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Abstract

We study trading behavior and the properties of prices in informationally complex markets.

Our model is based on the single-period version of the linear-normal framework of Kyle (1985).

We allow for essentially arbitrary correlations among the random variables involved in the model:

the value of the traded asset, the signals of strategic traders and competitive market makers, and

the demand from liquidity traders. We show that there always exists a unique linear equilibrium,

characterize it analytically, and illustrate its properties with a number of applications. We

then use this characterization to study the informational efficiency of prices as the number of

strategic traders becomes large. If liquidity demand is positively correlated (or uncorrelated)

with the asset value, then prices in large markets aggregate all available information. If liquidity

demand is negatively correlated with the asset value, then prices in large markets aggregate all

information except that contained in liquidity demand.
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1 Introduction

Whether and how dispersed information enters into market prices is one of the central questions

of information economics. A key difficulty in answering this question is the strategic behavior of

informed traders. A trader who has private information about the value of an asset has an incentive

to trade in the direction of that information. However, the more he trades, the more he reveals

his information, and the more he moves the prices closer to the true value of an asset. Thus, to

maximize his profits, an informed trader may stop short of fully revealing his information, and so

the informational efficiency of market prices may fail.

In one important case, however, market prices may still accurately reflect dispersed information:

the case in which the number of informed traders is large, and each of these traders is small. In

such markets, each of the traders has limited impact on prices, but their aggregate behavior reflects

the aggregate information available in the market. As a result, market prices are close to those

that would prevail if all private information were publicly available.

Non-strategic explorations of this intuition go back to Hayek (1945), Grossman (1976), and

Radner (1979). Subsequently, a line of research (which we discuss in more detail in Section 1.1)

has considered strategic foundations for this intuition, studying the strategic behavior of informed

agents in finite markets, and then considering the properties of prices as the number of agents

becomes large. This stream of work, however, imposes very strict assumptions on how information

is distributed among the agents, typically assuming that the signals are symmetrically distributed,

or satisfy other related restrictions so that in equilibrium, the strategies of all informed traders

are identical. In practice, however, the distribution of information in the economy can be much

more complex. Some agents may be better informed than others. Different groups of agents may

have access to different, potentially interdependent, sources of information. Some agents may

be informed about the fundamental value of the security, while others may possess “technical”

information about the market or other traders. And all such possibilities may be present in a

market at the same time.

Our paper makes two main contributions.

First, we present a tractable framework that makes it possible to study trading in such infor-

mationally complex environments. Our model is based on the single-period version of the model

of Kyle (1985). As in that paper, an important assumption that makes our model analytically

tractable is the assumption of joint normality of random variables involved: the true value of the

traded asset, the signals of strategic traders, the signals of competitive market makers, and the

demand coming from liquidity traders. Beyond that assumption, however, we impose essentially no

restrictions on the joint distribution of these variables, making it possible to model informationally

rich situations such as those described above. In this framework, we show that there always exists

a unique linear equilibrium, which can be computed in closed form.

Second, we explore the informational properties of equilibrium prices as the number of informed

agents becomes large. We assume that there are several types of agents, with each agent of a given

type receiving the same information (possibly affected by idiosyncratic noise), and fix the matrix
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of correlations of signals across the types. We then allow the numbers of agents of every type

to grow. We find that the properties of prices in large markets depend on the informativeness

of the demand from liquidity traders. If liquidity demand is uncorrelated with the value of the

asset or is positively correlated with it (conditional on other signals), then prices in large markets

aggregate all available information. If liquidity demand is negatively correlated with asset value,

then prices in large markets aggregate all available information except that contained in liquidity

demand. Crucially, in both cases, as markets become large, the information possessed by the

strategic traders is fully aggregated and fully incorporated into market prices, for very general

(multidimensional and asymmetric) information structures.1

We also illustrate our model with two sets of applications.2 First, we consider a natural question

of whether having more information is always advantageous for a strategic trader. The answer turns

out to be subtle. In the context of a single market, if one trader is more informed than another, then

the former trader indeed has a higher expected profit than the latter. However, if a strategic trader

receives more information in one market than he does in another one (with other characteristics of

those markets being the same), he may be worse off in the market in which he is more informed.

Second, we explore a question in the spirit of Bergemann and Morris (2013): how much can the

outcomes in our model vary when the fundamentals of the economy are fixed, but the informational

structure is not? We find that the information structure plays an important role in determining

market outcomes: if it is allowed to vary without any restrictions, the resulting bounds on the

outcomes are quite wide, even in the most restrictive case of markets in which liquidity demand is

independent of all other variables in the model. This finding may at first glance seem at odds with

our information aggregation result, which gives very sharp predictions on outcomes in large markets.

Of course, there is no contradiction, since for the information aggregation result, we do place a

restriction on the underlying informational structure: there are several groups of symmetrically

informed agents, and these groups grow large.

We conclude the paper with two sets of results related to information aggregation in large

markets.

First, we characterize the properties of prices in a “hybrid” case, in which some information is

available only to a small number of traders (“scarce” information), while some other information is

available to a large number of traders (“abundant” information). As the number of traders having

access to abundant information grows, the equilibrium converges to the one that would obtain if

these traders were not present in the market at all, and instead their information was observed by

the market maker (but not by the remaining strategic traders).

Second, to investigate the driving force behind our information aggregation result, we consider

a simpler model in which there are no liquidity traders, and in which the sensitivity of prices to

1The presence of exogenous liquidity demand plays an important role in our results: it makes trading possible by
providing a source of profits for the strategic traders. Our information aggregation results rely on a slightly stronger
assumption that the variance of liquidity demand is positive conditional on the signals of the strategic traders and
the market maker (see Section 5 and footnote 20).

2In addition to these applications, in Section 5 of the Online Appendix we present a number of further illustrative
examples.
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aggregate quantity is fixed (instead of being endogenously determined by a Bayesian market maker).

We present the model in the language of Cournot competition, but note that it is isomorphic to

a model of trading with a mechanical (rather than Bayesian) market maker. We find that in this

simpler model, information dispersed among the strategic agents gets fully aggregated in the limit

as their numbers grow—just as in the first model.

1.1 Related Literature

The literature on strategic foundations of information aggregation and revelation in markets goes

back to Wilson (1977), who considers an auction-based model in which multiple partially informed

agents bid on a single object. Other work in this tradition includes Milgrom (1981), Pesendorfer and

Swinkels (1997), Kremer (2002), and Reny and Perry (2006). These papers find that under suitable

conditions, information gets aggregated when the number of bidders becomes large. However, these

results depend critically on strong symmetry assumptions on the bidders’ signals and strategies.

Another stream of literature, going back to Kyle (1989), considers equilibria in demand and

supply functions, where bidders specify how many units of an asset they demand or supply at each

price, and the market maker picks the price that clears the market.3 Most papers in this tradition

also require a very high degree of symmetry among the traders, typically assuming that they are

ex ante identical, receive symmetrically distributed information, and employ identical strategies in

equilibrium.4

The stream of literature most closely related to our paper is the work building on Kyle (1985).

In that literature, one or more strategic traders, fully or partially informed about the value of the

traded asset, are present in the market. These strategic traders submit market orders to centralized

market makers. There are also liquidity traders who submit exogenously determined market orders.

The market makers set the price of the asset equal to their Bayesian estimate of its value based on

the aggregate order flow. Our paper borrows much of its analytical framework from this literature.

The key difference is that while many of the papers in this area consider both static and dynamic

models of trading but place restrictive assumptions on the information structure, our paper places

virtually no restrictions on the information structure (beyond joint normality), and focuses on the

one-period model of trading and on the informational properties of prices as the number of strategic

3See Vives (2008) for a textbook treatment of that literature.
4Notable exceptions are recent papers by Rostek and Weretka (2012), who replace symmetry with a weaker

assumption of “equicommonality” on the matrix of correlations of agents’ values; Rostek and Yoon (2014), who
go beyond equicommonality and provide conditions on the (potentially asymmetric) matrix of correlations for the
existence of linear equilibrium; Manzano and Vives (2016), who consider the case of two groups of traders, with traders
belonging to the same group observing identical signals; and Babus and Kondor (2016), who assume a symmetric
matrix of correlations of agents’ values, but allow for asymmetries in the graph of possible trading relationships.
There are important differences between our model and the settings of those papers. First, in our model, while
agents generally receive different signals, their valuations for the security are the same, while in the above papers, the
valuations are allowed to differ. Correspondingly, while the focus in our paper is on whether prices fully aggregate
and reveal information, in the above papers the focus is on whether prices are “privately revealing.” Second, the
trading mechanisms are different: in our model, agents submit quantity orders, while in the above papers, agents
submit demand and supply curves. So while the questions are related, our results and those of the above papers are
not directly comparable.
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traders becomes large.

In the original model of Kyle (1985), there is only one informed trader, who knows the value of

the asset. Admati and Pfleiderer (1988), Holden and Subrahmanyam (1992), Foster and Viswanathan

(1996), and Back et al. (2000) study generalizations of the dynamic model of Kyle (1985) in which

multiple informed traders are either all fully informed about the asset value, or receive imperfect

signals about it, in which case different traders may observe different signals, but the distribution of

these signals across the traders is symmetric (as are the traders’ strategies). Caballé and Krishnan

(1994) and Pasquariello (2007) consider multi-asset versions of the one-period model with multiple

traders, but still maintain the assumption of symmetry of information among the traders. Drop-

ping the assumption of normality of the underlying random variables, Bagnoli et al. (2001) provide

conditions for the existence and uniqueness of linear equilibria in one-period models with multiple

strategic traders whose (possibly imperfect) signals about the value of the asset are distributed

symmetrically.5

Several papers go beyond the case of fully symmetric distributions of strategic traders’ signals.

Foster and Viswanathan (1994) consider a dynamic model with two strategic traders in which one

trader is strictly more informed than the other. Dridi and Germain (2009) study a one-period

model in which the signals of strategic traders are independent conditionally on the true value of

the security, but may have different precisions. Colla and Mele (2010) consider a dynamic model

in which strategic traders are located on a circle, with the correlations of signals being stronger for

traders who are closer to each other (in this model, as in the Rostek and Weretka (2012) model

discussed above, all traders use identical strategies in equilibrium).

Bernhardt and Miao (2004) consider a dynamic model with a general information structure,

allowing, as our paper does, for essentially arbitrary covariance matrices of traders’ signals.6 How-

ever, while Bernhardt and Miao (2004) characterize necessary and sufficient conditions for linear

equilibria (analogous to Steps 1 and 2 in the proof of Theorem 1 in our paper, but in a multi-period

setting), and use these conditions to study the properties of such equilibria analytically and nu-

merically in some specific examples, they do not provide general results on equilibrium existence

or uniqueness and do not provide general closed-form equilibrium characterizations. Whether such

results can be established for a general multi-period setting is an open question.

There are also a number of papers building on Kyle’s (1985) one-period model in which the

information structure is not limited to strategic traders observing signals about the asset value.

In Jain and Mirman (1999), the market maker receives a separate informative signal about the

value of the asset, in addition to observing the order flow. In Rochet and Vila (1994) and Foucault

5See also Nöldeke and Tröger (2001, 2006) for the analysis of the role of the normality assumption for the existence
of linear equilibria in one-period Kyle (1985)-style models with multiple strategic traders who receive perfect signals
about the value of the asset.

6There are several differences between the models. Bernhardt and Miao (2004) consider a model with multiple
trading periods, while we restrict attention to one period. On the other hand, unlike Bernhardt and Miao (2004),
we allow liquidity demand to be correlated with the asset value and the signals of informed traders. We also allow
the market maker to observe informative signals in addition to the order flow. Finally, we do not impose any special
structure on how the informed traders’ signals are related to the value of the asset (and other random variables in
the model), beyond joint normality.
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and Lescourret (2003), some of the strategic traders observe signals about the amount of liquidity

demand.7 These features of the information structure are naturally incorporated in our general

model. Hence, our equilibrium existence and uniqueness result, as well as the characterization

we derive, provide a unified approach with closed-form solutions to various models that include

these features. In Section 5 of the Online Appendix, we provide several examples illustrating the

flexibility of our general model, and its ability to naturally incorporate such features as the market

maker receiving a signal about the value of the asset and the strategic traders observing signals

about liquidity demand, among others.

