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Abstract

Trading networks generalize and unify models of matching with bilateral contracts
and indivisible goods exchange. We extend earlier models’ canonical definitions of
substitutability to the trading network context and show that all these definitions are
equivalent. We also show that substitutability corresponds to submodularity of the
indirect utility function, the single improvement property, and a no complementarities
condition. We prove that substitutability is preserved under economically important
transformations such as trade endowments, mergers, and limited liability. Finally, we
show that substitutability implies monotonicity conditions called the Laws of Aggregate
Supply and Demand.
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1 Introduction

Various forms of substitutability are essential for establishing the existence of equilibria in
diverse settings such as matching, auctions, exchange economies with indivisible goods, and
trading networks (Kelso and Crawford, 1982; Roth, 1984; Bikhchandani and Mamer, 1997; Gul
and Stacchetti, 1999, 2000; Milgrom, 2000; Ausubel and Milgrom, 2006; Hatfield and Milgrom,
2005; Sun and Yang, 2006, 2009; Ostrovsky, 2008; Hatfield et al., 2013). Substitutability arises
in a number of important applications, including matching with distributional constraints
(Abdulkadiroğlu and Sönmez, 2003; Hafalir et al., 2013; Sönmez and Switzer, 2013; Sönmez,
2013; Westkamp, 2013; Ehlers et al., 2014; Echenique and Yenmez, 2014; Kominers and
Sönmez, 2014; Kamada and Kojima, 2015), supply chains (Ostrovsky, 2008), and markets
with horizontal subcontracting (Hatfield et al., 2013), as well as “swap” deals in exchange
markets (Milgrom, 2009), and combinatorial auctions for bank securities (Klemperer, 2010;
Baldwin and Klemperer, 2014).

The diversity of settings in which substitutability plays a role has led to a variety of
different definitions of substitutability, and a number of restrictions on preferences that appear
in some definitions but not in others.1 In this paper, we show how the different definitions of
substitutability are related to each other, while dispensing with some of the restrictions in
the preceding literature. We use a general trading network model that allows us to embed the
key substitutability concepts from the matching, auctions, and exchange economy literatures.
Our main result shows that all the substitutability concepts are equivalent.

We also show that substitutability can be recast in terms of submodularity of the indirect
utility function, the single improvement property, a “no complementarities” condition, and a
condition from discrete convex analysis called M \-concavity. We prove that substitutability is
preserved under three economically important transformations: trade endowments, mergers,
and limited liability. Finally, we show that substitutability implies two key monotonicity
conditions: the Law of Aggregate Supply and the Law of Aggregate Demand. Our analysis
explicitly incorporates technical issues (such as indifferences and unbounded utility functions)
that were unaddressed in the preceding literature.

We adopt the general trading in networks framework of Hatfield et al. (2013) that
subsumes models of both matching and indivisible goods exchange. In this framework,
(bilateral) contracts specify the provision of a good or service from a seller to a buyer and a
monetary transfer. Given any two agents, there may be multiple contracts between them,
and an agent could be involved in some contracts as a buyer and in others as a seller. Agents’

1For instance, some definitions assume “free disposal”/“monotonicity,” under which an agent is always
weakly better off with a larger set of goods than with a smaller one, while other definitions do not; some
definitions assume that all bundles of goods are feasible for the agent, while others do not; and so on.
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preferences are defined by cardinal utility functions over sets of contracts and are quasilinear
with respect to the numeraire. In order to allow for various feasibility constraints, agents’
preferences are allowed to be unboundedly negative. Furthermore, unlike the literature on
indivisible goods exchange, we do not require that agents necessarily place a higher value on
larger (in the superset sense) bundles of goods and services.

We first focus on the widely used substitutability conditions from the literatures on
matching, auctions, and indivisible goods exchange. The relationships between these condi-
tions are not immediate: Matching models typically use single-valued choice functions and
formulate substitutability as the condition that an expansion of the choice set cannot make a
previously rejected object desirable. On the other hand, models of auctions and exchange
economies with indivisible goods use demand correspondences and formulate substitutability
as the condition that increasing the price of one object should not lead to a decrease in
demand for some other object whose price has not changed. We generalize these canonical
definitions of substitutability to our framework and show that they are both equivalent to a
condition that we term full substitutability. Intuitively, preferences are fully substitutable if
contracts are substitutes for each other in a generalized sense, i.e., whenever an agent gains a
new purchase opportunity, he becomes both less willing to make other purchases and more
willing to make sales, and whenever he gains a new sales opportunity, he becomes both less
willing to make other sales and more willing to make purchases. We then extend earlier
results to show several practically useful equivalents of substitutability: submodularity of
the indirect utility function, the single improvement property of Gul and Stacchetti (1999),
which suggests a polynomial time algorithm for computing utility-maximizing choices, the
“no complementarities” condition of Gul and Stacchetti (1999), and M \-concavity (Murota,
2003).2 Next, we show that assigning trade endowments, merging agents, and incorporating
limited liability into an agent’s utility function all preserve full substitutability. Finally,
we show that in our model, full substitutability implies the Laws of Aggregate Supply and
Demand (Hatfield and Kominers, 2012), extending an analogous result for two-sided matching
markets (Hatfield and Milgrom, 2005).

1.1 History and Related Literature

Kelso and Crawford (1982) introduced the gross substitutability condition, which simultane-
ously applies in both matching and exchange economy contexts. The Kelso and Crawford

2For some of these equivalences we develop new proof techniques that enable significantly shorter arguments
than were used in the prior literature. For others, we translate existing proof strategies to our richer setting
and verify that the equivalences continue to hold without the boundedness and monotonicity assumptions
imposed in the prior literature.
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(1982) gross substitutability condition was subsequently extended and generalized in each
context, giving rise to two (mostly) independent literatures.

In matching models, (choice-theoretic) substitutability of match partners (or contracts
with match partners) guarantees the existence of stable outcomes (Roth, 1984; Hatfield
and Milgrom, 2005; Hatfield and Kominers, 2013). Ostrovsky (2008) generalized the classic
substitutability conditions from two-sided matching models to the context of supply chain
networks by introducing a pair of related assumptions: same-side substitutability and cross-
side complementarity. These assumptions impose two constraints: First, when an agent’s
opportunity set on one side of the market expands, that agent does not choose any options
previously rejected from that side of the market. Second, when an agent’s opportunity set on
one side of the market expands, that agent does not reject any options previously chosen from
the other side of the market. Both Ostrovsky (2008) and Hatfield and Kominers (2012) showed
that under same-side substitutability and cross-side complementarity, a stable outcome always
exists if the contractual set has supply chain structure. Moreover, Hatfield and Kominers
(2012) showed that same-side substitutability and cross-side complementarity are together
equivalent to the assumption of quasisubmodularity of the indirect utility function—an
adaptation of submodularity to the setting without transfers.

In exchange economies with indivisible goods, the gross substitutability condition is
sufficient to guarantee the existence of core allocations (Kelso and Crawford, 1982; Gul
and Stacchetti, 1999, 2000). Ausubel and Milgrom (2002) offered a convenient alternative
definition of gross substitutability for a setting with continuous prices, in which demand is
not guaranteed to be single-valued, and showed that gross substitutability is equivalent to
submodularity of the indirect utility function. Sun and Yang (2006) introduced the gross
substitutability and complementarity condition for the setting of indivisible object allocation.
The gross substitutability and complementarity condition, akin to same-side substitutability
and cross-side complementarity, requires that objects can be divided into two groups such that
objects in the same group are substitutes and objects in different groups are complements.
Sun and Yang (2009) showed that like gross substitutability, the gross substitutability and
complementarity condition is equivalent to submodularity of the indirect utility function.

Subsequent to our work, Baldwin and Klemperer (2014) obtained additional insights on
the underlying mathematical structure of fully substitutable preferences using the techniques
of tropical geometry. Baldwin and Klemperer (2014) study the set of price vectors for which
the demand correspondence is multi-valued, and associate them with convex-geometric objects
called tropical hypersurfaces. Then, using the normal vectors that determine agents’ tropical
hypersurfaces, they distinguish among preferences that are strongly substitutable, are gross
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substitutable, or have complementarities.3

The discrete mathematics literature has explored several other concepts that are equivalent
to substitutability in certain settings. We provide one point of connection to that literature in
Section 4.5, where we establish the equivalence of full substitutability andM \-concavity in our
setting. Paes Leme (2014) provides an excellent survey that covers the discrete-mathematical
substitutability concepts and their algorithmic properties in detail.4

2 Model

We use the general trading network model of Hatfield et al. (2013): We consider an economy
with a finite set I of agents and a finite set Ω of trades. Each trade ω ∈ Ω is associated with
a buyer b(ω) ∈ I and a seller s(ω) ∈ I, with b(ω) 6= s(ω). Each trade ω ∈ Ω specifies the
nonpecuniary terms and conditions associated with the direct exchange of a single unit of an
indivisible good or service between s(ω) and b(ω).5 For concreteness, we may interpret the
finite set of trades Ω as a subset of I × I ×O×N× T , where O denotes a set of object types,
N specifies serial numbers differentiating each object of a given type o ∈ O, and T consists of
possible terms of exchange. In this context, a trade ω ∈ Ω is a 5-tuple, and two trades that
differ in any single dimension are distinct.6 However, we allow Ω to contain multiple trades
associated to the same pair of agents, and allow the possibility of trades ω ∈ Ω and ψ ∈ Ω
such that the seller of ω is the buyer of ψ, i.e., s(ω) = b(ψ), and the seller of ψ is the buyer
of ω, i.e., s(ψ) = b(ω).

We augment the set of trades by introducing a quasilinear numeraire. Formally, we let
X ≡ Ω× R denote the set of contracts in the economy, where a contract x ∈ X is a 2-tuple:
x = (ω, pω), with ω ∈ Ω and pω ∈ R. For any contract x = (ω, pω), pω is the price of trade ω
paid by the seller s(x) ≡ s(ω) to the buyer b(x) ≡ b(ω). Since for each trade ω ∈ Ω its price
pω is allowed to vary freely, we can have infinitely many contracts associated to trade ω that
differ only in prices.

A set of contracts Y is feasible if it does not contain two or more contracts for the same
3Our full substitutability concept corresponds to the demand Dn

os condition in Baldwin and Klemperer
(2014).

4Unlike in our paper, the setting of Paes Leme (2014) assumes that all bundles of goods are feasible for
the agent. Consequently, not all of the algorithmic results discussed by Paes Leme (2014) can be applied
directly in our setting.

5To emphasise the absence of prices at this stage, we could also interpret the seller in a trade as being the
“provider” of a good, while the buyer is an “acquirer.”

6Thus, in particular, an exchange of unit 17 ∈ N of object o ∈ O from agent i to agent j is encoded as
a different trade from exchange of unit 714 ∈ N of object o ∈ O from agent i to agent j. The finiteness of
Ω requires that there are finitely many types of goods, each type is available in limited quantities, and the
terms and conditions represent combinations of elements that can only take discrete values.
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trade: formally, Y is feasible if (ω, pω), (ω, p̂ω) ∈ Y implies that pω = p̂ω. We call a feasible
set of contracts an outcome. An outcome specifies the trades that are executed, with their
associated prices, but does not specify prices for trades that are not executed. An arrangement
is a 2-tuple [Ψ; p], with Ψ ∈ Ω and p ∈ RΩ. An arrangement is similar to an outcome in that
it specifies the trades that are executed; however, an arrangement specifies prices for all the
trades in the economy. For any arrangement [Ψ; p], we denote by κ([Ψ; p]) ≡ ∪ψ∈Ψ{(ψ, pψ)}
the outcome induced by [Ψ; p].

