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Abstract

Instrumentation is fundamental to developing and maintaining applications in the modern datacen-

ter. It affords visibility into what an application is doing at runtime, and it helps pin-point bugs in

a system by exposing the steps that lead to an error. The most common method of instrumenta-

tion today is logging, or printing out human-readable messages during an application’s execution.

Unfortunately, as applications have evolved to become increasingly more performant with tighter

latency requirements, traditional logging systems have not kept up. As a result, the cost of producing

human-readable log messages is becoming prohibitively expensive.

NanoLog is a nanosecond scale logging system that’s 1-2 orders of magnitude faster than exist-

ing logging systems such as Log4j2, spdlog, Boost log, or Event Tracing for Windows. The system

achieves a throughput of up to 82 million log messages per second for simple log messages and

has a typical log invocation overhead of 8 nanoseconds. For comparison, other modern logging ap-

plications today can only achieve up to a few million log messages per second at log latencies of

hundreds of nanoseconds to several microseconds.

NanoLog achieves its ultra-low latency and high throughput by shifting work out of the runtime

hot-path and into the compilation and post-execution phases of the application. More specifically,

it performs compile-time extraction of static information from the log messages to reduce I/O and

decouples formatting of the log messages from the runtime application by deferring it until after

execution. The result is an optimized runtime that only outputs the minimal amount of data and

produces a compact, binary log file. The binary log file is also amenable to log analytics engines; it

is small relative to full, human-readable log messages and contains all the data in a binary format,

saving the engine from parsing ASCII text. With these enhancements, NanoLog enables nanosecond

scale logging and hopes to fill the performance gap left between traditional logging systems of today

and the next generation applications of tomorrow.
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Industrial Response To NanoLog

When I claim NanoLog can produce up to 82 million log messages per second with a median

invocation latency of 7-19 nanoseconds, industrial affiliates typically respond with an expression

similar to Figure 12.

2The image was created by user Sonitaaaaa on Wikimedia Commons and distributed under Creative Commons
Attribution-Share Alike 4.0 International [56].
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Figure 1: Caricature of the typical industrial response to NanoLog.
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Chapter 1

Introduction

Today’s datacenter applications are becoming increasingly disaggregated with ever tighter latency

requirements. Driving the overall trend is user expectations and the rise of cloud computing; modern

consumers want applications that are feature-rich, fault-tolerant, in the cloud, and fast. As a result,

developers have broken traditionally monolithic system designs into collections of independent mi-

cro services that communicate with each other to provide higher-level functions. This drive increases

the complexity of applications and reduces the latency tolerance for each individual component.

As a result, modern software systems are becoming harder to instrument with traditional tools.

The disaggregated nature of applications means that one can no longer attach a debugger to a sin-

gle process and step through the application1. The distributed environment can also induce “gray

failures” where the overall performance is degraded, but does not cause a hard fault with an easy-

to-debug stack trace [27], or there may be distributed, transient errors that are hard to observe with

on-demand instrumentation or sampling. These issues are made worse because tighter latency re-

quirements reduce the overall headroom one has to instrument the system. This leaves application

developers with a limited set of tools to instrument their systems.

Fortunately, there is one form of instrumentation that remains both viable and popular in the

modern, distributed world: printf-style logging [6]. Logging allows developers to persist portions of

the program state onto disk or a database via log messages such as in Figure 1.1. This information

can illuminate the steps that lead up to a crash in a microservice. The log can also contain metrics to

1Even if one could attach a debugger, the slowdown induced in the single process may cause other microservices to
fail.

1
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NANO_LOG(NOTICE, "Creating table ’%s’ with id %d", name, tableId);

2017/3/18 21:35:16.554575617 TableManager.cc:1031 NOTICE[4]: Creating table
’orders’ with id 11

Figure 1.1: A typical logging statement (top) and the resulting output in the log file (bottom).
“NOTICE” is a log severity level and “[4]” is a thread identifier.

help diagnose gray failures, as well as information about transient/recoverable errors or misconfig-

urations that lead to sub-optimal behaviors. Logging can also be always-on, meaning it will never

miss an important event. Furthermore, logs can also persist user queries, behaviors, and preferences,

which can be mined for business purposes. The more events that one can record in a log, the more

valuable it becomes.

Unfortunately, logging today is becoming more expensive relative to modern applications. Sim-

ply formatting a log message takes on the order of one microsecond in typical logging systems.

Additionally, each log message typically occupies 50-100 bytes, so available I/O bandwidth limits

the rate at which log messages can be recorded. As a result, developers are often forced to make

painful choices about which events to log; this impacts their ability to debug problems and under-

stand system behavior.

The problem is exacerbated by the current trend towards low-latency applications and micro-

services. Systems such as Redis [50], FaRM [9], MICA[33], and RAMCloud [45] can process re-

quests in as little as 1-2 microseconds. This means that even a single log statement in these modern

services can potentially double the application response time. This mismatch makes it difficult or

impossible for companies to deploy low-latency services. One industry partner informed us that

their company will not deploy low latency systems until there are logging systems fast enough to be

used with them [13].

Slow logging is such a problem today that software development organizations find themselves

spending valuable developer resources to remove log messages for the sake of performance. Accord-

ing to our contacts at Google[13] and VMware[44], a considerable amount of time is spent in code

reviews discussing whether to keep log messages or remove them for performance. This process

inadvertently culls a lot of useful debugging information, making the system harder to understand

and resulting in many more person hours spent later debugging. Logging itself is expensive, but

lacking proper logging is very expensive.

NanoLog is a new, open-source [70] logging system that attempts to address the performance

limitations of traditional logging systems and close the gap between instrumentation and modern
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application latency requirements. NanoLog is 1-2 orders of magnitude faster than existing systems

such as Log4j2 [62], spdlog [37], glog [21], Boost Log [1], or Event Tracing for Windows [47].

NanoLog retains the convenient printf-like API [6] of existing logging systems, but it offers a

throughput of around 80 million messages per second for simple log messages and a caller la-

tency of as little as 8 nanoseconds. For reference, Log4j2 only achieves a throughput of 1.5 million

messages per second with latencies in the hundreds of nanoseconds for the same microbenchmark.

NanoLog achieves its ultra-low latency and high throughput by shifting work out of the runtime

hot-path and into the compilation and post-execution phases of the application. More specifically,

NanoLog introduces a new compile-time component that analyzes the log statements at compile-

time to generate more optimized runtime functions, and NanoLog defers the formatting of log mes-

sages to a separate post-processor application. The addition of these two components shifts logging

work out of the runtime hot-path, enabling nanosecond scale operations.

The compile-time component performs two types of optimizations on the log statements. For

each log statement, it identifies the static information that never changes between log function in-

vocations (such as the filename, line number, severity and format string in Figure 1.1) and puts it

on a separate data path from the dynamically changing information (such as the timestamps and

format arguments). The static information is stored just once in the log file, and the log statements

are rewritten to persist the only dynamic information. This reduces the I/O requirements of logging,

and overall reduces the amount of information that needs to be processed at runtime.

The post-processor component helps decouple formatting from runtime. Instead of fully for-

matting the human-readable log message as shown at the bottom of Figure 1.1, NanoLog instead

emits only the raw components of the log messages at runtime. This results in a binary log file. A

post-processor is then introduced that will read the components and format them. This completely

removes the formatting costs from the runtime, which saves hundreds to thousands of nanoseconds

per log statement.

The rest of this dissertation will motivate the techniques behind NanoLog, describe the vari-

ous components of the system, evaluate the open-source implementation of NanoLog for C++ on

GitHub [70], and conclude with extensions and future directions for the work.
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Background and Motivation

The NanoLog system builds upon techniques used by existing logging systems to achieve nanosec-

ond scale logging. So to better situate the work in this space, I will discuss the printf-like API [6] that

NanoLog inherits from existing logging systems, and describe some strategies that modern logging

systems use to cope with the problem of slow logging. I will then conclude with two observations

that NanoLog makes about modern day logging, and how those motivated the full design of the

NanoLog system.

2.1 The API

Logging systems allow developers to generate a human-readable trace of an application during its

execution. Most logging systems provide facilities similar to those in Figure 1.1. The developer an-

notates system code with logging statements. Each logging statement uses a printf-like interface[6]

to specify a static string indicating what just happened and also some runtime data associated with

the event. The logging system then adds supplemental information such as the time when the event

occurred, the source code file and line number of the logging statement, a severity level, and the

identifier of the logging thread.

2.2 Techniques to Speed Up Logging

The simplest implementation of a logging system is to output each log message synchronously,

inline with the execution of the application. This approach has relatively low performance, for two

reasons. First, formatting a log message typically takes 0.5-1 µs (1000-2000 cycles). In a low latency

4
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server, this could represent a significant fraction of the total service time for a request. Second, the

I/O is expensive. Log messages are typically 50-100 bytes long, so a flash drive with 250 Mbytes/sec

bandwidth can only absorb a few million messages per second. In addition, the application will

occasionally have to make kernel calls to flush the log buffer, which will introduce additional delays.

The most common solution to these problems is to move the expensive operations to a separate

thread. For example, I/O can be performed in a background thread: the main application thread

writes log messages to a buffer in memory, and the background thread makes the kernel calls to

write the buffer to a file. This allows I/O to happen in parallel with application execution. Some

systems, such as TimeTrace in PerfUtils [49], also offload the formatting to the background thread

by packaging all the arguments into an executable lambda and evaluating the formatting in the

background thread.

Unfortunately, moving operations to a background thread only has a limited benefit, as the

operations must still be carried out at runtime. If log messages are generated at a rate faster than

the background thread can process them (either because of I/O or CPU limitations), then either

the application must eventually block or it must discard log messages. Neither of these options is

attractive. Discarding log messages can cause important information to be lost at inopportune times,

and blocking can induce long tail latencies for applications. Blocking is particularly unappealing

for low-latency systems as the long delay can give the appearance that the service has crashed.

In general, developers must ensure that an application doesn’t generate log messages faster than

they can be processed. One approach is to filter log messages according to their severity level;

the threshold might be higher in a production environment than when testing. Another possible

approach is to sample log messages at random, but this may cause key messages (such as those

identifying a crash) to be lost. The final (but not uncommon) recourse is a social process whereby

developers determine which log messages are most important and remove the less critical ones to

improve performance. Unfortunately, all of these approaches compromise visibility to get around

the limitations of the logging system.

And unfortunately, this is the limit of what most logging systems can provide. They can move the

formatting/IO costs from the foreground to background and/or they can limit the amount of logging

by dropping certain log messages. While these two mechanisms can improve the performance of

the system over a more naı̈ve implementation, they do not consider whether or not the formatting or

IO costs need to be paid at runtime.
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2.3 NanoLog’s Observations

The design of NanoLog grew out of two observations about logging.

The first observation is that fully-formatted human-readable messages don’t necessarily need to

be produced inside the application. Instead, the application could log the raw components of each

message and the human-readable messages could be generated later, if/when a human needs them.

Many logs are never read by humans. In many cases, log messages are consumed primarily by other

computers to perform analytics or aggregations. It’s only on rare occasions that human developers

consult the log to aid in debugging or auditing, and even then they only require small fraction of the

log file to perform the task. So to optimize for the normal case, NanoLog proposes that a logging

system should instead output the log data in a binary format, but also provide a mechanism to

reconstitute the human-readable log messages at a later point.

The second observation is that log messages contain a lot of static log information that can be

removed or deduplicated. For example, in the log message in Figure 1.1, the only dynamic parts of

the message are the time, the thread identifier, and the values of the name and tableId variables.

All other information is known at compile-time, unchanging, and repeated on every invocation of

that logging statement. NanoLog proposes that the logging system should de-duplicate all static log

information in the log file, and only output the dynamic log information in the normal case upon

invocation. This both saves on resources (such as I/O and compute) at runtime, and it dovetails well

with the previous proposal of a binary log file.

These two observations led to the overall design of the NanoLog system. NanoLog incorporates

a compile-time component to extract the static log information and rewrite the log statements to

output only dynamic information; it outputs a compressed, binary log file at runtime, and then

utilizes a post-processor to recombine the static and dynamic information and form the full, human-

readable log messages. Overall, the NanoLog system retains the familiar printf-style [6] logging

API, but it adds a compile-time component to the user’s build chain, and an optional post-processor

to interpret the binary log files.

The remainder of this dissertation describes how NanoLog capitalizes on these observations to

improve logging performance by 1-2 orders of magnitude.
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Overview

This chapter presents some of the key optimizations that enable NanoLog’s nanosecond scale per-

formance, and provides a brief overview of the resulting system architecture.

3.1 Key Techniques and Optimizations

The design of the NanoLog system is guided by four optimizations that enable its level of perfor-

mance.

First, NanoLog avoids the cost of formatting log messages and defers it to a post-processor.

It emits the raw components of a log statement (such as its format string and format arguments)

in a binary format, and reconstructs the full human-readable representation at a later point with a

separate application. This design was born from the observation that most log messages are never

read by humans; thus the NanoLog system moves formatting the log messages out of the runtime

hot path, freeing compute resources and reducing log latency.

Second, NanoLog separates the static and dynamic log information and places them on separate

data paths. NanoLog makes the observation that portions of the log statement are known at compile-

time and do not change throughput the execution of the application. For example, in Figure 1.1, the

filename, line number, severity, and format string never change. This means that repeated invoca-

tions of the same log statement would result in multiple copies of this information in the log file.

Thus, NanoLog extracts the static log information at compile-time, emits it just once at runtime, and

rewrites the log statements to emit only dynamic log data. This technique amortizes the cost of the

static log information and greatly reduces the I/O associated with repeated invocations of the same

log message.

7
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Figure 3.1: Overview of the NanoLog System. At compile-time, the NanoLog front-end ex-
tracts the static log information from the user sources and generates specialized logging func-
tions that persist only the dynamic log information. At runtime, the NanoLog runtime outputs
the static information just once into the binary log file, while the user threads execute the gener-
ated functions. These functions place the dynamic log data into a buffer and later the NanoLog
library will output the buffer’s contents to binary log file. At post-execution, the binary log file
is passed into a decompressor application to generate a final, human-readable log file.

Third, NanoLog analyzes the log statements at compile-time and generates optimized logging

functions. Without NanoLog, the printf API [6] would normally require the application to parse

the format string and determine how to process the dynamic arguments at runtime. The operation

requires the use of extremely branchy logic (i.e. code with a lot of if-statements), which does not

synergize well with out-of-order execution engines and cache prediction algorithms in modern pro-

cessors. NanoLog improves upon this by analyzing the format string at compile-time and generating

highly optimized functions that are specialized to each log statement in the sources. This allows the

runtime to execute in-line code with minimal branches, improving the overall performance of the

system.

