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Abstract We study two-sided many-to-one matching markets with interdependent
valuations and imperfect information held by one side of the market. The other side
has common and known preferences over potential mates. In this setting, pairwise
stability does not imply group stability: mechanisms that are stable with respect to
deviations by pairs of agents may be vulnerable to deviations by groups. We formalize
a notion of group stability and construct a “modified serial dictatorship” mechanism
that implements group stable matchings. We further discuss the robustness of our
notion of stability and examine efficiency properties of modified serial dictatorship.
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1 Introduction

In many matching markets agents have incomplete information about potential mates.
Consequently, an agent’s preferences over mates may change if she obtains or infers the
information held by other agents. For instance, admissions officers may be unsure about
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4 A. Chakraborty et al.

the quality of applicants to a graduate program and they may update their estimates
if they learn that the applicant has been admitted to another program. Employers may
face uncertainty about the skills and ability of prospective hires and they may revise
their opinions upon learning the information held by other employers.1

Under incomplete information and interdependent values, the information obtained
during the operation of the market may lead an agent, or a coalition of agents, to revise
their valuations and challenge the market outcome in favor of an alternative that is pre-
ferred by the coalition. Since agents anticipate this possibility and take it into account
in their behavior, this places additional constraints on what a mechanism designer
can do in terms of aggregating agents’ information and deciding on allocations. It
is therefore of interest to identify mechanisms under which matching markets with
interdependent values are stable, i.e., immune to misrepresentation of information and
to objections raised by agents after the operation of the market.

Chakraborty Citanna, and Ostrovsky (2010; hereafter CCO) introduce a notion of
stability for two-sided problems of students and colleges where colleges have inter-
dependent values over applicants. Stability in CCO mimics the traditional notions of
stability in marriage markets: an assignment is stable if no individual agent (a college
or a student) wants to unilaterally drop its assigned partner and no unmatched college–
student pair could benefit from matching with each other (and possibly dropping their
assigned partners). In the classical many-to-one matching setting with private values,
this notion of pairwise stability is equivalent to a (potentially more restrictive) notion
of group stability, under which larger coalitions are allowed to form and rematch (Roth
and Sotomayor 1990, p. 130).2 In this paper we show that under interdependent val-
ues, pairwise stability is not sufficient to guarantee group stability. A pairwise stable
matching mechanism may be vulnerable to a group of colleges and students proposing
an alternative assignment that they unanimously prefer after observing their matching
outcomes.

CCO focus on matching markets with one-sided incomplete information, in which
college qualities are known and student preferences over colleges are common knowl-
edge. Furthermore, students have no private information about their quality and the
student side of the matching market has homogeneous preferences.3 In contrast, col-
leges have signals about the students. These signals could be informative about the
student on different dimensions such as analytical ability, athletic talents, commu-
nication skills, or leadership potential. Colleges may have arbitrary, even opposed

1 As an illustration, consider the following quote from a corporate recruiter about the market for young
financial analysts: “If you’re far along with Blackstone or K.K.R. and you’re interviewing with Carlyle,
they’ll tell you to absolutely name-drop. Firms want to make sure they are picking a candidate who is
loved by other firms as well.” (New York Times Dealbook, http://dealbook.nytimes.com/2013/05/23/
a-rush-to-recruit-young-analysts-only-months-on-the-job/, May 23, 2013.)
2 This statement is true in the absence of complementarities, which is what we also assume throughout the
paper.
3 Such restrictions are necessary for positive existence results [see Roth (1989) and CCO]. They are
also natural in many matching settings. For instance, student preferences over colleges and professional
schools are often determined by rankings provided by newspapers and magazines. One-sided preference
homogeneity is also an assumption frequently made in the directed search literature; see Shi (2002) for a
list of references.
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Group stability in matching with interdependent values 5

preferences over one or more of these dimensions. Crucially however, valuations are
interdependent and a college’s preferences over different students may depend on the
signals held by other colleges.

We share with CCO these aspects of the environment but look for direct centralized
matching mechanisms that cannot be blocked by any coalition once the matching
outcome is determined. Such mechanisms must also be incentive compatible. More
precisely, colleges cannot have an incentive to lie to the mechanism designer even after
anticipating the possibility of subsequent rematching. We call these mechanisms group
stable. We show that the set of group stable mechanisms is always nonempty (Theorem
1) by constructing a stable mechanism that we call modified serial dictatorship. Under
modified serial dictatorship, colleges are ordered in a descending sequence according
to the students’ common preferences. Each college is then assigned students based on
the college’s evaluation of them, conditional on the college’s own private signals and
on the signals of colleges above (but not below) them in the student’s rankings. With
such a matching rule, no subset of college or students can infer enough information
from the observed outcome to allow it to profit via a blocking coalition.

Modified serial dictatorship is different from the simple serial dictatorship mecha-
nism introduced in CCO. Under the latter, each college is assigned students based on
its own signals and the matching outcomes of the better colleges, but not those col-
leges’ signals. For pairwise stability, either mechanism works. In fact there is a whole
family of related mechanisms that result in pairwise stable matchings (see CCO, p. 97,
footnote 8). For group stability, however, the choice of a particular serial dictatorship
mechanism matters. While modified serial dictatorship produces a group stable out-
come, simple serial dictatorship does not always do so. Simple serial dictatorship
may not be group stable because it does not use all the information held by higher
ranked colleges to determine the allocation of lower ranked colleges. In environments
where colleges value students in different ways at least on some dimensions, this
unused information may leave unrealized some gains from trade among coalitions of
colleges. By sharing this unused information, these coalitions may profitably rematch
among themselves. We confirm this intuition in Example 1 after defining what it means
for a coalition to object to an allocation.

Even under one-sided private information and homogenous student preferences,
extending the analysis of stability from pairs to groups is not immediate. A suitable
definition of group stability has to address three fundamental issues. The first, common
also to the CCO setup, is observability, or the extent to which the status quo outcome
is publicly observed at the posterior stage when coalitions may raise objections. The
second is coalition formation, that is, what coalitions can be formed and what rematch-
ing protocols can be used. The third is communication, i.e., the restrictions, if any, that
one imposes on information sharing among coalition members at the time they raise
objections.

With respect to the observability issue, we follow CCO and consider weak
observability—each agent only observes its own mates and does not directly observe
the mates of others at the time they may raise objections. Observing the entire match-
ing outcome (strong observability) leads to impossibility results demonstrated in CCO
and therefore it is too demanding a requirement. With respect to coalition formation,
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6 A. Chakraborty et al.

we also follow CCO and assume that any coalition can be formed if agents find it in
their interest to do so, i.e., there are no re-matching frictions.

Unlike CCO however, we allow coalitions larger than a college–student pair. In
doing so we also need to specify the mechanisms available to blocking coalitions at
the time they raise objections. We focus on a simple mechanism with the following
features. First, we allow coalitions to object to the decision made by the status quo
mechanism only via proposing an alternative matching (as opposed to a matching
rule). Second, we model this counterproposal stage as a simultaneous voting game
in which coalition partners must unanimously accept the alternative match for the
objection to succeed and look at Bayesian Nash equilibria of this game. Third, we
assume that agents can share private information only if they “belong to the coalition”
and are made strictly better off by the counterproposal. Since agents will condition
their acceptance of a counterproposal on their own private information (as well as on
the information they have obtained from the initial allocation), a blocking coalition in
general reveals to its members at least some of the information held by other members.

The existence of a group stable mechanism depends upon the restrictions we impose
on blocking coalitions. In principle, a group of agents could design a general communi-
cation mechanism to share the information each agent in the group has in an incentive
compatible manner. Our restriction that a blocking coalition can only engage in unan-
imous voting over an alternative deterministic match, as opposed to using a general
mechanism, captures situations where a general mechanism may be too costly to oper-
ate for a blocking coalition at the stage when the status quo rule has already proposed a
match. These costs may be direct or take the form of constraints in designing complex
mechanisms that require precise specification of randomization schemes and message
games (for a similar point see Forges 1994). Whether or not these restrictions are
realistic, we show that such restrictions are in fact necessary to obtain existence of
group stable mechanisms (Theorem 2). Necessity gives our definitions and results a
normative content and provides a tight characterization of group stability.

