges to a special chain-stable network: in all other chain-stable networks, all

suppliers of basic inputs are weakly worse off and all consumers of final outputs are weakly bet-

ter off. A slightly modified algorithm finds a “symmetric” (and generally different) chain-stable
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network, preferred by all consumers of final outputs. At these side-optimal chain-stable networks,

an intuitive result on comparative statics holds: adding a consumer of final outputs makes other

consumers of final outputs worse off and makes the suppliers of basic inputs better off, while adding

a supplier of basic inputs has the opposite effect.
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[1] Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth. 2005. “The New York
City High School Match.” American Economic Review, 95(2): 364–367.

[2] Abeledo, Hernan, and Garth Isaak. 1991. “A Characterization of Graphs that Ensure
the Existence of Stable Matchings.” Mathematical Social Sciences, 22(1): 93–96.

[3] Adachi, Hiroyuki. 2000. “On a Characterization of Stable Matchings.” Economics Letters,
68(1): 43–49.

[4] Alkan, Ahmet. 1988. “Nonexistence of Stable Threesome Matchings.” Mathematical Social
Sciences, 16(2): 207–209.

[5] Alkan, Ahmet, and David Gale. 2003. “Stable Schedule Matching under Revealed Prefer-
ence.” Journal of Economic Theory, 112(2): 289–306.
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Appendix A: Proofs

PROOF OF LEMMA 1: The proof consists of two independent steps. The first step shows that
for any pre-network ν such that T (ν) = ν, µ = F (ν) is a chain-stable network. The second step
shows that for any chain-stable network µ, there exists a unique fixed-point pre-network ν such
that F (ν) = µ.

Step 1: Let us show that for any pre-network ν such that T (ν) = ν, µ = F (ν) is a chain-stable
network.

First, we need to show that there are no contracts in µ that differ only in price. To see this,
note that if there are two contracts that differ only in price in µ, that implies that each of the two
agents involved in these contracts would choose both contracts when selecting from some larger
set containing them. But this is impossible, because each agent, by definition, chooses only one
contract with a given partner and a particular serial number—the one with the most favorable
price.

Second, we need to show that network µ is individually rational. To see that, note that for any
agent a, µ(a) = Cha(ν(a)), and so a does not want to drop any of its contracts in µ (because that
would imply that µ(a) 6= Cha(µ(a)) = Cha(Cha(ν(a))) = Cha(ν(a)) = µ(a)).

Finally, we need to show that there are no chain blocks. Suppose (c1, c2, . . . , cn) is a chain
block of µ, and let si and bi denote the seller and the buyer involved in contract i. Since c1 ∈
Chs1(µ(s1) ∪ c1), it has to be the case that c1 ∈ Chs1(ν(s1) ∪ c1) (otherwise, Chs1(ν(s1) ∪ c1) =
Chs1(ν(s1)) = µ(s1), and hence no subset of µ(s1)∪c1 ⊂ ν(s1)∪c1 can be better for s1 than µ(s1)),
and so the arrow r1 from s1 to b1 with c1 attached must be in T (ν) = ν. Now, by assumption, s2

would like to sign contracts c1 and c2, i.e., {c1, c2} ⊂ Chs2(µ(s2) ∪ c1 ∪ c2). If neither c1 nor c2

are in Chs2(ν(s2) ∪ c1 ∪ c2), then Chs2(ν(s2) ∪ c1 ∪ c2) = Chs2(ν(s2)) = µ(s2), and so {c1, c2} 6⊂
Chs2(µ(s2)∪c1∪c2), which would contradict our assumptions. Suppose c2 /∈ Chs2(ν(s2)∪c1∪c2).
Then c1 ∈ Chs2(ν(s2) ∪ c1 ∪ c2) = Chs2(ν(s2) ∪ c1), and so there must be an arrow from s2 to s1

with contract c1 attached in T (ν) = ν, which together with the fact that there is an arrow from s1

to s2 with c1 attached in ν would imply that c1 ∈ µ, which would also contradict our assumptions.
Hence, it must be the case that c2 ∈ Chs2(ν(s2) ∪ c1 ∪ c2). Proceeding by induction, there is an
arrow from si to si+1 with ci attached in ν for any i < n. Similarly, we could have started from
node bn, and so there must be an arrow going from bn to bn−1 = sn with cn attached in ν, which
implies that cn ∈ µ—contradiction. Therefore, for any ν = T (ν), F (ν) is a chain-stable network.