Lastly, NanoLog uses an extremely light weight compression scheme, called variable length

integer encoding, to compress its log data. With the static log information removed, the bulk of

NanoLog’s remaining dynamic log data consists of integers. This allows the use of highly efficient,

variable length encoding schemes as a form of compression. The scheme outperforms traditional,

dictionary based algorithms both in terms of processing time and resulting output size.

3.2 Architecture

The NanoLog system consists of three components: a compile-time component, a runtime library,

and a post-processor (Figure 3.1).

The compile-time component, front-end, optimizes the user application for nanosecond scale

logging. It analyzes the user log statements at compile-time, extracts the static log information,
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and generates optimized functions for each log statement. The extracted static log information is

organized into a dictionary (i.e. a lookup table) and given to the runtime library to persist just once

at runtime. The generated functions are compiled into the application for the runtime to execute.

The front-end generates two functions per log statement: a record()function that will persist the

remaining dynamic log information into an in-memory buffer and a compress()function that will

read the contents from the buffers and compress them to an output device. The record()function

will replace the original log function in the sources, and compress()will be invoked by the runtime

library. These functions allow the runtime to execute highly optimized, inline logic for each log

statement.

The NanoLog runtime library buffers the dynamic log data and emits a binary log file at run-

time. The runtime library is compiled into the application and executes within the same process.

It provides low-latency staging buffers to store the application’s dynamic log data, and a back-

ground thread to compress it for output. The log data is generated by user threads executing the

record()function, and it is compressed via the compress()function. Additionally, the runtime man-

ages the dictionary and ensures that the static information is written no more than once in each log

file. The result of the execution is a binary log file that segregates the static and dynamic log data.

The post-processor or decompressor is a separate application that interprets the binary log file,

recombines the dynamic log data with the static information in the dictionary, and presents it to

the user for consumption. The post-processor can either be executed as a standalone application

or compiled into another application as a library package. Executed as a stand-alone application,

the post-processor will read the binary log file and output a human-readable log file. This mode is

intended for human consumption of the log messages. Integrated as a library, the post-processor

allows an external application (such as a log analytics application) to consume the binary log data

without intermediate formatting steps. This allows for fast and efficient processing as the analytics

platforms can process the data in binary without the need to inflate and parse ASCII log messages.

Overall, the NanoLog architecture differs from traditional logging systems in that it introduces

a compile-time component, emits the log files in a binary format at runtime, and utilizes a post-

processor to format the log files. This architecture shifts work out of the runtime hot-path and into

the compile-time and post-execution phases of the application.
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3.3 The Two Versions of NanoLog

There are two versions of NanoLog1 in the GitHub repository [70]. The core philosophy of NanoLog

is that it attempts to shift as much logging work as possible out of the application runtime. Some

work can be performed once per log statement, either at compile-time or when the log statement

is first invoked. Other work, we can defer until a post-processing stage. My first attempt at the

NanoLog system took this idea to the extreme. It utilized a separate preprocessor to read and mod-

ify the user sources at compile-time, and maximally extract work and I/O. However, as the project

progressed, the C++17 standard was being finalized with fairly strong compile-time computation

support. I realized that one could get most of the benefits of preprocessor NanoLog by using C++17

metaprograming features instead of a preprocessor. Thus, two versions of the NanoLog system were

born: the preprocessor version of NanoLog that provides the maximal performance and the C++17

version of NanoLog that provides highest ease of use. Both versions provide the core functional-

ity extracting static log information and generating highly optimized functions, but their front-end

mechanisms differ. Both versions will be described in detail starting in Chapter 4.

3.4 Dissertation Outline

The rest of this dissertation will describe the NanoLog system in detail. Chapters 4, 5, 6 will describe

the internal architectures of the front-end, runtime, and post-processor respectively. Chapter 7: The

Staging Buffers: A Cache Conscious Design further breaks down the challenges of minimizing cache

misses at runtime to enable nanosecond scale logging, and Chapter 8: Compression examines the

compression scheme used in NanoLog. Finally, Chapter 9: Evaluation evaluates the performance

of NanoLog with a proof-of-concept implementation on GitHub [70], Chapter 10 discusses the

limitations of and extensions one could build for NanoLog, and Chapter 11 discusses other work in

the field related to NanoLog. Finally, the dissertation concludes with Chapter 12.

1The overview architecture described the common functionality between the two.
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Front End

The goal of the NanoLog front-end is to reduce the cost of executing log statements at runtime

by performing optimizations at compile-time. In particular, it reduces the amount of I/O required

for logging by building a dictionary to de-duplicate static log information, and it reduces the run-

time compute required to process each log statement’s remaining dynamic arguments by generating

specialized code to process the arguments for each log statement. There are two versions of the

NanoLog front-end: Preprocessor NanoLog and C++17 NanoLog. Both will be discussed in full

detail in the subsequent sections; this section covers the common functionality between the two.

The NanoLog system reduces I/O required for logging by placing the static and dynamic log

information on separate data paths. The static, non-changing information is placed into a dictionary

and persisted just once in the log file, while the dynamic information is persisted per log invocation

with a reference back to the dictionary. Figure 4.1 shows an example of how this is done. The log

messages are shown in their human-readable format in the middle of the figure, and each log state-

ment contains a substantial amount of static, non-changing information. This information includes

the filename/line number tuple identifying where a log message occurred, the severity level of the

log message, and most of the original format string (i.e. portions that do not contain % specifiers).

Traditional logging systems are forced to repeatedly output this redundant information when the

log statement is invoked multiple times. This is done to make the logs immediately available in a

human-readable format. NanoLog instead works to output a binary log file similar to the bottom

of the figure; the static information is de-duplicated and represented just once in the dictionary,

and all future messages include only the dynamic information with a reference to the dictionary

information. This makes the log file smaller and saves I/O at runtime.

The NanoLog dictionary maps a 4-byte integer identifier to the static log information (filename,

11
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Source Code
for (int id : tables)

NANO_LOG(NOTICE, "Creating table ’%s’ with id %d", names[id], id);

Human Readable Log File
TableManager.cc:1031 NOTICE: Creating table ’orders’ with id 11
TableManager.cc:1031 NOTICE: Creating table ’acquisitions’ with id 23
TableManager.cc:1031 NOTICE: Creating table ’clients’ with id 1
TableManager.cc:1031 NOTICE: Creating table ’inventory’ with id 12
TableManager.cc:1031 NOTICE: Creating table ’upcs’ with id 14

Binary Log File (with Dictionary)
{1 => {TableManager.cc, 1031, NOTICE, "Creating table ’%s’ with id %d"}}

{1, "orders", 11}
{1, "acquisitions", 23}
{1, "clients", 1}
{1, "inventory", 12}
{1, "upcs", 14}

Figure 4.1: The top portion shows source code for an application repeatedly invoking a
log statement in a loop. The middle portion shows a possible representation of the human-
readable log file produced by a traditional logging system. Notice that it contains repetitive,
non-changing static information in the form of “TableManager.cc:1031 NOTICE: Creating

table ...” The bottom portion shows a different representation (similar to NanoLog) that uses
a dictionary to de-duplicate the static log information. The first line in bold is the dictionary;
it maps the integer “1” to the log message’s static information. The subsequent lines represent
the dynamic arguments for each log invocation with a reference back to the dictionary (“1”).
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line number, severity, and format string). The mapping is dense in that each identifier, called the

unique log identifier, only maps to exactly one log message in the original source code and the

range of identifiers is contiguous starting at zero. The dense packing enables further compression,

which is discussed in Chapter 8. The dictionary entries are built at compile-time by preprocessing

the log statements and are emitted in the log file before their first use by the runtime log statements.

This ordering ensures that the static information is available before use and allows the statements to

simply emit a 4-byte integer to refer to the static information. Using this scheme, NanoLog reduces

the I/O required to persist repeating log statements by collapsing the static information into a 4-byte

integer reference.

The NanoLog system also generates specialized functions at compile-time to reduce the runtime

compute required to process the statement’s arguments. The printf logging API, which NANO LOG

is modeled after, allows the application developer to include a variable number of arguments with

varying data types [6]. Traditionally, to process the arguments, logging systems will parse the format

strings at runtime to infer the types of the arguments. However, parsing the format strings is an

expensive operation; it takes on the order of microseconds to complete. NanoLog eliminates this

cost by preprocessing the log statements at compile-time and generating functions specialized to

each log statement.

The NanoLog front-end generates two functions for each NANO LOG statement. The first func-

tion, record(), is invoked in place of the original NANO LOG() statement. It copies all the dy-

namic information (i.e. the function parameters) passed into the initial NANO LOG () invocation

to an in-memory buffer1. The second function, compress(), is invoked by the NanoLog back-

ground compaction thread to compress the recorded data for more efficient I/O. The two functions

are intrinsically linked to a specific log statement and to each other; compress() consumes the

data produced by record() and record() is specialized to a specific log statement’s argument

types.

Both functions prepare a log statement’s dynamic data for output, but they are separated to re-

duce application latency. More specifically, the record() function is invoked directly by the appli-

cation logging thread so it’s optimized to perform as little compute as possible. The compress()

function contains heavier weight computation to compress the arguments and is invoked by the

NanoLog background thread. The intermediate buffering allows both operations to operate in paral-

lel on separate threads, and the buffering hides the compression latency for bursts of logging activity.

1The “memory buffer” is the Staging Buffer as discussed in Chapter 7.
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inline void record(buffer, id, name, tableId) {
buffer.push<int>(id);
buffer.pushTime(RDTSC());
buffer.pushString(name);
buffer.push<int>(tableId);

}

inline void compress(char **buffer, char **out) {
pack<int>(buffer, out); // logId
packTime(buffer, out); // time
packString(buffer, out); // string name
pack<int>(buffer, out); // tableId

}

Figure 4.2: Conceptual psuedo-code that is generated by the NanoLog front end for the log
message in Figure 4.1. The record() function stores the dynamic log data to a buffer and
compress() compacts the buffer’s contents to an output character array.

Compression is discussed further in Chapter 8 and the performance impact of buffering is analyzed

in Chapter 9.

Figure 4.2 shows slightly simplified versions of the functions generated for the NANO LOG

statement in Figure 4.1. The record() function performs the absolute minimum amount of work

needed to save the log statement’s dynamic data in a buffer. The invocation time is read using Intel’s

RDTSC instruction, which utilizes the CPU’s fine grain Time Stamp Counter [46]. The only static

information it records is a unique log identifier for the NANO LOG statement, which is used by the

NanoLog runtime background thread to invoke the appropriate compress() function and by the

decompressor to retrieve the statement’s static information. The arguments of the recorded function

match the original NANO LOG statement. The types of name and tableId were determined at

compile-time by the preprocessor by analyzing the “%s” and “%d” specifiers in the format string,

so record() can invoke type-specific methods to record them.

The purpose of the compress() function is to reduce the number of bytes occupied by the

logged data, in order to save I/O bandwidth. The preprocessor has already determined the type of

each item of data, so compress() simply invokes a type-specific compaction method for each

value. Chapter 8 discusses the kinds of compaction that NanoLog performs and the trade-off be-

tween compute time and compaction efficiency.
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4.1 Implementations

The NanoLog front-end for C++ has been implemented in two ways. Preprocessor NanoLog uses a

Python script to scan through the use sources at compile time and inject optimized functions directly

into the user sources that the runtime can blindly invoke. C++17 NanoLog utilizes C++17’s strong

meta-programming support to generate the optimized functions as inline templated code. Each has

its own strengths/weaknesses and unique set of challenges to overcome. The rest of this section will

focus on the implementation differences, challenges, and impact on performance.

4.2 Preprocessor NanoLog

The preprocessor version of Nanolog represents the most performant version of NanoLog; it takes

moving computation and data outside of the runtime to the extreme. It analyzes the log statements

at compile-time, generates the complete chain of logic that encodes how to and in which order

to process the dynamic log arguments for each log statement, and then injects them into the user

application, NanoLog runtime, and post-processor. By encoding this knowledge directly into the

logic, the preprocessor version eliminates the need to parse or output the static information during

the runtime portion of the application, saving I/O and compute.

The rest of this section describes Preprocessor NanoLog’s architecture, the structure of the files

it generates, and the challenges associated with its design.

4.2.1 Preprocessor NanoLog Architecture

The preprocessor version of NanoLog interposes on the compilation process of the user application

(Figure 4.3). It processes the user source files with a Python script and generates a metadata file

and a modified source file for each. The modified source files are then compiled into object files.

Before the final link step for the application, the NanoLog combiner reads all the metadata files

and generates an additional C++ source file that is compiled into the NanoLog runtime library

(Chapter 5) and the post-processor (Chapter 6). This library is then linked into the modified user

application to form the final executable.

To ensure seamless operation for the user, the NanoLog system interposes on the compilation

process by providing the user with a build macro that serves as a drop-in replacement for invoca-

tions to the compiler. This macro will invoke a Python script (known as the preprocessor) on the

source file, compile the modified sources, and delete the modified sources before returning. The
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Figure 4.3: Overview of the NanoLog Preprocessor Front-End. At compile time, the user
sources are passed through the NanoLog preprocessor, which injects optimized logging code
into the application and generates a metadata file for each source file. The modified user code is
then compiled to produce C++ object files. The metadata files are aggregated by the NanoLog
combiner to build a portion of the NanoLog library. The NanoLog library is then compiled and
linked with the user object files to create an application executable and a decompressor appli-
cation. At runtime, the user application threads interact with the NanoLog staging buffers and
background compaction thread to produce a compact log. At post execution, the compact log
is passed into the decompressor to generate a final, human-readable log file.

latter deletion is to hide the fact that the user sources are modified, so the user only sees their orig-

inal, unmodified sources. Section 4.3.1 explains in more detail how this is done in the GNUmake

environment [59] and Section 4.3.6 describes how the system manipulates the compiler to report

errors in the original file location in the face of source modifications.

The preprocessor script separates the logic to process a single log statement into three func-

tions and optimizes the logic so that the static information is never needed at runtime. For every

log statement encountered by the preprocessor, it generates three highly coupled functions that are

specialized to that log statement. There is the record()function that stores the log statement’s dy-

namic arguments into an in-memory buffer, the compress()function that reads the arguments back

and compresses them from output, and the inflate()function that reads the compressed arguments

and formats them for human-readable output (Figure 4.4). These functions encode the order and

types of the dynamic arguments directly in their logic, and the inflate() function inlines the static

data needed to output the final human-readable string directly in its logic. With this design, the three

functions never have to persist or refer to the static arguments like the format string to perform their

operations, saving both I/O and compute. The record() function is injected into the user sources

(Section 4.3.4) for execution in lieu of the original log statement, while the compress and inflate

functions are placed in a metadata file (one for each source file) for later processing.