For each agent i ∈ I, we let Yi→ ≡ {y ∈ Y : i = s(y)} denote the set of contracts in
Y in which i is the seller and let Y→i ≡ {y ∈ Y : i = b(y)} denote the set of contracts in
Y in which i is the buyer; we let Yi ≡ Yi→ ∪ Y→i. We let a(Y ) ≡ ⋃

y∈Y {b(y), s(y)} denote
the set of agents involved in Y as either buyers or sellers; abusing notation slightly, we
write a(y) ≡ a({y}). We use analogous notation with regard to sets of trades Ψ ⊆ Ω (e.g.,
a(ω) = {b(ω), s(ω)}, and Ψi ≡ {ω ∈ Ψ : i ∈ a(ω)}). For a set of contracts Y ⊆ X, we
let τ(Y ) ≡ {ω ∈ Ω : (ω, pω) ∈ Y for some pω ∈ R} denote the set of trades associated to
contracts in Y .

2.1 Preferences

Each agent i has a valuation ui : 2Ωi → R ∪ {−∞} over the sets of trades in which he is
involved, with ui(∅) ∈ R. Allowing the utility of an agent to equal −∞ formalizes the
idea that an agent, due to technological constraints, may only be able to produce or sell
certain outputs contingent upon procuring appropriate inputs; for example, if ψ, ω ∈ Ω with
b(ψ) = s(ω) = i and agent i cannot sell ω unless he has procured ψ, then ui({ω}) = −∞.7

The assumption that ui(∅) is finite for each i ∈ I implies that no agent is obligated to engage
in market transactions—an agent can opt out from participating in the market at a finite
cost ui(∅) ∈ R.

We assume that agent i has quasilinear preferences over the set of trades and an (associated)
transfer t induced by a utility function

Ui(Ψ, t) = ui(Ψ) + t.

That is, agent i (weakly) prefers (Ψ, t) to (Φ, t′) if U i(Ψ, t) ≥ U i(Φ, t′).
7In the classical exchange economy literature (Bikhchandani and Mamer, 1997; Gul and Stacchetti, 1999),

the utility of an agent i is defined over bundles of objects Ω as ui : 2Ωi → R, and the utility is normalized such
that ui(∅) = 0. While these assumptions are completely innocuous and natural in the context of exchange
economies, they immediately rule out the kinds of technological constraints discussed above. Furthermore,
these assumptions would require an agent who does not buy anything to sell every possible trade that he can
sell.
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Specifically, for any feasible set of contracts Y ⊆ X, we set

Ui(Y ) ≡ Ui

τ(Y ),
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω

 = ui(τ(Y )) +
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω.

and for any arrangement [Ψ; p], we set

Ui([Ψ; p]) ≡ Ui

Ψ,
∑

ψ∈Ψi→

pψ −
∑

ψ∈Ψ→i

pψ

 = ui(Ψ) +
∑

ψ∈Ψi→

pψ −
∑

ψ∈Ψ→i

pψ.

The choice correspondence of agent i from the set of contracts Y ⊆ X is defined by

Ci(Y ) ≡ {Z ⊆ Yi : Z is feasible,∀ feasible Z ′ ⊆ Yi, Ui(Z) ≥ Ui(Z ′)}

and the demand correspondence of agent i, given a price vector p ∈ RΩ is defined by

Di(p) ≡ {Ψ ⊆ Ωi : ∀ Φ ⊆ Ωi, Ui([Ψ; p]) ≥ Ui([Φ; p])}.

3 Substitutability Concepts

We now introduce three substitutability concepts that generalize the existing definitions from
matching, auctions, and exchange economies with indivisible goods. For convenience, in
this section, we use the approach of Ausubel and Milgrom (2002) and restrict attention to
opportunity sets and vectors of prices for which choices and demands are single-valued. In
Appendices A and B, we introduce additional definitions that explicitly deal with indifferences
and multi-valued correspondences, and prove that those definitions are equivalent to each
other and to the definitions given in this section.

3.1 Choice-Language Full Substitutability

First, we define full substitutability in the language of sets and choices, adapting and merging
the Ostrovsky (2008) same-side substitutability and cross-side complementarity conditions.
In choice language, we say that a choice correspondence Ci is fully substitutable if, when
attention is restricted to sets of contracts for which Ci is single-valued, whenever the set of
options available to i on one side expands, i rejects a larger set of contracts on that side
(same-side substitutability), and selects a larger set of contracts on the other side (cross-side
complementarity).

Definition 1. The preferences of agent i are choice-language fully substitutable (CFS) if:

7



1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Yi→ = Zi→, and
Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Y→irY ∗→i ⊆ Z→irZ∗→i
and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Y→i = Z→i, and
Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Yi→rY ∗i→ ⊆ Zi→rZ∗i→
and Y ∗→i ⊆ Z∗→i.

3.2 Demand-Language Full Substitutability

Our second definition uses the language of prices and demands, generalizing the gross
substitutes and complements condition (GSC) of Sun and Yang (2006). We say that a
demand correspondence Di is fully substitutable if, when attention is restricted to prices for
which demands are single-valued, a decrease in the price of some inputs for agent i leads to a
decrease in his demand for other inputs and to an increase in his supply of outputs, and an
increase in the price of some outputs leads to the decrease in his supply of other outputs and
an increase in his demand for inputs.

Definition 2. The preferences of agent i are demand-language fully substitutable (DFS) if:

1. for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ωi→,
and pω ≥ p′ω for all ω ∈ Ω→i, for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have
{ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ω→i,
and pω ≤ p′ω for all ω ∈ Ωi→, for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have
{ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ and Ψ→i ⊆ Ψ′→i.

3.3 Indicator-Language Full Substitutability

Our third definition is essentially a reformulation of Definition 2, using a convenient vector
notation due to Hatfield and Kominers (2012). For each agent i, for any set of trades
Ψ ⊆ Ωi, define the (generalized) indicator function ei(Ψ) ∈ {−1, 0, 1}Ωi to be the vector with
component ei,ω(Ψ) = 1 for each upstream trade ω ∈ Ψ→i, ei,ω(Ψ) = −1 for each downstream
trade ω ∈ Ψi→, and ei,ω(Ψ) = 0 for each trade ω /∈ Ψ. The interpretation of ei(Ψ) is that an
agent buys a strictly positive amount of a good if he is the buyer in a trade in Ψ, and “buys”
a strictly negative amount if he is the seller of such a trade.

Definition 3. The preferences of agent i are indicator-language fully substitutable (IFS) if
for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for the unique
Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.
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Definition 3 clarifies the reason for the term “full substitutability:” an agent is more
willing to “demand” a trade (i.e., keep an object that he could potentially sell, or buy an
object that he does not initially own) if prices of other trades increase.

3.4 Equivalence of the Definitions

The main result of this section is that the three definitions of full substitutability presented
are all equivalent. Subsequently, we use the term full substitutability to refer to all our
substitutability concepts.

Theorem 1. Choice-language full substitutability (CFS), demand-language full substitutability
(DFS), and indicator-language full substitutability (IFS) are all equivalent.

Theorem 1 follows from the more general equivalence result (Theorem B.1) that we prove
in Appendix B.

4 Properties Equivalent to Full Substitutability

4.1 Submodularity of the Indirect Utility Function

A classical approach (see, e.g., the work of Gul and Stacchetti (1999) and Ausubel and
Milgrom (2002)) relates substitutability of the utility function to submodularity of the indirect
utility function. In particular, every (grossly) substitutable utility function corresponds to a
submodular indirect utility function and vice versa.8

For price vectors p, p̄ ∈ RΩ, let the join of p and p̄, denoted p ∨ p̄, be the pointwise
maximum of p and p̄; let the meet of p and p̄, denoted p ∧ p̄, be the pointwise minimum of p
and p̄.

Definition 4. The indirect utility function of agent i,

Vi(p) ≡ max
Ψ⊆Ωi

{Ui([Ψ; p])},

is submodular if, for all price vectors p, p̄ ∈ RΩ, we have that

Vi(p ∧ p̄) + Vi(p ∨ p̄) ≤ Vi(p) + Vi(p̄).
8Similar correspondences hold in markets without transferable utility: In many-to-many matching with

contracts markets without transfers, every substitutable choice function can be represented by a submodular
indirect utility function, and every submodular indirect utility function corresponds to a substitutable choice
function (Hatfield and Kominers, 2013). In trading networks without transferable utility, every indirect utility
function representing a fully substitutable choice function is quasi-submodular (Hatfield and Kominers, 2012).
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Theorem 2. The preferences of an agent are fully substitutable if and only if they induce a
submodular indirect utility function.

4.2 The Single Improvement Property

Gul and Stacchetti (1999) first observed (in the setting of exchange economies) that sub-
stitutability is equivalent to the single improvement property—an agent’s preferences are
substitutable if and only if, when an agent does not have an optimal bundle, that agent can
make himself better off by adding a single item, dropping a single item, or both. Sun and
Yang (2009) extended this result to their setting. Baldwin and Klemperer (2014) showed
that in their setting the single improvement property is equivalent to requiring that agents
have complete preferences.

Definition 5. The preferences of agent i have the single improvement property if for any
price vector p and set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞, there exists a set of trades
Φ such that

1. Ui([Ψ, p]) < Ui([Φ, p]),

2. there exists at most one trade ω such that ei,ω(Ψ) < ei,ω(Φ), and

3. there exists at most one trade ω such that ei,ω(Ψ) > ei,ω(Φ).

The single improvement property says that, when an agent holds a suboptimal bundle of
trades Ψ, that agent can be made be better off by

1. obtaining one item not currently held (either by making a new purchase, i.e., adding a
trade in Ω→i r Ψ, or by canceling a sale, i.e., removing a trade in Ψi→),

2. relinquishing one item currently held (either by canceling a purchase, i.e., removing a
trade in Ψ→i, or by making a new sale, i.e., adding a trade in Ωi→ r Ψ), or

3. both obtaining one item not currently held and relinquishing one item currently held.

For instance, an agent may buy one more input and commit to provide one additional output
as a “single improvement.”

Moreover, when the preferences of agent i satisfy the single improvement property, it is
easy to find an optimal bundle since, at any non-optimal bundle, a local adjustment can
strictly increase the utility of i.

We now generalize the earlier results of Gul and Stacchetti (1999) and Sun and Yang
(2009) to our setting.
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Theorem 3. The preferences of an agent are fully substitutable if and only if they have the
single improvement property.

4.3 Object-Language Substitutability

An intuitive way of thinking about trades in our setting is to consider each trade as representing
the transfer of an underlying object. Under this interpretation, an agent’s preferences over
trades are fully substitutable if and only if that agent’s preferences over objects have the
standard Kelso and Crawford (1982) property of gross substitutability. This interpretation
allows us to rewrite indicator-language full substitutability to more naturally correspond to
the intuitive explanation of the concept given in Section 3.

Formally, we consider each trade ω ∈ Ω as transferring an underlying object from s(ω)
to b(ω); we denote this underlying object as o(ω). We call the set of all underlying objects
Ω. Hence, for agent i, we can think of a set of trades Ψ as leaving that agent with a set of
objects corresponding to trades in Ψ where i is a buyer and trades not in Ψ where i is a
seller. We define the set of objects held by agent i after executing the set of trades Ψ as

oi(Ψ) = {o(ω) : ω ∈ Ψ→i} ∪ {o(ω) : ω ∈ Ωi r Ψi→}.

Conversely, we define the trade associated with an object ω as t(ω); note that t(o(ω)) = ω.
We also define the set of trades executed by i for a given set of held objects Ψ ⊆ Ωi ≡ {ω ∈
Ω : i ∈ {b(t(ω)), s(t(ω))} as

ti(Ψ) = {ω ∈ Ω→i : o(ω) ∈ Ψ} ∪ {ω ∈ Ωi→ : o(ω) ∈ Ωi r Ψ}.

Hence, for a partition of objects {Ψi}i∈I , the set of trades that implements this partition is
given by ⋃

i∈I
ti(Ψi).