In Section 7, we study information aggregation in a model of Cournot competition. The litera-

ture on information aggregation under Cournot competition as the number of firms becomes large

goes back to Li (1985) and Palfrey (1985). These papers consider environments in which all firms’

signals about the true state of the world are symmetrically distributed. In contrast, our informa-

tion aggregation result holds for essentially arbitrary variance-covariance matrices of firms’ signals.8

Our focus in Section 7 is on information aggregation as the number of firms becomes large, and the

parallels between this information aggregation result and the main information aggregation result

in the paper. Thus, we do not explore in depth the connections between equilibrium outcomes in

Cournot competition (in which the slope of the demand curve is fixed) and in the model based on

the framework of Kyle (in which the slope of the demand curve is determined endogenously) for a

fixed, finite number of strategic traders. For the case of symmetric distributions of signals, these

connections (along with the connections to equilibrium outcomes in a model of demand-function

competition in the spirit of Kyle (1989)) are explored by Bergemann et al. (2015).

Finally, on a more conceptual level, our paper is related to the work of Bergemann and Morris

(2013, 2016) on the analysis of games with rich information structures. Bergemann and Morris

introduce the notion of Bayes-Correlated Equilibrium, which makes it possible to abstract away

from the details of how information is distributed among the agents in the economy, and to make

robust predictions that do not depend on those details. We discuss the connection to those papers

in more detail in Section 4.2.

2 Model

There is a security traded in the market, whose value v is not initially known to market participants.

There are n strategic traders, i = 1, . . . , n. Prior to trading, each strategic trader i privately observes

a multidimensional signal θi ∈ Rki . For convenience, we denote by θ = (θ1; θ2; · · · ; θn) the vector9

summarizing the signals of all strategic traders. The dimensionality of vector θ is K =
∑n

i=1 ki.

7Röell (1990) and Sarkar (1995) also consider related one-period models in which some agents observe signals
about liquidity demand. Madrigal (1996) considers a dynamic model in which a speculator is informed about liquidity
demand.

8As in Li (1985) and Palfrey (1985), we also assume that the firms’ marginal costs of production are constant.
Vives (1988) shows that full information aggregation in large Cournot markets is not necessarily obtained when
marginal costs are increasing, even in the fully symmetric case.

9We denote the row vector with elements x1, . . . , xk by (x1, . . . , xk), and the column vector with the same elements
by (x1; . . . ;xk). All vectors are column vectors unless specified otherwise.
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There is also a market maker, who privately observes signal θM ∈ RkM , kM ≥ 0 (when kM = 0,

the market maker does not receive any signals, as in the standard Kyle (1985) model).10,11 Finally,

there are liquidity traders, whose exogenously given random demand u is in general not directly

observed by either the strategic traders or the market maker.

The key assumption that makes the model analytically tractable is that all of the random vari-

ables mentioned above—v, θ, θM , and u—are jointly normally distributed. Specifically, we assume

that the vector µ = (v; θ; θM ;u) is drawn randomly from the multivariate normal distribution with

expected value 0 and variance Ω. The assumption that the expected value of vector µ is equal to

zero is simply a normalization that allows us to simplify the notation. We also assume that every

variance-covariance matrix for signal θi of strategic trader i and the variance-covariance matrix of

the marker maker’s signal θM are full rank. This assumption is without loss of generality; it simply

eliminates redundancies in each trader’s signals. Note that we do not place a full rank restriction on

matrix Ω itself: for instance, two different strategic traders are allowed to have perfectly correlated

signals. The only substantive restrictions that we place on matrix Ω are as follows.

Assumption 1 At least one strategic trader receives at least some information about the value

of the security, beyond that contained in the market maker’s signal. Formally:

Cov(v, θ|θM ) 6= 0. (1)

Assumption 2 The market maker does not perfectly observe the demand from liquidity traders.

Formally:

V ar(u|θM ) > 0. (2)

2.1 Trading and Payoffs

After observing his signal θi, each strategic trader i submits his demand di(θi) to the market. In

addition, the realized demand from liquidity traders, u, is also submitted to the market. The market

maker observes her signal θM and the total demand D =
∑n

i=1 di(θi) + u, and subsequently sets

the price of the security, P (θM , D), based on these observations. Securities are traded at this price

P (θM , D) (with each strategic trader getting his demand di(θi), liquidity traders getting u, and the

market maker taking the position of size −D to clear the market). At a later time, the true value

of the security is realized, and each strategic trader i obtains profit πi = di(θi) · (v − P (θM , D)).

2.2 Linear Equilibrium

Our solution concept is essentially the same as that in Kyle (1985): linear equilibrium. Definition 1

below formalizes the notion of equilibrium, while Definition 2 states what it means for an equilibrium

to be linear.

10Strictly speaking, θi and θM are random variables whose realizations are in Rki and RkM .
11The multidimensionality of the traders’ and the market maker’s signals is a key feature that allows our model to

incorporate complex informational interdependencies discussed in the introduction.
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Definition 1 A profile of demand functions di(·) and pricing rule P (·, ·) form an equilibrium if

(i) on the equilibrium path, the price P set by the market maker is equal to the expected value of

the security conditional on θM and D, given the primitives and the demand functions di(·);
and

(ii) for every trader i, for every realization of signal θi, the expected payoff from submitting demand

di(θi) is at least as high as the expected payoff from submitting any alternative demand d′i,

given the realization of signal θi, the pricing rule P (·, ·) and the profile of strategies of other

traders (dj(·))j 6=i.12

Definition 2 Equilibrium ({di(·)}i=1,...,n, P (·, ·)) is linear if functions di and pricing rule P are

linear functions of their arguments, i.e., di(θi) = αTi θi for some αi ∈ Rki and P (θM , D) = βTMθM +

βDD for some βM ∈ RkM and βD ∈ R.13

3 Equilibrium Existence and Uniqueness

We can now state and prove our first main result.

Theorem 1 There exists a unique linear equilibrium.

The proof of Theorem 1 is in Appendix A. The notation used in the proof, as well as in some of the

subsequent sections, is given in Section 3.1 below. The proof is constructive, yielding a closed-form

characterization of the unique equilibrium. This characterization is presented in Section 3.2.

The proof consists of several steps. We first show that if all strategic traders follow linear

strategies, then the pricing rule resulting from Bayesian updating is also linear; and that if all

strategic traders other than trader i follow linear strategies, and the market maker is also using a

linear pricing rule (with a positive coefficient βD on aggregate demand D), then the unique best

12Our interpretation of condition (i) is similar to that of Kyle (1985): it is a reduced-form way of representing
the outcome of Bertrand competition among multiple market makers. In that interpretation, Kyle (1985) assumes
that all market makers observe the total order flow and nothing else. In our case, all market makers observe the
total order flow D and the signal θM , and nothing else. (For an alternative way of modeling competition among
liquidity-supplying market makers, in which they post price schedules and make positive profits in equilibrium, see
Biais et al. (2000, 2013).)

Another, technical difference from the equilibrium notion of Kyle (1985) is that in our case, condition (i) is
required to hold only on the equilibrium path. In the standard Kyle (1985) model and many of its generalizations,
every observation of the market maker can be rationalized as being on the equilibrium path, and thus this qualifier
is not needed. In our case, it is in general possible that for some strategy profiles di(·), only some realizations of
aggregate demand D can be observed by the market maker if the strategic traders follow those strategies. In such
cases, by analogy with perfect Bayesian equilibrium, our definition restricts the beliefs of the market maker on the
equilibrium path, where they are pinned down by Bayes rule, and does not restrict them off the equilibrium path.
For an example in which not all realizations of aggregate demand are observed in equilibrium, consider the following
market. Value v ∼ N(0, 1). There is one strategic trader with signal θ1 who observes the value perfectly: θ1 = v.
The demand of liquidity traders is u = −v. Then in the unique linear equilibrium, the demand of the strategic trader
is equal to the value of the security, and the aggregate demand is thus always equal to zero. See Section 1 of the
Online Appendix for details.

13In principle, we could consider a more general definition that allows the strategies and the pricing rule to
potentially have nonzero intercepts. However, in our setting, linear equilibria with nonzero intercepts do not exist.
See Section 2 of the Online Appendix for a formal proof of this statement.
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response of trader i is also linear. Next, we show that the best response conditions allow us to

express all parameters of the pricing rule and the traders’ strategies as functions of “market depth”

γ = 1/βD. Using that derivation, we show that the system of best response conditions can be

reduced to a quadratic equation in γ. Finally, we prove that this quadratic equation has exactly

one positive root, which concludes the proof.

3.1 Notation

We decompose the covariance matrix Ω of the vector (v; θ1; . . . ; θn; θM ;u) as follows:

σvv Σv1 · · · Σvn ΣvM σvu

Σ1v Σ11 · · · Σ1n Σ1M Σ1u

...
...

. . .
...

...
...

Σnv Σn1 · · · Σnn ΣnM Σnu

ΣMv ΣM1 · · · ΣMn ΣMM ΣMu

σuv Σu1 · · · Σun ΣuM σuu


.

In this matrix, every σ represents a (scalar) variance or covariance of the asset value and/or the

demand of liquidity traders, and every Σ represents a (generally non-scalar) covariance matrix of

an element of vector (v; θ1; . . . ; θn; θM ;u) with another element. We also introduce notation for the

covariance matrices of the entire vector of traders’ signals, θ = (θ1; . . . ; θn), with itself and with

other elements of vector µ. Specifically:

Σθθ = V ar (θ) =


Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn

 , ΣθM = Cov (θ, θM ) =


Σ1M

...

ΣnM

 ,

Σθv = Cov (θ, v) =


Σ1v

...

Σnv

 , Σθu = Cov (θ, u) =


Σ1u

...

Σnu

 .

In addition, we use the following matrices:

Σdiag =


Σ11 0 0 0

0 Σ22 0 0

0 0
. . . 0

0 0 0 Σnn

 ,

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1(Σθu − ΣθMΣ−1
MMΣMu),

Av = Λ−1(Σθv − ΣθMΣ−1
MMΣMv).

(We show in the proof of Theorem 1 that matrix Λ is invertible.)
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3.2 Closed-Form Solution

The proof of Theorem 1 is constructive, producing the following expressions for the parameters of

interest.

Depth γ = −
(
b+
√
b2 − 4ac

)
/2a, where

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au + ΣuMΣ−1
MMΣMv − σuv,

c = V ar(ATu θ − u|θM ).

(The proof shows that a < 0, c > 0, and thus γ > 0.) Equilibrium pricing rule and strategies are

then as follows:

βD =
1

γ
,

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)
− βDΣ−1

MM

(
ΣMu − ΣT

θMAu
)
,

α =
1

βD
Av −Au.

These expressions are simplified in the case kM = 0, when the market maker does not observe

any private signals (other than the aggregate demand D).14 In that case,

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au − σuv,

c = V ar(ATu θ − u),

where

Λ = Σθθ + Σdiag,

Au = Λ−1Σθu,

Av = Λ−1Σθv.

These expressions are further simplified if, in addition, the demand from liquidity traders, u, is

uncorrelated with the other random variables in the model. Then b = 0 and γ =
√

σuu
ATv ΣdiagAv

, and

so

βD =

√
ATv ΣdiagAv

σuu
and α =

√
σuu

ATv ΣdiagAv
Av.

Finally, the proof of Theorem 1 allows us to obtain convenient closed-form expressions for the

expected profits of strategic traders and the expected losses of liquidity traders, in the general

setting. Specifically, the expected profit of trader i is equal to βDα
T
i Σiiαi, and the expected loss of

liquidity traders is equal to βDα
TΣdiagα.15

14Strictly speaking, our proof does not apply directly to the case kM = 0 since, for example, it uses the inverse of
the covariance matrix of θM . However, one can drop all terms related to θM from the proof and immediately obtain
the proof for that case. Alternatively, one can consider a model in which the market maker observes a signal that is
independent of all other random variables. The equilibrium in that model will be equivalent to one in which kM = 0.