The metadata files are used to track static log information across separately compiled source

files. The NanoLog system needs to collate all the static log information to generate the final C++



CHAPTER 4. FRONT END 17

Preprocessor Code Generated
inline void record(buffer, name, tableId) {

...
buffer.push<int>(_logId_TableManager_cc_1031_Creating_table_ps_with_id_pd);
buffer.pushTime(RDTSC());
buffer.pushString(name);
buffer.push<int>(tableId);

}

inline void compact(char *in, char *out) {
pack<int>(in, out); // logId
packTime(in, out); // time
packString(in, out); // string name
pack<int>(in, out); // tableId

}

inline void inflate(char *in, void (*aggregate)(...)) {
// Static info directly embedded in source
const char *fileName = "TableManager.cc"
const int lineNum = 1031;
const char *logLevel = formatLogLevel(NOTICE);
const char *fmtString = "Creating table ’%s’ with id %d";

// Dynamic information extraction
int id = unpack<int>(in);
long time = unpackTime(in);
const char *arg1 = unpackString(in);
int arg2 = unpack<int>(in);

...

// Context + Log Message
printf("%s %s:%d %s: ", time, fileName, lineNum, logLevel);
printf(fmtString, arg1, arg2);

}

Figure 4.4: Sample code generated by Preprocessor NanoLog for the log state-
ment “Creating table ’%s’ with id %d” in file “TableManager.cc” on line 1031. The
record()function stores a log statement’s dynamic arguments to an in-memory buffer, the
compress()function reads the arguments back and compresses them to an I/O buffer, and the
inflate()function reads the compressed arguments and formats them. Each encodes the type
and order of the arguments in its logic, and the inflate()function additionally includes the
static log information (filename, line number, and format string) in its source code.
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file for the runtime library and post-processor. A strawman approach to this would be to use a single

execution of the preprocessor script to parse through all the sources, collect the static log infor-

mation, and generate the final C++ file at every compilation of the user application. However, this

method would be extremely slow as it would utilize only a single thread and reprocess all the log

statements with every compilation. In practice, the user sources are often compiled in parallel, and

most compilations typically only require the modified files to be recompiled. Thus, the NanoLog

uses the paradigm of emitting a single metadata file per source file and then collating them to gen-

erate the final library file. This architecture allows parallel instances of the Preprocessor to execute

without contention on a global data structure, and the system to reuse the metadata files for sources

that do not need to be recompiled.

The NanoLog combiner links together the generated record/compress/inflate functions across

the user application, runtime, and post-processor. It does this by collating all the metadata files

and creating a global ordering of all the log statements. It then uses this canonical ordering to

assign a unique 4-byte integer to each log message and generate compress() and inflate() function

arrays to match. The integer is communicated to the record() function via an assignment to an C

extern variable in the generated library file (_logId_TableManager_cc_1031_Creating_table...

in Figure 4.4; Section 4.3.5 discusses this in more detail) and is persisted as part of the dynamic

log data for every log invocation. The runtime and post-processor can then use this integer as an

index into the compress() and inflate() function arrays to ensure that the correct processing logic is

invoked. With this strategy, the application logic will always know which function to invoke based

on the integer and will never have to process the static data associated with each log message.

The final output of the NanoLog combiner is a single C++ file that contains the mapping of ex-

tern variables to integer assignments, the generated compress()/inflate() functions, and two function

arrays containing the compress()/inflate() functions (Figure 4.9). This C++ file is then compiled into

the user application/NanoLog runtime and post-processor, so that the record() functions can refer to

the extern assignments and the runtime/post-processor can use the assignment to index the correct

compress()/inflate() function for each log message.

One caveat of this design is that it ties a specific compilation of the user application to a spe-

cific compilation of the NanoLog runtime library and post-processor. The reason is that the three

functions used by each component (record() for the user application, compress() for the library, and

inflate() for the post-processor) are tightly coupled, and linked together via an assignment of a 4-byte

integer identifier by the NanoLog combiner. Different compilations of even the same application can

cause the assignment to shift, potentially causing a mismatch between the integer persisted by the
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record() function in the application and the ordering of the compress()/inflate() function arrays in

the runtime/post-processor. As a result, every recompilation of the user application, no matter how

minor, must trigger a recompilation of the runtime library and post-processor, and an exact version

of the post-processor must be used with an exact version of the application to interpret the log files.

This can potentially cause operational nightmares as users must persist both log files and specific

versions of the post-processor application to interpret the logs; any mismatch can cause the logs to

be indecipherable.

To address this usability concern, the preprocessor can decouple the post-processor from the

application by generating an additional runtime function, writeDictionary(), to dump the map-

ping of integer assignments to static log data in the log file. This function is used by the runtime

library to output this mapping just once at the beginning of the log file during its execution, and the

post-processor can choose to discard its internal mapping of the inflate functions in lieu of using the

version encoded in the log file instead. This design does incur a slight performance cost as the run-

time must output this mapping/dictionary at runtime, and the post-processor no longer uses its highly

optimized inflate()function. However, I believe this overhead is worth the increased usability, so

this behavior is enabled by default. Furthermore, the preprocessor version of NanoLog still retains

its highly optimized record()/compress()function chain, the cost of writeDictionary() is amor-

tized, and the post-processor’s performance is less important in enabling nanosecond scale logging

at runtime.

4.3 Preprocessor Challenges and Implementation Details

This section of the dissertation details some of the more mundane challenges and operations of

the preprocessor system. It additionally shows the layout of some of the functions/files generated

by the NanoLog preprocessor and combiner. Of particular interest may be Figure 4.7 which shows

the modifications performed to the user sources, Figure 4.8 which shows the JSON metadata file

generated per user source file, and Figure 4.9 which shows the final C++ source file generated by

the NanoLog combiner.

4.3.1 Interposing on Compilation

To properly interpose on the compilation process, the NanoLog system imposes three requirements

for the users’ build environment. First, the build system must be able to invoke the NanoLog
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GNUmake Macro
1 # Configuration parameters to store NanoLog’s include and preprocessor directories.
2 INCLUDE_DIR=$(NANOLOG_DIR)/runtime
3 PREPROC_DIR=$(NANOLOG_DIR)/preprocessor
4
5 # run-cxx:
6 # Compile a user C++ source file to an object file using the NanoLog system.
7 # The first parameter $(1) should be the output filename (*.o)
8 # The second parameter $(2) should be the input filename (*.cc)
9 # The optional third parameter $(3) should be additional options compiler options.

10 # The optional fourth parameter ($4) should be gnu preprocessor options.
11 define run-cxx
12 $(CXX) -E -I $(INCLUDE_DIR) $(2) -o $(2).i -std=c++11 $(4)
13 python $(PREPROC_DIR)/parser.py --mapOutput="generated/$(2).map" $(2).i -o $(2).ii
14 $(CXX) -I $(INCLUDE_DIR) -c -o $(1) $(2).ii $(3)
15 @rm -f $(2).i $(2).ii
16 endef
17
18
19 # GNUmake rule demonstrating run-cxx’s usage for main.cc
20 main.o: main.cc
21 $(call run-cxx, main.o, main.cc, -DNDEBUG -O3 -g)

Figure 4.5: The GNUmake macro that serves as a replacement for the user’s compiler when
compiling with Preprocessor NanoLog. The macro processes exactly one user source file (*.cc)
and outputs a C++ object file (*.o). Starting on line 12, the macro will run the GNU preprocessor
on the user source file, $(2), and save the output to $(2).i. It then invokes the NanoLog
preprocessor on $(2).i and saves the results to $(2).ii. Finally, it invokes the GNU compiler
on the NanoLog generated source to generate the output file, $(1), and cleans up the generated
files, $(2).i and $(2).ii. In this figure, the “$(CXX)” invokes the GNU C++ compiler, and
“generated/$(2).map” stores the metadata associated with this source file.
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preprocessor script on all the source files and compile the modified sources in lieu of the orig-

inal sources. Second, the system must be able to detect when all the sources have been prepro-

cessed and invoke the NanoLog combiner to generate the record(), compress(), inflate(), and

writeDictionary()functions for the NanoLog library. Finally, the library must be recompiled with

the new functions and linked into the user application.

The NanoLog implementation on GitHub[70] demonstrates how these three requirements can be

satisfied using the GNUmake build system[59] and compiler. In this implementation, it is assumed

that the user will compile each source file individually into an object file before linking them into

the final application, and that all source (and thus object) files can be identified in the script a priori.

To ensure that all sources pass through the NanoLog preprocessor, the NanoLog system provides

a GNUmake macro (Figure 4.5) that serves as a drop-in replacement for invocations to the GNU

g++ compiler. This macro will invoke the preprocessor with the original sources passed in, invoke

the compiler on the modified sources, and finally clean up by removing the modified sources. By

using this macro instead of invoking the compiler directly, the user can ensure that all sources will

pass through the NanoLog preprocessor.

To satisfy the second and third requirements of generating and rebuilding the NanoLog utility

functions and library respectively upon source changes, the system builds the following depen-

dency chain in the GNU makefile: (executable) →(NanoLog Library) →(Generated Functions File)

→(User Object Files) →(User Sources) where “→” indicates “depends on”. This dependency chain

ensures that all object files are compiled and up-to-date before generating the utility functions and

linking the NanoLog library into the user application. Additionally, this chain ensures that any

changes to the base source files will lead to the same cascade of operations.

4.3.2 Identifying the Log Statements

To process the log statements in the user sources, the NanoLog preprocessor must first correctly

identify NANO LOG statements in the code and exclude false-positives. Unlike other C++ func-

tions, NANO LOG is not a real function; it is only an ASCII text marker used by the user to

tag log-like functions to be replaced by the NanoLog preprocesor. Thus, the preprocessor does

not try to semantically understand the code to find the NANO LOG statements. Instead, it simply

searches through the sources for the “NANO LOG” string. This method, however, can generate

false-positives such as the NANO LOG string appearing in comments, C-style macros, or as a part

of a longer C/C++ identifier such as bool ENABLE_NANO_LOG.
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/* This is just a comment that contains NANO_LOG() in it. */
NAN\
O_LOG(severity, "It has commas, line br\
eaks "

"and string concatinenatinons %d, %d %s"
, functionCall(1, func(2, 3), 4), [a, b] {
return a + b; }
" Another B\
reak and \"embedded\" \"’s");

NANO_LOG(severity,
"It has commas, line breaks, and string concatinenatinons %d, %d %s",
functionCall(1, func(2, 3), 4),
[a, b] { return a + b; },
" Another Break and \"embedded\" \"’s");

Figure 4.6: This example represents a convoluted but valid NANO LOG statement (top) that
the preprocessor must properly parse and interpret. The statement contains line breaks in the
function invocations, lambda invocations, and strings. Additionally, it contains a NANO LOG
statement in the comments that must be sanitized. The bottom portion shows a sanitized version
of the log statement for the reader’s sanity.

The NanoLog preprocessor sanitizes the user sources by first passing them into the GNU C-

preprocessor. This trivially eliminates all comments from the sources and resolves odd syntax such

as line breaks in the middle of identifiers. In addition, all macros will be expanded and inlined, which

eliminates false matches to the NANO LOG substring appearing in macro names, and additional in-

stances of NANO LOG invocations embedded in the macros will be exposed for the preprocessor to

detect. This latter step is important since every instantiation of a macro can cause new NANO LOG

statements with a different filename/line number to be injected. Passing the sources through the

GNU preprocesor effectively sanitizes the sources and ensures that the NanoLog preprocessor only

has to work with well-formed, inlined code.

With the sources sanitized, the NanoLog preprocessor must search for valid NANO LOG invo-

cations and separate its arguments. To detect whether a particular NANO LOG substring is a valid

invocation, it uses a set of heuristics to ensure it matches the structure of a invocation. In particular,

it ensures that the NANO LOG substring is not a part of a longer identifier (i.e. such as bool

ENABLE_NANO_LOG) by requiring the first character preceding the substring to be non-alphanumeric

and requiring the next non-whitespace character following the substring to be a left parenthesis “(”.

This ensures that the substring matches the structure of a function invocation.

To separate the NANO LOG invocation’s argument list, the preprocessor uses a heuristic of de-

limiting by top-level commas. Although most argument lists can be delimited by commas alone,
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the top-level distinction is important since commas can be embedded in string literals and lambda/-

function invocations. Figure 4.6 shows an exceptionally difficult argument list to parse. To ensure

that commas are top-level, it only considers commas that are not contained with parentheses, curly

braces, brackets, or quotations for string literals. It does this by keeping a depth count for each

(incremented when an open is detected and decremented when a close is detected) and only using

a comma as a delimiter if the depth counters are zero. Special care is taken to detect if these spe-

cial characters are detected within a string literal, and those instances will not count towards the

depth counters. This heuristic ensures that the commas are top-level, and allows the preprocessor to

separate the argument list.

After the statements are identified and the arguments separated, the preprocessor will next ver-

ify that the arguments are well formed before generating additional source code. In particular, the

NanoLog system will attempt to parse the invocation’s arguments and ensure that (a) it contains a

literal format string and (b) the number of arguments following the format string matches the num-

ber of specifiers required by the format string. If either of these cases is false, an error is raised

(more about this in Section 4.3.6).

After all the NANO LOG invocations have been parsed, the preprocessor can now start to gen-

erate the replacement functions.

4.3.3 Generating the Functions

For every log statement encountered, the NanoLog preprocessor generates four tightly coupled func-

tions and a C-style identifier that ties them together. The C-style identifier, called a tag, is a string

formed from combining the log statement’s filename, line number, and format string, and uniquely

identifies a single log statement in the sources. For example, the message “Hello World %d” in

main.cc on line 4 will have the tag “uniqueId_main_cc_4_Hello_World_pd”. This tag is used in

the dictionary to map unique instances of log messages to the generated functions and to detect

when a log message has already been encountered by the preprocessor 2.