The principal force behind this tight necessity result is the possibility of anticipated
renegotiation. Anticipated renegotiation is a key consideration shared with CCO that
goes beyond the twin requirements of incentive compatibility on one hand and immu-
nity to objections given truthful information revelation on the other. Under anticipated
renegotiation, agents are allowed not only to lie to the mechanism or block the observed
matching outcome, but they can also lie to the mechanism anticipating a subsequent
objection raised after observing the matching outcome. Immunity to anticipated rene-
gotiation is a natural requirement that stable matching rules should satisfy in situations
where agents are not only aware that the mechanism needs to aggregate information
but are also aware that they can subsequently object to the proposed outcome.

We conclude the paper by considering the efficiency properties of modified serial
dictatorship. We show that in environments where higher-ranked colleges have higher
thresholds for admitting students, modified serial dictatorship always produces an ex-
post Pareto efficient matching. In this it has better efficiency properties than the simple
serial dictatorship proposed by CCO.

The literature on matching has usually considered private value environments (see,
e.g., Roth and Sotomayor 1990, for a survey of many classical results). In a different
context of positive analyses of specific matching markets with frictions, Chade (2006),
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Hoppe et al. (2009), and Ely and Siegel (2013) also highlight the role of information
revealed by observed matchings on the operation of the market. We employ instead
a mechanism design approach which bears similarities to the notion of truthful and
obedient behavior in Myerson (1982). In the mechanism design vein, Neeman and
Pavlov (2013) have recently looked at renegotiation-proofness in allocation problems
with transfers. As mentioned above, CCO consider pairwise stability only, and this
paper should be seen as an extension of the analysis carried out there. In particular, a
key innovation arising in both papers is the notion of anticipated renegotiation, which
has subsequently been applied in private-value settings by Kojima (2011) and Afacan
(2012). This paper also relates to the literature on cooperative games, specifically,
on the core under incomplete information (e.g., Wilson (1978), Vohra (1999), Forges
et al. (2001); for a survey, see Forges et al. (2001)). Our analysis differs because we
focus on objections at the posterior stage, and we consider the possibility of anticipated
renegotiation.4

2 The matching market

We study two-sided, many-to-one matching problems, or “matching markets,” where
students can attend at most one college at a time, while colleges can possibly admit
multiple students. We follow CCO in defining such matching markets.

The agents are students and colleges. The set of students is denoted by S =
{1, . . . , S}, with S ≥ 1 and typical element s, whereas the set of colleges is denoted
by C = {1, . . . , C}, with C > 1 and typical element c. Each college has a capacity of
kc > 0 students.

Students differ in their unobserved quality or ability qs ∈ Q, a finite set. Neither
colleges nor students know the quality qs of any student s, but each college c receives
a private signal xc,s ∈ Xc, a finite set. We may think of xc,s as the outcome of a
privately observed informative test or interview for student s . Let xs = (xc,s)c∈C
be the vector of signals associated with each student s, and xc = (xc,s)s∈S be the
vector of signals received by each college c, so that x = (xs)s∈S = (xc)c∈C represents
the private information available overall and x ∈ X = ×cXS

c . We let Pr be the joint
probability distribution over signals and qualities X × QS , and assume that for any
x, q, Pr(x, q) > 0 (full support).

Students have preferences over single mates and their preferences are state-
independent and common knowledge. Also, they strictly prefer to be matched to any
college rather than staying unmatched. Formally, letting vs,k(x) be a student utility
from matching with agent k at signals x , we assume that for each s,

A1.1 vs,k(x) = vs,k for all k; vs,c = vc, with vc > vc′ if c > c′; and vc > vs,s = 0
for all c.

Colleges have preferences over groups of mates which are additively separable, and
for each c,

4 Forges (1994) also studies the posterior stage, but only for efficiency and without considering anticipated
renegotiation.
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8 A. Chakraborty et al.

A1.2 wc,s(x, q) is the payoff to college c from accepting student s when qualities are
q and signals are x , and wc,c = 0. We let uc,s(x) = ∑

q wc,s(x, q)Pr(q|x).

Note that college c’s payoff from student s does not depend on who else is admit-
ted to that college, a special case of responsiveness (see Roth and Sotomayor 1990,
Definition 5.2), and that agents have expected utility preferences.

We define matchings not only for all colleges and students, but also for coalitions
made of subsets of agents. Formally, let C = (C′, S′) be a coalition with C′ ⊂ C and
S′ ⊂ S, and C′ ∪ S′ �= ∅. A (two-sided many-to-one) matching m feasible for the
coalition C is a function from S′ ∪ C′ into the set of unordered families of elements of
S′ ∪ C′ such that: (i) for any student s ∈ S′, |m(s)| = 1 and m(s) = s or m(s) ∈ C′;
(ii) for any college c ∈ C′, |m(c)| = kc and if there are r < kc students in m(c), then
m(c) contains kc − r copies of c; and (iii) for any student s ∈ S′, m(s) = c if and
only if s ∈ m(c). In other words, each student is matched with at most one college
(remaining unmatched when m(s) = s), while each college c is matched with at most
kc students (having unfilled seats when c ∈ m(c)). Let MC be the set of all matches
feasible for C. When C is the grand coalition (C, S), we simply write M for the set of
all feasible matchings.

Finally, let Fc be information college c has, a coarsening of X, such that Pr(Fc) > 0.
For any agent k and matches m(c) and m′(c) we define

uc,k(Fc) =
∑

x

uc,k(x) Pr(x |Fc);

Uc(m(c)|Fc) =
∑

s∈m(c)

uc,s(Fc); and

Uc(m(c) − m′(c)|Fc) = Uc(m(c)|Fc) − Uc(m
′(c)|Fc).

3 Definition of group stability

Since agents have private information, this information may have to be aggregated to
arrive at a matching outcome for the market described above. We take a mechanism
design approach where agents report their signals to a mediator who subsequently
proposes a matching for the market. Formally, a direct revelation matching mechanism
μ is a function from the set X̂ × [0, 1] of reported signal profiles x̂ and draws of a
random variable ω ∈ [0, 1] to the set M of matchings. The presence of ω allows
the final matching to be stochastic, i.e., the mediator can randomize. Without loss of
generality, we assume that ω is distributed uniformly on [0, 1]. When μ(x̂, ω) does
not depend on ω for all x̂ , we say that μ is deterministic; while if μ(x̂, ω) does not
depend on x̂ we say that it is constant.

We are interested in the possibility of objections raised by coalitions of agents to the
matching outcome proposed by μ. These objections are raised at the posterior stage
after some information about the outcome proposed by μ has been observed by the
agents. Because of interdependent values, agents may use the information revealed by a
matching mechanism to object to its outcome. Since the mechanism itself affects what
is known at the posterior stage when objections can be raised to the mechanism, we
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Group stability in matching with interdependent values 9

need to define stability on matching mechanisms, not simply on matchings (see CCO
for a fuller discussion). We also focus attention on the case of weak observability where
each college only observes the portion m(c) of the matching outcome that pertains
to that college, and similarly each student only observes the college m(s) that it is
matched to. As shown in CCO, even pairwise stable matching mechanisms (let alone
group stable ones) do not exist in general when agents observe more information about
the proposed matching at the posterior stage when they can raise objections.