15The expressions in Step 2 of the proof of Theorem 1 imply that for any trader i, conditional on realization θ̃i of
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3.3 Discussion of the Proof of Theorem 1

The first part of the proof, which shows the linearity of best responses to linear strategies and

linear pricing rules, is standard in the literature on linear-normal equilibria. The main novel

contribution of the next part of the proof is to transform the potentially unwieldy, very general

system of equations with
∑n

i=1 ki + kM + 1 unknowns into a manageable, analytically tractable set

of expressions, as follows. First, for any fixed value of “market depth” γ = 1/βD, the remaining∑n
i=1 ki+kM unknowns can be expressed in a convenient matrix form as a function of γ. Next, using

that representation, we can show that γ must be a root of a quadratic equation, where, again, the

coefficients have manageable, compact matrix representations in terms of the underlying primitives

of the model. Of course, obtaining a quadratic equation on γ is not sufficient: a quadratic equation

can have two roots (and the model can thus in principle suffer from equilibrium multiplicity) or

zero roots (and the model can thus suffer from equilibrium non-existence). In our setting, we have

an additional constraint that γ must be positive (because market sensitivity βD must be positive).

The last part of the proof shows that the quadratic equation obtained in the previous step is

guaranteed to have exactly one positive root for all possible values of the primitives. The proof

of this statement is fairly subtle, and relies on the compact and tractable matrix representations

obtained in the previous steps. So while the general outline of the proof is parallel to those in

the earlier literature, its main novelty is in the generality of the underlying model, and in showing

that despite this generality, one does not need to worry about equilibrium existence or equilibrium

selection issues, and moreover can use tractable, convenient closed-form expressions to characterize

the equilibrium.

A natural question is to what extent this approach is applicable to the analysis of asymmetric

linear equilibria in another canonical linear-normal setting: that of competition in demand/supply

schedules, in the tradition of Kyle (1989), Vives (2011), and other related papers. Broadly speaking,

with jointly normally distributed signals and CARA or quadratic utility functions, the first two

steps of the proof “go through” and the linearity of best response functions is preserved. That is,

if all traders other than trader i submit demand/supply schedules that are linear in market price

p, the optimal demand/supply schedule that trader i will submit in response will also be linear

in p. Moreover, this “best response” schedule can be characterized in compact closed form as a

function of the primitives of the model and the parameters of the strategies of other traders—even

for very general, multidimensional and asymmetric information structures and strategy profiles

like those that we consider in the current paper. However, proving that the resulting system

of equations has a solution, determining whether and when it is unique, and characterizing its

properties, all become much more challenging, for several reasons. First, with small numbers of

traders, a linear equilibrium may not exist for strategic reasons, even in the original symmetric

model of Kyle (1989). Second, Bayesian inference by strategic traders becomes more complicated.

signal θi, the equilibrium expected profit is equal to βD
(
αTi θ̃i

)2
= βDα

T
i θ̃iθ̃i

T
αi. Thus, the unconditional expected

profit of trader i is equal to βDα
T
i E[θiθi

T ]αi = βDα
T
i V ar(θi)αi = βDα

T
i Σiiαi. The expected loss of liquidity traders

is equal to the sum of the expected profits of strategic traders,
∑n
i=1 βDα

T
i Σiiαi = βDα

TΣdiagα.
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In the model of Section 2, trader i’s expectation of asset value, v, depends only on his signal θi, and

the expected price of the asset depends linearly on the parameters of other players’ strategies.16

By contrast, in models of price schedule competition, trader i conditions his expectation of the

value of the security on realized price p, which in turn depends endogenously on the parameters

of other players’ strategies. While in the linear-normal world, this conditioning is analytically

tractable, it results in a nonlinear function of the parameters of players’ strategies, substantially

complicating the analysis.17 Third, in the model of the current paper, as well as in symmetric

equilibria of price schedule competition, each trader faces the same sensitivity of price to his own

demand. By contrast, in asymmetric equilibria of price schedule competition, each trader in general

faces a different residual demand curve from those that other traders face, with different slopes,

complicating the analysis.

For these reasons, the analysis of demand and supply schedule competition has been largely

restricted to various cases with symmetric equilibria. However, given the compact closed-form

expressions for linear best responses, and the resulting system of well-behaved polynomial equations,

there may be ways to obtain positive results for this framework despite the general lack of closed-

form solutions of this system of equation. Some recent papers make progress on that front. Rostek

and Yoon (2014) solve the resulting systems of equations numerically, for a variety of asymmetric

examples. Manzano and Vives (2016) obtain closed-form solutions for a special case with two groups

of traders, with traders belonging to the same group observing identical signals. What makes this

special case tractable is that the second problem described above (dividing by the variance of p)

disappears, because prices in this particular case are privately revealing: knowing his own signal

(and thus the signals of other trader in his group) and price p, each trader can immediately infer

the signal of the traders in the other group. And the third problem becomes manageable as well,

as there are only two different price sensitivities that need to be dealt with. As a result, the system

of equations can be reduced to an analytically tractable cubic equation in one variable.

4 Applications

Before proceeding to our second main result (Theorem 2 in Section 5), we illustrate our general

framework with a number of applications. In Section 4.1, we consider the question of whether

having more information is always advantageous for a strategic trader. In Section 4.2, we explore

the range of possible outcomes in our model when the fundamentals of the economy are fixed, but

the informational structure is allowed to vary, in the spirit of Bergemann and Morris (2013). We

also provide a number of additional illustrative examples in Section 5 of the Online Appendix.

16The strategy of player j enters into player i’s expectation of the price of the asset as an additive term
−βDαTj E[θj |θi].

17Intuitively, conditioning on p involves multiplying the observed price by the inverse of its variance. The variance
of p is a second-degree polynomial in the parameters of players’ strategies.

12



4.1 The Value of Additional Information

In this subsection, we address the question of whether having more information is always advanta-

geous for a strategic trader. In decision problems, the answer is of course immediate: getting more

information is always weakly better than getting less, because the decision maker can always dismiss

the additional information if he so desires. In strategic situations, however, that is not necessarily

the case, as other players may adjust their behavior when a player receives extra information.

In the current setting, the answer to this question turns out to be subtle. We first show

(Proposition 1) that in the context of a single market, if one trader is more informed than another

one (in the sense that the first trader knows the information of the second one, and also possibly

has some additional information), then the expected profit of the first trader is weakly higher than

that of the latter. We then show (Example 1) that if a strategic trader receives more information

in one market than he does in another one (with all other parameters in these two markets being

the same), then the trader may be worse off in the market where he is more informed.

Proposition 1 Consider a market in the general framework of Section 2, and suppose strategic

trader A is more informed than strategic trader B: the latter observes a multidimensional signal θB,

while (slightly abusing our notation) the former observes a multidimensional signal (θA; θB). Then

in the unique linear equilibrium, the expected profit of trader A is weakly higher than the expected

profit of trader B.

The proof of Proposition 1 is in Section 3 of the Online Appendix. The key ingredient of the

proof is Lemma OA.1, which shows that if two strategic traders share some common information,

then in equilibrium, they put exactly the same weight on this information (even if the additional

signals that they observe are different). It then follows that in the context of Proposition 1, traders

A and B make the same expected profits from the information contained in θB, and then trader A

also makes additional nonnegative profits from the additional information contained in signal θA.

By contrast, the following example shows that becoming more informed is not necessarily good

for a strategic trader: equilibrium effects may be negative and may outweigh the benefit from extra

information.

Example 1 The value of the security is v ∼ N(0, 1). There are two strategic traders. Trader 1

observes a noisy estimate of v: θ1 = v + ε, where ε ∼ N(0, 1) is a random variable independent of

v. Trader 2 observes θ2 = v. Finally, there is demand from liquidity traders, u ∼ N(0, 1), which is

independent of all other random variables. The resulting covariance matrix is

Ω =


1 1 1 0

1 2 1 0

1 1 1 0

0 0 0 1

 .
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Using the notation and closed-form characterization from the preceding section, we have Λ =

Σθθ + Σdiag =

(
4 1

1 2

)
, Λ−1 = (1/7)

(
2 −1

−1 4

)
, and so

Av = Λ−1Σθv =

(
1
7
3
7

)
and βD =

√
ATv ΣdiagAv

σuu
=

√
11

7
.

The equilibrium strategies of traders 1 and 2, α1 and α2, are thus given by(
α1

α2

)
=

1

βD
Av =

(
1
11

√
11

3
11

√
11

)
.

The equilibrium expected profit of every trader i is equal to βDα
T
i Σiiαi. Thus, in the current

example, the expected profit of trader 1 is equal to

π1 =
(√

11/7
)
×
(√

11/11
)
× 2×

(√
11/11

)
= 2
√

11/77 ≈ 0.086,

and the expected profit of trader 2 is equal to

π2 =
(√

11/7
)
×
(

3
√

11/11
)
× 1×

(
3
√

11/11
)

= 9
√

11/77 ≈ 0.388.

Now consider a modified market, in which trader 2 becomes more informed: he observes both

v and ε, i.e., θ2 = (v; ε). The resulting covariance matrix is now

Ω =


1 1 1 0 0

1 2 1 1 0

1 1 1 0 0

0 1 0 1 0

0 0 0 0 1

 .

The corresponding auxiliary matrices are

Λ =

 4 1 1

1 2 0

1 0 2

 , Λ−1 =
1

12

 4 −2 −2

−2 7 1

−2 1 7

 , and Av = Λ−1Σθv =
1

12

 2

5

−1

 ,

and so

βD =

√
ATv ΣdiagAv

σuu
=

√
34

12
, α1 =

(
2√
34

)
, and α2 =

(
5√
34
−1√

34

)
.

Thus, in this modified market, the expected profit of trader 1 is equal to

π′1 =
(√

34/12
)
×
(

2/
√

34
)
× 2×

(
2/
√

34
)

=
√

34/51 ≈ 0.114

and the expected profit of trader 2 is equal to

π′2 =
(√

34/12
)( 5/

√
34

−1/
√

34

)T (
1 0

0 1

)(
5/
√

34

−1/
√

34

)
=

13
√

34

204
≈ 0.372.

After getting more informed, trader 2 is worse off: π′2 ≈ 0.372 < 0.388 ≈ π2. Perhaps surpris-

ingly, trader 1 (whose information did not change) is better off: π′1 ≈ 0.114 > 0.086 ≈ π1. Of
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course, there is no contradiction here with Proposition 1: we still have π′2 > π′1, consistent with

the fact that in the modified market, trader 2 (who observes v and ε separately) is better informed

than trader 1 (who only observes v + ε).

To understand these effects, note that when trader 2 observes trader 1’s “mistake” ε, in equi-

librium he will “undo” one half of that mistake: the weight trader 2 puts on ε is negative one

half of the weight that trader 1 puts on his signal. This “undoing” allows trader 1 to trade more

aggressively (increasing the equilibrium multiplier α1 on his signal from ≈ 0.302 to ≈ 0.343), which

in turn causes the market maker to also increase her price sensitivity βD (from ≈ 0.474 to ≈ 0.486).

The more aggressive behavior of trader 1 and the increased price sensitivity of the market maker

have a negative impact on trader 2’s profits, outweighing the benefits of trader 2’s new information.

4.2 The Range of Possible Outcomes

As argued by Bergemann and Morris (2013), the information structure of players in a game may

be hard to observe, and thus it is interesting to know what range of predictions one can obtain

without making specific assumptions on that structure. In this section, we explore this question

in the context of our model. For tractability, we restrict attention to the case in which the market

maker does not observe any signals beyond the aggregate demand. For normalization, we fix the

variance of the asset value, σvv, and the variance of liquidity demand, σuu, and also assume that

the pooled information of all strategic traders is sufficient to know the asset value: V ar(v|θ) = 0.

We consider three classes of markets. The first (and smallest) class C1 contains markets in

which liquidity demand is independent of the value of the asset, and the strategic traders do not

observe any information about liquidity demand (just like in the canonical Kyle (1985) model).

The second, larger class C2 contains markets in which liquidity demand is still independent of the

value of the asset, but now the strategic traders may observe some information about liquidity

demand. Finally, the third, most general class C3 contains markets in which liquidity demand may

be correlated with the value of the asset, and the strategic traders may observe some information

about it.