Step 2: Let us now show that for any chain-stable network µ, there exists a unique fixed-point
pre-network ν such that F (ν) = µ. The proof is constructive.

Let M be the set of all networks and N be the set of all pre-networks. Define the following
mappings:

• G : M → N . G(µ) = {r ∈ R|cr ∈ µ}, i.e., arrow r belongs to ν = G(µ) if and only if contract
cr belongs to µ.

• Hk : M → N . Hk(µ) = T k(G(µ)), i.e., H0(µ) = G(µ) and Hk(µ) = T (Hk−1(µ)) for k > 0.

We will now show that for any chain-stable network µ, for some n, Hn(µ) = Hn+1(µ) and
moreover, for each n, F (Hn(µ)) = µ, thus giving a constructive proof of Step 2. For convenience,
let νn = Hn(µ), ν0 = G(µ). We will show by induction on k that: (i) F (νk) = µ and (ii) νk ⊃ νk−1.
For k = 1, (ii) follows from the individual rationality of µ and (i) follows from the absence of chain
blocks of length 1 (i.e., pairwise blocks) of µ. Suppose (i) and (ii) hold up to k − 1. Let us show
that they hold for k.
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(i) Suppose arrows r and r′ with contract cr attached are in νk, but cr /∈ µ. We will now “grow”
a chain block of µ from this contract cr.

Consider arrow r first; without loss of generality, assume it is an upstream arrow. Let c0 = cr

and r0 = r. If cr ∈ Chor(µ(or) ∪ cr), stop. Otherwise, since

cr ∈ Chor(ν
k−1(or) ∪ cr),

νk−1(or) ∪ cr =
(
Dor(ν

k−1(or))
)
∪

(
Uor(ν

k−1(or)) ∪ cr

)
, and

µ(or) ⊂ νk−1(or),

it follows from same-side substitutability that

cr ∈ Chor

(
(Dor(ν

k−1(or))) ∪ (Uor(µ(or)) ∪ cr)
)

.

Since by assumption, cr /∈ Chor(µ(or) ∪ cr) = Chor((Dor(µ(or))) ∪ (Uor(µ(or)) ∪ cr)) and µ(or) ⊂
νk−1(or), it has to be the case that Dor(µ(or)) is a strict subset of Dor(νk−1(or)). Let x1,x2, . . . ,xm

be the contracts in Dor(νk−1(or))\Dor(µ(or)). Then for some j, xj ∈ Chor(µ(or) ∪ xj ∪ cr) (oth-
erwise, by same-side substitutability, for any j, xj /∈ Chor(µ(or) ∪ cr ∪ x1 ∪ x2 ∪ · · · ∪ xm), which
is then equal to Chor(µ(or) ∪ cr), which contradicts our assumption that cr /∈ Chor(µ(or) ∪ cr)).
It must also be the case that cr ∈ Chor(µ(or) ∪ xj ∪ cr), because otherwise xj ∈ Chor(µ(or) ∪ xj)
and so the downstream arrow with xj attached is in ν1, and is therefore in νk−1 (by statement (ii)
in the step of induction, ν1 ⊂ νk−1). But then both arrows with xj attached are in νk−1, which
contradicts assumption (i) of induction for k − 1. Hence, {cr,xj} ⊂ Chor(µ(or) ∪ xj ∪ cr).