For notational simplicity, for a set of objects Ψ, we let ui(Ψ) ≡ ui(ti(Ψ)).
Using object language, we can also reformulate indicator-language full substitutability to

object-language full substitutability.

Definition 6. The preferences of agent i are object-language fully substitutable (OFS) if
for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for the unique
Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), if ω ∈ oi(Ψ), then ω ∈ oi(Ψ′) for each ω ∈ Ωi such that
pt(ω) = p′t(ω).

Under object-language full substitutability, increases in the prices of objects ψ 6= ω cannot
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decrease the agent’s demand for objects ω whose prices do not change. That is, the agent’s
preferences over objects are grossly substitutable, in the sense of Kelso and Crawford (1982).

We can now understand the indicator vector ei,ψ(Ψ) as encoding whether the object
ψ = o(ψ) is transferred under Ψ:

• If ψ ∈ Ψ→i, then ψ ∈ oi(Ψ) and ei,ψ(Ψ) = 1, i.e., i obtains the object associated with ψ.

• If ψ ∈ Ψi→, then ψ /∈ oi(Ψ) and ei,ψ(Ψ) = −1, i.e., i gives up the object associated
with ψ.

• Finally, if ψ /∈ Ψ, then ei,ψ(Ψ) = 0, i.e., i neither obtains nor gives up the object
associated with ψ.

Additionally, object-language full substitutability helps us define a “no complementarities
condition,” equivalent to full substitutability, in the next section. Also, it is useful in our
proof fully substitutable preferences satisfy the Laws of Aggregate Supply and Demand
(under quasilinear utility).

We can reformulate the definition of the single improvement property in terms of objects.

Definition 7. The preferences of agent i have the single improvement property if for any
price vector p and set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞, there exists a set of trades
Φ such that

1. U i([Ψ, p]) < U i([Φ, p]),

2. there exists at most one object ω ∈ oi(Φ) r oi(Ψ), and

3. there exists at most one object ω ∈ oi(Ψ) r oi(Φ).

Using object language, we obtain a definition of the single improvement property that
exactly matches the intuition provided on page 10. The single improvement property says
that, when an agent holds a suboptimal bundle of trades Ψ, that agent can be made be better
off by

1. obtaining one object ω not currently held, i.e., ω /∈ oi(Ψ),

2. relinquishing one object ω currently held, i.e., ω ∈ oi(Ψ), or

3. both obtaining one object and relinquishing one object.
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4.4 The No Complementarities Condition

Gul and Stacchetti (1999) observed that substitutability is equivalent to the no complemen-
tarities condition; we extend this observation here.

Definition 8. The preferences of agent i satisfy the no complementarities condition if, for
every price vector p, for any Φ,Ψ ∈ Di(p), and for any Ψ̄ ⊆ oi(Ψ), there exists Φ̄ ⊆ oi(Φ)
such that ti((Ψ r Ψ̄) ∪ Φ̄) ∈ Di(p).

The no complementarities condition requires that for any pair of optimal bundles of
objects, Ψ and Φ, and for any Ψ̄ ⊆ Ψ, there exists a set of objects Φ̄ ⊆ Φ that “substitute”
for the objects in Ψ̄, in the sense that (Ψ r Ψ̄) ∪ Φ̄ is optimal.

Theorem 4. The preferences of an agent are fully substitutable if and only if they satisfy
the no complementarities condition.

The proof of Theorem 4 is an adaptation of the proof of Theorem 1 of Gul and Stacchetti
(1999). Gul and Stacchetti (1999) assume that valuation functions are monotone and
bounded from below; thus, in our proof of Theorem 4, we must be careful to ensure that
non-monotonicities and unboundedness do not invalidate the Gul and Stacchetti (1999) proof
strategy.

4.5 M \-Concavity over Objects

Reijnierse et al. (2002) and Fujishige and Yang (2003) independently observed that gross
substitutability in the Kelso and Crawford (1982) model is equivalent to a classical condition
from discrete optimization theory, M \-concavity. In our object-language notation, the
condition can be stated as follows.

Definition 9. The valuation ui is M \-concave over objects if for all Φ,Ψ ∈ Ωi, for any
ψ ∈ Ψ,

ui(Ψ) + ui(Φ) ≤ max
{
ui(Ψ r {ψ}) + ui(Φ ∪ {ψ}),

max
ϕ∈Φ
{ui(Ψ ∪ {ϕ}r {ψ}) + ui(Φ ∪ {ψ}r {ϕ})}

}
.

A valuation function is M \-concave if, for any sets of objects Ψ and Φ, the average
valuation between Ψ and Φ can be weakly increased by either moving one object from Ψ to
Φ or swapping one object in Ψ for one object in Φ.

Theorem 5. The preferences of an agent are fully substitutable if and only if the associated
valuation function is M \-concave over objects.
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This equivalence result follows from Theorem 7 of Murota and Tamura (2003), which
shows thatM \-concavity is equivalent to the single improvement property—and which in turn,
by our Theorem 3, implies the equivalence between full substitutability and M \-concavity.

5 Transformations

We now consider several economically-motivated valuation function transformations. We first
consider the possibility that an agent is endowed with the right to execute any trades in a
given set. We also examine mergers, where the valuation function of the merged entity is
constructed as the convolution of the valuation functions of the merging parties.9 Finally, we
consider a form of limited liability, where an agent may back out of some agreed-upon trades in
exchange for paying an exogenously-fixed penalty. We show that all of these transformations
preserve substitutability.

5.1 Trade Endowments

Suppose an agent i is endowed with the right to execute trades in the set Φ ⊆ Ωi at prices
pΦ. Let

û
(Φ,pΦ)
i (Ψ) ≡ max

Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

ξ∈Ξ→i

pξ −
∑

ξ∈Ξ→i

pξ

 (1)

be a valuation over trades in Ω r Φ; û(Φ,pΦ)
i represents agent i having a valuation over trades

in Ω r Φ consistent with ui, while being endowed with the option of executing any trades in
the set Φ ⊆ Ωi at prices pΦ.

Theorem 6. If the preferences of agent i are fully substitutable, then the preferences induced
by the valuation function û(Φ,pΦ)

i (defined in (1)) are fully substitutable for any Φ ⊆ Ωi and
pΦ ∈ RΦ.

When we endow i with access to the trades in Φ at prices pΦ, we are effectively restricting
(1) the set of prices that may change and (2) the set of trades that are required to be

9In two-sided matching settings, the operations of “endowment” and “merger” were used by Hatfield and
Milgrom (2005) to construct the class of endowed assignment valuations, starting with singleton preferences
and iteratively applying these operations. Hatfield and Milgrom (2005) show that these operations preserve
substitutability (Theorems 13 and 14), and thus show that all endowed assignment valuation preferences are
substitutable. Ostrovsky and Paes Leme (2014) show that there exist substitutable preferences that cannot
be represented as an endowed assignment valuation, and introduce the class of matroid-based valuations,
which is obtained by iteratively applying the “endowment” and “merger” operations to weighted-matroid
valuations. Since every weighted-matroid valuation is substitutable (Murota, 1996; Murota and Shioura,
1999; Fujishige and Yang, 2003), every matroid-based valuation is also substitutable. It is an open question
whether every substitutable valuation is a matroid-based valuation.
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substitutes in the demand-theoretic definition of full substitutability (Definition 2). Naturally,
this process cannot create complementarities among trades in Ω r Φ, given that under ui
these trades already are substitutes for each other and for the trades in Φ. Hence, û(Φ,pΦ)

i

induces fully substitutable preferences over trades in Ω r Φ.

5.2 Mergers

The second transformation we consider is the case when several agents act in concert, e.g.,
following a merger. Given a set of agents J , we denote the set of trades that involve only
agents in J as ΩJ ≡ {ω ∈ Ω : {b(ω), s(ω)} ⊆ J}. We let the convolution of the valuation
functions {uj}j∈J be defined as

uJ(Ψ) ≡ max
Φ⊆ΩJ

∑
j∈J

uj(Ψ ∪ Φ)

 (2)

for sets of trades Ψ ⊆ Ω r ΩJ . The convolution uJ represents a “merger” of the agents in J ,
as it treats the agents in J as able to execute any within-J trades costlessly.

Theorem 7. For any set of agents J ⊆ I, if the preferences of each j ∈ J are fully
substitutable, then the preferences induced by the convolution uJ (defined in (2)) are fully
substitutable.

When the preferences of each agent j ∈ J are fully substitutable, for any given price
vector for trades in Ω r ΩJ , it is utility-maximizing for the merged entity J to choose as if
it were still composed of individual agents. Hence, the merger has no effect on the demand
of agents in J for trades with agents not in J ; consequently, the merged entity exhibits
substitutable preferences.

Note that substitutability is not preserved following dissolution/de-mergers. For example,
if agents i and j only trade with each other (i.e., Ωi = Ωj), then the preferences induced by
the convolution valuation u{i,j} are trivially fully substitutable, even if the preferences of i
and j are not.

Note also that while merging agents preserves substitutability, the same cannot be said
about merging trades between two agents. For example, consider a simple economy with
agents i and j and four trades: set Ω consists of trades χ, ϕ, ψ, and ω. Agent i is the buyer
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in all of these trades, and agent j is the seller. The valuation of agent i is as follows:

ui(Ψ) =


2 |Ψi| ≥ 2

1 |Ψi| = 1

0 otherwise.

The preferences of i are clearly fully substitutable. But now consider merging the trades
χ and ϕ into a single trade ξ. The resulting valuation function of i over the subsets of
Ω̃ ≡ (Ω r {χ, ϕ}) ∪ {ξ} is given by

ũi(Ψ) =


2 |Ψi| ≥ 2 or ξ ∈ Ψ

1 |Ψi| = 1 and ξ /∈ Ψ

0 otherwise.

Valuation function ũi is not fully substitutable. To see this, note that for price vector
p = (pξ, pψ, pω) = (1.7, 0.8, 0.8), the unique optimal demand of agent i is {ψ, ω}, but for price
vector p′ = (p′ξ, p′ψ, p′ω) = (1.7, 1, 0.8), the unique optimal demand of agent i is {ξ}. That is,
under price vector p′, agent i no longer demands the trade ω, even though its price remains
unchanged while the price of ψ increases and the price of ξ remains unchanged.

5.3 Limited Liability

The final transformation we consider is “limited liability.” Specifically, suppose that after
agreeing to a trade, an agent is allowed to renege on that trade in exchange for paying a
fixed penalty. We show that this transformation preserves substitutability. In addition to
being economically interesting, the preservation of substitutability under limited liability is
also useful technically; indeed, it enables us to transform unbounded utility functions into
bounded ones while preserving substitutability. (The fact that this transformation preserves
substitutability simplifies the technical analysis in a number of settings; see, e.g., the proof of
Theorem 1 in Hatfield et al. (2013).)

Formally, consider a fully substitutable valuation function ui for agent i. Take an arbitrary
set of trades Φ ⊆ Ωi, and for every trade ϕ ∈ Φ, pick Πϕ ∈ R—the penalty for reneging on
trade ϕ. (For mathematical completeness, we allow Πϕ to be negative.) Define the modified
valuation function ûi as

ûi(Ψ) ≡ max
Ξ⊆Ψ∩Φ

ui(Ψ r Ξ)−
∑
ϕ∈Ξ

Πϕ

 . (3)
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That is, under valuation ûi, agent i can “buy out” some of the trades to which he has
committed (provided these trades are in the set Φ of trades the agent may renege on), and
pay the corresponding penalty for each trade he buys out.

Theorem 8. For any Φ ⊆ Ωi and ΠΦ ∈ RΦ, if agent i has fully substitutable preferences, then
the valuation function ûi with limited liability (as defined in (3)) induces fully substitutable
preferences.