Within those classes, we allow the information structure of the strategic traders to vary freely

(subject to the constraint that as a group, they know the true value of the asset, v), and also allow

the number of strategic traders to vary. For each class, we find the lower and the upper bounds on

four outcomes of interest: the variance of market prices, V ar(p); the variance of aggregate market

demand, V ar(D); the sensitivity of the market maker, βD; and the expected loss of liquidity traders,

−E[u(v − p)].
For each of the four variables, within each of the three classes, we find the infimum and the

supremum of possible outcome values in the unique linear equilibrium, across all possible informa-

tion structures and possible numbers of strategic traders. In the setting of Bergemann and Morris

(2013), the range of possible Bayes Nash equilibrium outcomes of variables of interest, across infor-

mation structures, corresponds to the range of possible Bayes correlated equilibrium outcomes of

the corresponding basic game (Bergemann and Morris, 2016). Our characterization of the bounds
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on outcome variables is similar in spirit, but note that the parallel is not exact, because the full

strategic interaction in our model is dynamic: traders i = 1, . . . , n move first (and simultaneously,

just like in the settings of Bergemann and Morris), but then the market maker moves second after

observing aggregate demand D.18 Of course, the dynamic game can be “collapsed” into the cor-

responding normal form, but then care needs to be taken in the interpretation of signal D of the

market maker, which is not an exogenous signal about the state of the world or a signal coming

from a correlation device, but is rather an endogenous signal that depends on the strategies of other

players.

The results are summarized in the following proposition.

Proposition 2 The bounds on the four outcome variables of interest, for three classes of markets,

are as in the table below.

Class C1 Class C2 Class C3

V ar(p)
sup = σvv

inf = 0

sup = σvv

inf = 0

sup = σvv

inf = 0

V ar(D)
sup =∞
inf = σuu

sup =∞
inf = 0

sup =∞
inf = 0

βD
sup =

1

2

√
σvv/σuu

inf = 0

sup =∞
inf = 0

sup =∞
inf = 0

−E[u(v − p)]
sup =

1

2

√
σvvσuu

inf = 0

sup =
1

2

√
σvvσuu

inf = 0

sup =
√
σvvσuu

inf = 0

The proof of Proposition 2 is in Section 4 of the Online Appendix. Several technical and substantive

comments are in order about these bounds. First, while some of these bounds are in fact achieved

in some markets (e.g., the highest possible loss of liquidity traders in classes C1 and C2 is achieved

in the standard Kyle (1985) model with one strategic trader), others are not (e.g., the expected

loss of liquidity traders is always positive, although it can be made arbitrarily small). Second,

while these bounds are across markets with different numbers of strategic traders, the bounds

across markets with a fixed number of traders mechanically get (weakly) wider as that number

of traders increases (because the “extra” traders can be endowed with completely uninformative

signals, thus not trading and not having any impact on the equilibrium outcomes). So the bounds

in Proposition 2 can be alternatively viewed as limits on the bounds for markets with a fixed

number of traders, as that number grows large (although again, some of these bounds are achieved

in markets with a finite number of strategic traders; in some cases as low as one).

18Formally, in our model, the market maker sets the price non-strategically, to be equal to the expected value of the
security based on her information. However, this behavior is identical to that of a fully strategic player who chooses
p that maximizes the expected value of the expression − (v − p)2. So with this re-interpretation, our model can be
viewed as a standard two-period game, with traders i = 1, . . . , n moving first and the market maker moving second.
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On an economically substantive level, these bounds show the critical importance of the underly-

ing information structure for the predictions of our model. For instance, without any assumptions

on the information structure, prices can range from fully informative about the value of the security

to completely uninformative,19 despite the fact that the players, as a group, have full information

about v. This finding may at first glance seem at odds with the second main result of our pa-

per, discussed in the next section: as markets grow large, the information of strategic traders gets

aggregated and fully incorporated in market prices. Of course, there is no contradiction, but the

contrast highlights the importance of the assumption on information structures that we impose in

our information aggregation result: there is a finite number of groups of traders, symmetrically

informed within each group, and the size of each group grows large. We now turn to the formal

statement and proof of the result.

5 Information Aggregation in Large Markets

Consider a sequence of markets, indexed by m = 1, 2, . . . . Every market is in the general framework

of Section 2. In every market, there are n groups of strategic traders, with at least one trader in

each group. Index i, 1 ≤ i ≤ n, now denotes a group of traders. The size of group i in market m is

denoted by `
(m)
i . Every trader j in group i receives a ki-dimensional signal θi+ξi,j , where θi denotes

the signal component common to all traders in group i and ξi,j denotes the idiosyncratic component

of trader j. We denote by θ = (θ1; . . . ; θn) the vector of common components of the signals, and

denote by Ω the covariance matrix of vector µ = (v; θ; θM ;u). The idiosyncratic components ξi,j

are distributed identically across the traders in group i, with each ξi,j distributed according to a

ki-dimensional normal distribution with mean 0 and variance Σξ
i . Every ξi,j is independent of all

other random variables in the model. We place no restrictions on matrices Σξ
i . In particular, we

allow for the case Σξ
i = 0, in which all traders in group i receive the same signal θi.

We assume that Ω and Σξ
1, . . . ,Σ

ξ
n are the same for all markets m. The number of traders in

each group, however, changes with m: specifically, we assume that for every i, limm→∞ `
(m)
i =∞,

i.e., all groups become large as m becomes large. We do not impose any restrictions on the rates

of growth of those groups: e.g., the sizes of some groups may grow much faster than those of other

groups.

We slightly strengthen one of the two conditions on matrix Ω made in Section 2, replacing

Assumption 2 with the following:20

19Since by construction, E[v|p] = p, we have the following simple formula for the informativeness of the price:
V ar(v − p) = σvv − V ar(p).

20Under the original Assumptions 1 and 2, information may not get aggregated as markets become large. To see
that, consider a modification of the example introduced in footnote 12. Value v ∼ N(0, 1). There are m strategic
traders with the same signal θ1 = v. The demand of liquidity traders is u = −v. Then in the unique linear
equilibrium, the demand of each strategic trader is equal to θ1/m, the aggregate demand of all strategic trader is
equal to θ1 = v = −u, the aggregate demand of all traders is equal to zero, and thus the equilibrium price is also
always equal to zero, for any m. Thus, there is no information aggregation of any kind in the limit as m becomes
large. See Section 1 of the Online Appendix for a formal derivation of these results.
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Assumption 2L V ar(u|θ, θM ) > 0.

It follows from Theorem 1 that for each m, there exists a unique linear equilibrium in the

corresponding market. Let p(m) denote the random variable that is equal to the resulting price in

the unique linear equilibrium of market m.

We can now state and prove our main result on information aggregation in large markets. If the

demand from liquidity traders is positively correlated with the true value of the asset (conditional

on other signals), then prices in large markets aggregate all available information: p(m) converges

to E[v|θ, θM , u]. If liquidity demand is negatively correlated with the true value of the asset,

then prices in large markets aggregate all available information except that contained in liquidity

demand: p(m) converges to E[v|θ, θM ]. If liquidity demand is uncorrelated with the true value of

the asset, then both statements are true: p(m) converges to E[v|θ, θM , u] = E[v|θ, θM ].

Theorem 2

• If Cov(u, v|θ, θM ) ≥ 0, then limm→∞E
[(
p(m) − E[v|θ, θM , u]

)2]
= 0.

• If Cov(u, v|θ, θM ) ≤ 0, then limm→∞E
[(
p(m) − E[v|θ, θM ]

)2]
= 0.

In Appendix B, we prove Theorem 2 for the special case in which the covariance matrix of

random vector (θ; θM ;u) is full rank. This additional assumption guarantees that certain matrices

remain invertible in the limit as m becomes large, which in turn allows us to give a direct proof of

the theorem without technical complications. However, this special case rules out some interesting

possibilities (e.g., one type of traders knowing strictly more than another type of traders), so in

the Online Appendix (Section 8), we provide the full proof of Theorem 2, without this simplifying

assumption.

The intuition for the information aggregation result is that, when the number of informed

traders of each type is large, the information of each strategic trader has to be (almost) fully

incorporated into the market price, since otherwise each trader of that type would be able to make

a non-negligible profit, which cannot happen in equilibrium. Also, as the size of every group i

grows, the idiosyncratic noise in the aggregate demand from that group vanishes, leaving only the

“informative” part of the demand that is driven by the common component θi.
21 The signal of

the market maker gets incorporated into the market price by construction. Finally, with liquidity

demand, the situation is more subtle. When liquidity demand is positively correlated with the

asset value (Cov(u, v|θ, θM ) > 0), equilibrium strategies and market depth adjust precisely in a

21The fact that the idiosyncratic components in signals have no impact on equilibrium outcomes in large markets
is parallel to the results in McLean and Postlewaite (2002) and McLean et al. (2005) in which the agents with such
idiosyncratic components in signals have non-redundant information, but become “informationally small” as markets
become large: adding the information of an extra agent to the information of others does not significantly impact the
Bayesian estimate of the value of the security. Note, however, that “informational smallness” by itself is not sufficient
for our results. In an economy without idiosyncratic components in signals, agents become “informationally small”
as soon as the size of each group i is at least two. However, information is generally not aggregated in our setting
in finite markets, even if the size of each group is two or greater and all the agents in each group i receive the same
signal θi.
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way that makes liquidity demand get incorporated into the market price “correctly,” i.e., with the

same weight as it would be incorporated into the market price by a Bayesian observer who was

fully informed about all the random variables in the model (except value v). As a result, price p(m)

converges to E[v|θ, θM , u], and so all information available in the market is incorporated into the

market price. However, when liquidity demand is negatively correlated with the value of the asset

(Cov(u, v|θ, θM ) < 0), this cannot happen. In equilibrium, aggregate demand always enters the

market price with a positive sign (sensitivity βD is positive). Thus, liquidity demand also enters the

market price with a positive sign. However, a fully informed Bayesian observer would put a negative

weight on liquidity demand—which cannot happen in any linear equilibrium, for any parameter

values. So what happens instead as m becomes large is that the variance of the aggregate demand

from informed traders grows to infinity (in contrast to the case Cov(u, v|θ, θM ) > 0, in which it

converges to a finite value). And thus, as m grows, liquidity demand u has less and less impact on

the market price, and in the limit it has no impact at all: price p(m) converges to E[v|θ, θM ]. The

same happens in the case Cov(u, v|θ, θM ) = 0, for the same reason, but in that case E[v|θ, θM ] is

equal to E[v|θ, θM , u], and so price p(m) does converge to the expected value of the asset given all

the information available in the market.