The four functions generated per log message are record(), compress(), inflate(), and

writeDictionary(). These functions are unique to exactly one log statement in the source files

and are used to process that specific log statement’s arguments. The record and compress functions

are used by the runtime to persist a log statement’s arguments and compress them for output to disk

2Log messages can be duplicated in the sources via #include-ing header files. This is described in more detail in
Section 4.3.5.
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main.cc
1 #include "NanoLog.h"
2
3 main() {
4 NANO_LOG(DEBUG, "Hello World %d", rand());
5 }

Modified main.cc
1 // NanoLog.h is inlined here
2 # 1 "NanoLog.h"
3
4 ...
5
6 // Marks the end of NanoLog.h (inlined as part of the header)
7 static const int __internal_dummy_variable_marker_for_code_injection = 0;
8
9 // Start of injected functions

10 # 1 "generated.h"
11 inline void
12 record_main_cc_4_Hello_World_pd(int severity, const char *str, int arg1) {
13 extern int uniqueId_main_cc_4_Hello_World_pd;
14
15 NanoLog::push(uniqueId_main_cc_4_Hello_World_pd);
16 NanoLog::push(RDTSCP());
17 NanoLog::push(arg1);
18 }
19
20 // Start of the user logic
21 # 3 "main.cc"
22 main() {
23 record_main_cc_4_Hello_World_pd(
24 # 4 "main.cc"
25 DEBUG, "Hello World %d", rand());
26 }

Figure 4.7: A sample application before (top) and after (bottom) it is processed by the NanoLog
preprocessor. The top figure contains a simple application that logs only an integer. The bottom
portion shows how the NanoLog header is inlined by the GNU preprocessor in lines 1-8, where
the record()definition is in injected on lines 9-19, and where the user application is modified
to invoke the record()function in lieu of NANO LOG on line 26. The lines starting with “#”
are GNU preprocessor directives that inform the GNU compiler where within a source file the
next line belongs. For example, “# 4 "main.cc"” (line 25) informs the compiler that the next
line (line 26) originated from line 4 of main.cc.
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as described in the introduction of this chapter. The writeDictionary and inflate functions are used

to communicate the static information to the post-processor in different ways; the inflate function

encodes the static information for the log message in code form, while the writeDictionary func-

tion emits it in a data form. The record function is injected into the sources (Figure 4.7), while the

remaining three are placed into a metadata file for latter consumption by the NanoLog combiner

(Figure 4.8). Section 4.3.4 discusses how the injection is performed, while Section 4.3.5 discusses

the structure of the metadata file.

One odd construct I’d like to draw attention to is the extern integer variable in the record()

function. This extern integer is declared in line 13 of Figure 4.7 and immediately used in line 15.

This integer serves as an application-wide unique log identifier for the particular log statement, and

connects the four generated functions. It is ultimately used by the runtime and (optionally) post-

processor to index into the compress()/inflate() function arrays generated by the NanoLog combiner.

Here, it is declared as an extern integer so that the value of the integer can be assigned much later

by the NanoLog combiner after it has de-duplicated log statements encountered multiple times by

the preprocessor. The value of the extern integer is ultimately defined in the generated library file

(Figure 4.9).

writeDictionary() vs. inflate()

The writeDictionary() function communicates the static information via data, while the inflate()

function communicates the static information via code. More specifically, the writeDictionary()

function can be used by the NanoLog runtime to output a dictionary of static information at the start

of the log file. The post-processor can then parse this dictionary and build the appropriate internal

structures to interpret and decode the remaining log file (further discussed in Chapter 6).

The inflate() function, on the other hand, communicates static information via code. In particu-

lar, each inflate() function encodes all the necessary information to decode a specific log statement

in its logic, and this logic is directly compiled into the post-processor. As seen in Figure 4.4, the

inflate() function contains the static ASCII log information and the operations needed to extract

the dynamic arguments from the log file. Compiling the inflate() functions into the post-processor

results in a highly performant system, as it contains no branching and allows the compiler to ag-

gressively optimize the operations.

However, while the inflate() method is more performant, the NanoLog system preferentially uses

the writeDictionary() method as it is more user-friendly. In particular, the writeDictionary() method

encodes all the information needed to decode the log file in the log file itself. This means that a
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single NanoLog post-processor application can decode all NanoLog log files. The inflate() method,

on the other hand, ties a specific compilation of an application, with a specific compilation of the

post-processor. This is the case since a recompilation of the application can cause the 4-byte unique

log identifiers to shift and thus no longer map to the correct inflate() method in the post-processor.

Operationally, this means that in addition to the log file, the user must also persist a specific version

of the post-processor to be used with the log file. This can be an operations nightmare for the users of

NanoLog, so NanoLog sacrifices a bit of performance at post-execution for usability and flexibility

by using the writeDictionary() method by default.

4.3.4 Injecting the record() Function

The record()function is intended to be injected into the user sources, and invoked in place of

the original NANO LOG statement. This requires the function to be defined before first use and

have a signature compatible with the arguments passed into the original NANO LOG statement.

To ensure that the functions are defined before first use, the NanoLog preprocessor injects the

record()functions at the beginning of the user source files. To ensure that the function parameters

are compatible, NanoLog generates the record()function using the types encoded in the format

string.

The NanoLog preprocessor injects the record()functions immediately after the #include

"NanoLog.h" line in the user’s sources. Since it is C++ convention to include a system’s header

before using any of the library functions, the NanoLog system treats NANO LOG in a similar way.

In particular, the preprocessor will search the source file for the logical line immediately after the

#include "NanoLog.h" statement and inject all the record functions generated for this source file

there. This ensures that the functions are defined before first use/first invocation to NANO LOG and

is consistent with the expectations of traditional C++ libraries.

In practice, it can be difficult for the preprocessor find the line after #include "NanoLog.h", so

it uses a special marker to help it. The current implementation of NanoLog[70] requires the sources

to first pass through the GNU C-preprocessor to sanitize comments before passing through the

NanoLog preprocessor. This GNU preprocessing step causes the entire header file to be inlined into

the sources, making it difficult to identify exactly where to inject the record function definitions. To

aid with the problem, the NanoLog header includes a special variable with a long and obscure iden-

tifier at the end of the file, such as __internal_dummy_variable_marker_for_code_injection in

Figure 4.7. This variable effectively marks the end of the header file. The preprocessor can then scan

for this special variable and inject the record definitions there. This essentially allows for behavior
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equivalent to injecting the record function definitions after the #include "NanoLog.h" statement.

The NanoLog preprocessor analyzes the order and types of the format specifiers in the original

format string to generate a record()function with a signature that matches the original NANO LOG

statement. For example, a NANO_LOG(DEBUG, "Hello \%s, you are user \%d", ...) would gen-

erate a record function with the signature record(severity, const char*, const char*, int).

The first two arguments are always required by the NANO LOG API to specify the severity level

and format string, and the next two are generated based on the %s and %d specifiers present in the

format string. A full mapping of format specifiers to argument types can be found in the printf

documentation [6].

After these two constraints are satisfied, the original NANO LOG statement can be replaced

with an invocation to the generated function instead as seen in Figure 4.7.

4.3.5 Metadata files and the NanoLog Combiner

The NanoLog system uses consistent variable naming, metadata files, and a metadata file combiner

to detect duplicated log statements and produce the generated library file.

User log messages can potentially be duplicated by the C++ compiler. In the C++ language,

when a header file is #include-d in a source file, the compiler internally copies the entire contents

of the header file into the source file before compiling. This means that log statements that exist

in the header file will be effectively copied verbatim into every source file that includes it. This is

problematic for NanoLog as it increases the amount of redundant generated code, takes up unique

log identifier space, and creates naming conflicts.

NanoLog solves this problem by utilizing metadata files to track log statements across source

files and consistent variable naming to detect duplication. As the NanoLog preprocessor processes

the user source files, it generates one unique metadata file per source file (headers files not included)

and places them in a special directory. Contained within each metadata file is a JSON object map-

ping unique log message tags to the four generated functions and the static information. The tag is

based on a deterministic mangling of the log statement’s filename, line number, and format string,

and thus uniquely identifies a single log statement in the user sources. The tag is appended to every

variable and function name generated by the preprocessor. This means that duplicated log state-

ments in the sources will have the same variable and function names. This allows the NanoLog

combiner to detect duplicate variables/functions based on naming alone. Figure 4.8 shows an exam-

ple of the metadata file generated for the sources in Figure 4.7, and “main_cc_4_Hello_world_pd”

is the unique log identifier tag appended to every generated function and variable name.
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Metadata File for main.cc

{
"count":1,
"logId2Code": {

"main_cc_4_Hello_World_pd":
{
"compressFnName":"compress_main_cc_4_Hello_World_pd"
"inflateFnName":"inflate_main_cc_4_Hello_World_pd"",

"compressFnDef":"size_t compress_main_cc...",
"inflateFnDef":"..."

"dictionaryFragment":"pushString(buffer, \"Hello World %d\");
pushString(buffer, \"main.cc\");
pushInt(buffer, 4);
pushInt(buffer, DEBUG);",

"compilationUnit": "main.cc",
"fmtString":"Hello World %d",
"linenum":4,
"logLevel":"DEBUG"

},
}

}

Figure 4.8: A simplified version of the metadata file generated by the NanoLog preproces-
sor for the source file in Figure 4.7. The metadata contains one large JSON object that con-
tains a mapping (logId2Code) of unique log identifier tags for log messages to their associated
generated code. “main_cc_4_Hello_World_pd” is the tag for the log message in Figure 4.7.
Within the object, the *FnName variables store the function names for the compress/inflate
functions, the *FnDef’s store the functions’ definitions, and the dictionaryFragment stores
the C++ code fragment to be used in the mega-writeDictionary() function. Lastly, the ellipses
in compressFnDef and inflateFnDef correspond to the record/compress function definitions
in Figure 4.9.
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GeneratedCode.cc
1 // Compress function definition for main.cc:4 - "Hello World %d"
2 inline void compress__main_cc_4_Hello_World_pd(const char **in, char **out)
3 {
4 packTime(in, out); // compress time
5 pack<uint32_t>(in, out); // compress logid
6 pack<int32_t>(in, out); // compress %d argument
7 }
8
9 // Inflate function definition for main.cc:4 - "Hello World %d"

10 inline void inflate_main_cc_4_Hello_World_pd(const char **in, FILE *outputFd,
11 void(*aggFn)(const char*, ...)) {
12 const char *filename = "main.cc";
13 const int linenum = 4;
14 const NanoLog::LogLevel logLevel = NanoLog::DEBUG;
15 const char *fmtString = "Hello World %d";
16 ...
17 int arg1 = readInt(in);
18 ...
19 if (outputFd)
20 fprintf(outputFd, fmtString, arg1);
21 if (aggFn)
22 (*aggFn)(fmtString, arg1);
23 }
24
25 // Assignment of 4-byte integers to unique log identifiers
26 extern const int uniqueId_main_cc_4_Hello_World_p = 0;
27
28 // Compress() and inflate() arrays reflecting the assignment
29 void (*compressFnArray[1]) (const char **in, char** out)
30 {
31 compress__main_cc_4_Hello_World_pd,
32 }
33 void (*inflateFnArray[1]) (const char **in, FILE *outputFd,
34 void (*aggFn)(const char*, ...))
35 {
36 inflate_main_cc_4_Hello_World_pd,
37 }
38
39 // writeDictionary function that emits the static log information
40 long int writeDictionary(char **buffer, char *endOfBuffer)
41 {
42 // Code generated for "Hello World %d" in main.cc:4
43 pushString(buffer, "Hello World %d"); // Format String
44 pushString(buffer, "main.cc"); // filename
45 pushInt(buffer, 4); // Line number
46 pushInt(buffer, DEBUG); // Severity
47 ...
48 }

Figure 4.9: A simplified snippet of the library file generated for the source file in Figure 4.7
by the NanoLog preprocessor and combiner. The first two functions are the compress()and
inflate()functions for the log statement, line 25 shows the extern integer assignment, lines
27-35 shows the function arrays for compress()/inflate(), and the last function outputs the
dictionary for all the log statements. The aggFn in inflate()is a user provided function used
to process the log arguments programmatically, and the time/log id fields are processed outside
inflate().
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After all the user sources have been processed, the NanoLog combiner is invoked to combine

the contents of all the metadata files and generate a single dictionary source file for use with the

NanoLog library and (optionally) the post-processor. It combines the map of identifiers to func-

tions from multiple metadata files by trivially merging them and eliminating duplicates based on

the whether the tags matches or not. It then canonically orders the map by performing a ASCII

sort on the tags and assigns each log entry in the map a 4-byte integer, known as the unique log

identifier, equal to the index of the entry’s sorted tag. It uses this ordering to create an array of

functions for the compress() and inflate() functions, assign values to the unique log identifiers in the

system (i.e. the extern integers are assigned their tag’s index in list of sorted tags), and generate a

mega-writeDictionary() function that invokes the individual writeDictionary() functions in canoni-

cal order (Figure 4.9). The mega-writeDictionay() function is used to output the static information

in the log file, and the array of functions is used by the runtime/post-processor to invoke the correct

compress/inflate function based on the unique log identifier (a 4-byte integer).

4.3.6 Consistent Error Reporting

NanoLog’s injected code can potentially cause the compiler to generate compile-time errors that are

completely unintelligible for the user. Normally, when there is an error with some source code, the

compiler will print a short description of the error followed by where it occurred in the source file

(called context). The context information usually includes a source file, line number, a line offset,

and a small snippet of the offending code (Figure 4.10a,c). This aids the user in quickly finding

the offending line of code that caused the error. Unfortunately, since NanoLog injects source code

into the user application, it’s possible for the injected code to shift references in source code and

cause the context to refer to a completely unrelated segment of code (Figure 4.10b,d). Furthermore,

NanoLog’s injected sources may also introduce compiler errors that only exist in the injected code.

In this case, the compiler will reference code that isn’t visible to the user, causing further confusion.

Lastly, since NanoLog effectively defers the call to printf to a post-processor, it’s possible for there

to be problems in the format string that won’t be caught until decompression time. Thus, NanoLog

needs to implement mitigations to ensure that errors are reported early and properly to the user.

To ensure that the user receives intelligible error messages, NanoLog employs three strategies.

It uses C-preprocessor directives to realign the source line numbers, it preserves the indentations

of the original arguments to preserve offset references by the compiler, and it reports certain errors

early in the preprocessor Python script before the compiler sees the modified sources.