Let c1 = xj . By construction, the upstream arrow r1 with c1 attached is in νk−1, but c1 /∈ µ. Let
o1 denote the origin of arrow r1. If c1 ∈ Cho1(µ(o1)∪ c1), stop; otherwise, following the procedure
above, generate c2 ∈ Do1(ν

k−2(o1))\Do1(µ(o1)), and so on. At some point, this procedure will have
to stop (since we keep going downstream). Now, “grow” cr in the other direction, starting with
arrow r′. We end up with a chain cx, cx+1, . . . , c0, . . . , cy−1, cy, which, by construction, is a chain
block of µ—contradiction.

(ii) Suppose some upstream arrow r is in νk−1, but not in νk, i.e., cr ∈ Chor(νk−2(or) ∪ cr),
but cr /∈ Chor(νk−1(or) ∪ cr). Then by (i), Chor(νk−1(or) ∪ cr) = µ(or) = Chor(Dor(νk−1(or)) ∪
Uor(µ(or)) ∪ cr). From cr /∈ Chor(Dor(νk−1(or)) ∪ Uor(µ(or)) ∪ cr), by same-side substitutability
and by assumptions of induction for k − 2, we get cr /∈ Chor(Dor(νk−1(or)) ∪ Uor(νk−2(or)) ∪ cr),
and from that, by cross-side complementarity and assumption (ii) of induction for k − 1 (i.e.,
νk−2 ⊂ νk−1), we get cr /∈ Chor(Dor(νk−2(or)) ∪ Uor(νk−2(or)) ∪ cr) = Chor(νk−2(or) ∪ cr), and
so r is not in νk−1—contradiction. The proof for a downstream arrow r′ is completely analogous.
This completes the proof of statements (i) and (ii) of induction.

Now, since G(µ) ⊂ H1(µ) ⊂ H2(µ) ⊂ . . . is an increasing sequence and the set of possible
arrows is finite, this sequence has to converge, i.e., for some n, Hn(µ) = Hn+1(µ) ≡ H(µ). By (ii),
all arrows in G(µ) are also present in H(µ), and by (i), any pair of arrows with the same contract
attached in H(µ) is also present in G(µ). Therefore, F (H(µ)) = µ.

Finally, we need to show that for two fixed points of mapping T , ν∗1 and ν∗2 , F (ν∗1) 6= F (ν∗2).
Suppose ν∗1 6= ν∗2 and F (ν∗1) = F (ν∗2) = µ. Consider the set of agents for whom the upstream
arrows originating from them are not the same in ν∗1 and ν∗2 . Take one of the “most downstream”
agents in this set (i.e., such an agent o that there is nobody downstream from him in this set), and
take an upstream arrow r originating from o such that it is in only one of the two pre-networks.
Without loss of generality, r ∈ ν∗1 and r /∈ ν∗2 . r /∈ ν∗2 ⇒ cr /∈ Cho(ν∗2(o) ∪ cr) = Cho(ν∗2(o)) =
µ(o) = Cho(Do(ν∗2(o)) ∪ Uo(µ(o)) ∪ cr). By the assumption that o is the “most downstream”
agent whose upstream arrows differ in the two pre-networks, Do(ν∗2(o)) = Do(ν∗1(o)), and hence
cr /∈ Cho(Do(ν∗1(o)) ∪ Uo(µ(o)) ∪ cr). Now, since F (ν∗1) = µ, Uo(ν∗1(o)) ⊃ Uo(µ(o)), and so by
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same-side substitutability, cr /∈ Cho(Do(ν∗1(o)) ∪ Uo(ν∗1(o)) ∪ cr) = Cho(ν∗1(o) ∪ cr), and therefore
r /∈ ν∗1—contradiction.