Another way to get intuition about the result is to notice that as a particular group i be-

comes large, its aggregate behavior converges to that of a single agent who is trying to minimize

the expected square of the difference between the true value of the asset and its market price,

E
[
(v − p)2

]
.22 By construction, the market maker is also trying to minimize E

[
(v − p)2

]
(subject

to the constraint that the sensitivity of price to aggregate demand, βD, is positive). Thus, as market

size grows large, the system in essence behaves as a game with n partially informed traders (each

corresponding to a particular group i and receiving the signal θi) and a market maker, all of whom

have the same objective function: to minimize the expected square of the mispricing. The common-

ality of objective functions implies that the profile of policies by these n+ 1 agents that minimizes

the expected squared mispricing will be an equilibrium of this limit game. When Cov(u, v|θ, θM )

is positive, the profile of policies that minimizes the expected squared mispricing is the one that

sets the price p = E[v|θ, θM , u], incorporating all the information available in the market. When

22To see this, fix a market and the corresponding equilibrium, and consider group i with ` traders, all of whom
observe the same signal θi ∈ R (the cases with multidimensional signals or idiosyncratic components are more nota-
tionally cumbersome, but the conclusions are the same). Suppose in equilibrium each of these traders, after observing

realization θ̃i, submits demand d∗ = αiθ̃i. Let p−i = p − βD (`αiθi) denote the random variable corresponding to
what the price in the market would have been if all traders in group i demanded zero instead of submitting the
demands prescribed by the equilibrium. Conditional on θ̃i, each agent in group i submits demand d that is maxi-

mizing d ×
(
E
[
v − p−i|θ̃i

]
− βD(`− 1)d∗ − βDd

)
, which implies d = 1

2βD

(
E
[
v − p−i|θ̃i

]
− βD(`− 1)d∗

)
. Since in

equilibrium d = d∗, this in turn implies βD(`+ 1)d∗ = E
[
v − p−i|θ̃i

]
. The aggregate demand of group i is equal to

`d∗, and so as ` → ∞, the aggregate demand of group i converges to 1
βD
E
[
v − p−i|θ̃i

]
. Now suppose we instead

have a single trader i who observes a realization θ̃i of signal θi and whose objective is to minimize E
[
(v − p)2

]
. We

have E
[
(v − p)2|θ̃i

]
= E

[
(v − p−i − βDd)2|θ̃i

]
= E

[
(v − p−i)2|θ̃i

]
− 2dβDE

[
v − p−i|θ̃i

]
+ β2

Dd
2. The first term of

this sum does not depend on d, and so the expression is minimized at d = 1
βD
E
[
v − p−i|θ̃i

]
—which is precisely the

quantity to which the aggregate demand of group i converges in the original game as `→∞.
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Cov(u, v|θ, θM ) is negative or zero, setting the price at p = E[v|θ, θM , u] is impossible, since that

would require setting βD ≤ 0, which is not allowed. In fact, since βD has to be positive, any profile

of strategies by the n + 1 agents has to put positive weight on u in forming the price—which the

n + 1 agents do not want to do. So they will want to set βD to be infinitesimally small, and then

adjust the strategies of the n partially informed traders accordingly, to get price p to be close to

E[v|θ, θM ]—which provides the infimum of the square of the mispricing given the constraint βD > 0.

Note that this intuition also illustrates that mathematically, there is no asymmetry between the

cases of Cov(u, v|θ, θM ) > 0 and Cov(u, v|θ, θM ) < 0, and the difference in predictions for those

cases arises from the economic incentives of the agents. Namely, if in the original game the goal of

the strategic traders was to lose as much money as possible, the limit game with the n+ 1 traders

would in fact be the same as in our original case, except that the constraint would be βD < 0. And

so all information would get aggregated in the case Cov(u, v|θ, θM ) < 0 (and market depth would

remain bounded), and only information contained in θ and θM , but not that contained in u, would

get aggregated in the case Cov(u, v|θ, θM ) > 0 (and market depth would go to infinity).

The information aggregation result in Theorem 2 raises some natural questions. The first one

is to what extent it matters that the variance of liquidity traders’ demand u(m) remains constant

as markets become large. What would happen if that variance also grew together with the number

of strategic traders? Of course, the profits made by the strategic traders and their equilibrium

strategies would be affected. It turns out, however, that equilibrium prices would remain unchanged.

Specifically, for a given market, if liquidity demand were scaled by some factor ρ, the equilibrium

strategies of all strategic traders would also get rescaled by the same factor ρ, the sensitivity

of market maker’s pricing rule to the aggregate demand, βD, would get rescaled by 1/ρ, and the

equilibrium prices would thus stay the same. Proposition OA.4 in Section 7 of the Online Appendix

formally proves these statements. This result, in turn, immediately implies that the conclusion of

Theorem 2 would not be affected if we allowed liquidity demand u(m) to scale as a function of m.

Another question is whether the presence of a Bayesian market maker is critical for information

aggregation. Is it important that there is an agent in the economy who is accurately setting prices

based on the information available to her? To answer this question, in Section 7 of the paper

we consider a model of Cournot competition, which can be viewed as an analogue of the Kyle-

style model of Section 2 with one key difference: the Bayesian market maker is replaced with a

mechanical market maker whose sensitivity to aggregate demand, β, is exogenously fixed, instead

of being determined endogenously in equilibrium. We find that the presence of a Bayesian market

maker is not critical for information aggregation: Proposition 4 in Section 7.3 shows that as the

number of firms grows, the outcome (equilibrium price and total quantity produced) of Cournot

competition with information dispersed among the firms converges to that of Cournot competition

in which all firms have access to all information.

Finally, a natural question is what happens if some groups remain “small,” while others grow

“large.” The next section addresses this question.
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6 Information in “Hybrid” Markets

In many situations, some “scarce” information about the value of a security is known by only a small

number of traders, perhaps just one, while some other information, while not publicly available,

may be more “abundant,” and may be observed by a large number of traders. In this section, we

explore how these two types of information get incorporated into market prices in equilibrium.

It is intuitive that due to strategic considerations, “scarce” information will not be fully incor-

porated into market prices, and the traders possessing this information will make positive profits,

while “abundant” information will be almost fully incorporated into market prices (and the traders

possessing it will make vanishingly small profits). What is less immediate is the interplay be-

tween these two types of information, and how they get combined with the information observed

directly by the market maker and the information contained in liquidity demand. In particular, a

seemingly natural conjecture is that “abundant” information will enter the price essentially as a

public signal, observed by everyone in the economy. Our last result shows that this is not the case:

instead, “abundant” information, in the limit, enters into market prices in the same way as if it

were directly observed by the market maker—but not by the strategic traders observing “scarce”

information. As Examples OA.6 and OA.7 in Section 5.3 of the Online Appendix illustrate, this is

substantively different from the case in which “abundant” information is observed by all the agents

in the economy.

Formally, using the notation introduced in Section 5, suppose that for some s ≥ 1, the sizes

of the groups i = 1, . . . , s < n remain constant as m varies, i.e., `
(m)
i = `i for some `i, while for

i = s + 1, . . . , n, the size of group i grows to infinity, i.e., `
(m)
i → ∞. We will refer to groups

i = 1, . . . , s as “small groups,” and to groups i = s+ 1, . . . , n as “large groups.” Every trader j of

a small group i receives signal θi. Every trader j of a large group i receives signal θi + ξi,j , where

θi is the component common to all traders of group i, and ξi,j is the idiosyncratic component of

trader j, independently distributed according to a normal distribution with mean 0 and variance

Σξ
i .

23

Throughout this section, let θS be the vector of signals of the small groups, i.e., θS = (θ1; . . . ; θs),

and let θL be the vector of common components of the signals of the large groups, i.e., θL =

(θs+1; . . . ; θn). We make two assumptions:

Assumption 1H Cov(v, θS |θL, θM ) 6= 0.

Assumption 2H V ar(u|θL, θM ) > 0.

The first assumption states that at least one of the small groups has some information about

the asset value that is not observed by the market maker or the large groups. This assumption

is analogous to Assumption 1 of Section 2, ensuring that some information about the value of the

23Note that the assumption that all traders in the same small group i receive the same signal θi is without loss of
generality: one small group of size `i in which traders also receive idiosyncratic components with nonzero variance
can be represented as `i small groups of size one.
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asset remains “scarce” even in the limit. The second assumption states that the information of

the market maker and the joint information of large groups is not sufficient to fully learn liquidity

demand. This assumption is analogous to Assumption 2L of Section 5.

Our next result shows that under Assumptions 1H and 2H, equilibrium prices in the above

sequence of markets converge to the equilibrium price that would obtain in an alternative market,

in which only the small groups of traders are present (with the same information as in the original

markets, θS), and in which the market maker directly observes both her original signal θM and

the common components of signals observed by the large groups of traders in the original markets,

θL. Let {p(m)} denote the sequence of random variables that are equal to the prices in the linear

equilibria of the original sequences of markets indexed by m. Let p(alt) denote the random variable

that corresponds to the equilibrium price obtained in the alternative market.

Theorem 3 limm→∞E
[(
p(m) − p(alt)

)2]
= 0.

In Section 9 of the Online Appendix, we prove Theorem 3 for the special case in which the

variance of vector (θS ; θL; θM ;u) is full rank. As in the case of Theorem 2, this assumption simplifies

the argument by guaranteeing that certain matrices remain invertible in the limit. However, this

assumption rules out some interesting possibilities (e.g., some small groups know some elements

of the common components of signals of some large groups), and so in Section 10 of the Online

Appendix, we provide the full proof of Theorem 3 without this simplifying assumption. The

techniques used in the proofs are similar to those used in the proofs of Theorem 2, except that the

presence of small groups requires a separate treatment, because their strategic incentives do not

vanish in the limit. Also, note that unlike in Theorem 2, the result in Theorem 3 does not depend

on the sign of the conditional covariance of liquidity demand and asset value. The reason for that is

that in the large-market case, when Cov(u, v|θ, θM ) ≤ 0, as the market was getting larger, market

maker’s sensitivity βD was converging to zero, removing the impact of u on the market price. In

the hybrid-market case, even as some groups become large, there are still some groups that remain

small and whose traders thus possess “scarce” information which would have allowed them to make

infinite profits if βD converged to zero. So in the hybrid-market case, βD remains bounded away

from zero even in the limit, regardless of the sign of Cov(u, v|θ, θM ).

We conclude this section with a final observation. As Examples OA.6 and OA.7 in Section 5 of

the Online Appendix show, the expected profit of an informed agent can be strictly higher when he

observes the signal of the market maker than when he does not, because observing the information

of the market maker allows the informed trader to better use the part of his information that is

not known to the market maker. In the case of “hybrid” markets, Theorem 3 shows that equilibria

converge to those that would obtain if the information of “large” groups was observed by the

market maker, but not publicly, so that the “small” groups do not observe that information. This

situation may create incentives for trading information. If some small-group traders were to obtain

information from some of the large-group traders, those small-group traders could increase their

expected profit by a non-negligible amount. At the same time, in the limit, large-group traders
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make zero profits anyway, so they would not lose anything by sharing this information with the

small-group traders. Thus, if trading information is allowed, the large-group information may end

up being purchased by small-group traders, and thus the market, in the limit, may behave as if

that information was observed publicly. We leave the formal analysis of this intuition to future

research.

7 Cournot Competition

The model of Section 2 (to which we will refer as the Kyle model throughout this section) has

many “moving parts.” In particular, it has three types of agents: fully optimizing strategic traders,

mechanical liquidity traders, and Bayesian market makers. It is thus natural to ask which of

these components are the driving forces behind our result on information aggregation (Theorem 2).

Would the result break down without a market maker who explicitly sets prices to be equal to the

expected value of the security? Is it essential that there are liquidity traders who in expectation

lose money and by doing so “subsidize” trading and information discovery?

To shed light on these questions, in this section we consider a model that contains neither

Bayesian market makers nor liquidity traders, but is otherwise closely related to the Kyle model.

(As we explain in footnote 26 below, the model of this section can be equivalently viewed as a model

of trading with a mechanical market maker whose sensitivity to demand is exogenously fixed.) The

model we consider in this section is asymmetric Cournot competition, in which firms observe

imperfect (and generally different) signals about the intercept of the market demand function (an

analogue of the value of the security v in the Kyle model) and the question we address is, again,

whether this asymmetric information gets aggregated as the market grows large.24 We show that

information does indeed get aggregated as the number of firms increases—the total quantity and

price in the market converge to those that would obtain if all the firms had access to all available

information.25

24Bergemann et al. (2015) also compare informational properties of trading under Cournot competition, in which
the slope of the price response is exogenously fixed, and of trading in a setting in the spirit of Kyle (1985), in which
the slope of the price response is endogenously determined by a Bayesian market maker (as well as in a setting of
demand function competition in the spirit of Kyle (1989), which we do not consider). Their focus, however, is different
from ours: while we study information aggregation in the limit as the number of strategic traders becomes large,
Bergemann et al. (2015) keep the number of players fixed and study the spaces of possible equilibrium outcomes
under general information structures, the equivalences of these outcomes under different equilibrium notions (Bayes
Correlated Equilibrium and Bayes Nash Equilibrium), and the properties of these spaces (such as the first and second
moments of the equilibrium distributions of players’ actions).