We now turn to the key definition of what we mean by an objection by a coalition to
the outcome of the status quo mechanism μ. A coalition C objects to match m∗ realized
after messages x̂∗ have been reported to the mechanism and the signal realization is
x∗, by proposing some alternative match m′. Given such a coalition and an alternative,
coalition members engage in unanimous voting on the alternative. The following
definition makes precise our idea of an objection or block. For given matchings m and
m′, with m′ ∈ MC , and any c ∈ C we let

Mc(m, m′) = {m′′(c) : ∣
∣m′′(c)

∣
∣ ≤ kc, m′(c) ∩ S ⊂ m′′(c)

and if s ∈ m′′(c)\(m′(c) ∩ S) then s ∈ m(c)}

as being the available matches to college c relative to the pair m, m′. An element m′′(c)
of Mc(m, m′) contains all the students in m′(c) with any remaining slots left empty
or filled with students in m(c). Let Xk be agent k’s set of signals, and X̂k the agent’s
set of messages (with X̂k = Xk ≡ {0} if k ∈ S).

Definition 1 A mechanism μ can be “blocked in principle” by a coalition C at
(̂x∗, x∗, m∗) if there exist an alternative match m′ and voting rules αk : X̂k × Xk ×
Mk → {0, 1} for each k ∈ C, satisfying

αc (̂xc, xc, m(c)) = 1 (PS1)

i f f max
m′′(c)∈Mc(m,m′)

Uc(m
′′(c) − m(c)|̂xc, xc, m(c), α−c = 1, x̂−c = x−c) > 0

for each x̂c, xc, m(c) and each c ∈ C′; and

αs (̂xs, xs, m(s)) = 1 iffvs,m′(s) > vs,m(s) (PS2)

for each x̂s, xs, m(s) and each s ∈ S′, with αk (̂x∗
k , x∗

k , m∗(k)) = 1 for all k ∈ C.

Definition 1 evaluates a block for an agent assuming the agent is pivotal, i.e., all
other agents in the coalition have accepted the alternative (α−c = 1) and assuming
also that other agents in the coalition reported truthfully their signals to the mediator
(̂x−c = x−c).5 The restriction to Mc(m, m′) in (PS1) is just a feasibility requirement
relative to the coalition a college belongs to. For instance, if a college blocks alone
(i.e., S′ = ∅), it can only drop some students it was assigned to under μ.

5 We use the subscript −c to denote all members of the coalition C apart from c. When evaluating a block,
the agent also assumes that all other agents not in the coalition C have reported their signals truthfully, but
we suppress this extra notation.
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Notice from Definition 1 that all members of the coalition must strictly prefer to
accept the blocking allocation m′, and that m′ is a deterministic and constant mech-
anism μ′(x̂, ω) = m′, all x̂, ω. This is identical to requiring that each member of a
blocking coalition strictly prefers to the status quo a feasible and non-random alter-
native matching outcome, as opposed to a matching rule. These are restrictions on the
ability of blocking coalitions to “effectively negotiate” (Myerson 1991, Ch. 9–10).
Especially when observing m does not fully reveal the state of the world x , one could
imagine that a blocking coalition may be able to design a communication game and
thereby implement a general incentive compatible alternative mechanism μ′, neither
constant nor deterministic (see, e.g., Definition 3.2 in Forges 1994). In contrast, Def-
inition 1 allows communication only to the extent of what can be inferred from the
equilibrium of the acceptance game, i.e., from conditioning on the event that agent k
is pivotal given strategies αC .6

Let Uk(μ; x̂k, xk) be agent k’s interim expected payoff when agent k reports x̂k ,
his signal is xk , all other agents report signals truthfully and the matching assigned by
μ is accepted. In addition, let Uk(μ

′; x̂k, xk, αC) be agent k’s interim expected payoff
when his report is x̂k , his type xk and all coalition members in C vote on μ′ according
to αC (assuming all agents other than k report their signals truthfully). We are now
ready to define group stability.

Definition 2 A mechanism μ is group stable if it satisfies the following three condi-
tions:

1. μ is incentive compatible: xk ∈ arg maxx̂k Uk(μ; x̂k, xk) for each xk and each k;
2. μ cannot be blocked in principle by any coalition C at any (̂x, x, m) with x̂k = xk

for all k;
3. if μ is blocked in principle by some coalition C at (̂x, x, m) satisfying x̂k �= xk for

a unique k ∈ C, then Uk(μ
′; x̂k, xk, αC) ≤ Uk(μ; xk, xk).

Condition 1 in Definition 2 is the usual notion of incentive compatibility, i.e., no
agent has an incentive to misreport his signal assuming no other agent does so, assum-
ing also that the matching proposed by the mechanism will be the final outcome.
Condition 2 states that no coalition can object on the path of play, i.e., given all agents
have reported their signals truthfully. Condition 3 goes beyond these two restrictions
by taking into account the possibility of anticipated renegotiation, namely, that an
agent may lie to the mediator and then block at the posterior stage. Overall, Definition
2 makes sure that “truth telling and no rematching” dominates not only “truth telling
and rematching” (as guaranteed by Condition 2) and “lying and no rematching” (as
guaranteed by Condition 1), but also “lying and rematching” (as guaranteed by Condi-
tion 3). The classical literature on stable matchings that are also incentive compatible
does not consider the requirement of no anticipated renegotiation, a key innovation

6 If we defined objections under strong observability, under which every agent observes the entire matching
at the time of raising objections, Definition 1 would have to be modified only in letting strategies αc and
αs to be functions of the entire match m, as opposed to of only m(c) and m(s), respectively. When we do
so, we refer to the mechanisms as being strongly stable.
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Group stability in matching with interdependent values 11

shared by this paper and CCO.7 We show below that it will play a crucial role in
some of the results below—in particular, in showing why the restricted communica-
tion requirements embedded in Definition 1 are necessary for the existence of group
stable mechanisms.

CCO define pairwise stability in terms of the perfect Bayesian equilibria (PBE) of
a two-stage non-cooperative game of signal reporting and rematching. In this game,
colleges first report their signals to a mediator who outputs a proposed matching
according to a mechanismμ. Colleges may then simultaneously make offers to students
they are not matched with (or simply drop a student they are currently matched with).
In contrast, Definition 2 bypasses the full description of a two-stage game of signal
reporting and rematching and directly provides conditions for a mechanism to be
stable. While this approach is at first sight quite different from the one in CCO, the
two definitions are equivalent when we restrict attention to pairwise stability, i.e., in the
case where a coalition can consist of a single college and student or a subset thereof.

To see this, consider first a situation where a matching mechanism μ is not a PBE of
the two stage game of reporting and rematching proposed by CCO and so not pairwise
stable in their sense. Suppose, in particular, that μ is not a PBE because in the second
stage of the game, after all realized signals x∗ are revealed truthfully and a matching
outcome m∗ is obtained, some college c profitably deviates by making an offer to some
student s that c is currently not matched with. College c must prefer this alternative
knowing its own signal x∗

c , its own truthful report x̂∗
c = x∗

c , and its own match m∗(c).
In addition, college c should evaluate this profitable deviation also by conditioning
on the fact that the student will accept its offer only when college c is preferred by s
to his current match, assuming also that all other colleges have reported their signals
truthfully, x̂∗−c = x∗−c. But then the mechanism μ is not group stable in the sense of
the this paper because it violates condition (2) in Definition 2. The relevant coalition is
C = {c, s} and the alternative μ′ is that s match with c. This block will succeed in the
state of the world (̂x∗, x∗, m∗) with x̂∗

k = x∗
k for all k. Condition (PS2) in Definition

1 states that the student s prefers to accept the alternative only when c is preferred to
its current match. Condition (PS1) states that college c prefers the alternative given
the information contained in its own signal and observed match, conditional on the
student’s expected behavior and assuming truthful reporting by all parties including c.
These conditions are identical to those underlying the profitable deviation by college
c in the two-stage game used by CCO.