PROOF OF LEMMA 2:
We need to check that all downstream arrows in T (ν1) belong to T (ν2) and that all upstream

arrows in T (ν2) belong to T (ν1). Consider a downstream arrow r in T (ν1). By definition of mapping
T , cr ∈ Chor (ν1(or) ∪ cr). Since ν1 ≤ ν2, by the definition of the partial order on pre-networks,
the set of downstream arrows in ν1 is a subset of the set of downstream arrows in ν2, and so
Uor(ν1(or)), i.e., the set of contracts attached to downstream arrows pointing to or in ν1, is a subset
of Uor(ν2(or)), i.e., the set of contracts attached to downstream arrows pointing to or in ν2. Analo-
gously, we have Dor(ν1(or)) ⊃ Dor(ν2(or)). By same-side substitutability, cr ∈ Chor (ν1(or) ∪ cr) =
Chor (Uor(ν1(or)) ∪Dor(ν1(or)) ∪ cr) implies cr ∈ Chor (Uor(ν1(or)) ∪Dor(ν2(or)) ∪ cr). This, by
cross-side complementarity, implies that cr ∈ Chor (Uor(ν2(or)) ∪Dor(ν2(or)) ∪ cr) , i.e., cr ∈
Chor (ν2(or) ∪ cr) , and so r ∈ T (ν2).

For upstream arrows, the argument is completely symmetric.

PROOF OF LEMMA 3:
Take two fixed points of mapping T , ν∗1 and ν∗2 . Let ν12 be the least upper bound of these two pre-

networks in the original lattice. ν12 ≥ ν∗1 , ν12 ≥ ν∗2 ⇒ T (ν12) ≥ T (ν∗1) = ν∗1 , T (ν12) ≥ T (ν∗2) = ν∗2
⇒ T (ν12) ≥ ν12, and so for some n, ν12 ≤ T (ν12) ≤ T 2(ν12) ≤ · · · ≤ Tn(ν12) = Tn+1(ν12) = ν∗12.
By construction, ν∗12 ≥ ν∗1 and ν∗12 ≥ ν∗2 . To see that any other upper bound of ν∗1 and ν∗2 (say, ν∗3)
has to be greater than ν∗12, note that ν∗3 ≥ ν∗1 , ν∗3 ≥ ν∗2 implies ν∗3 ≥ ν12 ⇒ T (ν∗3) = ν∗3 ≥ T (ν12) ⇒
· · · ⇒ ν∗3 ≥ ν∗12. The greatest lower bound of ν∗1 and ν∗2 can be constructed in an analogous way.

To show that ν∗min is the lowest fixed point, consider another fixed point ν∗, and note that
ν∗ ≥ νmin ⇒ T (ν∗) = ν∗ ≥ T (νmin) ⇒ · · · ⇒ ν∗ ≥ ν∗min. Analogously, ν∗max is the highest fixed
point of mapping T .

PROOF OF THEOREM 2:
Let ν∗ = F−1(µ∗), i.e, the pre-network corresponding to µ∗, such that F (ν∗) = µ∗. Since ν∗min

and ν∗max are the extreme fixed points of mapping T , ν∗min ≤ ν∗ ≤ ν∗max. Take any a ∈ A (the proof
for the symmetric case a ∈ A is completely analogous). By definition of A, node a can only be
connected with downstream nodes: it can have customers but not suppliers. Hence, in any pre-
network, every single arrow pointing to node a is an upstream arrow. Therefore, ν∗min(a), which is
the set of arrows pointing to a in ν∗min is a superset of ν∗(a), which in turn is a superset of ν∗max(a).
But one is always (weakly) better off choosing from a larger set, and so Cha(ν∗min(a)) = µ∗min(a) is
at least as good for a as Cha(ν∗(a)) = µ∗(a), which in turn is at least as good as Cha(ν∗max(a)) =
µ∗max(a).

PROOF OF THEOREM 3:
The proof consists of two independent steps—one compares µ∗max with µ′max and the other

compares µ∗min with µ′min.