25This result is closely related to the results of Li (1985) and Palfrey (1985), who also observe that under constant
marginal costs of production, Cournot competition efficiently aggregates distributed information as the number of
firms becomes large. The key difference between our result and those of Li (1985) and Palfrey (1985) is that we allow
for an arbitrary matrix of correlations of the firms’ signals, while they require the signals to be symmetric. Note that
the assumption of constant marginal costs is important for the results Li (1985) and Palfrey (1985), and thus also for
our information aggregation result. As Vives (1988) shows, if production costs are quadratic (and so marginal costs
are increasing in quantity instead of being constant), the market does not converge to the full-information outcome
as the number of firms becomes large, even if the firms are ex ante identical.
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7.1 Model

There are n firms in the market for a good. Each firm has a constant marginal cost of production c

per unit of the good, and no fixed costs. The demand function for the good is not initially known

to the firms. Rather, if the firms in aggregate produce Q units of the good, the resulting market

price will be

p = v − βQ,

where β > 0 is the commonly known slope of the inverse demand function, and v is the uncertain

intercept of that function.

Prior to making a production decision, each firm i observes a multidimensional signal θi ∈ Rki .
Vector θ = (θ1; . . . ; θn) summarizes the signals of all firms. We assume that vector (θ; v) is drawn

randomly from the multivariate normal distribution with expected value (0; v̄) and covariance

matrix Ω. We further assume, without loss of generality, that for every i, the covariance matrix of

signal θi is full rank.

After observing its signal θi, each firm i simultaneously decides to produce quantity qi(θi) of

the good. The total amount produced is thus Q =
∑n

i=1 qi(θi). The resulting market price is

p(v,Q) = v − βQ. The realized payoff of firm i is (p− c)qi.

7.2 Linear Equilibrium

As before, we restrict attention to linear equilibria, i.e., those of the form qi(θi) = αTi θi+δi for some

profile of vectors αi ∈ Rki and δi ∈ R. We denote a linear equilibrium by these linear coefficients,

and define α = (α1; . . . ;αn) and δ = (δ1; . . . ; δn).

Proposition 3 The Cournot competition game has a unique linear equilibrium.

The proof of Proposition 3 is in Appendix C. The proof is, in essence, a substantially simplified

version of the proof of Theorem 1, which only involves the analogues of Steps 2 and 3 from that

proof. Step 1 (market maker’s Bayesian updating) is not needed, because there is no market maker

in the current model, and the price impact of each individual unit of supply, β, is exogenously fixed,

instead of being endogenously determined by the market maker. Recall that Step 3 of the proof of

Theorem 1 allowed us to express all the equilibrium strategies of the traders as a function of a single

parameter—the inverse of the market maker’s sensitivity to aggregate demand, βD. Steps 4 and 5

then derived a quadratic equation in that parameter and showed that it has a unique positive root.

In the Cournot competition setting, the sensitivity β is fixed exogenously, and so the analogue of

Step 3 concludes the proof.26

26To see the parallels between the two models more directly, consider the version of the model in Section 2 in
which the market maker does not observe any direct signals, and the version of the Cournot competition in which
the marginal cost c is zero. In the former, the realized payoff of an individual trader i from submitting demand di is
di(v − p) = di(v − βD(di +

∑
j 6=i dj + u)). In the latter, the realized payoff of an individual firm i from producing qi

units of the good is qi(v − βQ) = qi(v − β(qi +
∑
j 6=i qj)). So the Cournot competition setting can be viewed as a

version of the Kyle model in which liquidity demand is fixed at zero, and the market maker is mechanical, with the
sensitivity exogenously fixed at βD = β, instead of being endogenously determined by the Bayes rule.

24



The closed-form solutions no longer involve the roots of a quadratic equation, and take the

following form. Each firm i’s strategy is given by

qi(θi) = αTi θi + δi,

where for each i,

δi = β−1 v̄ − c
n+ 1

,

and vector α is given by

α = β−1(Σθθ + Σdiag)
−1Σθv,

where matrices Σθθ, Σdiag, and Σθv are defined as before. The formula for vector α (as a function of

price sensitivity β and the three matrices) is essentially the same as that in the Kyle model for the

case in which the market maker does not observe any private signals (Section 3.2), except for the

terms related to liquidity demand u that have no counterparts in the Cournot competition model.

Of course, the key difference between the two formulas is that in the Kyle model, sensitivity βD is

derived endogenously, while in the Cournot competition model, sensitivity β is exogenously fixed.

7.3 Information Aggregation in Large Markets

We now turn to the behavior of markets with a large number of participants. Our modeling

approach is analogous to that in Section 5. Specifically, consider a sequence of markets, indexed by

m = 1, 2, . . . . The inverse demand function is the same in all markets m: p(Q) = v− βQ. In every

market, there are n groups of firms, with at least one firm in each group. The groups are indexed

by i = 1, . . . , n, and each group i in market m consists of `
(m)
i firms, with `

(m)
i →∞ as m→∞.

Each firm j in group i receives signal θi+ξi,j ∈ Rki , where θi is the common signal component of

all firms in group i, and ξi,j is the idiosyncratic component of firm j. Random vector (θ1; . . . ; θn; v)

is distributed normally with mean (0; . . . ; 0; v̄) and variance-covariance matrix Ω. We also assume

that the variance-covariance matrix of random vector θ = (θ1; . . . ; θn) is positive definite. Every

ξi,j is drawn from the normal distribution with mean zero and variance Σξ
i , independently of all

the other random variables in the model. We impose no restrictions on Σξ
i , and in particular allow

for the case Σξ
i = 0, when all firms in group i observe identical signals.

As a benchmark, we also consider a sequence of alternative markets with the number of firms

growing to infinity (for concreteness, let the number of firms in market m equal N (m) =
∑n

i=1 `
(m)
i ),

but with a much simpler information structure: all “common components” of all signals are known

to all firms. Formally, each firm j observes the same signal θ = (θ1; . . . ; θn). In this sequence of

alternative markets, all information is shared by all firms, and as the number of firms increases,

the outcomes (i.e., the total quantity produced and the equilibrium price) converge to the perfectly

competitive equilibrium. Our next proposition shows that the outcomes in the original sequence

of markets also converge to the same perfectly competitive outcome, thus aggregating all the in-

formation distributed among the firms. Formally, let Q(m) and p(m) denote the random variables

corresponding to the total quantity produced and the price realized in the original market m, and
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let Q(alt,m) and p(alt,m) denote the random variables corresponding to the total quantity produced

and the price realized in the alternative market m where all the firms observe the same joint signal θ.

Proposition 4 limm→∞E[(Q(m) −Q(alt,m))2] = 0 and limm→∞E[(p(m) − p(alt,m))2] = 0.

The proof of Propostion 4 is in Appendix C. The proof proceeds by showing that in both

sequences (original and alternative), for any realization of signals θ, the total quantity produced

converges to the quantity produced in the perfectly competitive market with the intercept of the

demand function equal to E[v|θ]: Q∗(θ) = (E[v|θ]− c)/β. The result for the convergence of prices

is then immediate.

Proposition 4 illustrates that the main driving force behind the information aggregation results

in our paper is not the presence of a market maker who sets prices in an “intelligent” way, but

rather the fact that the individual actions of informed players get aggregated (via aggregate demand

in the Kyle model and via aggregate production in Cournot competition). The “aggregate action”

of each group of players reflects that group’s common signal, and these aggregate actions of the

groups are then further aggregated by the marketplace with the appropriate weights. This action

aggregation feature is important for our results. In Section 11 of the Online Appendix, we provide

a simple example of a Beauty Contest game in which dispersed information does not get aggregated

in the limit, even though that game shares many of the features with the models considered above

(normally distributed signals, linear best responses, and the uniqueness of linear equilibrium that

can be characterized in closed form).

8 Concluding Remarks

Our paper leaves a number of open questions and directions for future research. One question is

to what extent our analysis can be generalized to a dynamic setting, in which trading takes place

over multiple periods, and each strategic trader takes into account the impact of his trading on his

future arbitrage opportunities.

Second, the fact that our model admits explicit closed-form solutions for every profile of prim-

itives makes it “embeddable” as part of richer settings and games. For instance, one can study

pre-trading investment in costly acquisition of information (about the fundamentals of the traded

security, about liquidity demand, or about the information of other strategic traders), mergers

among the agents, or information sharing and trading among them. One can also consider the case

of endogenous participation by liquidity traders, by considering a model with several different types

of liquidity traders (e.g., retail investors, pension funds, insurance companies, etc.) whose demands

may be differentially correlated with the value of the asset and/or with the informed traders’ or the

market maker’s signals, and who choose to participate in the market only if their expected losses

do not exceed certain thresholds.

Third, the tractability of our model may also extend, at least to some degree, to other related

settings, such as those with risk-averse traders (with CARA utilities, to preserve the linear-quadratic
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structure of the game), costly trading (with quadratic trading costs), multiple securities or trading

venues (with traders having mean-variance preferences over payoffs), or partially informed liquidity

traders.

Finally, a shared feature of the models considered in this paper (the model of trading in financial

markets in Section 2 and the model of Cournot competition in Section 7) is that when making

decisions, strategic players condition their behavior only on their own information, and not on

market prices: in the model of financial trading, they submit market orders, and in the model

of Cournot competition, they decide on the level of production before they get to observe any

feedback from the market. A natural question is to what extent the types of rich informational

asymmetries allowed in our models can also be considered in strategic models of markets in which

players can condition their actions both on their own information and on endogenous market prices.

As we discuss in Section 3.3, getting general closed-form solutions in such settings is challenging,

both for economically fundamental strategic reasons (when the number of players is small), and

for technical reasons (when the system of polynomial equations characterizing the equilibria of the

market game does not have closed-form solutions). However, some of the results of our paper may

continue to hold in such settings, perhaps under some additional assumptions. For example, one

intuitive argument for our information aggregation result27 is that a large group of symmetrically

informed traders will behave in approximately the same way as a single trader who tries to minimize

mispricing in the market. Thus, as all groups become large, the market, in effect, converges to a

game in which all players pursue a common objective function: getting the price as close as possible

to the asset value. This intuition may carry over to at least some of the settings in which players can

condition their actions on market prices, and for large markets, existence results may be possible

to obtain by means other than closed-form solutions. Thus, information aggregation results for

general asymmetric information structures similar to the ones in Sections 2 and 7 may also hold in

those settings.

We leave the exploration of these extensions and generalizations to future research.

Appendix A: Proof of Theorem 1

Step 1. Let α = (α1; . . . ;αn) be a profile of linear strategies for the strategic traders. Each αi in

this profile is a vector (α1
i ; . . . ;α

ki
i ) ∈ Rki , corresponding to linear strategy

di(θi) = α1
i θ

1
i + · · ·+ αkii θ

ki
i

= αTi θi,

where θ1
i , . . . , θ

ki
i are the elements of vector θi ∈ Rki .

Take any linear pricing rule (βM ;βD), βM ∈ RkM , βD ∈ R. Let vector β = (βM ;βD) summarize

the pricing rule and let random vector η = (θM ;D = αT θ + u) denote the information available to

the market maker when she sets the price. Then for this pricing rule to be consistent with profile

27This argument is presented in more detail in the discussion that follows Theorem 2.
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α, condition (i) of the definition of equilibrium requires that βT η = E[v|η], which is equivalent to

the condition Cov(v, η) = βTV ar(η).28 Expressing Cov(v, η) and V ar(η) using the notation from

Section 3.1, we thus get the following equivalent characterization of condition (i) of the definition

of equilibrium:(
βTM , βD

)( ΣMM ΣT
θMα+ ΣMu

αTΣθM + ΣT
Mu αTΣθθα+ 2ΣT

θuα+ σuu

)
=
(
ΣvM ,Σ

T
θvα+ σvu

)
. (3)

Step 2. We now consider the optimization problem of a strategic trader i. Suppose he observes

signal realization θ̃i of signal θi, and subsequently submits demand d. Assuming that other traders

j 6= i follow linear strategies αj , and that the market maker follows a linear pricing rule (βM ;βD),

the expected profit of trader i from submitting demand d when observing realization θ̃i is equal to

E

d
v − βTMθM − βD

d+
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i

 . (4)

Using the fact that d is a choice variable, and thus d and d2 are constants from the point of

view of taking expectations, we can rewrite equation (4) as

d · E

v − βTMθM − βD
∑
j 6=i

αTj θj + u

 ∣∣∣∣∣∣ θi = θ̃i

− d2 · βD. (5)

Now, if βD < 0, trader i can make an arbitrarily large expected profit, and no single d maximizes

it—hence, βD cannot be negative in equilibrium.