6 Implications of Full Substitutability

6.1 Stable Outcomes and Competitive Equilibria

In other work, we show that when all agents’ preferences are fully substitutable, outcomes that
are stable (in the sense of matching theory) exist for any underlying network structure (Hatfield
et al., 2013, Theorems 1 and 5). Furthermore, full substitutability of preferences guarantees
both that the set of stable outcomes is essentially equivalent to the set of competitive equilibria
with personalized prices (Hatfield et al., 2013, Theorems 5 and 6) and that all stable outcomes
are in the core and are efficient (Hatfield et al., 2013, Theorem 9).10 Full substitutability also
delineates a maximal domain for the existence of stable outcomes in our framework: for any
domain of preferences strictly larger than that of full substitutability, the existence of stable
outcomes and competitive equilibria cannot be guaranteed (Hatfield et al., 2013, Theorem 7).
These results all build upon methods and insights from the prior literature on markets with
fully substitutable preferences—especially the work of Crawford and Knoer (1981), Kelso
and Crawford (1982), Gul and Stacchetti (1999, 2000), and Sun and Yang (2006, 2009).

6.2 Laws of Aggregate Supply and Demand

In two-sided matching markets with transfers and quasilinear utility, all fully substitutable
preferences satisfy a monotonicity condition called the Law of Aggregate Demand (Hatfield
and Milgrom, 2005).11 The analogues of this condition for the current setting are the Laws
of Aggregate Supply and Demand for trading networks, first introduced by Hatfield and
Kominers (2012).

10Moreover, when all agents’ preferences are fully substitutable, the set of stable outcomes is equivalent to
the set of chain stable outcomes (Hatfield et al., 2015).

11In the context of two-sided matching with contracts, the Law of Aggregate Demand is essential for “rural
hospitals” and strategy-proofness results (see Hatfield and Milgrom (2005); Hatfield and Kominers (2013)).
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Definition 10. The preferences of agent i satisfy the Law of Aggregate Demand if for all
finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for every Y ∗ ∈ Ci(Y ),
there exists Z∗ ∈ Ci(Z) such that |Z∗→i| − |Y ∗→i| ≥ |Z∗i→| − |Y ∗i→|.

The preferences of agent i satisfy the Law of Aggregate Supply if for all finite sets of
contracts Y and Z such that Yi→ ⊆ Zi→ and Y→i = Z→i, for every Y ∗ ∈ Ci(Y ), there exists
Z∗ ∈ Ci(Z) such that |Z∗i→| − |Y ∗i→| ≥ |Z∗→i| − |Y ∗→i|.

In our network setting with quasilinear utilities and continuous transfers, preference full
substitutability implies the Laws of Aggregate Supply and Demand.

Theorem 9. If the preferences of agent i are fully substitutable and quasilinear in the
numeraire, then they satisfy the Laws of Aggregate Supply and Demand.

Theorem 9 generalizes Theorem 7 of Hatfield and Milgrom (2005), who showed the
analogous result in the special case when agent i acts only as a buyer. The proof essentially
follows from applying the Hatfield and Milgrom (2005) result to the agent’s preferences over
objects.

7 Conclusion

Economists have recently recognized a number of structural similarities in models of matching,
auctions, and exchange economies (see, e.g., Kelso and Crawford (1982), Gul and Stacchetti
(1999), Hatfield and Milgrom (2005), and Sun and Yang (2006)). The generality of our
framework allows us to further unify matching, auctions, and exchange by showing that the
key substitutability conditions from these literatures are all equivalent; establishing that there
is essentially one “full substitutability” condition may enable economists to share insights
across fields.

We show that substitutability has several economically important implications: When
preferences are substitutable, they satisfy both a “no complementarities” condition as well
as the single improvement property; consequently, it is easy, i.e., computationally tractable,
for agents with substitutable preferences to find optimal demands given prices. We further
show that mergers, limited liability and trade endowments are all substitutability-preserving
transformations; these results may be useful, for instance, in the analysis of the used-car
market (where mergers among dealers are common) and in the design of auctions (where
limited liability is both technically useful and also a real constraint).

Expressing substitutability in terms of preferences over trades is not straightforward
as, when an individual agent can be both a buyer and a seller, substitutability requires
treating relationships between “same-side” and “cross-side” contracts differently. Both Sun
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and Yang (2006) and Ostrovsky (2008) introduced a concept of cross-side complementarity,
which requires that agents treat buy-side contracts as complementary with sell-side contracts.
Our work uncovers that cross-side complementarity is not really a complementarity condition
per se: rather, it corresponds to an underlying substitutability condition over objects.

Meanwhile, our interpretation of substitutability in terms of preferences over objects (Def-
inition 6) is straightforward: When an agent’s object opportunity set shrinks, substitutability
requires that the agent not reduce demand for any object that remains in his opportunity
set. In particular, in settings with transferable utility, when prices increase, an agent’s object
opportunity set shrinks; hence, substitutability requires that the agent (weakly) increase his
demand for objects, both his and others’, whose prices do not rise.
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Appendix

A Full Substitutability Definitions with Indifferences

In this Appendix, we introduce six alternative definitions of full substitutability, as follows:

• Definitions A.1 and A.2 are analogues of our choice-language definition (Definition 1),

• Definitions A.3 and A.4 are analogues of our demand-language definition (Definition 2),
and

• Definitions A.5 and A.6 are analogues of our indicator-language definition (Definition
3).

In contrast to Definitions 1, 2 and 3, which consider single-valued choices and demands,
Definitions A.1–A.6 explicitly consider multi-valued correspondences and deal directly with
indifferences. By explicitly accounting for indifferences and multi-valued correspondences, we
directly generalize the original gross substitutability condition of Kelso and Crawford (1982)
to our setting. Moreover, the conditions that explicitly account for indifferences turn out to
be useful for proving various results on trading networks, as we discuss below.

Definition A.1, stated in the language of choice functions, and Definition A.3, stated in
the language of demand functions, are conceptually related in that in both definitions the
set of “options” available on one side expands, while the set of options on the other side
remains unchanged.12 The idea of expanding options on one side originated in the matching
literature, where it is natural to consider an expansion in the set of available trades, which in
turn induces an expansion in the set of available contracts (see Ostrovsky (2008), Westkamp
(2010), Hatfield and Kominers (2012), and Hatfield et al. (2013)). Definition A.1 is the full
substitutability concept used by Hatfield et al. (2015) to prove the equivalence of stability
and chain stability in trading networks.13 The equivalence of Definition A.3 (DEFS) to other
definitions of full substitutability is used in the proof of Theorem 6 of Hatfield et al. (2013)
on the equivalence of stability and competitive equilibrium.

Definition A.2, stated in the language of choice functions, and Definition A.4, stated in
the language of demand functions, are related in that in both definitions the set of “options”

12In choice-language, the “options” are the contracts available to choose from. In demand-language, the
expansion of the set of “options” corresponds to prices of trades moving in the direction advantageous for the
agent: trades in which he is the buyer become cheaper, and trades in which he is the seller become more
expensive.

13Hatfield et al. (2015) do not assume the quasilinearity of preferences or the continuity of transfers, and
thus our equivalence results do not apply to the most general version of their setting.
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available on one side contracts, while the set of options on the other side remains unchanged.14

Definition A.4 (DCFS) is the full substitutability definition that corresponds most directly to
the original definition of gross substitutability of Kelso and Crawford (1982) and the definition
of Gul and Stacchetti (1999, 2000): When an agent is not a seller in any trade in the economy,
the (DCFS) condition directly reduces to those definitions of gross substitutability. It is also
the definition that corresponds to the gross substitutes and complements condition of Sun
and Yang (2006, 2009). The equivalence of the (DCFS) condition to other full substitutability
conditions (in particular, to the (IFS) and (DFS) conditions that only consider single-valued
demands) is used in the proof of Theorem 1 of Hatfield et al. (2013) on the existence of
competitive equilibria, in the step of the proof that “transforms” a trading network economy
to a Kelso-Crawford two-sided, one-to-many matching market. The equivalence of the (DCFS)
condition to the “single-valued” substitutability conditions implies that agents’ preferences in
the “transformed” market satisfy the gross substitutes condition of Kelso and Crawford (1982),
making it possible to apply the results of Kelso and Crawford (1982) to the “transformed”
market.

In contrast to Definitions A.1–A.4, which consider a change in the set of available options
on one side while keeping the options on the other side unchanged, Definitions A.5 and A.6
consider changes in the set of options available on both sides simultaneously (i.e., the set
of options on one side expands while the set of options on the other side contracts). This
idea is in line with the auction literature, where it is standard to consider the effects of a
weak increase (or decrease) of the entire price vector (see, e.g., Ausubel and Milgrom (2006)
and Ausubel (2006)). We use Definitions A.5 and A.6 in the proof of Theorem 3 on the
equivalence of full substitutability and the single-improvement property.

A.1 Choice-Language Full Substitutability

Our next two definitions are analogues of Definition 1.

Definition A.1. The preferences of agent i are choice-language expansion fully substitutable
(CEFS) if:

1. for all finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Y ∗ ∈ Ci(Y ), there exists Z∗ ∈ Ci(Z) such that (Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and
Y ∗i→ ⊆ Z∗i→;

14In demand-language, the contraction of the set of “options” corresponds to prices of trades moving in the
direction disadvantageous for the agent: trades in which he is the buyer become more expensive, and trades
in which he is the seller become cheaper.
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2. for all finite sets of contracts Y, Z ⊆ Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Y ∗ ∈ Ci(Y ), there exists Z∗ ∈ Ci(Z) such that (Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and
Y ∗→i ⊆ Z∗→i.

Definition A.2. The preferences of agent i are choice-language contraction fully substitutable
(CCFS) if:

1. for all finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Z∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y ) such that (Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and
Y ∗i→ ⊆ Z∗i→;

2. for all finite sets of contracts Y, Z ⊆ Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Z∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y ) such that (Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and
Y ∗→i ⊆ Z∗→i.

Note that we use Y as the “starting set” in (CEFS) and Z as the “starting set” in (CCFS)
to make the two notions more easily comparable. Furthermore, note that in Case 1 of (CEFS)
and (CCFS), requiring Y→irY ∗→i ⊆ Z→irZ∗→i is equivalent to requiring that Z∗ ∩Y→i ⊆ Y ∗,
and similarly, in Case 2, requiring Yi→ r Y ∗i→ ⊆ Zi→ r Z∗i→ is equivalent to requiring that
Z∗ ∩ Yi→ ⊆ Y ∗.

A.2 Demand-Language Full Substitutability

Our next two definitions are analogues of Definition 2.

Definition A.3. The preferences of agent i are demand-language expansion fully substi-
tutable (DEFS) if:

1. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all
ω ∈ Ω→i, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p′) such that {ω ∈ Ψ′→i : pω = p′ω} ⊆
Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω for all
ω ∈ Ωi→, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p′) such that {ω ∈ Ψ′i→ : pω = p′ω} ⊆
Ψi→ and Ψ→i ⊆ Ψ′→i.

Definition A.4. The preferences of agent i are demand-language contraction fully substi-
tutable (DCFS) if:

1. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all
ω ∈ Ω→i, for every Ψ′ ∈ Di(p′) there exists Ψ ∈ Di(p) such that {ω ∈ Ψ′→i : pω = p′ω} ⊆
Ψ→i and Ψi→ ⊆ Ψ′i→;
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2. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω for all
ω ∈ Ωi→, for every Ψ′ ∈ Di(p′) there exists Ψ ∈ Di(p) such that {ω ∈ Ψ′i→ : pω = p′ω} ⊆
Ψi→ and Ψ→i ⊆ Ψ′→i.