Figure 4.7 shows an example of how the NanoLog preprocessor utilizes GNU C-preprocessor
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(a) main.cc
1 #include "NanoLog.h"
2
3 main() {
4 NANO_LOG(NOT_A_REAL_VARIABLE, "Hello World %d", rand());
5
6 printf("This is a completely unrelated line of code");
7 }

(b) Modified main.cc
1 #include "NanoLog.h"
2
3 main() {
4 // Notice the line shift and the odd indent
5 random_record_function(
6 NOT_A_REAL_VARIABLE, "Hello World %d", rand());
7
8 printf("This is a completely unrelated line of code");
9 }

(c) Expected Error
1 main.cc: In function ’int main(int, char**)’:
2 main.cc:4:2: error: ’NOT_A_REAL_VARIABLE’ was not declared in this scope
3 NANO_LOG(NOT_A_REAL_VARIABLE, "Hello World %d", rand());
4 ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
5 GNUmakefile:54: recipe for target ’main.o’ failed
6 make: *** [main.o] Error 1

(d) Line Alignment Error
1 main.cc: In function ’int main(int, char**)’:
2 main.cc:6:18: error: ’NOT_A_REAL_VARIABLE’ was not declared in this scope
3 printf("This is a completely unrelated line of code");
4 ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
5 GNUmakefile:54: recipe for target ’main.o’ failed
6 make: *** [main.o] Error 1

Figure 4.10: An example of how compiler errors may be misaligned when code is in-
jected into an application. (a) shows the original source code and (b) shows the sources with
the “NANO LOG” function replaced. Notice that it added two new lines, and indented the
“NOT A REAL VARIABLE” identifier more. (c) shows the error that should have been shown,
and (d) shows how the error is both pointing to the wrong line in the code, and at the wrong
offset (i.e. it’s indented more).
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directives and indentions to preserve the offset references by the compiler. The GNU C-preprocessor

allows the user to place Line Control directives to inform the compiler from whence a line of code

comes [19]. These directives have the format of a “#” character followed by the line number and

filename of the originating source file. The NanoLog preprocessor uses these directives to realign

the user sources after some code has been injected. An example can be seen near the main() func-

tion in Figure 4.7 where after NanoLog preprocessor injected the record()function, it realigns the

main() function to start on line three. These directives are inserted whenever NanoLog has injected

code. It’s worth noting that the NanoLog preprocessor also aligns the injected record()functions

to “generatedCode.h”. This helps to inform the user if there are bugs in the generated code. Also

evident in Figure 4.7 is how the preprocessor system maintains the original indentation of the ar-

guments to the NANO LOG invocation (line 26). This is done in case there’s an error in one of the

user’s arguments (such as an undefined variable). With the preserved indention, the compiler will

properly highlight the error in the user’s arguments.

Finally, there are some errors that must be caught early and reported by the NanoLog prepro-

cessor itself. The most important of these are problems with format strings, which can cause the

log files to be indecipherable by the post-processor. Normally, without NanoLog, the errors with

the format string would be reported at runtime as the format strings get evaluated. However, since

NanoLog defers formatting, the error may not appear until much later when the user decompresses

the logs days/months/years after the execution. It would be unfortunate if the user lost years worth

of data due to errors in the format string that can be caught at compile-time.

The NanoLog preprocessor checks for errors in the format string and disallows the use of the

“%n” specifier (which NanoLog cannot support). A NANO LOG’s format string encodes the order

and allowable types of the dynamic arguments. Mismatches in types can cause the preprocessor to

generate the incorrect logic to process the arguments. To catch these types of errors, the NanoLog

preprocessor generates record() functions that have the expected signature of the format string. For

example, if a NANO LOG statement contained the format string "Hello world %p, %d, %lf",

the NanoLog system would generate a function with the signature record(int level, char*

fmtString, void*, int, double). This signature matches the specifier types according to the

printf-specifications3 [6] and achieves two goals. First, it ensures that any implicit conversion (such

as a float to a double) will occur before NanoLog attempts to save the argument to its internal buffers.

Second, if the arguments provided by the user do not match the types encoded by the format string,

3The first two arguments are for the required severity level and format string
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then compiler will report that the arguments do not match the record()function signature.

Lastly, NanoLog prevents the use of the “%n” specifier by explicitly checking the format string

as the Python preprocessor executes. Normally, the “%n” specifier is used to return the current char-

acter offset of the log message. For example, printf("%s %n", "Hello", number), would cause

number to contain the value 7 after the line executes. However, since NanoLog does not format

strings at runtime, it cannot produce this value at runtime. Thus, the %n specifier is specifically

disallowed by the NanoLog preprocessor.

4.3.7 Summary

In summary, Preprocessor NanoLog is a variant of NanoLog that uses a Python script to prepro-

cess and modify the user sources at compile-time. It interposes on the compilation process with a

GNUmake macro, identifies log messages in the user sources, and generates four functions per log

message. The record() function is injected into the user sources after the “#include "NanoLog.h"

line and replaces the NANO LOG invocation, and the compress(), inflate(), and writeDictionary()

functions are placed into the NanoLog library for the runtime and post-processor to use. It uses

metadata files to track log messages across compilation units and inserts spaces in the user code to

maintain consistent error reporting.

4.4 C++17 NanoLog

C++17 NanoLog is an alternative version of NanoLog that uses C++17 metaprogramming features

rather than a preprocessor to perform its front-end duties. It is easier to use as it no longer requires

the user to integrate a preprocessor into their build pipeline, and the system is more similar to a

traditional C++ library; users only need to #include a header and link against the NanoLog library.

C++17 NanoLog is required to fulfill the two duties of building a dictionary to de-duplicate static

log information and generating specialized, per-log functions to record() and compress()

the remaining dynamic log arguments. It achieves these goals by using variadic templates to build

specialized functions, constexpr compile-time evaluation to build dictionary entries at compile-

time, and a runtime system to assign unique log identifiers to the entries. As implied by the name,

C++17 NanoLog uses advanced C++17 features and only works with compliant applications and

compilers.
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4.4.1 A Quick Primer on C++11/14/17 Features

C++17 NanoLog uses fairly new4 and esoteric features of the C++17 specification. To aid the reader

in understanding the implementation and its limitations, this section presents a short primer on

features relevant to C++17 NanoLog: the constexpr modifier and variadic templated functions.

Note that the section assumes a basic understanding of C++ and some of the features presented are

not exclusive to C++17.

The constexpr keyword was introduced in C++11 and was gradually improved through the

evolution of C++17 to allow for simpler syntax. The modifier “constexpr” indicates that an ex-

pression is constant throughout the execution of the application and that the value can be computed

at compile-time. When the modifier is applied to a variable, it means that the value of the variable

is/must be known at compile-time. This distinction from regular variables allows the compiler to

optimize the user application binary by simply substituting a literal value whenever the variable is

used instead of computing it at runtime. The modifier can also be applied to a function to indicate

that the function can potentially be run at compile-time if all the function parameters are known

at compile-time (i.e. they are literals or other constexpr variables). However, the compiler does

not enforce that the function must be executed at compile-time. If the compiler can’t execute the

function, it generates assembly as normal to execute the function at runtime.

To force compile-time execution of a constexpr function at compile-time, one can define a

constexpr variable equal to the return of the constexpr function. An example of this is shown on

line 35 of Figure 4.11 where a Fibonacci function is forced to execute. In this usage, the input pa-

rameters to the constexpr functions must be themselves constant expressions or literals, otherwise

the compilation will fail with an error. For this reason, NanoLog requires the format string to be a

literal type so that both the preprocessor and C++17 versions of NanoLog can analyze the string and

build metadata structures at compile-time.

Constant expression functions can implement fairly complex tasks. For example, the countVowels()

function in Figure 4.11 shows an example of how a string can be parsed at compile-time. The func-

tion resembles a fairly normal looking imperative function with for and while loops5. The only

difference is that they cannot modify any global variables or function arguments; all results must be

passed through the return statement.

4The C++17 specification was only recently available at the time of this publication.
5This syntax was only recently allowed in the C++17 standard. Older standards required a more functional-style where

each function composed of exactly one return statement and loops had to be implemented with recursive calls.
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1 #include <cstdio>
2 #include <cstring>
3
4 // Calculates the Fibonacci number at position n
5 constexpr int
6 fib(int n)
7 {
8 if (n <= 1)
9 return n;

10
11 return fib(n-1) + fib(n-2);
12 }
13
14 // Counts the number of vowels in a string
15 // Note the value of ’N’ is automatically deduced by the compiler.
16 template<int N>
17 constexpr int
18 countVowels(const char (&fmt)[N])
19 {
20 int sum = 0;
21 for (int i = 0; i < N; ++i) {
22 if (fmt[i] == ’a’ || fmt[i] == ’A’
23 || fmt[i] == ’e’ || fmt[i] == ’E’
24 || fmt[i] == ’i’ || fmt[i] == ’I’
25 || fmt[i] == ’o’ || fmt[i] == ’O’
26 || fmt[i] == ’u’ || fmt[i] == ’U’)
27 ++sum;
28 }
29 return sum;
30 }
31
32 int main()
33 {
34 constexpr char string[] = "the quick brown fox jumps over the lazy dog";
35 constexpr int fib11 = fib(11);
36 constexpr int vowels = countVowels(string);
37 printf("Fib(11) = %d and the string ’%s’ has %d vowels\r\n",
38 fib11, string, vowels);
39
40 // Expected Output
41 //
42 // Fib(11) = 89 and the string ’the quick brown fox jumps over the lazy dog’
43 // has 11 vowels
44 }

Figure 4.11: C++17-compliant application demonstrating the use of constant expressions
to perform compile-time computation. In this application, the computation of fib(11) and
countVowels(string) is performed by the compiler and the results are loaded as literals for the
printf call at the bottom.
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The other major features NanoLog uses are templates and variadic templates. Templates have

been available since the introduction of the C++ language, and they allow for type substitution in

data structures and functions, similar to Java generics. However, unlike generics, every instantiation

of the template with a unique type will cause a copy of the class/function specialized to that type

to be inserted into the binary. For example, if one uses the standard library’s templated std::max

function [4] and specialize it to integers in multiple places (i.e. std::max<int>(a, b)), then a

max function specialized for integers only will be injected by the compiler into the binary. Multiple

uses of std::max<int> will use the same function. However, if std::max<long> is invoked, then

another function specialized on long is injected in the binary. This behavior is desirable in NanoLog

as it helps create specialized functions and de-duplicate uses. More specifically, if one specialized

the record()function on the log arguments, then a unique record function is generated for unique

each combination of log statement arguments, and multiple log statements with the same argument

signature will reuse the same function instance.

To generalize record()to more than one template type, NanoLog utilizes variadic templates.

Variadic templates are a form of templates where an arbitrary number of types can be specified.

An example of such a template in the C++ standard is std::tuple<class... Types>. This class

can accept and operate on an arbitrary number of different types (i.e. std::tuple<int, int> or

std::tuple<float, void*, long>). To operate on data passed into these variadic templated func-

tions, one can use recursion and function overloading to peel off arguments from the list and pro-

cess them one by one. Figure 4.12 shows an example of how a variadic templated function can

be used to process an arbitrary number of arguments. The template<typename T, typename...

Ts> printTypes(T, Ts... rest) function in the figure is a variadic, templated function; it allows

an arbitrary number of arguments to be passed in, and it will print the ASCII representation of the

type and value of each argument. The triple dots “...” enable the function to accept multiple type-

s/arguments and treat them as a single variable. These dots are called parameter packs and the exis-

tence of a parameter pack in the template is what makes a function a templated variadic function [3].

There are two parameter packs in the printTypes function; one is in the template, “typename... Ts”

and the other is in the argument list, “Ts... rest”. The first describes the types of the arguments

the function can take, and the second describes the arguments themselves. To process each ele-

ment in the packs individually, the function uses type deduction [5] to peel off the first elements

of the two parameter packs into the T and head variables. It then passes the two into the singular

printType<T>(head) function which overloads to a specific function near the top of the figure and

processes a single type and argument individually. Finally, the printTypes function recursively
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1 #include <cstdio>
2
3 // The following three functions are overloaded to accept and print int’s,
4 // long’s, and double’s. One would normally complete the set to cover the
5 // types of arguments accepted by printf, but this is an example.
6 void printType(int i) {
7 printf("Integer: %d\r\n", i);
8 }
9

10 void printType(long i) {
11 printf("Long: %ld\r\n", i);
12 }
13
14 void printType(double i) {
15 printf("Double: %lf\r\n", i);
16 }
17
18 // Base case recursion: no arguments remaining
19 void printTypes() { }
20
21 // Variadic Template that accepts an unbounded number of arguments and
22 // recursively prints their values one by one.
23 template<typename T, typename... Ts>
24 void printTypes(T head, Ts... rest) {
25 // Peel off and process the first argument
26 printType<T>(head);
27
28 // Recursively process the rest
29 printTypes<Ts...>(rest...);
30 }
31
32 int main()
33 {
34 printTypes(1, 2.0, 3l);
35 // Expected output:
36 //
37 // Integer: 1
38 // Double: 2.000000
39 // Long: 3
40 }

Figure 4.12: C++11-compliant example demonstrating the use of variadic templates to process
an unbounded number of arguments and specialize the logic depending on the type of the argu-
ments. printTypes accepts an arbitrary number of arguments and prints the type and value for
each of its arguments. It does this by recursively peeling off the first argument in the argument
list, processing it with printType, and invoking itself with the rest of the arguments. NanoLog
uses a similar technique to build its record()and compress()functions. Note the printType

has only been overloaded to accept integers, longs, and doubles; to build a more complete
version, one would have specialize printType() for every type accepted by printf[6].
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calls itself with the remaining pack parameters Ts and rest. Each recursive call peels off yet an-

other type and argument set until the packs are empty and the base case of void printTypes()

is reached. In this fashion, the printTypes function can accept multiple arguments and process

them individually.

Using these variadic templates, one can construct a function that can accept an arbitrary number

of arguments with varying types, much like the original printf API. However, unlike the original

API, the type information is also available at compile-time allowing us to specialize the behavior of

the function at compile-time instead of parsing the format string and interpreting the arguments at

runtime.

Lastly, one feature of legacy C++ worth reviewing is the “static” modifier. In C++, the static

modifier indicates that an entity has a lifetime equal to the lifetime of the execution. In other words,

when applied to a variable, the variable is allocated when the program execution starts and is never

deallocated until the program ends. This modifier allows one to define variables that remain valid

and usable for the entire life the application.

Furthermore, static variables can be defined within local scopes, such as a function. When this

occurs, C++ creates a variable that both outlives the execution of the function and can only be

accessed inside the function. This functionality allows functions (or more generally, scoped logic)

to “remember” results from previous executions or perform memoization. NanoLog exploits this

feature to assign a dictionary reference to the record()function and have the function “remember”

it between invocations.