Similarly, if μ is not a PBE because a college simply prefers to misreport in the first
stage of the game proposed in CCO, condition (1) in Definition 2 will be violated. On
the other hand, if a college prefers to misreport in the first stage, anticipating subsequent
rematching in the second stage, condition (3) in Definition 2 will be violated, with the
relevant coalitions consisting of college c and possibly one or more students. In the
other direction, if mechanism μ violates any of conditions (1)–(3) in Definition 2, with
blocks restricted to be singletons or college-student pairs, then there is a corresponding
profitable deviation for some college in the two-stage game of reporting and rematching
used in CCO.

7 See Kojima (2011) and Afacan (2012) for applications of the no anticipated renegotiation requirement to
private value settings.
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12 A. Chakraborty et al.

In our consideration of group stability, we avoid characterizing stability in terms of
the PBE of a non-cooperative game not only for reasons of simplicity but also to avoid
obtaining group stability trivially. With coalitions of multiple agents and unanimous
voting on an alternative, a mechanism μ may be a PBE of a (suitably specified)
two stage game of signal reporting and rematching simply because no member of
an objecting coalition votes in favor of the alternative expecting no other member to
do so. Definition 1 eliminates the possibility of such coordination failures between
coalition members.8 It imposes the stronger requirement that μ is stable only if there
is no profile αC that a coalition can use to block.

With the definition of group stability in place, we turn to our first example. In the
example we apply the serial dictatorship mechanism provided by CCO to character-
ize a pairwise stable matching mechanism. We show that this matching mechanism
may not be group stable. Next, we propose a modification of the CCO mechanism
that will generate group stable allocations in the example. Subsequently, in Sect. 4
we show that this modification delivers a group stable matching mechanism in all
environments.

Example 1 There are two colleges 1 and 2 and one student s. The student prefers
college 2 to college 1 and prefers matching with any college to remaining unmatched,
i.e., v2 > v1 > vs . Each college c = 1, 2 receives an informative binary signal
xc = {L , H}, each equally likely. We suppose that (i) college 1 prefers to match if and
only if both x1 = H and x2 = H , and based only on its own signal college 1 prefers to
match with the student if and only if x1 = H ; (ii) college 2 prefers to match with the
student if and only if x1 = H and x2 = L , and based only on its own signal college 2
prefers staying unmatched over matching with the student.

In Example 1, college 1’s signal may measure the student’s reasoning ability while
college 2’s signal may measure the student’s inclination to take risks. Both colleges
have similar preferences over the student’s reasoning ability but have opposing pref-
erences on the student’s risk attitudes—while college 1 values a risk taker, college
2 does not. The opposing preferences on the second dimension is what leads the
pairwise stable allocation rule obtained via simple serial dictatorship not to be group
stable.

Simple serial dictatorship works as follows. First, the student is evaluated by the
most preferred college 2 given its own signal. Since college 2 prefers not to admit the
student given only its own signal, the student is next evaluated by college 1. College
2’s decision to not admit the student is uninformative about its signal and so college
1 learns no information from the fact that the student is available. Since college 1 is
willing to admit the student only when x1 = H , the student is admitted to college 1 in
this case. When x1 = L , the student remains unmatched. This matching rule has the
property that no college has an incentive to lie about the signal received, whether or
not it subsequently tries to rematch, and indeed no college will try to rematch. Simple
serial dictatorship is pairwise stable.

8 With pairwise stability and known student preferences this possibility cannot arise—if some preferred
college makes an offer to a student, the student will always accept.
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Group stability in matching with interdependent values 13

But this matching rule is not group stable. To see this, consider the grand coalition
of the two colleges and the student that block using the alternative proposal that
the student match with college 2. The student is always willing to accept such an
alternative regardless of what he gets under the status quo mechanism since college
2 is the student’s most preferred college. Suppose college 2 accepts this block only
when x2 = L and college 1 only when x1 = H . Since college 2 prefers to accept the
student only in the state of the world (x1, x2) = (H, L), college 2 is strictly better
off from accepting the block if and only if x2 = L , conditional on being pivotal and
using the information contained in college 1’s acceptance strategy. Similarly, since
college 1 prefers to accept the student when (x1, x2) = (H, H) and prefers staying
unmatched otherwise, college 1 is also strictly better off from accepting the block if
and only if x1 = H , conditional on being pivotal and using the information contained
in college 2’s acceptance strategy. In essence, the block succeeds in the state of the
world (x1, x2) = (H, L) because both colleges and the student prefer that the student
be matched with college 2 in that state. By conditioning their acceptance decisions on
their private signal and on being pivotal, the two colleges can in effect communicate
their private information to the other party. This shows that the serial dictatorship
algorithm proposed by CCO does not in general rule out the possibility of information
sharing among coalitions involving multiple colleges.

In the next section, we show that a modification of the serial dictatorship algorithm
of CCO delivers group stable matching rules in every environment. In the present
example, this modified serial dictatorship algorithm works as follows. As with simple
serial dictatorship, the student is first evaluated by his most preferred college 2 given
its own signal. Since college 2 prefers not to admit the student given only its own
signal, the student is next evaluated by college 1. But unlike simple serial dictatorship,
college 1 is asked to evaluate the student given not only its own signal but also the
signal of college 2. This generates the following matching mechanism: the student is
matched with college 1 when (x1, x2) = (H, H) and remains unmatched otherwise.
As Theorem 1 shows, this assignment rule is group stable. Since modified serial dic-
tatorship uses more information than simple serial dictatorship in generating matches,
it eliminates the possibility of successful objections and information sharing by any
arbitrary coalition.9

4 Main results

Our main results are twofold. First, we establish the existence of group stable mech-
anisms. The proof is constructive and uses the modified serial dictatorship algorithm
outlined in Example 1 to deliver a mechanism with such properties. Second, we show
that our definition of group stability is tight—group stable mechanisms fail to exist in
general if we allow coalitions greater flexibility in sharing information and splitting the
gains from participating in blocks. In this sense, we identify necessary and sufficient
conditions for the existence of group stable mechanisms.

9 Notice that modified serial dictatorship does not deliver an ex-post efficient allocations in Example 1. We
discuss the efficiency properties of modified serial dictatorship in Sect. 5, comparing it also with simple
serial dictatorship.
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14 A. Chakraborty et al.

4.1 Existence of group stable mechanisms

Modified serial dictatorship works as follows. For each student s, the student’s value
to each college c is gauged using college c’s own signal and the signals possessed by
all colleges above c in the students’ (common) preference ordering. Then, students are
ranked according to their values. Let k̂c be the number of students who carry positive
value and are still available, i.e., were not assigned to any of the higher colleges in the
student’s rankings. Strictly order the students from best to worst, breaking ties among
equal value students via uniform randomization. If k̂c < kc, the mechanism assigns all
the k̂c students to college c leaving the remaining slots unassigned. Otherwise, the top
kc of the k̂c students are assigned to college c. Then, the next college is considered, and
the procedure repeated, starting from the top college and moving down the students’
rankings. We denote the resulting mechanism as μMSD.

Theorem 1 Mechanism μMSD is group stable.