Note that we use p as the “starting price vector” in (DEFS) and p′ as the “starting price
vector” in (DCFS). Also, in Case 1 of (DEFS) and (DCFS), requiring {ω ∈ Ψ′→i : pω =
p′ω} ⊆ Ψ→i is equivalent to requiring that {ω ∈ (Ω→i r Ψ) : pω = p′ω} ⊆ Ω→i r Ψ′, and
similarly, in Case 2, requiring {ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ is equivalent to requiring that
{ω ∈ (Ωi→ r Ψ) : pω = p′ω} ⊆ Ωi→ r Ψ′.

A.3 Indicator-Language Full Substitutability

Our next two definitions are analogues of Definition 3.

Definition A.5. The preferences of agent i are indicator-language increasing-price fully
substitutable (IIFS) if for all price vectors p, p′ ∈ RΩ such that p ≤ p′, for every Ψ ∈ Di(p)
there exists Ψ′ ∈ Di(p′), such that ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.

Definition A.6. The preferences of agent i are indicator-language decreasing-price fully
substitutable (IDFS) if for all price vectors p, p′ ∈ RΩ such that p ≤ p′, for every Ψ′ ∈ Di(p′)
there exists Ψ ∈ Di(p), such that ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.

Note that we use p as the “starting price vector” in (IIFS) and p′ ≥ p as the “starting
price vector” in (IDFS).

B Equivalence of Full Substitutability Definitions

In this Appendix, we show that the three definitions in Section 3 and the six definitions in
Appendix A are all equivalent. In particular, this implies Theorem 1.

Theorem B.1. The (CFS), (DFS), (IFS), (CEFS), (CCFS), (DEFS), (DCFS), (IIFS), and
(IDFS) conditions are all equivalent.

Proof. It is immediate that (CEFS) and (CCFS) each imply (CFS), and (IIFS) and (IDFS)
both imply (IFS). Below we establish the remaining equivalences by showing that (CFS)
⇒ (DFS), (DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS), (DEFS) ⇒ (CEFS), (DCFS) ⇒ (CCFS),
(DEFS) + (DCFS) ⇒ (IDFS) + (IIFS), and (IFS) ⇒ (DFS).
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(CFS) ⇒ (DFS) We first show that Case 1 of (CFS) implies Case 1 of (DFS). For any
agent i and price vector p ∈ RΩ, let Xi(p) ≡ {(ω, p̂ω) : ω ∈ Ω→i, p̂ω ≥ pω} ∪ {(ω, p̂ω) : ω ∈
Ωi→, p̂ω ≤ pω}, in essence denoting the set of contracts available to agent i under prices p.

Let price vectors p, p′ ∈ RΩ be such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all
ω ∈ Ωi→, and p′ω ≤ pω for all ω ∈ Ω→i. Let Y = Xi(p) and Z = Xi(p′). Clearly,
Yi→ = Zi→ and Y→i ⊆ Z→i. Furthermore, it is immediate that Ψ ∈ Di(p) if and only if
κ([Ψ; p]) ∈ Ci(Y ), and similarly, Ψ′ ∈ Di(p′) if and only if κ([Ψ′; p′]) ∈ Ci(Z). In particular,
we have |Ci(Y )| = |Ci(Z)| = 1 and can thus apply (CFS) to the sets Y and Z.

Take the unique Ψ ∈ Di(p), let Y ∗ = κ([Ψ, p]), and note that Y ∗ ∈ Ci(Y ). By (CFS), the
unique Z∗ ∈ Ci(Z) satisfies Y→i r Y ∗→i ⊆ Z→i r Z∗→i and Y ∗i→ ⊆ Z∗i→. Let Ψ′ = τ(Z∗) and
note that Ψ′ ∈ Di(p′). We show that Ψ′ satisfies the conditions in Case 1 of Definition 2.

Note that Y→irY ∗→i ⊆ Z→irZ∗→i implies {ω ∈ Ω→irΨ→i : pω = p′ω} ⊆ τ(Y→i)rτ(Y ∗→i) ⊆
τ(Z→i) r τ(Z∗→i) ⊆ Ω→i r Ψ′→i. Furthermore, Y ∗i→ ⊆ Z∗i→ and pω = p′ω for each ω ∈ Ωi→

imply Ψ′i→ ⊆ Ψi→.
The proof that Case 2 of (CFS) implies Case 2 of (DFS) is analogous.

(DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS) We first show that Case 1 of (DFS) implies Case
1 of (DEFS). Take two price vectors p, p′ such that p′ω ≤ pω for all ω ∈ Ω→i and pω = p′ω

for all ω ∈ Ωi→, and fix an arbitrary Ψ ∈ Di(p). We need to show that there exists a set
Ψ′ ∈ Di(p′) that satisfies the conditions of Case 1 of (DEFS).

As the statement is trivial when Di(p′) = {Ξ : Ξ ⊂ Ωi}, we assume the contrary. In the
following, let Ω̃→i = {ω ∈ Ω→i : p′ω < pω}. Let ε1 = Vi(p′)−maxΞ⊆Ωi,Ξ/∈Di(p′) Ui([Ξ; p′]), and
ε2 = minω∈Ω̃→i

(pω − p′ω). Let ε = min{ε1,ε2}
2|Ωi| . Note that by construction, ε > 0.

We now define a price vector q1 by

q1
ω =


pω − ε ω ∈ Ωi→ r Ψ or ω ∈ Ψ→i
pω + ε ω ∈ Ω→i r Ψ or ω ∈ Ψi→

0 ω /∈ Ωi.

Clearly, we must have Di(q1) = {Ψ}. Now define q2 by q2
ω = q1

ω for all ω ∈ Ω r Ω̃→i and
q2
ω = p′ω for all ω ∈ Ω̃→i. We claim that Di(q2) ⊆ Di(p′). To see this, fix an arbitrary

Φ ∈ Di(p′) and an arbitrary Ξ /∈ Di(p′). Then we must have

Ui([Φ; q2]) ≥ Ui([Φ; p′])− |Φ|ε > Ui([Ξ; p′]) ≥ Ui([Ξ; q2]),

where the first and third inequalities follow directly from the definitions of q2, and the second
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inequality follows from |Φ|ε ≤ |Ωi|ε1 < Vi(p′)− Ui([Ξ; p′]) = Ui([Φ; p′])− Ui([Ξ; p′]).
We will now show that the condition in Case 1 of Definition 2 is satisfied for any set

of trades Ψ′ ∈ Di(q2). Take any such Ψ′. Similar to the above, we define δ1 = Vi(q1) −
maxΞ⊆Ωi,Ξ/∈Di(q1) Ui([Ξ; q1]), δ2 = Vi(q2)−maxΞ⊆Ωi,Ξ/∈Di(q2) Ui([Ξ; q2]), and δ3 = minω∈Ω̃→i

(q1
ω−

p′ω). Let δ = min{δ1,δ2,δ3}
3|Ωi| , and define price vector q3 as

q3
ω =


q2
ω − δ ω ∈ Ωi→ r Ψ′ or ω ∈ Ψ′→i
q2
ω + δ ω ∈ Ω→i r Ψ′ or ω ∈ Ψ′i→

0 ω /∈ Ωi.

Clearly, we must have Di(q3) = {Ψ′}. Now define q4 by q4
ω = q3

ω for all ω ∈ Ω r Ω̃→i and
q4
ω = q1

ω for all ω ∈ Ω̃→i. Similar to the above, we can show that Di(q4) ⊆ Di(q1), and
therefore Di(q4) = {Ψ}. Since q3

ω < q4
ω for all ω ∈ Ω̃→i and q3

ω = q4
ω for all ω ∈ Ω r Ω̃→i,

we can now apply Case 1 of (DFS) to conclude that Ψ′ satisfies the condition in Case 1 of
(DEFS).

The proofs that Case 2 of (DFS) implies Case 2 of (DEFS), and that (DFS) implies
(DCFS) are completely analogous.

(DEFS) ⇒ (CEFS), (DCFS) ⇒ (CCFS) We first prove Case 1 of (CEFS). Take agent
i and any sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Yi→ = Zi→, and
Y→i ⊆ Z→i. Define usable and unusable trades in Y as follows. Take trade ω ∈ Yi→. If there
exists real number r such that (i) (ω, r) ∈ Y and (ii) for any r′ > r, (ω, r′) /∈ Y , then trade ω
is usable in Y ; otherwise, it is unusable in Y . Similarly, take trade ω ∈ Y→i. If there exists
real number r such that (i) (ω, r) ∈ Y and (ii) for any r′ < r, (ω, r′) /∈ Y , then trade ω is
usable in Y ; otherwise, it is unusable in Y . Note that an unusable trade cannot be a part of
any contract involved in any optimal choice in Ci(Y ). The definitions of trades usable and
unusable in Z are completely analogous.

We now construct preliminary price vectors q and q′ as follows. First, for every trade
ω /∈ Ωi, qω = q′ω = 0. Second, for every trade ω unusable in Y , qω = 0, and for every trade ω
unusable in Z, q′ω = 0. Next, for any trade ω ∈ Ωi→ usable in Y , qω = max{r : (ω, r) ∈ Y },
and similarly, for any trade ω ∈ Ωi→ usable in Z, q′ω = max{r : (ω, r) ∈ Z}. Finally, for any
trade ω ∈ Ω→i usable in Y , qω = min{r : (ω, r) ∈ Y } and for any trade ω ∈ Ω→i usable in Z,
q′ω = min{r : (ω, r) ∈ Z}.

We now construct price vectors p and p′. First, for any trade ω /∈ Ωi, pω = p′ω = 0. Second,
for any trade ω ∈ Ωi that is usable in both Y and Z, let pω = qω and let p′ω = q′ω. Finally,
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we need to set prices for trades unusable in Y or Z. We already noted that for any trade ω
unusable in set Y , it has to be the case that ω is not involved in any contract in any optimal
choice in Ci(Y ); and likewise, if ω is unusable in Z, then ω is not involved in any contract in
any optimal choice in Ci(Z). Thus, in forming prices p and p′, we will need to assign to these
trades prices that are so large (or small, depending on which side the trade is on) that the
corresponding trades are not demanded by agent i.

Let Π be a very large number. For instance, let

∆1 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; q])− Ui([Ω2; q])|,

∆2 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui(Ω1; q′)− Ui(Ω2; q′)|,

and Π = 1 + ∆1 + ∆2 + maxω∈Ωi
|qω| + maxω∈Ωi

|q′ω|. For all ω ∈ Ωi→ that are unusable in
Y (and thus also in Z), let pω = p′ω = −Π. For all ω ∈ Ω→i that are unusable in both Y
and Z, let pω = p′ω = Π. For all ω ∈ Ω→i that are unusable in Y but not in Z, let pω = Π
and p′ω = q′ω. Finally, for all ω ∈ Ω→i that are unusable in Z but not in Y , let pω = p′ω = qω.
Note that for any such ω, since Y ⊂ Z, (ω, qω) ∈ Z; also, as ω is unusable in Z, there are no
contracts involving ω in any optimal choice in Ci(Z).

Now, p′ω = pω for all ω ∈ Ωi→ and p′ω ≤ pω for all ω ∈ Ω→i. Take any Y ∗ ∈ Ci(Y ), and
let Ψ = τ(Y ∗). By construction, Ψ ∈ Di(p). By (DEFS), there exists Ψ′ ∈ Di(p′) such that
{ω ∈ (Ω→i r Ψ→i) : pω = p′ω} ⊆ Ω→i r Ψ′→i and Ψi→ ⊆ Ψ′i→. Let Z∗ = κ([Ψ′, p′]). Again, by
construction, Z∗ ∈ Ci(Z). We now show that this set of contracts satisfies the conditions in
Case 1 of (CEFS).