Step 1: Consider ν∗max. Add node a′ to market A, so that Ua′(A) = ∅. Let ν+ = ν∗max ∪ {r :
a′ = dr & cr ∈ Cha(ν∗max(a) ∪ cr)}; that is, ν+ contains all arrows in ν∗max plus all such arrows r
from nodes a ∈ A to the new node a′ that a would like to add the attached contract cr to its list
of contracts (and possibly drop some of its other contracts). Now, note that T (ν+) ≥ ν+ (for any
a ∈ A, ν+(a) = ν∗max(a), and so all arrows in T (ν+) originating from points in A are exactly the
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same as in ν+; all new arrows originate from a′ and thus necessarily point downstream). But then
ν+ ≤ T (ν+) ≤ · · · ≤ Tn(ν+) = Tn+1(ν+) ≤ ν ′max, where ν ′max = F−1(µ′max) is the highest fixed
point in market A′. This, in turn, implies that for any a ∈ A, ν∗max(a) = ν+(a) ⊃ ν ′max(a), and
so a is at least as well off in µ∗max = Cha(ν∗max(a)) as in µ′max = Cha(ν ′max(a)). Similarly, for any
a ∈ A, ν∗max(a) = ν+(a) ⊂ ν ′max(a), and so a is at most as well off in µ∗max = Cha(ν∗max(a)) as in
µ′max = Cha(ν ′max(a)).

Step 2: Now start with the larger market A′ and consider the lowest fixed point of T , ν ′min.
Exclude node a′ ∈ A′ with all the arrows going to and from a′. Denote the resulting pre-network on
A by ν−. Note that T (ν−) ≤ ν− (for any node a ∈ A, Ua(ν−(a)) ⊂ Ua(ν ′min(a)) and Da(ν−(a)) =
Da(ν ′min(a)); thus (i) by same-side substitutability, the set of upstream arrows originating at a in
T (ν−) is a superset of the set of upstream arrows originating at a in T (ν ′min) and (ii) by cross-
side complementarity, the set of downstream arrows originating at a in T (ν−) is a subset of the
set of downstream arrows originating at a in T (ν ′min)). Therefore, ν− ≥ T (ν−) ≥ . . . Tn(ν−) =
Tn+1(ν−) ≥ ν∗min. This, in turn, implies that for any a ∈ A, ν ′min(a) = ν−(a) ⊂ ν∗min(s), and
so a is at least as well off in µ∗min = Cha(ν∗min(a)) as in µ′min = Cha(ν ′min(a)). Similarly, for any
a ∈ A, ν ′min(a) ⊃ ν−(a) ⊃ ν∗min(a), and so a is at most as well off in µ∗min = Cha(ν∗min(a)) as in
µ′min = Cha(ν ′min(a)).

The case where a′ is added to the other end of the market is completely symmetric.

PROOF OF THEOREM 4:
Since every chain is a tree, the set of tree-stable networks is a subset of the set of chain-stable

networks. Let us now show that any chain-stable network is also tree stable.
Consider a network, µ∗, that is chain stable but not tree stable. Let τ be a tree with the