4.4.2 Generating Specialized Functions

C++17 NanoLog implements the record()and compress()functions as variadic templated func-

tions. The goal of the generated functions is to in-line the logic to process arguments based on their

type so that type deduction and format string parsing do not need to occur at runtime. Variadic

templated functions fit this purpose perfectly. They can be used to force the compiler to recursively

build functions specialized to process exactly the types of the arguments passed into the log func-

tion, similar to Figure 4.12. This removes the need to use a preprocessor to generate the functions.

Furthermore, the recursive logic can be flattened into inline logic by compiling with any sort of GNU

GCC optimization enabled. This removes all the intermediate and superfluous call/ret instructions

in between recursive calls and creates functions that are nearly as optimized as the ones generated

by Preprocessor NanoLog.

One problem with using the variadic templates alone is that they specialize exactly on the types
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passed into the function, not based on the types expected by the format string. This causes two

problems: type mismatches are not caught and it’s impossible to deduce the behavior for “char*”

arguments based on types alone. Consider the statement printf("Hello world %d"). Notice that

the printf requires an integer argument, but none is provided. Since the variadic templates only look

at the argument types themselves to generate the functions, it would compile and execute without

error. The problem would only be caught when the user attempts to decompress the log file and

the post-processor attempts to use the missing argument. Additionally, if the functions encounter a

char* argument, it’s ambiguous whether the functionality should be to operate on the pointer value

(in the case of a “%p” specifier) or the string contents (in the case of a “%s” specifier). These two

problems are solved using constexpr functions and GNU attributes.

NanoLog leverages constexpr functions to parse the string literal format string at compile-

time to disambiguate char* arguments. As mentioned in the C++17 Primer (Section 4.4.1), the

constexpr modifier can be used to force functions to evaluate at compile-time if the function’s

arguments are known at compile-time. In NanoLog, the NANO LOG statement requires a literal

format string and that format string contains all the information needed to disambiguate "%p" vs.

"%s" specifiers. Thus, we can utilize constexpr to build a binary array describing whether an argu-

ment at the n-th position should be interpreted as a string or pointer based on the format string. This

is done in a fashion analogous to countVowels in Figure 4.11 where the format string is iterated

through and the result of the type is returned (except a data structure is returned rather than a single

integer). The record() and compress() functions can then utilize this data structure to reduce the

disambiguation logic to a single if-check of the data structure. This is extra logic that needs to be

executed, but fortunately it only needs to occur for “char*” arguments.

Lastly, to prevent mismatched types, NanoLog tags the record() function with the GNU

“format” attribute. This attribute is specific to the GNU GCC compiler and it instructs the compiler

to statically check that the number and types of arguments passed into a formatting function match

a format string. If the types do not match, then a compile-time error is generated.

With constant expression functions and variadic templates, NanoLog is able to build functions

that are specialized to process exactly the arguments of a specific NANO LOG statement without

runtime analysis of the format string. The two functions generated, record() and compress(),

can then be blindly invoked by the application logging thread and the NanoLog background thread.
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4.4.3 Building the Dictionary at Runtime

In addition to generating optimized functions, the front-end is also responsible for maintaining a

dictionary to de-duplicate the static log information and track when log messages are invoked for

the first time. C++17 NanoLog builds the dictionary entries at compile-time, and the entries are

assigned unique log identifiers and collated in the log at runtime. Unlike Preprocessor NanoLog,

C++17 NanoLog cannot perform arbitrary computation, accesses, and modifications on the source

files at compile-time, especially across multiple source files. Instead, it is limited to some compile-

time computation through constant expression evaluations which must be localized to where the

data is defined since the constant expression functions need direct access to its literal parameters6.

As a result, C++17 NanoLog can only build the dictionary entries at compile-time in the local scope

and must pass the entries to the NanoLog runtime. This means extra runtime compute is needed to

support C++17 NanoLog relative to preprocessor NanoLog.

4.4.4 Building The Dictionary Entry

The C++17 front-end builds dictionary entries that resemble Figure 4.13 using constant expression

evaluation. Each entry contains fields for the static log information (filename, line number, severity,

format string), and three variables needed by the runtime. The first variable needed by the runtime

is the compressFnPtr; it stores a pointer to the generated compress()function and is invoked by

the background thread to compress the dynamic log data. The other two variables describe the

types of the dynamic arguments as specified by the format string. One is the number of dynamic

arguments, and the second is an array of enumerations informing the runtime whether an argument

in a particular argument position is a string or a pointer. The array, function pointer, and number of

dynamic arguments are built at compile-time with the use of constant expressions and there is one

dictionary entry per log statement in the source.

One oddity worth mentioning is the compression function’s specialization with variadic tem-

plates in Figure 4.13. Typically, template types are used to refer to the types of the arguments

accepted by the function. However, this doesn’t need to be the case, and it’s not the way it is used

in NanoLog’s compression function. In NanoLog’s case, the variadic templates inform the compiler

which specialized functions to inline into the compress()function. The function always accepts

6In C++17, literal types and constant expression variables cannot be passed up the stack and remain classified as
constant expressions.
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1 // Defined in the C++17 NanoLog library to store static log information
2 struct DictionaryEntry {
3 // Stores the traditional static log information
4 const char* filename;
5 const int linenum;
6 const int severity;
7 const char* formatString;
8
9 // Used by the NanoLog background thread to compress the dynamic args

10 void (*compressFnPtr)(int, const bool*, char**, char**);
11
12 // Stores a precomputed array that describes the type encoded for
13 // each parameter. Primarily used to distinguish %s from %p.
14 const ParamType* parameterTypes;
15 const int numParameters;
16 }
17
18 ...
19
20 /**
21 * Extremely simplified compress function from C++17 NanoLog. It accepts an
22 * input byte array and compresses the log entries to an output byte array.
23 * The template parameters are used to encode what the function needs to do
24 * in order to interpret the input byte stream.
25 *
26 * \tparam T - Type of the head argument (i.e. the current one) to compress
27 * \tparam Ts - Types of rest of the arguments to compress
28 * \param argNum - The current argument we’re processing (zero based)
29 * \param params - Array of enums identifying the types
30 * \param input - Input array pointer to read log data from
31 * \param output - Output array pointer to write compressed log data to.
32 */
33 template<typename T, typename... Ts>
34 inline void
35 compress(int argNum, const ParamType *params, char **input, char **output)
36 {
37 compressSingle<T>(paramTypes[argNum], input, output);
38 compress<Ts...>(argNum + 1, params, input, output);
39 }

Figure 4.13: A simplified version of the dictionary entry structure used in C++17 (top) followed
by the compression function (bottom). On the top, the parameterTypes field is an array of
enumerations that encode the types of the dynamic arguments as specified by the format string.
It is used used by the compression function to disambiguate const char* dynamic arguments.
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four arguments: a counter, the parameterTypes array, an input buffer, and an output buffer. How-

ever, to interpret the types in the input buffer, the function needs to know the types of dynamic

arguments encoded in the buffer and in which order. This information is passed to the function via

the variadic template pack parameter. The function can then use the recursion techniques talked

about earlier to peel off a single template type argument from the pack and invoke a specialized

compressSingle<T> function. The compressSingle<T> function is specialized to read back ex-

actly one argument of type T from the input array, compress it, and write it to the output array. Since

the types are templated and known at compile-time, the compiler can unroll the compressSingle

functions and generate in-line code. The only place where this technique falls short is for string and

pointer types (i.e. const char*); in this case the function dereferences parameterTypes at runtime

to determine whether to save the pointer’s value or string contents7.

The use of variadic templates and constant expression evaluations allows the C++17 front-end

to build a specialized compress()functions as well as the dictionary entries at compile-time.

4.4.5 Collecting the Entries at Runtime

The C++17 runtime collects the dictionary entries at runtime via a registerInvocationSite func-

tion. This function is invoked when a log statement is executed for the first time and it adds the

dictionary entry to the runtime dictionary (more details in Chapter 5). It then returns a unique log

identifier that will be used by the runtime and post-processor to refer to the static log information.

The function is fairly expensive as it requires a lock to serialize dictionary operations, so the C++17

log function amortizes this cost; it saves the return value into a local-scope static variable (logId)

and uses the variable as a fast-check so that future invocations of the same log statement need not

re-execute the function.

As a side note, the fast-check on logId is only a heuristic. Due to parallelism in modern pro-

cessors, it possible for multiple threads executing the same log message to see a stale value for

logId and invoke the register function multiple times. This behavior is suboptimal from a perfor-

mance standpoint, but it is also expected to be short lived. Eventually the processor will fetch the

latest value for logId, and all invocations from then on would prevent multiple executions. The

registerInvocationSite function is also engineered to be safe. It accepts the logId variable by

reference, and takes a dictionary lock before re-checking the variable and assigning to it. The lock

7As a reminder, the record()function uses the same technique.
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ensures that the variable truly is uninitialized before adding the static log information to the dictio-

nary. The heuristic is not perfect, but it is both safe and performant in the log run.

4.4.6 The C++17 NANO LOG function

The C++17 NANO LOG function is what allows the specialized functions to be generated and dic-

tionary entries to be built. The C++17 log “function” is actually a C-style macro that expands to a

new scope (Figure 4.14 and Figure 4.15). This expansion allows the C++17 system to define vari-

ables to build a dictionary entry at compile-time via constant expressions and define a local-scoped

static integer, logId, to store the unique log identifier assigned by registerInvocationSite. Af-

ter the dictionary entry is collected, the macro invokes the generated record()function to place the

dynamic arguments into a staging buffer.

4.5 Preprocessor vs. C++ 17 NanoLog

The C++17 version of NanoLog uses C++17’s strong compile-time computation support to analyze

the log statements and generate optimized code and data structures for the runtime. The advantage

of such a scheme is that it does not require an additional source preprocessing step and can therefore

be easily integrated into any project that uses a C++17-compliant compiler. Additionally, since it

doesn’t inject functions directly into the library sources, the NanoLog library can be compiled once

and reused in multiple projects like a normal library. This is unlike the Preprocessor version which

requires the library to be rebuilt on every compilation in order to incorporate the specialized code

generated by the preprocessor.

C++17 NanoLog does have three shortcomings when compared to Preprocessor NanoLog: it

must collect the dictionary entries at runtime instead at at compile-time, the functions it generates

are less optimized, and error reporting is more difficult.

The first shortcoming of C++17 NanoLog is that it cannot collect all the static log information

into a dictionary at compile-time. This means that the static log information must be collected at

runtime and output incrementally as new log messages are encountered. Although some of the

analysis on the log statements can be done at compile-time, the assignment of unique identifiers

must occur at runtime. This incurs a slight cost at runtime when a new log message is encountered



CHAPTER 4. FRONT END 44

C++17 NANO LOG Definition
1 /**
2 * NANO_LOG macro used for logging in C++17 NanoLog.
3 *
4 * \param severity - The LogLevel of the log invocation
5 * \param format - The printf-like format string
6 * \param ... - Log arguments associated with the printf-like string.
7 */
8 #define NANO_LOG(severity, format, ...) do { \
9 \

10 /* Build the constant expression portions of the dictionary. */ \
11 /* Note: countFmtParams and analyzeFormatString are omitted for space*/ \
12 constexpr int nParams = countFmtParams(format); \
13 static constexpr std::array<ParamType, nParams> paramTypes = \
14 analyzeFormatString<nParams>(format); \
15 \
16 /* Associates a dictionary entry to this log statement’s scope */ \
17 static int logId = UNASSIGNED_LOGID; \
18 \
19 if (severity < NanoLog::getLogLevel()) \
20 break; \
21 \
22 /* Triggers the GNU printf checker to check for format errors */ \
23 if (false) { checkFormat(format, ##__VA_ARGS__); } \
24 \
25 NanoLogInternal::log(logId, __FILE__, __LINE__, severity, format, \
26 paramTypes, ##__VA_ARGS__); \
27 } while(0)

Figure 4.14: A simplified version of the NANO LOG macro used in C++17 NanoLog; the full
source is available in the NanoLog Github repository[70]. Demonstrates C++17 NanoLog’s use
of NANO LOG as a macro to define a new scope (do... while(0) in lines 8-27), constant ex-
pression evaluations on the format string to build portions of the dictionary entry (lines 12-14),
declaration of the scoped static variable (line 17) used to “remember” the unique log identifier
assigned by the dictionary. The specialization of the compress()function and assignment of
the static, unique log identifier is performed in the log(...) function invocation on line (25),
and the function is shown in Figure 4.15.
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C++17 NANO LOG Definition - Part 2
1 /**
2 * Log function invoked by the C++17 NANO_LOG macro to register the dictionary
3 * information and record the arguments. This logic exists in a separate
4 * function to make it more readable.
5 *
6 * \tparam N - Number of print arguments (automatically deduced)
7 * \tparam M - Static length of the format string (automatically deduced)
8 * \tparam Ts... - Types of the log arguments passed in (automatically deduced)
9 *

10 * \param logId - Reference to the static, unique log identifier integer
11 * \param file - Filename of the where the NANO_LOG statement is invoked
12 * \param line - Line number of where the NANO_LOG statement is invoked
13 * \param severity - Severity of the NANO_LOG statement
14 * \param format - Format string of the NANO_LOG statement
15 * \param ParamTypes - Describes the argument types encoded in the format string
16 * \param Ts... - Parameter pack containing all the log arguments
17 */
18 template<long unsigned int N, int M, typename... Ts>
19 inline void
20 log(int &logId,
21 const char *file,
22 const int line,
23 const LogLevel severity,
24 const char (&format)[M],
25 const std::array<paramType, N>& paramTypes,
26 Ts... args)
27 {
28 // Fast-check for whether the system needs to add a new dictionary entry
29 if (logId == UNASSIGNED_LOGID)
30 {
31 // compress() is specialized here on the template arguments <Ts...>
32 DictionaryEntry entry = {
33 file, line, severity, format,
34 sizeof...(Ts), paramTypes.data(),
35 &compress<Ts...>
36 };
37 // logId is passed by reference; its value is filled in by the function
38 RuntimeLogger::registerInvocationSite(entry, &logId);
39 }
40 ...
41 record<Ts>(...);
42 }

Figure 4.15: This is a continuation of Figure 4.14, and shows the log() function invoked by
the NANO LOG macro. The static, unique log identifier (logId) is passed in by reference on
line 20, checked on line 29, and assigned on line 38. The compress()function is specialized by
passing the template parameter Ts... on line 35, the dictionary entry is added to the runtime
on line 38, and finally record()is specialized and invoked on line 41.
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for the first time. However for long running tasks, we expect the dictionary cost to be amortized8.