First, take some y ∈ Y→i r Y ∗→i and suppose that contrary to what we want to show,
y ∈ Z∗→i. The latter implies that y = (ω, p′ω) for some trade ω, which, in turn, implies that
pω = p′ω (because y = (ω, p′ω) ∈ Y and, since Y ⊂ Z, (ω, r) /∈ Y for any r < p′ω). But then,
by construction, {ω ∈ (Ω→i r Ψ→i) : pω = p′ω} ⊆ Ω→i r Ψ′→i, contradicting y ∈ Z∗→i. Second,
since Y ∗i→ = {(ω, pω) : ω ∈ Ψi→}, Z∗i→ = {(ω, pω) : ω ∈ Ψ′i→}, and Ψi→ ⊆ Ψ′i→, it is immediate
that Y ∗i→ ⊆ Z∗i→. This completes the proof that Case 1 of (DEFS) implies Case 1 of (CEFS).

The proofs that Case 2 of (DEFS) implies Case 2 of (CEFS) and that (DCFS) implies
(CCFS) are completely analogous.

(DEFS) + (DCFS)⇒ (IDFS) + (IIFS) We first show that (DEFS) and (DCFS) jointly
imply (IDFS). Take two price vectors p, p′ such that p ≤ p′. Let Ψ′ ∈ Di(p′) be arbitrary. We
have to show that there exists a set of trades Ψ ∈ Di(p) such that ei,ω(Ψ′) ≥ ei,ω(Ψ) for all
ω ∈ Ωi such that pω = p′ω.
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First, let p1 be a price vector such that p1
ω = p′ω for all ω ∈ Ω→i and p1

ω = pω for all
ω ∈ Ωi→. By (DCFS) there must exist a Ψ1 ∈ Di(p1) such that {ω ∈ Ψ′i→ : p1

ω = pω} ⊆ Ψ1

and Ψ1
→i ⊆ Ψ′→i. Now note that pω = p1

ω for all ω ∈ Ωi→ and pω ≤ p1
ω for all ω ∈ Ω→i. By

(DEFS), there must exist a Ψ ∈ Di(p) such that {ω ∈ Ψ→i : p1
ω = pω} ⊆ Ψ1 and Ψ1

i→ ⊆ Ψi→.
Combining this with what we know about Ψ1, we obtain that {ω ∈ Ψ→i : pω = p′ω} = {ω ∈
Ψ→i : pω = p1

ω} ⊆ Ψ1
→i ⊆ Ψ′→i and {ω ∈ Ψ′i→ : pω = p′ω} = {ω ∈ Ψ′i→ : pω = p1

ω} ⊆ Ψ1
i→ ⊆

Ψi→. This implies ei,ω(Ψ′) ≥ ei,ω(Ψ) for all ω ∈ Ωi such that p′ω = p1
ω.

The proof that (DEFS) and (DCFS) jointly imply (IIFS) is completely analogous.

(IFS) ⇒ (DFS) This follows immediately, because the price change conditions in both
Cases 1 and 2 of (DFS) are special cases of the price change condition of (IFS).

C Proofs of the Results in Sections 4, 5, and 6

Proof of Theorem 2

We first show that if the preferences of an agent i are substitutable, then those preferences
induce a submodular indirect utility function. It is enough to show that for any two trades
ϕ, ψ ∈ Ωi and any prices p ∈ RΩ, phigh

ϕ > pϕ, and phigh
ψ > pψ we have that15

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

≥ Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ). (4)

Suppose that ϕ, ψ ∈ Ω→i.16 There are three cases to consider:

1. Suppose that ϕ /∈ Φ for any Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ). Then, by individual rationality,
ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p

high
ϕ , pψ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ) = 0

15The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given here;
see, e.g., Schrijver (2002).

16The other three cases—

1. ϕ ∈ Ω→i and ψ ∈ Ωi→,

2. ϕ ∈ Ω→i and ψ ∈ Ωi→, and

3. ϕ,ψ ∈ Ωi→—

are analogous.
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and so equation (4) is satisfied, as the left side of (4) must be non-negative.

2. Suppose ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p
high
ϕ , phigh

ψ ). Then, by individual rationality,
ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, p

high
ψ ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ ) = −(pϕ − phigh
ϕ ) = phigh

ϕ − pϕ

and so equation (4) is satisfied, as the right side of (4) is (weakly) bounded from above
by phigh

ϕ − pϕ (with equality in the case that ϕ is demanded at both (pΩr{ϕ,ψ}, pϕ, pψ)
and (pΩr{ϕ,ψ}, p

high
ϕ , pψ)).

3. Suppose that ϕ ∈ Φ for some Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ) and ϕ /∈ Φ for some Φ ∈
Di(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ ). In this case, as the preferences of i are fully substitutable,
there exists a unique price p↑ϕ such that there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ ) such

that ϕ ∈ Φ and ϕ /∈ Φ̄; note that pϕ ≤ p↑ϕ ≤ phigh
ϕ . Similarly, let p↓ϕ be the unique

price at which there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p
↓
ϕ, pψ) such that ϕ ∈ Φ and ϕ /∈ Φ̄;

note that pϕ ≤ p↓ϕ ≤ phigh
ϕ . By the definition of the utility function, ϕ ∈ Φ for all

Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p
high
ψ ) for all p̃ϕ < p↑ϕ, and ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p

high
ψ )

for all p̃ϕ > p↑ϕ; similarly, ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ < p↓ϕ, and
ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ > p↓ϕ.

Since the preferences of i are fully substitutable, p↓ϕ ≤ p↑ϕ. Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ ) + Vi(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= −pϕ + p↑ϕ − 0

≥ −pϕ + p↓ϕ − 0

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
↓
ϕ, pψ) + Vi(pΩr{ϕ,ψ}, p

↓
ϕ, pψ)− Vi(pΩr{ϕ,ψ}, p

high
ϕ , pψ)

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ),

which is exactly (4).

Now, suppose that the preferences of i are not substitutable. We suppose moreover that the
preferences of i fail the first condition of Defintion 2.17 Hence, for some price vectors p, p′ ∈ RΩ

such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ωi→, and pω ≥ p′ω for all ω ∈ Ω→i, we
have that for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), either {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i or

17The case where the preferences of i fail the second condition of Defintion 2 is analogous.
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Ψi→ 6⊆ Ψ′i→. We suppose that {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i; the latter case is analogous. Let
ϕ ∈ Ψ→i r {ω ∈ Ψ′→i : pω = p′ω}. Let phigh

ϕ be a price for trade ϕ high enough such that ϕ is
not demanded at either (phigh

ϕ , pΩr{ϕ}) or (phigh
ϕ , p′Ωr{ϕ}). Hence,

Vi(pϕ, p′Ωr{ϕ})− Vi(phigh
ϕ , p′Ωr{ϕ}) = 0

while
Vi(pϕ, pΩr{ϕ})− Vi(phigh

ϕ , pΩr{ϕ}) > 0.

Thus we see that Vi is not submodular.

Proof of Theorem 3

The proof is an adaptation of the proof of Theorem 1 in Sun and Yang (2009) to our
setting. However, our model is more general, and as we do not impose either monotonicity
or boundedness on the valuation functions, and do not require that the seller values each
bundle at 0 and thus sells everything that he could sell, we have to carefully ensure that the
approach of Sun and Yang (2009) remains valid.

“If” Direction We show first that (IDFS) and (IIFS) imply the single improvement property.
Fix an arbitrary price vector p ∈ RΩ and a set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞.
Fix a set of trades Ξ ∈ Di(p). We focus exclusively on the trades in Ψ and Ξ by rendering all
other trades that agent i is involved in irrelevant. To this end, we first define a very high
price Π,

Π ≡ max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; p])− Ui([Ω2; p)|+ max
ω∈Ωi

|pω|+ 1,

and then, starting from p, we construct a preliminary price vector p′ as follows:

p′ω =


pω ω ∈ Ψ ∪ Ξ, ω /∈ Ωi

pω + Π ω ∈ Ω→i r (Ψ ∪ Ξ)

pω − Π ω ∈ Ωi→ r (Ψ ∪ Ξ).

Observe that Ψ /∈ Di(p′) and Ξ ∈ Di(p′). As Ψ 6= Ξ, we have to consider two cases (each with
several subcases), which taken together will show that there exists a set of trades Φ′ 6= Ψ
that satisfies conditions 2 and 3 of Definition 5 and, in addition, Ui[(Φ′; p)] ≥ Ui([Ψ; p]).
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“Only If” Direction Case 1: Ξ r Ψ 6= ∅.

Select a trade ξ1 ∈ Ξ r Ψ. Without loss of generality, assume that agent i is a buyer in ξ1

(the case where i is a seller is completely analogous).
Starting from p′, construct a modified price vector p′′ as follows:

p′′ω =

p
′
ω ω ∈ Ωi r ((Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→), ω /∈ Ωi

p′ω + Π ω ∈ (Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→.

First, since Ξ ∈ Di(p′), ξ1 ∈ Ξ, and p′ξ1 = p′′ξ1 , full substitutability (definition A.5) implies
that there exists Ξ′′ ∈ Di(p′′) such that ξ1 ∈ Ξ′′. Second, observe that following the price
change from p′ to p′′, (Ξ′′→i r Ψ→i) ⊆ {ξ1} and Ψi→ ⊆ Ξ′′i→. Thus, Ξ′′→i r Ψ→i = {ξ1} and
Ψi→ ⊆ Ξ′′i→. We consider three subcases.

Subcase (a): If Ξ′′i→ r Ψi→ 6= ∅, let ξ2 ∈ Ξ′′i→ r Ψi→.

Starting from p′′, construct price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r ((Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i), ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i.

First, since Ξ′′ ∈ Di(p′′), ξ2 ∈ Ξ′′, and p′′ξ2 = p′′′ξ2 , full substitutability (definition A.6) implies
that there exists Ξ′′′ ∈ Di(p′′′) such that ξ2 ∈ Ξ′′′. Second, observe that following the price
change from p′′ to p′′′, Ψ ⊆ Ξ′′′ and Ξ′′′rΨ ⊆ {ξ1, ξ2}. Thus, ΨrΞ′′′ = ∅ and Ξ′′′rΨ = {ξ1, ξ2}
or {ξ2}.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that from
agent i’s perspective the only differences from Ψ to Ξ′′′ are making one new sale ξ2, i.e.,
ei,ξ2(Ψ) > ei,ξ2(Ξ′′′) with ξ2 ∈ Ωi→ r Ψ, and (possibly) making one new purchase ξ1, i.e.
ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Subcase (b): If Ξ′′i→ r Ψi→ = ∅ and Ψ→i r Ξ′′→i 6= ∅, let ψ ∈ Ψ→i r Ξ′′→i.

Starting from p′′, construct price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r ((Ξi→ r Ψi→) ∪ (Ψ→i r {ψ})) or ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r Ψi→) ∪ (Ψ→i r {ψ}).

First, since Ξ′′ ∈ Di(p′′), ψ /∈ Ξ′′, and p′′ψ = p′′′ψ , by full substitutability (definition A.6)
implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ /∈ Ξ′′′. Second, observe that following the
price change from p′′ to p′′′, Ψ r Ξ′′′ ⊆ {ψ} and Ξ′′′ r Ψ ⊆ {ξ1}. Thus, Ψ r Ξ′′′ = {ψ} and
Ξ′′′ r Ψ = {ξ1} or ∅.
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Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that
from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling one purchase
ψ, i.e., ei,ψ(Ψ) > ei,ψ(Ξ′′′) with ψ ∈ Ψ→i, and (possibly) making one new purchase ξ1, i.e.,
ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Subcase (c): Ξ′′ = Ψ ∪ {ξ1}.
In this subcase, let p′′′ = p′′ and Ξ′′′ = Ξ′′.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that from
agent i’s perspective the only difference from Ψ to Ξ′′′ is making a new purchase ξ1, i.e.,
ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Case 2: Ξ r Ψ = ∅ and Ψ r Ξ 6= ∅.