smallest possible number of contracts blocking µ∗. Since, by assumption, τ is not a chain, there
must exist a node, a, that is involved in at least two contracts in τ as a seller or in at least two
contracts in τ as a buyer. Assume that a is involved in contracts {c1, . . . , ck} ⊂ τ as a seller, k ≥ 2;
the case in which a is involved in two or more contracts as a buyer is completely symmetric and
is therefore omitted. Let υ = Cha[µ∗(a) ∪ c1 ∪ Ua(τ(a))] ∩ Ua(τ(a)), that is, the set of upstream
contracts in blocking tree τ that a would choose to add to µ∗ if the only additional downstream
contract it had was c1. Note that, by same-side substitutability, c1 ∈ Cha(µ∗(a) ∪ c1 ∪ Ua(τ(a))),
and so (c1 ∪ υ) ⊂ Cha(µ∗(a) ∪ (c1 ∪ υ)). Set υ can, of course, be empty. Let τ ′ be the subset of τ
which consists of contracts that involve only the nodes that have paths connecting them to a and
containing either c1 or a contract from υ. In other words, τ ′ is obtained by cutting off the branches
of tree τ (viewing a as the root) that do not start with contracts in c1 ∪ υ. By construction, τ ′ is
a tree, τ ′(a) = (c1 ∪ υ) ⊂ Cha(µ∗(a)∪ τ ′(a)), and for any other node b involved in τ ′, τ ′(b) = τ(b),
and so τ ′(b) ⊂ Chb(µ∗(b) ∪ τ ′(b)). Therefore, τ ′ is a tree block of µ∗, and contains fewer contracts
than τ does, which contradicts the assumption that τ is a tree with the smallest possible number
of contracts blocking µ∗.

PROOF OF THEOREM 5:
Suppose network µ is in the weak core, but has a chain block, (c1, . . . , ck).
Let (x1, . . . ,xm) ⊂ µ be the longest chain in µ such that the seller in contract c1 is the buyer

in contract xm, and let (y1, . . . ,yn) ⊂ µ be the longest chain in µ such that the buyer in contract
ck is the seller in contract y1. Let µ′ = {x1, . . . ,xm, c1, . . . , ck,y1, . . . ,yn}, and let M be the set
of nodes involved in µ′. Then µ′ weakly dominates µ via coalition M , and hence µ could not be in
the weak core. The proof of the fact that any network in the weak core is individually rational is
very similar, and is therefore omitted.
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Now consider any chain-stable network µ∗ that is not in the weak core, and consider a network µ′

that weakly dominates it via some coalition M and has the smallest possible number of contracts in
(µ′\µ∗) among such networks. Take a node a ∈ M that strictly prefers its set of contracts in µ′ to its
set of contracts in µ∗ and doesn’t have any upstream nodes that strictly prefer their sets of contracts
in µ′ to their sets of contracts in µ∗. Cha(µ∗(a) ∪ µ′(a)) 6= µ∗(a). If Cha(µ∗(a) ∪ µ′(a)) ⊂ µ∗(a),
then µ∗ is not individually rational, contradicting its chain stability. Otherwise, take contract
c1 ∈ Cha(µ∗(a) ∪ µ′(a))\µ∗(a). Contract c1 must be downstream for a, because a was chosen as
one of the most upstream nodes that strictly benefit from a switch from µ∗ to µ′, and because all
preferences are strict.

Let b be the buyer in contract c1. Preferences of agent b are strict, µ′(b) 6= µ∗(b), and therefore
Chb(µ∗(b) ∪ µ′(b)) 6= µ∗(b). Chb(µ∗(b) ∪ µ′(b)) 6⊂ µ∗(b) by individual rationality, and so set Z =
Chb(µ∗(b) ∪ µ′(b))\µ∗(b) is not empty. There are three possibilities: (i) Z contains only c1, (ii) Z
contains only some downstream contract c2, and (iii) Z contains c1 and a downstream contract c2.
Let us consider these possibilities one by one.
(i) In this case, (c1) is a chain block of µ∗.
(ii) In this case, consider network µ′′ that includes contract c2, the longest possible chain in µ′

that begins with c2, and the longest possible chain in µ∗ that ends at node b. Then µ′′ weakly
dominates µ∗ via the coalition of all nodes involved in µ′′, and |µ′′\µ∗| < |µ′\µ∗|, contradicting the
assumptions.
(iii) In this case, consider the buyer of contract c2 and repeat the same operation with this buyer
as what we did with buyer b.
Eventually, since we keep going downstream, we will have to end up at case (i) or (ii) and so will
either find a chain block of µ∗, or a network µ′′ that weakly dominates µ∗ such that |µ′′\µ∗| <
|µ′\µ∗|, both of which are impossible by assumption.
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Appendix B: An Example with Prices and Unit Identifiers

This appendix presents an example of a setting with prices, unit identifiers, and contracts that
link the suppliers of basic inputs with the consumers of final outputs both directly and through
intermediaries.