All proofs are in the Appendix. The main hurdle in the proof is to rule out group
rematches. In principle, colleges that are higher in a student’s ranking may want to
obtain information from lower-ranked colleges by attempting to swap students with
those colleges, a group rematching strategy. However, under A1.1 the lowest college
in a student’s ranking is lowest in all students’ rankings. So the only way such a swap
can work is when the lowest ranked college in a coalition obtains a valuable student
who was matched with an even lower ranked college outside the coalition (or was
unmatched); or if the lowest ranked college in a coalition learns information from the
other colleges that allows it to profitably discard a previously accepted student. But
since μMSD uses all the information available to higher ranked colleges to generate the
matchings for lower ranked colleges, the lowest-ranked college in any coalition cannot
obtain any information from other higher ranked colleges that it did not already have.
This establishes Condition 2 of stability for μMSD. Indeed μMSD cannot be blocked
if, at the blocking stage, in addition to the match m(c) realized at x via μMSD, each
college is also allowed to observe the actual signals of all colleges above it in a student’s
ranking. Furthermore, μMSD is incentive compatible for each college c (Condition 1),
not only in interim terms, but also conditional on the actual signals received by all
colleges c′ > c, given truth-telling by colleges c′ < c. Thus, it is ex-post incentive
compatible for college 1 and, given truth-telling by college 1, incentive compatible for
college 2 even given the actual signals of all colleges above 2, and so on. From here,
full support of Pr immediately implies that μMSD satisfies Condition 3.10

10 Modified serial dictatorship delivers group stability because, by construction, no college is able to infer
anything from its own match about the information held by colleges below it in the students’ ranking.
Instead, under strong observability, by observing the entire match a college may infer valuable information
about the signal obtained by colleges below it in the student’s ranking, and so profitably block μMSD. As
shown in CCO (Example 2) this ability to deduce the information held by lower colleges in the context
of strong observability leads to the nonexistence of any (even only interim) incentive compatible strongly
stable mechanism. Exactly the same intuition underlies the nonexistence of incentive compatible ex–post
stable mechanisms.
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Group stability in matching with interdependent values 15

4.2 The necessity of restrictions on blocks

Our definition of stability imposes a number of restrictions on the ability of blocking
coalitions to raise objections. For ease of reference we list them as follows:

R1 No member of a blocking coalition can only be weakly better off from participating
in a block.

R2 Blocking coalitions cannot propose a stochastic alternative μ′ that is a probability
distribution over different matches.

R3 Blocking coalitions cannot propose mechanisms that specify alternative matches
as a function of messages exchanged by coalition members.

In this section we prove that these restrictions are all necessary for the existence
of stable mechanisms in all matching markets. For instance, if we allow coalition
members only to be weakly better off from participating in the block, then coali-
tion members can “sell information at price zero” to other members, precluding the
existence of stable mechanisms. Similarly, if a blocking coalition can propose lotter-
ies over multiple feasible alternative matches, they can essentially create stochastic
reward schemes and successfully block every possible mechanism. In the same spirit,
if coalition members are allowed to use general mechanisms, then they can create
randomization schemes by making matchings depend on payoff-irrelevant messages.
This rules out the existence of stable rules when coalitions can use general mechanisms
that are subject to self-selection and incentive compatibility constraints.

Theorem 2 Group stable mechanisms do not exist in all matching markets if any one
of the restrictions R1, R2 or R3 are relaxed.

The proof of Theorem 2 consists of constructing matching markets where no group
stable mechanism exists if either R1 or R2 or R3 is relaxed. Example 2 below is an
example of such a matching market. In the proof we characterize the necessary prop-
erties of group stable mechanisms using, in particular the no anticipated renegotiation
condition (Condition 3) of Definition 2, and show that no stable rule can exist unless
one imposes all three restrictions on blocking coalitions listed above. To illustrate the
intuition, we present here only the argument why μMSD fails to be stable in this market
if any one of R1, R2 or R3 is relaxed.

Example 2 There are three colleges and one student s. The student prefers college 3 to
college 2 to college 1 and prefers matching with any college to remaining unmatched,
i.e., v3 > v2 > v1 > vs . Colleges 1 and 3 do not receive any informative signals.
However, college 2 receives a binary informative signal x2 = {L , H}, each equally
likely. We suppose that (i) college 1 prefers to match with the student regardless of
x2; (ii) college 2 and college 3 prefer to match with the student if and only if x2 = H ;
while (iii) in the absence of any information about college 2’s signal, college 3 prefers
to remain unmatched.

In this matching market, μMSD assigns the student to college 2 when x2 = H and to
college 1 when x2 = L . We begin by showing that μMSD can be blocked if we relax R1,
allowing participation in blocks even if an agent is only weakly better off from doing
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so. More precisely, we replace the strict inequalities in (PS1) and (PS2) in Definition
1 for all agents in C with weak inequalities for all but at least one agent who should
strictly prefer to accept. Definition 2 of a stable matching mechanism is accordingly
modified and we use the term group∗ stability to denote this modified notion.

Modified serial dictatorship can be blocked if we use the notion of group∗ stability,
via the coalition of the student and colleges 1 and 3 that uses the alternative that the
student be matched with college 3. Since college 3 is the student’s most preferred
college, the student will always strictly prefer such an alternative. College 1 strictly
prefers to reject such an alternative when the status quo μMSD proposes that the student
be matched with college 1, i.e., when x2 = L . However, college 1 weakly prefers to
accept the alternative (in fact is indifferent) when college 1 observes that μMSD did
not match the student with college 1. In such a case, college 1 can infer that μMSD has
matched the student with college 2, so that x2 = H . Since under group∗ stability we
allow all but one agent to participate in a block even if they are only weakly better off
from doing so, we let college 1 accept the alternative whenever μMSD has not matched
it with the student. This acceptance strategy on the part of college 1 allows college 3
also to infer that, conditional on participation from college 1 , x2 = H . Since college 3
strictly prefers to match with the student in such states of the world, it is strictly better
off from participating in the block when x2 = H . By allowing college 1 to participate
in the block even if it is only weakly better off from doing so, we effectively allow it
to convey to college 3 the information it obtains from observing its own part of μMSD.
In contrast, under our original definition of a stable matching, college 1 would not be
able to participate in this block since it does not strictly benefit from doing so.

A similar argument goes through if instead of R1 we relax R2 above. When alterna-
tives are allowed to be lotteries, coalition members evaluate the alternative in expec-
tation over possible lottery outcomes, and we call the resulting notion of stability
group∗∗ stability. Under group∗∗ stability every coalition member must be strictly
better off in expectation over the lottery outcomes proposed by μ′ after taking into
account the participation decisions of others.

We show now that group∗∗ stability allows coalition members to strictly benefit
from blocking μMSD by considering again the coalition of the student and colleges 1
and 3. However, now we allow the alternative μ′ to be the lottery that matches the
student with college 1 with probability p ∈ (0, 1) and with college 3 with proba-
bility 1 − p, where p satisfies pv1 + (1 − p)v3 > v2. Because of the restriction
on p the student strictly prefers to accept the alternative when matched by μMSD to
college 2 (or college 1). Since p < 1, college 1 strictly prefers the status quo when
x2 = L and μMSD matches the student with college 1. But since p > 0, college 1
strictly prefers the alternative μ′ when x2 = H and μMSD matches the student with
college 2. Therefore, college 1 strictly prefers to accept the alternative if and only if
it has not been matched with the student by μMSD. This allows college 3 to infer that
x2 = H conditional on participation by college 1. Since college 3 strictly prefers to
match with the student when x2 = H , it is also strictly better off from accepting the
alternative.11

11 In the proof of Theorem 2, we only need to add to this argument by showing that a mechanism that never
allocates the student to college 2 is vulnerable to anticipated renegotiation by that college. For instance, if
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It is now easy to illustrate why the modification of blocks induced by a relaxation of
R3 will also yield negative conclusions. To demonstrate this, we “replicate” Example
2 as follows. Suppose that there are two students, s and s′, and three colleges 1,
2 and 3. The preferences and information of all agents are identical to Example 2.
Moreover, college 2’s signals for students are drawn independently across students.
Also, each college has enough capacity to accept both students. With this replication,
μMSD allocates any student to college 2 if that college’s report for that student is
H and allocates that student to college 1 otherwise. Coalitions are now allowed to
propose deterministic alternative matches, but in a way that depends on messages sent
by coalition members. It is then possible for a coalition of colleges 1 and 3 and the
two students s and s′ to each be strictly better off from objecting to μMSD. This can
be achieved by designing an alternative proposal (a mechanism) that allocates student
s (resp., s′) to either college 1 or college 3 depending on a message sent by the other
student s′ (resp., s). Since each student’s own match depends only on the message sent
by the other student, each student is willing to randomize its messages in a manner that
replicates the lottery used for establishing the instability of μMSD when R2 is relaxed.
The arguments used above then extend to show that μMSD can be blocked via such a
mechanism when college 2’s signal for each student is H . Indeed, one can show that
no stable mechanism exists when one allows coalitions to use general mechanisms
in which the alternative allocation is determined as a function of messages sent by
coalition partners.12