If βD = 0, and E
[
v − βTMθM

∣∣∣θi = θ̃i

]
6= 0, then again trader i can make an arbitrarily large

expected profit, and no single d maximizes it. But it follows from Assumption 1 in the model29

that for at least one trader i, for at least some (in fact, for almost all) realizations θ̃i, we have

E
[
v − βTMθM

∣∣∣θi = θ̃i

]
6= 0—hence, βD cannot be equal to zero in equilibrium.

Finally, if βD > 0, then there is a unique d maximizing the expected profit:

d∗ =
1

2βD
E

v − βTMθM − βD
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i

 (6)

=
1

2βD

ΣT
iv − βTMΣT

iM − βD

∑
j 6=i

αTj ΣT
ij + ΣT

iu

Σ−1
ii θ̃i, (7)

where equation (7) is the standard projection/signal extraction formula for jointly normal variables.

Note that d∗ is a linear function of θ̃i, and vector αi is uniquely determined by pricing rule (βM ;βD)

and strategies αj for j 6= i.

28To see the equivalence, note first that βT η = E[v|η] =⇒ Cov(v, η) = Cov(E[v|η], η) = Cov(βT η, η) = βTV ar(η).
To go in the opposite direction, note that Cov(v, η) = βTV ar(η) = Cov(βT η, η) =⇒ Cov(v − βT η, η) = 0. Since
variables v−βT η and η are jointly normal, Cov(v−βT η, η) = 0 implies that they are independent, and thus for every
realization η̃ of random variable η, E[v − βT η|η = η̃] = E[v − βT η] = 0, which implies that for every realization η̃,
E[v|η = η̃] = E[βT η|η = η̃] = βT η̃.

29Assumption 1 says that at least one strategic trader i has some useful information beyond that contained in the
market maker’s signal: Cov(v, θ|θM ) 6= 0.

28



Step 3. We showed in Steps 1 and 2 that profile of strategies α and pricing rule (βM ;βD) form

a linear equilibrium if and only if βD > 0 and the following two conditions hold:

(i)
(
βTM , βD

)( ΣMM ΣT
θMα+ ΣMu

αTΣθM + ΣT
Mu αTΣθθα+ 2ΣT

θuα+ σuu

)
=
(
ΣvM ,Σ

T
θvα+ σvu

)
;

(ii) for all i, αTi = 1
2βD

(
ΣT
iv − βTMΣT

iM − βD
(∑

j 6=i α
T
j ΣT

ij + ΣT
iu

))
Σ−1
ii .

We will now show that there is a unique profile (α, β) satisfying these conditions, thus proving

the existence and uniqueness of linear equilibrium.

First, we rewrite condition (ii), for all i, as:

2Σiiαi =
1

βD
(Σiv − ΣiMβM )−

∑
j 6=i

Σijαj − Σiu (8)

or equivalently

Σiiαi +
n∑
j=1

Σijαj =
1

βD
(Σiv − ΣiMβM )− Σiu. (9)

“Stacking” equations (9) for all i one under another, and rewriting the resulting system of equa-

tions in matrix form using the notation defined in Section 3.1, we obtain the following condition

(equivalent to condition (ii)):

(Σdiag + Σθθ)α = γΣθv − ΣθMβ
′
M − Σθu, (10)

where for convenience we define γ = 1/βD, β′M = βM/βD.

Next, using this notation, and transposing the matrix equation in condition (i), that condition

can be written as a system of two equations:

ΣMMβ
′
M + ΣT

θMα+ ΣMu = γΣMv, (11)

αTΣθMβ
′
M + ΣuMβ

′
M + αTΣθθα+ 2ΣT

θuα+ σuu = γ(ΣT
θvα+ σvu). (12)

Step 4. We will now solve the system of equations (10), (11), and (12). Equation (11) allows us

to express β′M as a function of α and γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
. (13)

We then plug this expression of β′M into equation (10):

(Σdiag + Σθθ)α = γΣθv − ΣθMΣ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
− Σθu,

or, isolating α on the left-hand side and collecting the terms with γ,(
Σdiag + Σθθ − ΣθMΣ−1

MMΣT
θM

)
α =

(
Σθv − ΣθMΣ−1

MMΣMv

)
γ −

(
Σθu − ΣθMΣ−1

MMΣMu

)
.

Note that

Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ)− Cov(θ, θM )V ar(θM )−1Cov(θM , θ)

= V ar(θ|θM ),
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where the last equation follows from the standard projection formula for multivariate normal dis-

tributions. Thus, matrix Σθθ − ΣθMΣ−1
MMΣT

θM is positive semidefinite, and matrix Σdiag + Σθθ −
ΣθMΣ−1

MMΣT
θM is positive definite (and thus invertible). Letting

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Av = Λ−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,

we can express α as a linear function of γ:

α = γAv −Au.

Plugging this expression into (13), we can also express β′M as a linear function of γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θM (γAv −Au)− ΣMu

)
= γΣ−1

MM

(
ΣMv − ΣT

θMAv
)
− Σ−1

MM

(
ΣMu − ΣT

θMAu
)
.

Using these expressions, we can now rewrite equation (12) as a quadratic equation of just one

scalar variable, γ:

aγ2 + bγ + c = 0, (14)

where

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ATv ΣθθAv − ΣT
θvAv,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
−ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)

+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu.

Therefore, finding a linear equilibrium is equivalent to finding a positive root of equation (14).

To prove that this equation has a unique such root, we first simplify the expressions for a, b, and c.

(For the proof, it is sufficient to simplify a and c, but getting a simplified expression for b is useful

for deriving an explicit analytic characterization of the equilibrium.) Starting with a:

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ATv ΣθθAv − ΣT
θvAv,

= ATv
[(

ΣθMΣ−1
MMΣMv − Σθv

)
+
(
Σθθ − ΣθMΣ−1

MMΣT
θM

)
Av
]

= ATv [(−ΛAv) + (Λ− Σdiag)Av]

= −ATv ΣdiagAv.

Next,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
−ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)

+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

= 2ATv
(
Σθu − ΣθMΣ−1

MMΣMu

)
+ATu

(
Σθv − ΣθMΣ−1

MMΣMv

)
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+2ATv
(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= 2ATv ΛAu +ATuΛAv

+2ATv
(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= ATv (2Σdiag + Λ)Au + ΣuMΣ−1

MMΣMv − σuv.

Finally,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

= −
(
ΣuM −ATuΣθM

)T
Σ−1
MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

=

(
Au

−1

)T
C

(
Au

−1

)
,

where

C =

(
Σθθ Σθu

ΣT
θu σuu

)
−

(
ΣθM

ΣuM

)
Σ−1
MM

(
ΣθM

ΣuM

)T
= V ar ((θ;u))− Cov ((θ;u) , θM )V ar (θM )−1Cov (θM , (θ;u))

= V ar ((θ;u) |θM ) .

Thus,

c = V ar(ATu θ − u|θM ).

Step 5. We will now determine the signs of coefficients a and c.

Matrix Σdiag is positive definite, by construction. Vector Av is not equal to zero: matrix

Λ−1 is positive definite, and vector Σθv − ΣθMΣ−1
MMΣMv = Cov(θ, v|θM ) is not equal to zero

(by Assumption 1 of the model). Thus, a = −ATv ΣdiagAv < 0.

To determine the sign of coefficient c, recall that we have shown in Step 4 that c = V ar(ATu θ−
u|θM ). So if we show that c 6= 0, it will immediately follow that c > 0.

If Au = 0, then c 6= 0 follows from Assumption 2 of the model (which says that the market

maker does not perfectly observe liquidity demand: V ar(u|θM ) > 0).

Suppose Au 6= 0. It is convenient to introduce an auxiliary random variable, φ, drawn randomly

from the normal distribution with mean zero and covariance matrix Σdiag, independent of all other

random variables in the model. Note that matrix Au now has a simple interpretation:

Au = V ar(θ + φ|θM )−1Cov(θ, u|θM ) = V ar(θ + φ|θM )−1Cov(θ + φ, u|θM ).

Let ε = u−ATu (θ+ φ). Then c = V ar(ε+ATuφ|θM ). To show that c 6= 0, it is thus sufficient to

show that ε+ATuφ is not constant, conditional on θM . To show that, consider Cov(ε+ATuφ,A
T
u (θ+

φ)|θM ) = Cov(ε, ATu (θ + φ)|θM ) + Cov(ATuφ,A
T
u (θ + φ)|θM ).

First, Cov(ε, ATu (θ + φ)|θM ) = Cov(u − ATu (θ + φ), ATu (θ + φ)|θM ) = Cov(u, θ + φ|θM )Au −
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ATuV ar(θ + φ|θM )Au = 0.

Second, Cov(ATuφ,A
T
u (θ + φ)|θM ) = V ar(ATuφ|θM ) = ATuΣdiagAu, which is not equal to zero,

because Au 6= 0 and Σdiag is positive definite. Therefore, Cov(ε + ATuφ,A
T
u (θ + φ)|θM ) 6= 0, and

thus ε+ATuφ is not constant conditional on θM , and so c > 0.

Thus, a < 0, c > 0, and hence equation (14) has exactly one positive root. Therefore, there

exists a unique linear equilibrium.

Appendix B: Proof of Theorem 2 (Special Case)

Step 1. Consider first a specific market m, and, for convenience, drop superscript (m). We know

there exists a unique linear equilibrium. In this equilibrium, any two strategic traders in the same

group have the same linear strategy (otherwise, by swapping the strategies of these two traders,

we would be able to obtain a different linear equilibrium). Denote by αi the aggregate demand

multiplier, in equilibrium, of group i; i.e., given signal θi + ξi,j of trader j in group i, the trader

submits demand 1
`i
αTi (θi + ξi,j).

For the remainder of this proof, we define the variables ξi = 1
`i

∑
j ξi,j , ξ = (ξ1; . . . ; ξn), and the

matrices

Σξ = V ar(ξ) =


1
`1

Σξ
1 0 0

0
. . . 0

0 0 1
`n

Σξ
n

 , Σ̂diag =


1
`1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1
`n

(Σnn + Σξ
n)

 .

With this notation, the equilibrium condition (i) in Step 1 of of the proof of Theorem 1—the

market maker’s inference given her information—becomes:(
βTM , βD

)( ΣMM ΣT
θMα+ ΣMu

αTΣθM + ΣT
Mu αT (Σθθ + Σξ)α+ 2ΣT

θuα+ σuu

)
=
(
ΣvM ,Σ

T
θvα+ σvu

)
where we observe that the only modification is in the variance of the overall demand, which is now

written

V ar

∑
i,j

αTi
`i

(θi + ξi,j) + u

 = αTΣθθα+ 2ΣT
θuα+ σuu +

∑
i

αTi Σξ
iαi

`i

= αT (Σθθ + Σξ)α+ 2ΣT
θuα+ σuu.

The equations (11) and (12) that capture condition (i) then become slightly different:

ΣMMβ
′
M + ΣT

θMα+ ΣMu = γΣMv, (15)

αTΣθMβ
′
M + ΣuMβ

′
M + αT (Σθθ + Σξ)α+ 2ΣT

θuα+ σuu = γ(ΣT
θvα+ σvu). (16)

The equilibrium condition (ii) in Step 3 of the proof of Theorem 1—the best response of strategic

trader i—is also slightly different. In this new notation, it becomes:

1

`i
αTi =

1

2βD

ΣT
iv − βTMΣT

iM − βD

∑
j 6=i

αTj ΣT
ij +

`i − 1

`i
αTi ΣT

ii + ΣT
iu

 (Σii + Σξ
i )
−1,
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which is equivalent to:

Σii

`i
αi +

2Σξ
i

`i
αi +

∑
j

Σijαj = β−1
D [Σiv − ΣiMβM ]− Σiu.

Similarly to equation (10) in the proof of Theorem 1, this can be rewritten as

(Σ̂diag + Σθθ + Σξ)α = γΣθv − ΣθMβ
′
M − Σθu, (17)

where γ and β′M are defined as before.