Select a trade ψ1 ∈ Ψ r Ξ. Without loss of generality, assume that agent i is a buyer in ψ1

(the case where i is a seller is completely analogous).
Starting from p′, construct price vector p′′ as follows:

p′′ω =

p
′
ω ω ∈ Ωi r (Ψ→i r {ψ1}) or ω /∈ Ωi

p′ω − Π ω ∈ Ψ→i r {ψ1}.

First, since Ξ ∈ Di(p′), ψ1 /∈ Ξ, and p′ψ1 = p′′ψ1 , full substitutability (definition A.6) implies
that there exists Ξ′′ ∈ Di(p′′) such that ψ1 /∈ Ξ′′. Second, observe that following the price
change from p′ to p′′, Ξ′′ ⊆ Ψ and Ψ→i r Ξ′′→i ⊆ {ψ1}. Thus, Ψ→i r Ξ′′→i = {ψ1} and Ξ′′ ⊆ Ψ.
We consider two subcases.

Subcase (a): If Ψi→ r Ξ′′i→ 6= ∅, let ψ2 ∈ Ψi→ r Ξ′′i→.

Starting from p′′, construct price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r (Ψi→ r {ψ2}) or ω /∈ Ωi

p′′ω + Π ω ∈ Ψi→ r {ψ2}.

First, since Ξ′′ ∈ Di(p′′), ψ2 /∈ Ξ′′, and p′′ψ2 = p′′′ψ2 , full substitutability (definition A.5)
implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ2 /∈ Ξ′′′. Second, observe that following
the price change from p′′ to p′′′, Ξ′′′ ⊆ Ψ and Ψ r Ξ′′′ ⊆ {ψ1, ψ2}. Thus, Ξ′′′ r Ψ = ∅ and
Ψ r Ξ′′′ = {ψ1, ψ2} or {ψ2}.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that
from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling one sale ψ2, i.e.,
ei,ψ2(Ψ) < ei,ψ2(Ξ′′′) with ψ1 ∈ Ωi→ r Ψ, and (possibly) canceling one purchase ψ1, i.e.,
ei,ψ1(Ψ) > ei,ψ1(Ξ′′′) with ψ1 ∈ Ψ→i.
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Subcase (b): Ξ′′ = Ψ r {ψ1}.

In this subcase, let p′′′ = p′′ and Ξ′′′ = Ξ′′.
Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that

from agent i’s perspective the only difference from Ψ to Ξ′′′ is canceling purchase ψ1, i.e.,
ei,ψ1(Ψ) < ei,ψ1(Ξ′′′) with ψ1 ∈ Ω→i r Ψ.

Taking together all the final statements from each subcase where for notational convenience
in each subcase we let Φ′ ≡ Ξ′′′, we obtain that we always have a price vector p′′′ and the
sets Ψ and Φ′ that satisfy conditions (2) and (3) of definition 5. Moreover, since we always
have Φ ∈ Di(p′′′), Ui([Φ′, p′′′]) ≥ Ui([Ψ, p′′′]).

Next, we show that Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) ≥ 0 implies Ui([Φ′, p]) ≥ Ui([Ψ, p]). First,
observe that when taking the difference the prices of all trades ω ∈ Φ′ ∩Ψ cancel each other
out. Thus, replacing the prices p′′′ω with pω for all trades ω ∈ Φ′ ∩ Ψ leaves the difference
unchanged. Second, observe that in all previous subcases, the construction of p′′′ implies
that for all ω ∈ ((Ψ r Φ′) ∪ (Φ′ r Ψ)), pω = p′′′ω . Combining the two observations above,
Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) = Ui([Φ′, p])− Ui([Ψ, p]), and therefore Ui([Φ′, p]) ≥ Ui([Ψ, p]).

We now show that there exists a set of trades Φ that satisfies all conditions of Definition 5.
Since Ψ /∈ Di(p), Vi(p) > Ui([Ψ; p]). Since i’s utility is continuous in prices, there exists ε > 0
such that Vi(q) > Ui([Ψ; q]) where q is defined as follows:

qω =

pω + ε ω ∈ (Ω→i r Ψ→i) ∪Ψi→

pω − ε ω ∈ (Ωi→ r Ψi→) ∪Ψ→i.

Our arguments above imply that there exists a set of trades Φ 6= Ψ such that Ui([Φ; q]) ≥
Ui([Ψ; q]). Using the construction of q, we obtain Ui([Φ; p]) − Ui([Ψ; p]) = Ui([Φ; q]) −
Ui([Ψ; q]) + ε|(Ψ r Φ) ∪ (Φ r Ψ)| > Ui([Φ; q])− Ui([Ψ; q]) ≥ 0. Thus, Ui([Φ; p]) > Ui([Ψ; p]).
This completes the proof that (IDFS) and (IIFS) imply the single improvement property.

We now show that the single improvement property implies full substitutability (DCFS).
More specifically, we will establish that single improvement implies the first condition of
Definition A.4. The proof that the second condition of Definition A.4 is also satisfied uses a
completely analogous argument.

Let p ∈ RΩ and Ψ ∈ Di(p) be arbitrary. It is sufficient to establish that for any p′ ∈ RΩ

such that p′ψ > pψ for some ψ ∈ Ω→i and p′ω = pω for all ω ∈ Ω \ {ψ}, there exists a set of
trades Ψ′ ∈ Di(p′) that satisfies the first condition of Definition A.4.

32



Fix one p′ ∈ RΩ that satisfies the conditions mentioned in the previous paragraph and let
ψ ∈ Ω→i be the one trade for which p′ψ > pψ. Note that if either ψ /∈ Ψ or Ψ ∈ Di(p′), there
is nothing to show. From now on, assume that ψ ∈ Ψ and Ψ /∈ Di(p′).

For any real number ε > 0 define a price vector pε ∈ RΩ by setting pεψ = pψ + ε and
pεω = pω for all ω ∈ Ω \ {ψ}. Let ∆ ≡ max{ε : Ψ ∈ Di(pε)}. Note that ∆ is well defined since
i’s utility function is continuous in prices. Furthermore, given that Ψ /∈ Di(p′), we must have
∆ < p′ψ − pψ.

Next, for any integer n, define a price vector pn ∈ RΩ by setting pnψ = pψ + ∆ + 1
n
and

pnω = pω for all ω ∈ Ω \ {ψ}. By the definition of ∆ we must have Ψ /∈ Di(pn) for all n > 0.
By the single improvement property, this implies that for all n > 0, there exists a set of
trades Φn such that the following conditions are satisfied:

1. Ui([Ψ, pn]) < Ui([Φn, pn]),

2. there exists at most one trade ω such that ei,ω(Ψ) < ei,ω(Φn), and

3. there exists at most one trade ω such that ei,ω(Ψ) > ei,ω(Φn).

Note that we must have ψ /∈ Φn for all n ≥ 1. This follows since for for any n ≥ 1 and
any set of trades Φ such that ψ ∈ Φ, Ui([Φ; pn]) = Ui([Φ; p])−∆− 1

n
≤ Ui([Ψ; p])−∆− 1

n
=

Ui([Ψ; pn]) given that Ψ ∈ Di(p).
Conditions 2 and 3 imply that for all n > 0, we must have {ω ∈ Ψ→i : p′ω = pω} = {ω ∈

Ψ→i : pnω = pω} ⊆ Φn
→i and Φn

i→ ⊆ Ψi→.
Since the set of trades is finite, it is without loss of generality to assume that there is a set

of trades Φ∗ ∈ Ωi and an integer n̄ such that Φn = Φ∗ for all n ≥ n̄. Since i’s utility function
is continous with respect to prices and pn → p∆, we must have Ui([Φ∗; p∆]) ≥ Ui([Ψ; p∆]).
Since Ψ ∈ Di(p∆), this implies Φ∗ ∈ Di(p∆). Since ∆ < p′ψ − pψ and Vi is decreasing in the
prices of trades for which i is a buyer, we must have Vi(p∆) ≥ Vi(p′). Since ψ /∈ Φ∗, we have
that Ui([Φ∗; p′]) = Ui([Φ∗; p∆]) = Vi(p∆). Hence, Φ∗ ∈ Di(p′) and setting Ψ′ ≡ Φ∗ yields a set
that satisfies the first condition of Definition A.4.

Proof of Theorem 4

The proof is an adaptation of the proof of Theorem 1 in Gul and Stacchetti (1999). Since we
do not impose either monotonicity or boundedness on valuation functions, we need to check
that their proof strategy continues to work in our setting.

Throughout the proof, for any price vector p ∈ RΩ, we denote by D̃i(p) the sets of objects
that correspond to the optimal sets of trades in Di(p).

33



We show first that the single improvement property in object-language implies the no
complementarities condition. Let p be an arbitrary price vector and Φ,Ψ ∈ D̃i(p) be arbitrary.
Let Ψ̄ ⊆ Ψ r Φ be arbitrary. Let Ξ ∈ D̃i(p) be a set of objects such that Ξ ⊆ Φ ∪Ψ and
Ψ r Ψ̄ ⊆ Ξ, and such that there is no Ξ′ ∈ D̃i(p) for which Ξ′ ⊆ Φ ∪Ψ, Ψ \ Ψ̄ ⊆ Ξ′, and
|Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄|. If Ξ ∩ Ψ̄ = ∅, we are done. If not, let Π be a very large number18 and
define p(ε) by setting pt(ω)(ε) = Π if ω ∈ Ω→ir (Φ∪Ψ), pt(ω)(ε) = −Π if ω ∈ Ωi→r (Φ∪Ψ),
pt(ω)(ε) = pt(ω) if ω ∈ (Φ ∪Ψ) r Ψ̄, and pt(ω)(ε) = pt(ω) + ε if ω ∈ Ψ̄. Note that for all
ε > 0 we must have Φ ∈ D̃i(p(ε)) (since Ψ̄ ⊆ Ψ \ Φ) and Ui([Φ; p(ε)]) > Ui([Ξ; p(ε)]).
Since Ξ ∈ D̃i(p), we must have ui(Ξ) 6= −∞. Hence, we can apply the single improvement
property (in object-language) to infer that there must exist a set of objects Ξ′ such that
|Ξ′ \ Ξ| ≤ 1, |Ξ \ Ξ′| ≤ 1, and Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]). Given the definition of p(ε)
and Π, we must have Ξ′ ⊆ Φ ∪Ψ. Since Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) holds for arbitrarily
small values of ε, we must have Ξ′ ∈ D̃i(p). But Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) is equivalent to
Ui([Ξ′; p])− |Ξ′ ∩ Ψ̄|ε > Ui([Ξ; p])− |Ξ ∩ Ψ̄|ε. Given that Ξ,Ξ′ ∈ D̃i(p), the last inequality
is equivalent to |Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄| and we thus obtain a contradiction to the definition of
Ξ. Hence, it has to be the case that Ξ ∩ Ψ̄ = ∅ and this completes the proof that single
improvement implies no complementarities.

Next, we show that the generalized no complementarities condition implies object-language
full substitutability. Let p, p′ be two price vectors such that p ≤ p′. Let Ψ ∈ D̃i(p) be
arbitrary.19 Let Ω̃i = {ω ∈ Ωi : pt(ω) < p′t(ω)}. The proof will proceed by induction
on |Ω̃i|. Consider first the case of |Ω̃i| = 1 and let Ω̃i = {ω}. Clearly, if ω /∈ Ψ or
Ψ ∈ D̃i(p′), there is nothing to show. So suppose that ω /∈ Ψ and that Ψ /∈ D̃i(p′).
For any ε ≥ 0, define a price vector p(ε) by setting pt(ϕ)(ε) = pt(ϕ) for all ϕ 6= ω, and
pt(ω)(ε) = pt(ω) + ε. Let ε̄ = max{ε : Ψ ∈ D̃i(p(ε))} and note that ε̄ < p′t(ω) − pt(ω)

given that Ψ /∈ D̃i(p′). Consider some ε > ε̄ and fix a set of objects Φ ∈ D̃i(p(ε)). It is
easy to see that ω /∈ Φ and that Φ ∈ D̃i(p(ε̄)). By the generalized no complementarities
condition, there must exist a set of objects Ξ ⊆ Φ such that Ψ′ := Ψ \ {ω} ∪ Ξ ∈ D̃i(p(ε̄)).
Clearly, we must also have Ψ′ ∈ D̃i(p′) and this completes the proof in case of |Ω̃i| = 1.
Now suppose that the statement has already been established for all pairs of price vectors
p, p′ such that |Ω̃i| ≤ K for some K ≥ 1. Consider two price vectors p, p′ such that
|Ω̃i| = K + 1. Fix a set of objects Ψ ∈ D̃i(p). Let ω ∈ Ω̃i be arbitrary and consider a

18For instance, let

∆ = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui(Ω1; p)− Ui(Ω2; p)|,

and Π = 1 + ∆ + maxω∈Ωi
|pω|.