5 Efficiency properties of modified serial dictatorship

Modified serial dictatorship gives rise to matchings that are stable against the grand
coalition at the posterior stage. If efficiency is defined relative to the information
agents have at the posterior stage, then modified serial dictatorship is efficient provided
dominance must be strict for every agent and the alternative is still restricted to be
constant and deterministic. Similarly, if dominance only requires that an agent who
shares information within the grand coalition has to strictly profit from the alternative
matching, while other agents can be weakly better off, then again modified serial
dictatorship is efficient. The reason is simple: μMSD cannot be blocked in principle by
any coalition, whether agents outside the given coalition are better off or not. Hence,
a fortiori it cannot be blocked in principle if we restrict such blocks not to hurt anyone
outside the given coalition. Clearly, this rules out dominance as just defined. Example
2 has already shown that matchings obtained through modified serial dictatorship are

Footnote 11 continued
the mechanism allocates the student to college 3 when x2 = H and to college 1 when x2 = L , then when
x2 = H college 2 can profitably invert its signal and report x̂2 = L and then block in a coalition with the
student.
12 When R3 is relaxed, the alternative μ′ is a mechanism that must not only satisfy self-selection constraints
along the lines of conditions (PS1) and (PS2) in Definition 1, but also incentive compatibility constraints.
These constraints are a straightforward, but notationally cumbersome, generalization to the posterior stage
of Dutta and Vohra (2005) notion of the credible core. Therefore, we omit their formal development in the
interest of brevity.
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not guaranteed to be efficient if agents share information for free, that is, are allowed
to participate in a coalition that makes them only weakly better off.

In light of Example 1, we also want to measure modified serial dictatorship against
efficiency ex-post: μ is ex-post dominated at x ∈ X if there exists a deterministic
μ′ ∈ M such that agent k’s expected payoff from μ′ is no less than his expected payoff
from μ, both evaluated conditional on x , for all k ∈ C ∪ S, with one strict inequality;
μ is ex-post efficient if it cannot be ex-post dominated at any x .13 Are modified
serial dictatorship matching outcomes ex-post efficient? The following result gives a
sufficient condition on preferences for a positive answer.

Proposition 1 Let wc,s(xs, qs) = wc(xs, qs) be decreasing in c, and u1,s(x) �= 0 for
all s ∈ S, all x ∈ X. Then μMSD is ex-post efficient.

The case in question represents natural environments where students rank unani-
mously as top colleges those that have a higher opportunity cost of admitting them,
and therefore where it is more difficult to get in. Such a higher opportunity cost may
be correlated to the faculty’s research productivity, say, which would be distracted by
the teaching and training of an additional student. A parametric example is provided
by wc,s(xs, qs) = qs − γc, where the preference parameter γc ∈ (0, 1) is the oppor-
tunity cost, and is increasing in c. In this case, even if simple serial dictatorship also
delivers incentive posterior stable allocations, these allocations are not guaranteed to
be ex-post efficient, as the following example shows.

Example 3 We take a symmetric affiliated environment with two colleges 1 and 2,
and one student s. Each college receives three signals, i.e., Xc = {L , M, H} with
L < M < H , all c. The student prefers college 2 to college 1, and matching with any
college over remaining unassigned, i.e., v2 > v1 > vs . We suppose that: (i) college
1 prefers matching with the student unless one college has received the lowest signal
and no college has received the highest signal; (ii) u1,s(x1 = M, x2 < H) < 0; (iii)
college 2 prefers matching with the student unless no college has received the highest
signal; and (iv) u2,s(x1 > L , x2 = M) < 0.

Let the deterministic allocations μ1, μ2 give rise to matchings14

m1(s; x, ω) =
⎡

⎣
2 2 2
s s 1
s s 1

⎤

⎦ , m2(s; x, ω) =
⎡

⎣
2 2 2
s 1 1
s s 1

⎤

⎦

all ω. One can easily check that μ1 is group stable and is obtained through simple serial
dictatorship. However, it is not ex-post efficient, as it is dominated by μ2 = μMSD.
This shows that not only does modified serial dictatorship work where simple serial
dictatorship may not, but when both work, the former has better efficiency properties.

13 Note that for ex-post efficiency we allow improvements not to be strict. Also, because of the restrictions
on alternative proposals (specifically, signal invariance), posterior efficiency does not automatically imply
ex-post efficiency.
14 Each cell identifies the student’s match occurring when signals are (x1, x2); rows correspond to college
2’s signals x2, columns to college 1’s signals x1, going from L to H upward and rightward, respectively.
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6 Conclusion

We consider two-sided many-to-one matching markets with interdependent valuations
and imperfect information held by one side of the market. The other side has common
and known preferences over potential mates. We propose a definition of group stable
matching mechanisms for such environments and show that pairwise stability does
not necessarily imply group stability. We constructively prove the existence of group
stable matching mechanisms. We also identify precisely the restrictions on the ability
of blocking coalitions to negotiate effectively that are necessary for obtaining general
existence results.

In addition to traditional matching settings, our analysis also applies to situations
where preference homogeneity for the uninformed side of the market arises because
there is a single agent on that side. For instance, a principal (such as a department
chair) may have to assign tasks to several agents (faculty members). The principal
may have known preferences over the agents whom she ranks according to their
ability or punctuality. But the agents may have interdependent values and private
signals on the costs and benefits of completing the various tasks and they may update
this information during the assignment process. Group stability in this context is the
problem of designing a rule that aggregates information and assigns tasks to agents in
a manner that is immune to misrepresentation of information as well as to objections
raised by coalitions of agents (that may include possibly the principal herself) after
the assignment is completed.

Appendix

In the proofs we use the following convenient notation. Given a mechanism μ, we
denote by m(k; x) the match of agent k realized at x for some ω ∈ [0, 1]. We further
omit the signal realization when convenient, and write m(k) for such match realization.
Also, with slight abuse of notation we let μk,k′(x̂) denote the probability that agent k
is matched to agent k′ under μ given reports x̂ .

Proof of Theorem 1 Given x ∈ X, let yc = (xc+1, . . . , xC ) be the vector of signals
xc′ received by all c′ > c, with yC = ∅.

First, we construct modified serial dictatorship (MSD). Starting from college C
and going down to college 1, for each college c let k̂c be the number of students s
such that uc,s(xc, yc) > 0 and vc > vs,s , and that are not yet assigned to any college
c′ > c. Strictly order the students from best to worst, breaking ties among equal
value students via uniform randomization. If k̂c < kc, the mechanism assigns all the
k̂c students to college c leaving the remaining slots unassigned. Otherwise, the top
kc of the k̂c students are assigned to college c. The procedure ends in finite time, as
there are no cycles: the number of students and colleges is finite, and no student is
evaluated for any college more than once. Let the constructed allocation rule be denoted
μMSD. Observe that if m(c; x) is a match realization for college c under μMSD, then
m(c; x) = m(c; xc, yc), all c ∈ C. Let uc,kc (Fc) be the value of college c’s kc-th mate
under μMSD, conditional on information Fc.
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We break the proof into three lemmas. Lemma 1 checks thatμMSD cannot be blocked
in principle under truthtelling, and Condition 2 in Definition 2 is satisfied. Lemma 2
shows that μMSD is interim incentive compatible, and Condition 1 is satisfied. Finally,
Lemma 3 establishes Condition 3.

Lemma 1 Mechanism μMSD satisfies Condition 2.