Another shortcoming is that the functions generated by C++17 NanoLog can be less optimized

than the ones generated by Preprocessor NanoLog. As a reminder, C++17 NanoLog uses a combi-

nation of variadic templated functions to specialize on the argument types and constant expression

evaluations to derive a data structure disambiguating “%s” vs. “%p” specifiers from the format string.

For some reason9, the compiler disallows the use of constant expressions derived from a literal for-

mat string to be used as a non-type template parameter. This essentially means that the record()

and compress() functions cannot be specialized to the data structure, and the data structure must

instead be passed in as a regular function parameter and checked at runtime. This both incurs a

runtime cost and limits the amount of optimization that can be performed by the compiler.

It does appear that the compiler is able to optimize the data structure checks out of the record()

logic, but it is unable to do so for the compress() logic. I suspect the reason is because the

record() function is invoked immediately after the definition of the derived data structure. This

allows the compiler to “see” the values of the data structure at compile-time as it inlines the

record() functionality. On the other hand, since compress() is invoked in a separate thread

and in a separate scope, the compiler cannot optimize the function as easily.

Finally, C++17 NanoLog can produce compiler errors that are harder to decipher by the devel-

oper using NanoLog. Since NanoLog defers formatting until a later point, it needs to catch as many

potential user errors as possible at compile time. Otherwise, errors that would normally be caught

at runtime may slip past the user until they decompress the logs later on. The Preprocessor version

of NanoLog has the luxury to arbitrarily examine the source code and report the error in a contex-

tually relevant way. In C++17, the errors are reported by the compiler, which can have notoriously

difficult to decipher error messages when templates are involved. Figure 4.16 shows samples of the

error reports generated by Preprocessor and C++17 NanoLog when an invalid format specifier is

used.

8Furthermore, C++17’s runtime collection of static log information means that if a log message is never used, then
it’ll never have its dictionary entry cataloged. This saves a small amount of space in the log file.

9At least, I was unable to figure out a way to incorporate the information derived from the literal format string into a
form that can be consumed as a non-type template parameter.
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Preprocessor NanoLog Error
g++ -E -I ../runtime main.cc -o main.cc.i -std=c++11
python ../preprocessor/parser.py --mapOutput="generated/ main.cc.map" main.cc.i

main.cc:65: Error - Unrecognized Format Specifier: "%q"

NANO_LOG(NOTICE, "Sample %q", 5);

GNUmakefile:54: recipe for target ’main.o’ failed

C++17 Error Reporting
g++ -I ../runtime -c -o main.o main.cc -std=c++17 -DNDEBUG -O3 -g
In file included from main.cc:24:0:
../runtime/NanoLogCpp17.h: In function ’int main(int, char**)’:
main.cc:68:5: in constexpr expansion of

’NanoLogInternal::getNumNibblesNeeded<10ul>("Sample %q")’
../runtime/NanoLogCpp17.h:334:39: in constexpr expansion of

’NanoLogInternal::countFmtParams<10>(fmt)’
../runtime/NanoLogCpp17.h:311:24: in constexpr expansion of

’NanoLogInternal::getParamInfo<10>(fmt, count)’
../runtime/NanoLogCpp17.h:204:68: error: expression ’<throw-expression>’ is not

a constant-expression
"Unrecognized format specifier after %");

ˆ
...
In file included from main.cc:24:0:
../runtime/NanoLogCpp17.h:285:1: note: candidate: template<int NParams, long

unsigned int N> constexpr std::array<NanoLogInternal::ParamType, NParams>
NanoLogInternal::analyzeFormatString(const char (&)[N])

analyzeFormatString(const char (&fmt)[N])
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

../runtime/NanoLogCpp17.h:285:1: note: template argument
deduction/substitution failed:

In file included from main.cc:24:0:
../runtime/NanoLogCpp17.h:1083:66: error: no matching function for call to

’log(int&, const char [8], int, NanoLog::LogLevels::LogLevel, const char
[10], const int&, const int&, int)’

numNibbles, paramTypes, ##__VA_ARGS__); \\
ˆ

main.cc:68:5: note: in expansion of macro ’NANO_LOG’
NANO_LOG(NOTICE, "Sample %q", 5);
ˆ˜˜˜˜˜˜˜

GNUmakefile:23: recipe for target ’main.o’ failed
make: *** [main.o] Error 1

Figure 4.16: Shows the errors reported by Preprocessor NanoLog (top) and C++17 NanoLog
(bottom) when an invalid specifier is used in the format string. The format string that caused
the error was "Sample %q" where "%q" was the invalid specifier. The C++17 error report has
been truncated to fit within the page boundaries.
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4.6 Summary

The NanoLog front-end is the compile-time component of the NanoLog system, and prepares the

user’s application for optimized logging. It reduces logging I/O by cataloging static log information,

persisting it once in a dictionary, and changing the log statements to emit only dynamic information.

It also reduces computation in the application by generating record()and compress()functions that

are specialized to process exactly one log statement in the sources. The former allows the application

to reduce the amount of static, never-changing information in the log file, and the latter allows the

runtime to execute optimized, in-lined code at runtime. Both prepare the application for nanosecond

scale operations.

There are two variants of the front-end, Preprocessor and C++17. The preprocessor version uses

a Python script to scan and modify the user sources at compile-time, and the C++17 version uses

strong meta-programing features to force the C++ compiler to generate optimized code and build

dictionary structures. The difference between the two is that the C++17 version is more usable,

while the preprocessor version is both more performant and displays errors in a more user-friendly

format. Conceptually, both versions of the NanoLog front-end perform the same tasks, and either

can be used to prepare the application for nanosecond scale logging.
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Runtime

The NanoLog runtime is a statically linked library that runs as a part of the user application. Its

primary purpose is to support the optimizations leveraged by the NanoLog front-end and produce

a runtime log file that is interoperable with the post-processor. It is responsible for maintaining

and persisting the dictionary of static information produced by the front-end, and for ferrying the

remaining dynamic log arguments to disk in an efficient manner.

In this chapter, I will discuss how the runtime manages the dictionary, how it encodes dynamic

log data, and how it is optimized for nanosecond scale operations.

5.1 Managing The Dictionary

NanoLog utilizes a dictionary to deduplicate the static log information in the log file. The system

separates the repeating, unchanging static information (such as the filename, line number, severity,

and format string) from the constantly changing dynamic information (such as the time of invoca-

tion and format arguments) of a log message and persists them separately (Figure 5.1). The static

information is written in the dictionary and persisted just once, while the ever-changing dynamic

information is persisted with every log invocation and includes a reference (unique log identifier) to

the dictionary of the static information.

The dictionary can be thought of as a simple array of dictionary entries. Each entry contains a

single log message’s filename, line number, severity level, and format string. There is exactly one

dictionary entry for every log message in the application’s sources, and the index of each entry is the

application-wide unique log identifier for that log statement. It is stored separate from the dynamic

log data as it never changes and thus can be written to the log file just once, rather than with every

49
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12, “Hello World”);main.cc 4: NANO_LOG(DEBUG,  “Client id: %d, message: %s”,

Log Statement in the Sources

Timestamp LogId 12 “Hello World\0”

“main.cc”

4

DEBUG

“Client id: %d,
message: %s\0”

Dictionary Entry

Dynamic Log Message

Figure 5.1: An example of a log statement in the NanoLog system and the resulting dictionary
entry (bottom left) and dynamic log message (right). The dictionary entry on the left contains
the log message’s filename, line number, severity, and format string, and the dynamic log mes-
sage contains a 64-bit timestamp counter (Intel TSC [29]), the unique log identifier (logId), and
the two arguments for the log statement. The dictionary entry is persisted only at most once per
log file, while the right entry is persisted on every log message invocation.

log message invocation.

The only constraint is that the dictionary entry for each log statement must be written to the log

file before the first reference to it by the dynamic log information. The post-processor requires both

the static (dictionary) and dynamic information of a log statement to process it. Thus, the runtime

ensures that the dictionary entry is written in the log file before the first reference to it by the dynamic

log data. This way, the post-processor will have encountered all the information it needs to decode

a log statement when it reaches the dynamic log data.

The NanoLog runtime uses different techniques to manage and persist the dictionary depending

on which version of NanoLog is used (Figure 5.2). For preprocessor NanoLog, almost all the work

is done by the front-end component. Preprocessor NanoLog catalogs all the static log information at

compile-time and injects a writeDictionary() function into the binary that dumps the dictionary

information to the log file. The information output by this function is both complete and exhaustive

(i.e. it covers every log message in the system). Thus, the runtime simply needs to invoke this

function to insert the dictionary at the beginning of every new log file, and the post-processor is

guaranteed to encounter the dictionary entries before first use.

In C++17 NanoLog, the dictionary management is more complicated than the preprocessor ver-

sion (Figure 5.2). The runtime component needs to track when new log statements are encountered,

collect the static log information at runtime, and output the dictionary entries before first use. To



CHAPTER 5. RUNTIME 51

writeDictionary(fd)

Preprocessor NanoLog
Application

Log File

C++ 17 NanoLog Application

registerInvocationSite( filename, 
linenum, 
severity, 

“Hello %d”,
&compressFn);

Log( “Hello %d”, 5)    
…

<Log Message N – 2>

<Log Message N – 1>

filename, linenum,
severity, “Hello %d”,
compressFn*

In-Memory Dictionary

…

Dictionary

….

Dictionary

….

Log File
…

Dictionary

….

(a) (b)

Figure 5.2: Dictionary management schemes in C++17 NanoLog (left) and prepro-
cessor NanoLog (right). In preprocessor NanoLog, the application is provided with a
writeDictionary()function that will dump the entire dictionary into the log file. This function
is compiled into the application by the front-end, and is only executed once per log file (note
the single arrow to the log file). In C++17 NanoLog, dictionary is collated at runtime. The ap-
plication thread invokes “Log”, which triggers “registerInvocationSite” to store the static log
information in an in-memory dictionary. This dictionary is then output piece-wise into the log
file (note the multiple dictionary fragments in the log file). The “registerInvocationSite” func-
tion is guaranteed to add only one dictionary entry per log message (see Chapter 4).
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accomplish the first two tasks, the C++17 front-end uses memoization with static integers to ensure

that a function, registerInvocationSite(), is invoked at most once per NANO LOG statement.

This function informs the runtime that a new log statement is encountered and passes the static in-

formation to the runtime system. The runtime then creates a new dictionary entry for the static log

information, pushes it onto a shared vector of dictionary entries, and returns the index of the new

entry as the unique log identifier1. The log identifier can then by used by the dynamic log data to

refer to the dictionary, and the vector of dictionary entries is periodically written to the log file.

In C++17 NanoLog, the dictionary is written in a piece-meal fashion. The runtime will peri-

odically check the shared vector of dictionary entries and output new ones to the log file between

other log data. This results in a log file that resembles the Figure 5.2a, where the dictionary is split

into fragments throughout the log file. Additionally, since the data structure is shared, it’s possible

for other threads to add entries while the runtime is processing log data. To ensure that dictionary

entries are written to the log file before first reference, the C++17 runtime additionally tracks which

dictionary entries have been written to the log file. When it encounters dynamic log data that does

not have its corresponding dictionary entry written yet, it will first write the dictionary entry before

continuing to process the dynamic log data. In this manner, the runtime ensures that all dictionary

entries will exist in the log file before their first reference.

Overall, the NanoLog system has different ways to manage and output the dictionary depending

on which version of NanoLog is used, but it will always ensure that the dictionary entries are output

before the dynamic log information refers to it.

5.1.1 Structure of the Dictionary

The NanoLog dictionary maps an integer identifier to static log information.

In memory, the dictionary is implemented as a simple array of dictionary entries. Each entry

contains the filename, line number, severity level, and format string of a log statement, and the

array index of each entry determines the unique log identifier used by the dynamic information to

reference the static log information.

The runtime representation of the dictionary also includes an array of compress()functions gen-

erated by the front-end. These functions are used by the runtime to compress the dynamic log data

prior to output, and are indexed in the same manner as the dictionary (i.e. the unique log identifier

1This design does imply that the unique log identifiers, and hence the dictionary, can be different for each execution
of the application depending on which log statements execute first.
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encoded in the dynamic log data is used to dereference the corresponding compress()function).

There exists exactly one function for every log message in the source. This part of the dictionary is

not persisted to disk, as it is only needed to optimize the runtime’s operations.

On disk, the dictionary is represented as a series of dictionary fragments. Each fragment can

be thought of as a contiguous chunk of the runtime dictionary array, and can trivially be appended

together in the order they’re encountered to form the full dictionary. Each fragment starts with a

small header indicating its byte size and the number of dictionary entries encoded in the fragment.

Following the header are individual dictionary entries; each one contains a log statement’s severity

in integer form, the line number, the byte lengths of the filename and format string, followed by the

filename and format string. The dictionary entries are written in the same order as they are in the

runtime implementation, so the post-processor can trivially collect the dictionary fragments, append

them together, and form the dictionary required to decode the dynamic log data. The preprocessor

version of NanoLog outputs the entire dictionary in one fragment, while the C++17 version outputs

mulitple fragments.

One important note about the dictionary is that every log file needs a copy. The NanoLog system

allows users to set a new destination for the log data and split the log file at runtime. When this hap-

pens, the dictionary needs to be copied into the new destination to ensure that every log file can be

decompressed independently. For preprocessor NanoLog, this means that the writeDictionary()

function is invoked for every file change. For C++17 NanoLog, this means it must iterate through its

internal dictionary array and output all the static information collected since the beginning of execu-

tion with each new log file. Despite the way it sounds, C++17 NanoLog will always output an equal

or lesser amount of information than its preprocessor counterpart. This is because log messages that

are never executed will not have a corresponding dictionary entry in the C++17 runtime.

5.2 Encoding Log Messages

The NanoLog system persists only the dynamic log information for log message invocations. In a

traditional logging system, log messages are output in the full-human-readable format at runtime.

A typical log message would include the time of invocation, filename/line number of the log mes-

sage, the thread identifier, severity, level, and the formatted message itself. In the NanoLog system,

the static information is filed away in a dictionary and formatting is deferred. This allows the run-

time system to only output the minimal set of dynamic information along with a reference into the

dictionary for the post-processor to use. This makes the log messages extremely compact and more
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efficient to output (as it eschews formatting at runtime). Figure 5.1 shows how a sample log message

in the source is split into its static and dynamic components.