There are five agents in the market: two suppliers (a1 and a2), one intermediary (b), and two
consumers (c1 and c2). All agents have the same capacity: three units. For each supplier, it costs
0 to supply no units, 5 to supply one unit, 20 to supply two units, and 45 to supply three units of
input, i.e., the marginal cost of the first unit is 5, the marginal cost of the second unit is 15, and
the marginal cost of the third unit is 25. For each intermediary, it costs 0 to remain inactive, 5
to turn one unit of input into one unit of output, 15 to turn two units of inputs into two units of
output, and 30 to turn three units of input into three units of output. An intermediary can freely
dispose of unused inputs, but cannot produce more units of output than the number of units of
input that he buys. Finally, each consumer has utility 0 from no consumption, 55 from consuming
one unit of output, 100 from consuming two units, and 135 from consuming three or more units. A
consumer can also buy units of input directly from suppliers, and turn them into units of output
for his own consumption at the cost of 11 per unit. For example, his utility from buying one unit
of output and two units of input is equal to 135− 22 = 113. All utilities are quasi-linear in money.

There are also per-unit costs of transporting goods from sellers to buyers, summarized in the
matrix below. Transportation costs are split equally between the seller and the buyer.

b c1 c2

a1 1 3 2
a2 2 4 3
b – 2 1

There are six different prices at which trade is allowed to occur: 0, 10, 20, 30, 40, and 50. Each
pair of agents who can trade, can trade up to three units of a good, with unit identifiers 1, 2, or 3.
Agents’ preferences over different units are lexicographic: if the numerical payoffs of a node from
two different sets of contracts are the same, a node prefers the set with smaller unit identifiers.

It is easy to check that the nodes’ preferences satisfy same-side substitutability and cross-
side complementarity, and therefore the set of chain-stable networks has to be non-empty. Indeed,
figures B1(a) and B1(b) illustrate, respectively, the supplier- and the consumer-optimal chain-stable
networks µ∗min and µ∗max. In µ∗min, supplier a1 sells two units of input to consumer c1 at the price
of 30 for each unit, supplier a2 sells two units of input to intermediary b at the price of 20 for each
unit, and intermediary b sells two units of output to consumer c2 at the price of 40 for each unit.
In µ∗max, supplier a2 sells two units of input to consumer c2 at the price of 20 for each unit, supplier
a1 sells two units of input to intermediary b at the price of 20 for each unit, and intermediary
b sells two units of output to consumer c1 at the price of 40 for each unit. More formally, the
supplier-optimal chain-stable network consists of contracts (a1, c1, 1, 30), (a1, c1, 2, 30), (a2, b, 1, 20),
(a2, b, 2, 20), (b, c2, 1, 40), and (b, c2, 2, 40) and the consumer-optimal chain-stable network consists
of contracts (a1, b, 1, 20), (a1, b, 2, 20), (b, c1, 1, 40), (b, c1, 2, 40), (a2, c2, 1, 20), and (a2, c2, 2, 20).
These networks were obtained by running the T -algorithm starting from the lowest and the highest
pre-networks; intermediate steps are available upon request. Some other stable networks for this
market are shown in figures B1(c) and B1(d).
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Figure 1. Unstable and stable networks
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Figure 2. T -algorithm

36



a2

b2

c2

a1

b1

c1

(a) µ∗
min

a2

b2

c2

a1

b1

c1

(b) µ∗
max

a2

b2

c2

a1

b1

c1

(c) µ∗
3

a2

b2

c2

a1

b1

c1

(d) µ∗
4

Figure 3. All chain-stable networks
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Figure B1. Chain-stable networks
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