Suppose that a coalition C blocks μMSD at x̂, x, m, with x̂ = x , and m =
μMSD(x, ω), some ω. It must be that C′ �= ∅: by assumption on preferences, a student
would never want to drop a college and remain unmatched, which would be the only
possible block in the absence of colleges in a coalition. Let c∗ = min C′, the lowest-
ranked college in the coalition (by A1.1, a well-defined concept). By condition (PS1)
in Definition 1, and by A1.2 (college payoff separability across students), it must be
that

uc∗,k(Fc∗) − uc∗,k′(Fc∗) > 0 (1)

for some k ∈ S′ ∪ {c∗} and some k′ ∈ S ∪ {c∗}, where Fc∗ is the information private to
college c∗ after observing its own signal xc∗ , its own match m(c∗), given acceptance
rules α−c∗ = 1 and given truthtelling x̂ = x . There are three possible cases to be
considered: (i) k = c∗, when college c∗ just drops a student k′ ∈ S without getting
any student in exchange; in that case, the value of the last slot at college c∗ must be
uc∗,kc∗ (Fc∗) = uc∗,c∗(Fc∗) = 0; (ii) k′ = c∗, when college c∗ just gets a new student
k ∈ S′ without dropping any student in exchange –in that case, again the value of the
last slot at college c∗ is uc∗,kc∗ (Fc∗) = uc∗,c∗(Fc∗) = 0; (iii) k ∈ S′ and k′ ∈ S, when
college c∗ is exchanging an assigned student k for a new student k′.

Consider first case (i). Since in this case k′ ∈ m(c∗), by construction of μMSD it must
be that uc∗,k′(xc∗ , yc∗) ≥ 0 for all (xc∗ , yc∗) such that k′ ∈ m(c∗; xc∗ , yc∗) = m(c∗).
Conditional on truthtelling, the information α−c∗ = 1 can only reveal xc′ for some
c′ ∈ C′, c′ > c∗. Hence, as uc∗,k′(Fc∗) is an average across elements (xc∗ , yc∗) as
above, uc∗,k′(Fc∗) ≥ 0, a contradiction.

Now consider case (ii). By A1.1 (homogeneous student preferences) and condition
(PS2) in Definition 1, it must be that k ∈ m(c) for some c < c∗, implying c �∈ C′,
or m(k) = k. By construction of μMSD it is uc∗,k(xc∗ , yc∗) ≤ 0 for all (xc∗ , yc∗) such
that k �∈ m(c∗; xc∗ , yc∗). The information Fc∗ is a coarsening of the last two facts.
Therefore, uc∗,k′(Fc∗) is an average across these states, implying uc∗,k(Fc∗) ≤ 0, a
contradiction.

Case (iii) is now a straightforward combination of the arguments in the previous
two cases, and we then omit the details for brevity, ending the proof. 
�
Lemma 2 Mechanism μMSD satisfies Condition 1.

For any c, let xc be the true signal for c, and x̂c �= xc be c’s false report. Let

Uc(μ; x̂c, xc) =
∑

yc

Uc(μ; x̂c, xc, yc) Pr(yc|xc)

where Uc(μ; x̂c, xc, yc) is college c’s expected payoff when this college reports x̂c, its
signal is xc, all other agents report truthfully, the match assigned by μ is not blocked
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in principle by any coalition, and we condition also on yc. Note that by construction
of μMSD, with its message college c cannot affect the set of its available mates, which
is determined by yc instead. Then, fix a student s and consider only xc, yc such that
uc′,s(xc′,s, yc′,s) ≤ uc′,kc′ (xc′, yc′) for all c′ > c. It is easy to show that for every such
xc, yc it is uc,s(x̂c, xc, yc) ≤ uc,s(xc, xc, yc). Indeed, if the student is worth less than
the cutoff kc at xc, yc, lying is going to matter only if college c gets the student as a
result; whereas if the student is worth at least as much as the cutoff kc, lying matters
only if college c drops the student as a result. In either case, lying clearly does not
lead to a payoff improvement over μMSD conditional on xc, yc. Averaging across all
yc, we have uc,s(x̂c, xc) ≤ uc,s(xc, xc) for all s. Since by A1.2 colleges’ payoffs are
separable in students, we conclude that Uc(μ; x̂c, xc) ≤ Uc(μ; xc, xc) for all c, as
wanted. 
�
Lemma 3 Mechanism μMSD satisfies Condition 3.

By contradiction, suppose not, and that μ is blocked in principle by some coalition
C at (̂x, x, m) satisfying x̂c �= xc for a unique c ∈ C′, with Uc(μ

′; x̂c, xc, αC) >

Uc(μ; xc, xc). Since from Lemma 2 μMSD satisfies Condition 1, it follows that μ′ �= μ,
i.e., the block is non-trivial.

Let Uc(μ
′; x̂c, xc, αC, yc) be college c’s expected payoff from blocking in principle

when joining coalition C having reported message x̂c when the signal is xc, acceptance
strategies in C are αC and the alternative is μ′, and college c also observes yc. Let
Uc(μ; xc, xc, yc) denote the similar payoff from truthtelling and accepting μ. Then,
the assumed condition holds only if there exists yc such that

Uc(μ
′; x̂c, xc, αC, yc) > Uc(μ; xc, xc, yc) (2)

Notice first that for each c, given xc, yc and any message x̂c, the observed outcome
m(c) contains no information for c that is not already contained in xc, yc. This follows
from construction of μMSD.

Second, the blocking coalition C = (C′, S′)—associated with college c having
reported message x̂c when the signal is xc, acceptance strategies in C are αC and the
alternative is μ′, and college c observes yc and the matching outcome m(c) resulting
from the report x̂c—and everyone else reporting truthfully—must contain at least one
other college c′ with c′ < c. This is because a blocking strategy where c is the singleton
college in the coalition can only attract students lost to colleges c′ < c and drop those
gained from c′ > c as a result of the message x̂c. Further, it will not convey any
information (via the acceptance strategies of students in the coalition) that c already
does not know from xc, yc. Then, coalition C must involve a college c′ < c from whom
c obtains information at the blocking stage via acceptance strategies.

Now consider c∗ = min C′. Since c∗ participates in the block under the presumption
that c tells the truth, and because of the full support assumption, Lemma 1 concludes
that c∗ cannot be better off from joining this coalition, contradicting condition (PS1)
in Definition 1. Thus, no such yc can exist, (2) does not hold and Condition 3 must
hold at all yc, and therefore also on average, and this for all xc and all c, concluding
the proof. 
�
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Proof of Theorem 2 (R1): We replace the strict inequalities in (PS1) and (PS2) in
Definition 1 for all agents in C with weak inequalities for all but at least one agent,
who should accept strictly. We call group ∗ stable a mechanism that satisfies this
modified notion. We consider the matching market given by Example 2. We start by
excluding certain matching configurations. To begin, no group∗ stable mechanism μ∗
can have μ∗

s,s(x̂) > 0 at any x̂ , or college 1 and the student will block at such x̂ when
m(s) = s, by (i). Next, it must be μ∗

2,s(L) = 0, or college 2 will block alone if matched
with the student at x̂ = x = L , by (ii). Similarly, μ∗

1,s(H) = 0, or college 2 will
object with the student upon observing m(2) = 2 at x̂ = x = H , again by (ii). Now
we claim that μ∗

2,s(H) > 0. For if not, the previous steps imply μ∗
3,s(H) = 1. First

suppose that μ∗
1,s(L) > 0 . Then, at x = H college 2 can lie at the first stage and then

block with the student when m(s) = 1. Under μ∗ the student then gets v2 > v1, hence
accepts if and only if m(s) = 1. College 2 gets u2,s(H) > 0, by (ii); and in expectation
before stage one, it gets u2,s(H)μ∗

1,s(L) > 0, zero being the expected payoff under
μ∗. Hence, lying and blocking would be better than truthtelling and no rematching,
a contradiction to Condition 3. If instead μ∗

1,s(L) = 0, then by the previous steps
μ∗

3,s(x̂) = 1 all x̂ , and college 3 would object alone, by (iii). Therefore, μ∗
2,s(H) > 0.