19There is no need to rule out the possibility of several optimal bundles of objects in this proof.
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price vector p′′ such that p′′t(ω) = pt(ω) and p′′t(ϕ) = p′t(ϕ) for all ϕ 6= ω. By the inductive
assumption, there is a set Ψ′′ ∈ D̃i(p′′) such that {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} ⊆ Ψ′′. Note that
{ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} = {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} \ {ω}. Applying the inductive assumption
one more time, there has to be a set Ψ′ ∈ D̃i(p′) such that Ψ′′ \ {ω} ⊆ Ψ′. Combining this
with the previous arguments, we obtain {ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} ⊆ Ψ′. This completes the
proof.

Proof of Theorem 5

As Ω is finite and non-empty, for each agent i the domain of ui is bounded and non-empty.
Hence, by Part (b) of Theorem 7 of Murota and Tamura (2003), we see that ui is M \-concave
over objects if and only if the preferences of i have the single-improvement property.20 The
result then follows from Theorem 3.

Proof of Theorem 6

The indirect utility function for û(Φ,pΦ)
i is given by

V̂
(Φ,pΦ)
i (pΩrΦ) ≡ max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

ξ∈Ξ→i

pξ −
∑

ξ∈Ξ→i

pξ

 +
∑

ψ∈Ψ→i

pξ −
∑

ψ∈Ψ→i

pξ


= max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

λ∈Ξ→i∪Ψ→i

pλ −
∑

λ∈Ξi→∪Ψi→

pλ




= max
Λ⊆Ω

ui(Λ) +
∑

λ∈Λ→i

pλ −
∑

λ∈Λi→

pλ

 .

Hence, V̂ (Φ,pΦ)
i (pΩrΦ) = Vi(pΩrΦ, pΦ). Now, Vi(p) is submodular over RΩ by Theorem 2. As a

submodular function restricted to a subspace of its domain is still submodular, V̂ (Φ,pΦ)
i (pΩrΦ)

is submodular over RΩrΦ. Hence, by Theorem 2, we see that û(Φ,pΦ)
i is fully substitutable.

Proof of Theorem 7

We suppose, by way of contradiction, that uJ does not induce fully substitutable preferences
over trades in Ω r ΩJ . By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable

20Strictly speaking, Theorem 7(b) shows the equivalence of M \-convexity and the (M\-SI) property of
a function f . It is, however, immediate that this result implies the equivalence of M \-concavity and the
single-improvement property for a function g = −f .
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preferences ũi for the agents i ∈ I r J such that no competitive equilibrium exists for the
modified economy with

1. set of agents (I r J) ∪ {J},

2. set of trades Ω r ΩJ ,

3. and valuation function for agent J given by uJ .21

Now, we consider the original economy with

1. set of agents I,

2. set of trades Ω,

3. valuations for i ∈ I r J given by ũi, and

4. valuations for j ∈ J given by uj.

Let [Ψ; p] be a competitive equilibrium of this economy; such an equilibrium must exist by
Theorem 1 of Hatfield et al. (2013).

Claim. [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the modified economy.

Proof. It is immediate that [Ψ r ΩJ ]i ∈ Di(pΩrΩJ ) for all i ∈ I r J . Moreover, since Ψ is
individually-optimal for each j ∈ J in the original economy (at prices p),

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ ≥ uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pϕ (5)

for every Φ ⊆ Ω. Summing (5) over all j ∈ J and simplifying, we obtain

∑
j∈J

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]j→

pψ −
∑

ψ∈[ΨrΩJ ]→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]j→

pϕ −
∑

ϕ∈[ΦrΩJ ]→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]J→

pψ −
∑

ψ∈[ΨrΩJ ]→J

pψ ≥
∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]J→

pϕ −
∑

ϕ∈[ΦrΩJ ]→J

pψ.

21Technically, in order to apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (i, j)
of distinct agents in I, there exists a trade ω such that b(ω) = i and s(ω) = j. For any pair (i, j) of distinct
agents in I such that no such trade ω exists, we can augment the economy by adding the requisite trade ω
and, if i ∈ J , letting ūi(Ψ∪ {ω}) = ui(Ψ) (and similarly for j). It is immediate that ūi is substitutable if and
only if ui is substitutable.
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The preceding claim shows that [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the
modified economy, contradicting the earlier conclusion that no competitive equilibrium exists
in the modified economy. Hence, we see that uJ must be fully substitutable.

Proof of Theorem 8

The proof of this result is very close to Step 1 in the proof of Theorem 1 of Hatfield et al.
(2013). The only differences are that in that paper, all trades could be bought out, and
the price for buying them out was set to a very large number—the same for all trades. By
contrast, in Theorem 8 of the current paper we allow for the possibility that only a subset
of trades can be bought out, and that the prices at which these trades can be bought out
can be different, and are not necessarily large. Adapting Step 1 of the proof of Theorem 1 of
Hatfield et al. (2013) to the current more general setting is straightforward, but we include
the proof for completeness.

Consider the fully substitutable valuation function ui, and take any trade ϕ ∈ Ωi→ ∩ Φ.
Consider a modified valuation function uϕi :

uϕi (Ψ) = max {ui(Ψ), ui(Ψ r {ϕ})− Πϕ} .

That is, this valuation function allows (but does not require) agent i to pay Πϕ instead
of forming one particular trade, ϕ. Let us show that the valuation function uϕi is fully
substitutable.

To see this, consider utility Uϕ
i and demand Dϕ

i corresponding to valuation uϕi . We show
that Dϕ

i satisfies the (IFS) condition (Definition 3). Fix two price vectors p and p′ such that
p ≤ p′ and |Dϕ

i (p)| = |Dϕ
i (p′)| = 1. Take the unique Ψ ∈ Dϕ

i (p) and Ψ′ ∈ Dϕ
i (p′). We need

to show that for all ω ∈ Ωi such that pω = p′ω, ei,ω(Ψ) ≤ ei,ω(Ψ′).
Let price vector q coincide with p on all trades other than ϕ, and set qϕ = min{pϕ,Πϕ}.

Note that if pϕ < Πϕ, then p = q and Dϕ
i (p) = Di(p). If pϕ > Πϕ, then under utility

Uϕ
i , agent i always wants to form trade ϕ at price pϕ, and the only decision is whether to

“buy it out” or not at the cost Πϕ; i.e., the agent’s effective demand is the same as under
price vector q. Thus, Dϕ

i (p) = {Ξ ∪ {ϕ} : Ξ ∈ Di(q)}. Finally, if pϕ = Πϕ, then p = q

and Dϕ
i (p) = Di(p) ∪ {Ξ ∪ {ϕ} : Ξ ∈ Di(p)}. Construct price vector q′ corresponding to p′

analogously.
Now, if pϕ ≤ p′ϕ < Πϕ, then Dϕ

i (p) = Di(p), Dϕ
i (p′) = Di(p′), and thus ei,ω(Ψ) ≤ ei,ω(Ψ′)

follows directly from (IFS) for demand Di.
If Πϕ ≤ pϕ ≤ p′ϕ, then (since we assumed that Dϕ

i was single-valued at p and p′) it has to

37



be the case that Di is single-valued at the corresponding price vectors q and q′. Let Ξ ∈ Di(q)
and Ξ′ ∈ Di(q′). Then Ψ = Ξ∪ {ϕ}, Ψ′ = Ξ′ ∪ {ϕ}, and the statement follows from the (IFS)
condition for demand Di, because q ≤ q′.

Finally, if pϕ < Πϕ ≤ p′ϕ, then p = q, Ψ is the unique element in Di(p), and Ψ′ is equal to
Ξ′ ∪ {ϕ}, where Ξ′ is the unique element in Di(q′). Then for ω 6= ϕ, the statement follows
from (IFS) for demand Di, because p ≤ q′. For ω = ϕ, the statement does not need to be
checked, because pϕ < p′ϕ.

Thus, in this case, valuation function uϕi is fully substitutable. The proof for the case
when ϕ ∈ Ω→i is completely analogous.

To complete the proof of Theorem 8, it is now enough to note that valuation function
ûi(Ψ) = maxΞ⊆Ψ∩Φ

{
ui(Ψ r Ξ)−∑

ϕ∈Ξ Πϕ

}
can be obtained from the original valuation ui

by allowing agent i to “buy out” all of the trades in set Φ, one by one, and since the preceding
argument shows that each such transformation preserves substitutability (and Ωi is finite),
the valuation function ûi is substitutable as well.

Proof of Theorem 9

We prove the Law of Aggregate Demand; the proof of the Law of Aggregate Supply is
analogous.

Fix a fully substitutable valuation function ui for agent i. Take two finite sets of contracts
Y and Y ′ such that |Ci(Y )| = |Ci(Y ′)| = 1, Yi→ = Y ′i→, and Y→i ⊆ Y ′→i. Assume that for
any ω ∈ Ωi→, (ω, r) ∈ Yi→ and (ω, r′) ∈ Yi→ implies r = r′ (this is without loss of generality,
because for a given trade in Ωi→, agent i, as a seller, can only choose a contract with the
highest price available for that trade, and thus we can disregard all other contracts involving
that trade). Let W ∈ Ci(Y ) and W ′ ∈ Ci(Y ′). Define a modified valuation ũi on τ(Y ′i ) for
agent i by setting, for each Ψ ⊆ τ(Y ′i ),

ũi(Ψ) = ui(Ψ→i ∪ (τ(Y ′) r Ψ)i→).

Let C̃i denote the associated choice correspondence. By construction,

ũi(Ψ) = ui(oi(Ψ)), (6)

where here the object operator is defined with respect to underlying set of trades τ(Y ′):

oi(Ψ) = {o(ω) : ω ∈ Ψ→i} ∪ {o(ω) : ω ∈ τ(Y ′) r Ψi→}.
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As the preferencs of i are fully substitutable, the restriction of those preferences to τ(Y ′)
is fully substitutable, as well. Object-language full substitutability of those preferences, as
well as (6), together imply that ũi satisfies the gross substitutability condition of Kelso and
Crawford (1982).

Now, we must have C̃i(Y ) = {W→i ∪ (Y ′ rW )i→} and C̃i(Y ′) = {W ′
→i ∪ (Y ′ rW ′)i→}.

As we assume quasilinearity, the Law of Aggregate Demand for two-sided markets applies
to C̃i (by Theorem 7 of Hatfield and Milgrom (2005)). As Y ⊆ Y ′, this implies that
|W ′
→i∪(Y ′rW ′)i→| ≥ |W→i∪(Y ′rW )i→|. The last inequality is equivalent to |W ′

→i|−|W→i| ≥
|W ′

i→| − |Wi→|, which is precisely the Law of Aggregate Demand.
The proof that the Law of Aggregate Demand for the case in which choice correspondences

are single-valued implies the more general case in which they can be multi-valued is analogous
to the proof of the implication (DFS)⇒(DEFS) of Theorem B.1.
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