Next, again by analogy with the proof of Theorem 1, we define

Λ̂ = Σ̂diag + Σθθ + Σξ − ΣθMΣ−1
MMΣT

θM ,

Âu = Λ̂−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Âv = Λ̂−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,

and then finding a linear equilibrium is equivalent to solving the quadratic equation

aγ2 + bγ + c = 0,

where

a = −ÂTv Σ̂diagÂv,

b = ÂTv

(
2Σ̂diag + Λ̂

)
Âu + ΣuMΣ−1

MMΣMv − σuv,

c = V ar(ÂTu (θ + ξ)− u|θM ) = V ar(ÂTu θ − u|θM ) + ÂTuΣξÂu.

Since by definition γ = 1/βD, solving the above quadratic equation is equivalent to solving the

quadratic equation

cβ2
D + bβD + a = 0,

which turns out to be a more convenient characterization that we will proceed with. As before, we

also have a simple expression for the vector of strategies α:

α = Âv/βD − Âu.

Step 2. Let us now consider the entire sequence of markets, and restore superscript (m) for the

variables. From the simplifying assumption that V ar(θ; θM ;u) is full rank, it follows that both

V ar(θ|θM ) and V ar(θM |θ) are full rank, and thus invertible.

As m→∞, Σ̂
(m)
diag → 0 and Σξ,(m) → 0. Thus,

Λ̂(m) → Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ|θM ),

Â(m)
u → V ar(θ|θM )−1

(
Σθu − ΣθMΣ−1

MMΣMu

)
= V ar(θ|θM )−1Cov(θ, u|θM ),

Â(m)
v → V ar(θ|θM )−1

(
Σθv − ΣθMΣ−1

MMΣMv

)
= V ar(θ|θM )−1Cov(θ, v|θM ).

Therefore, using that ÂTuΣξ,(m)Âu → 0,

a(m) → 0,

b(m) → Cov(v, θ|θM )V ar(θ|θM )−1V ar(θ|θM )V ar(θ|θM )−1Cov(θ, u|θM ) + ΣuMΣ−1
MMΣMv − σuv
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= Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, u|θM )− Cov(u, v|θM ) = −Cov(u, v|θ, θM ),

c(m) → V ar
(
Cov(u, θ|θM )V ar(θ|θM )−1θ − u|θM

)
+ 0

= V ar (E[u|θ, θM ]− u|θM ) = V ar (u|θ, θM ) .

Note that these convergence results imply that β
(m)
D converges to some finite value, since

limm→∞ c
(m) = V ar(u|θ, θM ) > 0 (where the last inequality is due to Assumption 2L). If Cov(u, v|θ, θM ) >

0, then limm→∞ β
(m)
D = V ar(u|θ, θM )−1Cov(u, v|θ, θM ). If Cov(u, v|θ, θM ) ≤ 0, then limm→∞ β

(m)
D =

0. We now consider the limiting behavior of price p(m) in these two cases separately.

Step 3, Case Cov(u, v|θ, θM) > 0. Note first that

E[v|θ, θM , u] = E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1 (u− E[u|θ, θM ])

= E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1

×
(
u− E[u|θM ]− Cov(u, θ|θM )V ar(θ|θM )−1(θ − E[θ|θM ])

)
.

Thus, E[v|θ, θM , u] is a linear function of θ, θM , and u:

E[v|θ, θM , u] = wTMθM + wTθ θ + wuu,

where weights w are as follows:

wTM = Cov(v, θM )V ar(θM )−1

− Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1

− Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θM )V ar(θM )−1

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1;

wTθ = Cov(v, θ|θM )V ar(θ|θM )−1

− Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θ|θM )V ar(θ|θM )−1;

wu = Cov(v, u|θ, θM )V ar(u|θ, θM )−1.

Next, price p(m)(θ, ξ(m), θM , u) in market m can be expressed as

p(m)(θ, ξ(m), θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T (θ + ξ(m)) + u

)
= β

(m)T
M θM + β

(m)
D α(m)T (θ + ξ(m)) + β

(m)
D u.

To prove the statement of the theorem for this case, note that

E

[(
p(m)(θ, ξ(m), θM , u)− E[v|θ, θM , u]

)2
]

= (β
(m)
D )2α(m)TΣξ,(m)α(m)
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+

 β
(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu


T

V ar


 θM

θ

u



 β

(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu

 .

Since Σξ,(m) → 0, it is enough to show that β
(m)
D → wu, β

(m)
D α(m) → wθ, and β

(m)
M → wM .

The first convergence result is immediate:

lim
m→∞

β
(m)
D = V ar(u|θ, θM )−1Cov(u, v|θ, θM ) = wu.

Next:

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Â(m)
v − β(m)

D Â(m)
u

= V ar(θ|θM )−1Cov(θ, v|θM )

−V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θ|θM )−1Cov(θ, u|θM )

= wθ.

Finally:

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= Σ−1

MM

(
ΣMv − ΣT

θMV ar(θ|θM )−1Cov(θ, v|θM )
)

− V ar(u|θ, θM )−1Cov(u, v|θ, θM )Σ−1
MM

(
ΣMu − ΣT

θMV ar(θ|θM )−1Cov(θ, u|θM )
)

= V ar(θM )−1Cov(θM , v)

− V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, v|θM )

− V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θM )−1Cov(θM , u)

+ V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, u|θM )

= wM .

Step 3, Case Cov(u, v|θ, θM) ≤ 0. In this case, note that

E[v|θ, θM ] = E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ]) .

Thus, E[v|θ, θM ] is a linear function of θ and θM :

E[v|θ, θM ] = wTMθM + wTθ θ,

where weights w are as follows:

wTM = Cov(v, θM )V ar(θM )−1

− Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1;

wTθ = Cov(v, θ|θM )V ar(θ|θM )−1.

As before, price p(m)(θ, ξ(m), θM , u) in market m can be expressed as

p(m)(θ, ξ(m), θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T (θ + ξ(m)) + u

)
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= β
(m)T
M θM + β

(m)
D α(m)T (θ + ξ(m)) + β

(m)
D u.

As in Step 2, noting that V ar(ξ(m))→ 0, to prove the theorem for this case, it is thus sufficient to

show that as m grows, β
(m)
D → 0, β

(m)
D α(m) → wθ, and β

(m)
M → wM . The first convergence result,

β
(m)
D → 0, was proven at the end of Step 2 above. Next,

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Â(m)
v − β(m)

D Â(m)
u

= V ar(θ|θM )−1Cov(θ, v|θM )

−
[

lim
m→∞

β
(m)
D

]
V ar(θ|θM )−1Cov(θ, u|θM )

= V ar(θ|θM )−1Cov(θ, v|θM )

= wθ.

Finally,

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
= V ar(θM )−1Cov(θM , v)

− V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, v|θM )

= wM .

Appendix C: Proofs of Propositions in Section 7

C.1 Proof of Proposition 3

Fix a firm i, and suppose every firm j 6= i plays according to a linear strategy

qj(θj) = αTj θj + δj .

Suppose firm i observes realization θ̃i of signal θi. The expected payoff of firm i from producing q

units of the good is then equal to

E

q
v − β

q +
∑
j 6=i

(
αTj θj + δj

)− c
 ∣∣∣∣∣∣ θi = θ̃i

 ,
which can be rewritten as

q · E

v − β
∑
j 6=i

(
αTj θj + δj

)− c
∣∣∣∣∣∣ θi = θ̃i

− q2 · β.

Since by assumption β > 0, there is a unique q maximizing the expected profit:

q∗ =
1

2β

v̄ + ΣT
ivΣ
−1
ii θi − β

∑
j 6=i

(
αTj ΣT

ijΣ
−1
ii θi + δj

)− c
 , (18)

where we re-use our earlier notation for various covariance matrices.
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Thus, if all firms other than i use strategies linear in their signals, firm i’s (unique) best response

strategy is also linear in its signal. Moreover, the intercept and the slope of that strategy are

uniquely determined. The intercept is given by

δi =
1

2β

v̄ − β∑
j 6=i

δj − c

 , (19)

and the slope is given by

αTi =
1

2β

ΣT
ivΣ
−1
ii − β

∑
j 6=i

αTj ΣT
ijΣ
−1
ii

 . (20)

For the intercepts, multiplying both sides of equation (19) by 2β and moving one of the βδi

terms under the summation sign, we get

βδi = v̄ − β
n∑
j=1

δj − c,

and so all δi are equal:

δi =
v̄ − c

β(n+ 1)
.

For the slopes αi, we follow manipulations analogous to those in the proof of Theorem 1:

multiply both sides of equation (20) by 2βΣii (on the right), move one of the βαTi Σii terms under

the summation sign, transpose the equation, and “stack” the resulting equations for all i. The

resulting system of equation can be rewritten as

βΣdiagα = Σiv − βΣθθα,

and so the vector of slopes α is given by the formula

α =
1

β
(Σθθ + Σdiag)

−1 Σiv,

because our assumptions imply that matrix (Σθθ + Σdiag) is invertible.

C.2 Proof of Proposition 4

Consider first the original sequence of markets and fix a particular market m (and for convenience,

drop the superscript (m) for now). By Proposition 3, there exists a unique linear equilibrium. To

explicitly characterize this equilibrium, we use the arguments and the notation almost identical to

those in Step 1 of the proof of Theorem 2.

Specifically, by symmetry, any two firms in the same group use the same linear strategy in

equilibrium. Denote by αi the aggregate supply multiplier of group i, and by δi the aggregate

intercept of group i. Thus, a specific firm j in group i, after observing its signal θi + ξi,j , will

produce quantity
1

`i
αTi (θi + ξi,j) +

1

`i
δi.

As in the proof of Theorem 2, let ξi = 1
`i

∑
j ξi,j (the average idiosyncratic term in group i), let
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ξ = (ξ1; . . . ; ξn), and define matrices Σξ and Σ̂diag as

Σξ = V ar(ξ) =


1
`1

Σξ
1 0 0

0
. . . 0

0 0 1
`n

Σξ
n

 , Σ̂diag =


1
`1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1
`n

(Σnn + Σξ
n)

 .

It is immediate from Proposition 3 that δi = `i(v̄−c)
β(N+1) . For vector α, writing down the first-order

conditions for all firms j of all groups i, and combining them in the same way as in Step 1 of the

proof of Theorem 2, we get the expression(
Σ̂diag + Σθθ + Σξ

)
α = β−1Σθv. (21)

(Note that equation (21) is almost identical to equation (17) in Step 1 of the proof of Theorem 2,

except that the latter also contains the terms related to the signal observed by the market maker

and the demand from liquidity traders.)

Let us now again write the market indices explicitly, so that

α(m) = β−1
(

Σθθ + Σ̂
(m)
diag + (Σξ)(m)

)−1
Σθv,

and

δ(m) =
`i (v̄ − c)

β
(
N (m) + 1

) .
The total quantity produced in market m, as a function of θ and ξ(m), is then

Q(m) = β−1

((
Σθθ + Σ̂

(m)
diag + (Σξ)(m)

)−1
Σθv

)T
θ

+ β−1

((
Σθθ + Σ̂

(m)
diag + (Σξ)(m)

)−1
Σθv

)T
ξ(m)

+
N (m) (v̄ − c)
β
(
N (m) + 1

) .
Asm goes to infinity, N(m)(v̄−c)

β(N(m)+1)
converges to β−1(v̄−c), and matrices Σ̂

(m)
diag and (Σξ)(m) converge

to zero. Moreover, ξ(m) L2

−→ 0. Thus, as m goes to infinity,

Q(m) L2

−→ β−1
((

Σ−1
θθ Σθv

)T
θ + (v̄ − c)

)
= β−1 (E[v|θ]− c) .

For the alternative sequence of markets, note that each alternative market m can be viewed as

a special case of the “original” market, with just one group i = 1, and no idiosyncratic components

of signals within the group (i.e., Σξ
i = 0). Thus, the above derivation applies to this special case,

and so for the alternative sequence, we also have

Q(alt,m) L2

−→ β−1 (E[v|θ]− c) ,

and so

Q(m) −Q(alt,m) L2

−→ 0.
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Moreover, since p(m) = v − βQ(m) and p(alt,m) = v − βQ(alt,m), we immediately get

p(m) − p(alt,m) L2

−→ 0.
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