Finally, we show that μ∗
2,s(H) > 0 is impossible for a group∗ stable mechanism.

Indeed, colleges 1 and 3 and the student would then block at x̂ = x = H when
m(s) = 2, with m′(3) = s and the acceptance rules: α1(m(1)) = 1 if and only
if m(1) = 1; α3(m(3)) = 1 always; αs(m(s)) = 1 if and only if m(s) �= 3. The
student’s acceptance obviously satisfies (PS2) strictly. College 1 gets zero with μ∗ or
m′ when m(1) = 1, and when m(1) = s gets 0 < u1,s(L), by (i), the latter being
its payoff under μ∗ , so α1 satisfies (PS1) weakly. Using α−3 = 1, college 3 knows
that it is pivotal only when x = H . Indeed, while obviously college 3 is not worse off
with m′ if m(3) = s, when m(3) = 3 the college knows that it must be m(1) = 1 for
them to be pivotal, but then m(2) = s, which can only occur when x = H . Its payoff
from m′ given α1 is then u3,s(H) > 0, by (iii), zero being its payoff under μ∗. Hence,
college 3 is strictly better off with m′, and μ∗ can be blocked in principle. 
�

(R2): Alternatives μ′ are allowed to be lotteries, and we call the resulting notion of
stability group∗∗ stability. Again, we consider the matching market given by Example
2. Up to the last block considered in the proof under R1, restrictions on mechanism μ∗
were obtained without recourse to the weak inequalities inherent to group∗ stability.
Hence, allocation μ∗∗ is group∗∗ stable only if it is subject to those same restrictions.
To prove the claim it is then sufficient to show that the last block used in the proof under
R1 can be modified and turned into a block in principle against μ∗∗ = μ∗, the only
candidate group∗∗ stable mechanism. To this aim, consider the coalition formed by
colleges 1 and 3 , and the student, counterproposal μ′ with μ′

1,s ∈ (0, 1), μ′
1,s +μ′

3,s =
1, and such that μ′

1,sv1 +μ′
3,sv3 > v2, and acceptance rules αc(m(c)) = 1 if and only

if m(c) = c, for c = 1, 3, and αs(m(s)) = 1 if and only if m(s) �= 3. At x = H and
when m(s) = 2 , this coalition will block μ∗∗. Indeed, when m(1) = 1 and college 1
is pivotal, under μ′ college 1 gets the student with probability μ′

1,s > 0, for a payoff
of [u1,s(L) Pr(L)+u1,s(H) Pr(H)]μ′

1,s > 0, zero being its payoff at m(1) = 1 under
μ∗∗: college 1 is strictly better off with μ′. When m(1) = s, the college is strictly
better off keeping the student for sure than only with probability μ′

1,s . College 3 then
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is strictly better off with μ′ only if m(3) = 3, as then it knows that it is pivotal only
when m(2) = s and its payoff is then u3,s(H)μ′

3,s > 0, by (iii), zero being its payoff
under μ∗∗. 
�

(R3): We call the derived notion of stability group∗∗∗ stability. We consider the
“replicated” Example 2. For each student sh = s, s′, we can again apply the first
steps in the proof under R1 to narrow down μ∗∗∗

sh
as a group∗∗∗ stable allocation for

student sh , with the same restrictions. The remaining pairs
(
μ∗∗∗

s , μ∗∗∗
s′

)
resulting

from combinations of such assignments for students s, s′ must then have in particular
μ∗∗∗

2,s (H, xs′) > 0 and μ∗∗∗
2,s (xs, H) > 0, for any xs, xs′ . We now show that at signals

x = (xs, xs′) = (H, H), the coalition of C′ = {1, 3} and S′ = {s, s′} can block in
principle mechanisms μ∗∗∗ by replicating the randomness of μ′ under R2 via mixed
strategy announcements as functions of payoff-irrelevant messages. In the interest of
brevity, and to save on cumbersome yet obvious notation, we only sketch the main
elements of the argument as follows, leaving the details to the reader.

Let the message space of mechanism μ′ be the agent’s type for colleges, and the
student type augmented by a binary message {ξ1

sh
, ξ2

sh
}, for sh = s, s′.

The map μ′
sh

is set as follows: when student sh announces message ξ1
sh

, the other
student sh′ is allocated to college 1; whereas when student sh announces message ξ2

sh
the

other student sh′ is allocated to college 3, regardless of the message of other coalition
members; for any other message sent by student sh , student sh′ is left unassigned.
Notice that μ′ does not depend on the messages sent by the colleges and that the
allocation for any student does not depend on the messages sent by that student, but
only on the messages sent by the other student.

For any student sh , let Ash be the acceptance set for that student in the voting game,
corresponding to types tsh where sh has not been assigned to college 3 by μ∗∗∗. For
tsh ∈ Ash , let student sh choose a mixed announcement strategy σsh (ξ

1
sh

|tsh ) = p =
1 − σsh (ξ

2
sh

|tsh ) where pv1 + (1 − p)v3 > v2, and otherwise let the announcement
strategies for all parties be arbitrary. For colleges 1 and 3, let Ac correspond to the
set of types for college c for which αc = 1 in each of the cases considered under
R2 when such μ′ was used. Observe that, with such a choice of μ′, {Ak}k∈C and
{σk}k∈C , from the perspective of each student sh we have recreated the lottery μ′ used
under R2 by using the random messages sent by the other student. It then follows that
self-selection and incentive compatibility conditions are satisfied, due to arguments
identical to those used under R2. We conclude that no mechanism μ∗∗∗ = (

μ∗∗∗
s1

, μ∗∗∗
s2

)

can have μ∗∗∗
2,s1

(H, H) > 0 or μ∗∗∗
2,s1

(H, H) > 0, a contradiction. Therefore, group∗∗∗
stable mechanisms do not exist, ending the proof of the theorem. 
�

Proof of Proposition 1 Drop the superscript M SD from μMSD. Suppose μ is not ex-
post efficient. Then at some x ∈ X there exists a deterministic μ′ = m′ that is feasible
for C = (C, S) and such that Uk(m′(k) − m(k)|x) ≥ 0 for all k ∈ C ∪ S, with one
strict inequality.

Because of dominance for students, no college can just drop any student. Because
some agent must be strictly better off, the assignment must change at least for a student,
hence for a college. Let c̄ ≥ 1 be the highest such college. College c̄ must receive a
student s either assigned to college c′ < c̄ under μ, or unassigned by μ.
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If the second case, u1,s(x) ≤ 0 by construction of μ –and u1,s(x) < 0 by assump-
tion.

Since wc̄ ≤ w1, it must be that uc̄,s(x) < 0. If college c̄ then gives up a student s′′
with uc̄,s′′(x) < 0, it must be to a college c′′ > c̄, by A1.1, contradicting the fact that
c̄ is the highest college for which the assignment changes.

Hence, college c̄ must receive a student s′ assigned to college c′ < c̄ under μ, also
the first case (in which case, without loss of generality we can assume uc̄,s(x) ≥ 0, and
hereafter let s′ = s). Since wc̄ < wc′ , it is uc′,s′(x) > 0 and college c′ must receive
student s′′ such that uc′,s′′(x) > 0 from c′′ < c′. Indeed, if student s′′ was unassigned,
then u1,s′′(x) < 0 by construction of μ and by assumption, and by assumption on w

it would be uc′,s′′(x) < 0, a contradiction. Continuing this logic, we arrive at college
cn = 1 and at a student sn with u1,sn (x) > 0 where sn was unassigned. Since for all
s unassigned under μ we have u1,s(x) < 0, we have a contradiction. 
�
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