// This code is a copy of Listing 10-8 in "Clean Code", by Robert C. Martin

package literatePrimes;

import java.util.ArrayList;

public class PrimeGenerator {
    private static int[] primes;
    private static ArrayList<Integer> multiplesOfPrimeFactors;

    protected static int[] generate(int n) {
        primes = new int[n];
        multiplesOfPrimeFactors = new ArrayList<Integer>();
        set2AsFirstPrime();
        checkOddNumbersForSubsequentPrimes();
        return primes;
    }

    private static void set2AsFirstPrime() {
        primes[0] = 2;
        multiplesOfPrimeFactors.add(2);
    }

    private static void checkOddNumbersForSubsequentPrimes() {
        int primeIndex = 1;
        for (int candidate = 3;
             primeIndex < primes.length;
             candidate += 2) {
            if (isPrime(candidate))
                primes[primeIndex++] = candidate;
        }
    }

    private static boolean isPrime(int candidate) {
        if (isLeastRelevantMultipleOfLargerPrimeFactor(candidate)) {
            multiplesOfPrimeFactors.add(candidate);
            return false;
        }
        return isNotMultipleOfAnyPreviousPrimeFactor(candidate);
    }

    private static boolean
    isLeastRelevantMultipleOfLargerPrimeFactor(int candidate) {
        int nextLargerPrimeFactor = primes[multiplesOfPrimeFactors.size()];
        int leastRelevantMultiple = nextLargerPrimeFactor * nextLargerPrimeFactor;
        return candidate == leastRelevantMultiple;
    }

    private static boolean
    isNotMultipleOfAnyPreviousPrimeFactor(int candidate) {
        for (int n = 1; n < multiplesOfPrimeFactors.size(); n++) {
            if (isMultipleOfNthPrimeFactor(candidate, n))
                return false;
        }
        return true;
    }

    private static boolean
    isMultipleOfNthPrimeFactor(int candidate, int n) {
        return candidate ==
                smallestOddNthMultipleNotLessThanCandidate(candidate, n);
    }

    private static int
    smallestOddNthMultipleNotLessThanCandidate(int candidate, int n) {
        int multiple = multiplesOfPrimeFactors.get(n);
        while (multiple < candidate)
            multiple += 2 * primes[n];
        multiplesOfPrimeFactors.set(n, multiple);
        return multiple;
    }
}