Log messages output by the NanoLog system only contain a timestamp, a reference to the

dictionary, and the dynamic format arguments passed into NANO LOG. The timestamp identifies

when the log message was created, the reference to the dictionary identifies which log statement

was invoked, and the dynamic arguments specify the values which the user wished to format. The

invocation time is a copy of the Intel Timestamp Counter [29] when the log statement is invoked

and is stored as a delta relative to the last previous message. The integer reference is a four-byte

index into the dictionary, and the log arguments are written in the order in which they appear in the

original log statement’s argument list. String arguments are written with null-terminators to indicate

length, and non-string arguments are encoded as their native in-memory representations. See the

bottom right of Figure 5.1 for an example of the dynamic log message representation. Note that a

log message’s thread identifier is not included in the representation for each log message; this is

because messages in the log file are grouped by threads and the grouping shares a single identifier.

Upon output onto disk, the dynamic log message representations above are grouped into batches

called buffer extents. Each buffer extent is a contiguous chunk of log message produced by a single

thread in the application’s execution. An extent additionally encodes the length of the extent, the

thread identifier that produced the chunk (i.e. which thread invoked the log messages at runtime),

and the log messages themselves. Since all the log messages within an extent are produced by a

single thread, they are naturally ordered by time.

One feature of the NanoLog system is that it outputs the dynamic log arguments without de-

limiters between them. In a strawman approach to encoding log messages, one may be tempted to

insert type identifiers between log message’s arguments so that the post-processor knows the byte

length and how to process each argument. However, this mechanism would incur additional stor-

age overheads for each log message, so NanoLog does not use it. Instead, NanoLog leverages the

invariant that format strings can never change in the system and encodes the dynamic log infor-

mation in the order specified by the original format string. This way, the post-processor can utilize

the format string stored in the dictionary to infer argument type and order, and explicit delimiters

and type identifiers between arguments are not needed. For example, the format string “Client

id:%d, message:%s” in Figure 5.1 would imply that the dynamic log data contains an integer and

a null-terminated string as the dynamic arguments.

Lastly, the log messages themselves are compressed, however the mechanism will not be dis-

cussed here. Instead, the full description of the mechanism along with an evaluation of its efficacy
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can be found in Chapter 8.

5.3 Structure of the Log File

Applying the techniques above, the NanoLog runtime produces log files that resemble Figure 5.3.

The first component in each log file is the header. It contains a map between the machine’s Intel

Timestamp Counter [46] (TSC) and wall time along with a conversion factor between the two. The

header allows the log messages to contain the raw TSC values and avoids wall time conversion at

runtime, and the post-processor can use the mapping and conversion factor to perform this task at

post-execution.

Following the header is the first dictionary fragment. Each fragment contains dictionary entries

that map an integer to a log message’s static information, i.e. the filename, line number, severity,

and format string for a log message. There is at most one entry for every log message in the original

source2, and the entries are written in array order; i.e. their ordering in the log file determines

the unique log identifier that maps to them. Additionally, multiple dictionary fragments within a

log file can be trivially appended with one another to form a larger dictionary. In preprocessor

NanoLog there is only a single, large fragment at the beginning of each new log file whereas in

C++17 NanoLog, additional dictionary fragments can appear later in the log file. The post-processor

is expected to collect and concatenate the fragments together to form the dictionary required for

interpreting the log messages.

Following the first dictionary fragment are buffer extents. Each buffer extent encodes a contigu-

ous chunk of log messages produced by a single thread at runtime. The log messages in each extent

are naturally chronologically ordered since they originate from the same thread, but log messages

between extents can overlap in time as they can originate from separate runtime thread. Chapter 6

will describe how the post-processor sorts the log messages between extents to reform the full,

chronologically ordered human-readable log file.

The rest of the log file can contain additional headers, dictionary fragments, and buffer extents

in any order. Additional headers can be inserted in the log file to realign the TSC and wall times

if clock skew is detected. Additional dictionary fragments can be included to extend the dictionary

when new log messages are encountered. And finally, additional buffer extents will be written as

additional logging statements are executed.

2C++17 can have no entries for a log message if it’s never executed at runtime.
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Header Header
rdtscTime:64 
unixTime:64
conversionFactor:64

BufferExtent
threadId:32
length:31
completeRound:1

Log Message
logIdNibble:4
timeDiffNibble:4
logId:8-32*
timeDiff:8-64*

NonStringParamNibbles:n
NonStringParamters:m*
StringParameters:o

Buffer Extent
…

<Log Msg>
<Log Msg>

…

length

........

Buffer Extent
...

<Log Msg>
<Log Msg>

…
length

Dictionary

Dictionary
lineNumber:32
filename:n
formatString:m
....

Figure 5.3: Layout of a binary log file produced by the NanoLog runtime at a high level (left)
and in more detail(right). As indicated by the diagram on the left, the NanoLog output file
always starts with a header, a dictionary fragment, and one buffer extent. The rest of the file can
contain additional headers, dictionary fragments, and buffer extents in any order. On the right,
each component is expanded. The header contains a mapping of wall time to the machine’s
timestamp counter with a conversion factor between the two. The dictionary fragment contains
entries of static log message information (i.e. the messages’ filenames, line numbers, severities,
format strings), and the buffer extents contain log message encoded by a single thread. On
the right, the smaller text indicates field names and the digits after the colon indicate how
many bits are required to represent the field. An asterisk (*) represents an integer value that
has been compressed and thus has a variable byte length. The lower box of “Log Message”
represent dynamic arguments that are variable length (and sometimes omitted) depending on
the log message’s arguments. Preprocessor NanoLog has the dictionary encoded in full after
the header, while C++17 NanoLog encodes dictionary fragments throughout the log file.
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record(…, “arg1”, 0.85);

record(…, “thread”, 2);

Logging Threads Staging Buffers Background Thread Output Buffer

ts | 23 |“thread” | 2

ts | 0 | “arg1” | 0.85

record(…); …

compressArray[]

Figure 5.4: Overview of the interactions that occur with the NanoLog runtime system. On
the left, the user application initiates by executing the generated record()function for a log
statement. This copies the log statement’s timestamps (ts), unique identifier, and dynamic argu-
ments into a thread-local staging buffer. At a later point, the background thread polls the staging
buffers and invokes the compress()function associated with each log statement in the staging
buffers. The compress function places the output in the output buffer (to the right). The log-
ging threads execute in parallel, while the background thread is single threaded and processes
the staging buffers in a round-robin fashion. The different colored stripes in the right diagram
represent chunks of data originating from different staging buffers.

5.4 NanoLog Runtime Architecture

Now that we understand how the NanoLog system manages and writes the dictionary and dynamic

log data, let’s look at how the runtime is implemented.

The NanoLog runtime is a static library that is compiled into the user application. It serves to

buffer the log data produced by the application logging threads and writes them to disk. It pro-

vides low-latency, in-memory staging buffers to accept the logging threads’ dynamic log data, and

a background thread to collect the data and prepare them for more efficient, batched I/O.

Figure 5.4 shows the operation of the runtime component. It starts when an application thread

performs a logging operation. It invokes the front-end generated record()function and places the

log statement’s dynamic log arguments into a staging buffer. There is one staging buffer per applica-

tion thread to allow for concurrent operation. The NanoLog background thread will then periodically

wake up, poll the staging buffers for data, and invoke the front-end generated compress()on each

log statement to prepare it for output. The results of compress()are stored in an intermediate output

buffer and the buffer is flushed when it is full or no messages have been logged for a predetermined

amount of time.



CHAPTER 5. RUNTIME 58

5.4.1 Enabling Nanosecond Scale Operations

The design of the NanoLog runtime evolved around the need for performance, and it leverages four

key optimizations to enable its nanosecond scale operations.

First, it uses precomputed logic provided by the front-end. The record()and compress()func-

tions used to place and compress data in the staging buffers are pre-generated by the front-end.

They contain straight-line code that operates exactly on the data present in the buffer. Using these

functions eliminates the need for the runtime to semantically parse the format string and understand

the log arguments to operate on them. Instead, it invokes these functions which already know the

layout of data and what transformations to perform.

Both the record()and compress()functions are highly specialized to exactly one log statement

in the source, and care must be taken to ensure that the correct function is invoked. The correct

record()function is always invoked as the front-end replaces the NANO LOG statement in the

source with an invocation to the record()function instead. The corresponding compress()function

is encoded in the dictionary3 and can be dereferenced with the log message’s unique log identifier

(which is persisted by record()as a part of the dynamic log data). Overall, these two functions

reduce the cost of logging by eliminating branching compute and executing logic specialized exactly

to the message being logged.

Second, the runtime staging buffers are optimized for nanosecond scale operations by avoiding

contention and synchronization wherever possible. The runtime uses a series of in-memory buffers,

called the staging buffers, to store the output of the low-latency application threads, and decouple

them from the high latency operation (such as disk I/O). These buffers are optimized to avoid both

language level and machine level synchronization (i.e. locks and caches). A full discussion of the

design and optimizations of the staging buffers is presented in Chapter 7.

Third, the background thread processes the log messages in contiguous chunks. In a traditional

logging platform, the system is required to output the log messages in a single, chronological order-

ing. This requires either all the logging threads to serialize on a central data structure, or it requires

a background process to access multiple buffers to sort the log messages (and thus incur more cache

misses). Both solutions require extra compute at runtime. The NanoLog system is different; it de-

fers formatting and is allowed to output the log messages at runtime in whichever ordering is most

convenient. Thus, the background thread optimizes for data locality. It will scan through the staging

3In C++17 the compress function is placed into the dictionary via the registerInvocationSite function, and in prepro-
cessor NanoLog the compress function array is compiled into the runtime.
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buffers one at at a time and for each, consume as much log data as possible before moving on to the

next staging buffer. This optimizes for data locality as the background thread processes contiguous

chunks of memory, rather than issuing reads to multiple buffers in order to sort the messages. The

trade-off with this technique is that the sorting will now have to be done at post-processing, which

will be discussed in Chapter 6.

Finally, the runtime employs compression to enable more efficient I/O. In order to maintain

nanosecond scale operations, the sink (i.e. disk) must be fast enough to drain the staging buffers and

keep them from filling. Thus, the background thread uses a form of compression, called variable

integer encoding, to reduce the I/O time. I will defer the discussion of the compression system, as

the full design and evaluation of the compression subsystem is described in Chapter 8. However,

I’ve come to the conclusion that this form of compression is most efficient for the types of data that

NanoLog produces.

5.5 Summary

The NanoLog runtime is the intermediary between the application and post-processor; it must accept

log messages by the application and encode them in a format understandable by the post-processor.

This responsibility includes cataloging the static log information into a dictionary (C++17 only),

outputting the dictionary, and encoding the log messages in a minimal, but sufficient format for the

post-processor to understand.

The NanoLog runtime also is a performance critical component of the NanoLog system; it sits in

the hot-path between the application performing logging operations and the high latency disk opera-

tions. To perform well, it utilizes precomputed logic from the front-end (Chapter 4) to record()and

compress()log statements, it implements low-latency, lockless staging buffers (Chapter 7) to buffer

log data, outputs log data in contiguous chunks for the post-processor to sort (Chapter 6), and em-

ploys compression (Chapter 8) to reduce the I/O size.



Chapter 6

Post-Processor

The post-processor is the final component in the NanoLog system. It is responsible for interpreting

the binary log file produced by the application and reconstructing the original log statements for

either human or robot consumption.

6.1 Reconstructing the Log File

The reason for the post-processor’s existence is because NanoLog’s log file is not directly con-

sumable for most users. Unlike traditional logging platforms, the NanoLog system does not output

complete log messages in a human-readable format at runtime. Instead, it outputs the log file in a bi-

nary format, and it breaks up a log statement’s static and dynamic components and persists them in

separate parts of the log file for performance. The static, never changing information (i.e. filename,

line number, severity, and format string) is cataloged into a dictionary and written at most once

in the log file, while the dynamic information is persisted with every log invocation and includes

a reference (unique log identifier) to the dictionary of the static information. Figure 6.1 shows a

simplified example of the encoding. Thus to reconstruct the complete message, the post-processor

must rebuild the dictionary of static log information for lookups and use the reference within the

dynamic information to retrieve the static information. These two pieces of information together

form the complete log message.

6.1.1 Reconstructing the Dictionary

In the NanoLog system, the dictionary maps a unique log identifier (an integer) to a log message’s

static log information. It is implemented as an array of dictionary entries where each entry contains a

60
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id source line severity Format String

59 “main.cc” 5 WARN “Loop Index is %d”

60 “main.cc” 6 NOTICE “Loop Finished”

Timestamp id Dynamic Args

<time1> 59 <0>

<time2> 59 <1>

<time3> 59 <2>

<time4> 60 <>

Application (main.cc) Binary Log File

Dynamic Log Data

Dictionary of Static Information

2020-03-17 11:59:59.140982586 main.cc:5 - Loop Index is 0
2020-03-17 11:59:59.140982594 main.cc:5 - Loop Index is 1
2020-03-17 11:59:59.140982601 main.cc:5 - Loop Index is 2
2020-03-17 11:59:59.140982610 main.cc:6 - Loop Finished

Reconstituted Log

4 for (int i = 0; i < 3; ++i)
5       NANO_LOG(WARN, "Loop Index is %d", i);
6 NANO_LOG(NOTICE, "Loop Finished");

Figure 6.1: Demonstrates how the NanoLog system splits log messages (top left) into static and
dynamic components and persists them separately in the log file (right). The static log informa-
tion (such as the source file, line number, severity, and format string) is persisted just once in
the dictionary, while the dynamic information (such as the timestamp and dynamic arguments)
is persisted for each invocation of a log statement. The dynamic information also saves a refer-
ence to the dictionary (id) which can later be used to recombine the separate components into
the full log message (bottom left).

log statement’s filename, line number, severity, and format string, and the index of entry determines

the unique identifier that maps to it. There is at most one dictionary entry for each log statement in

the sources and it is needed by the post-processor to reconstitute the complete log message.

To reconstruct the original dictionary, the post-processor collects dictionary fragments in the log

file and concatenates them together (Figure 6.2). The runtime encodes the dictionary as a series of

one or more fragments in the log file. Each fragment represents a contiguous chunk of the dictionary

array with one or more dictionary entries. The order in which the entries are written reflects their

ordering in the runtime dictionary. Thus, to reconstruct the dictionary, the post-processor only needs

to collect and concatenate the dictionary fragments.

Furthermore, the runtime ensures that dictionary entries are written in the log file before the first

reference by the dynamic log information. This means at any point in the log file, the dictionary is

considered complete (i.e. covers all dynamic references until the next dictionary fragment) as long

as all prior fragments have been collected.

Once rebuilt, the dictionary can be thought of as a lookup table (Figure 6.2c). Each entry in

the table contains a log message’s static information and is indexed by a log message’s unique log

identifier (encoded with the dynamic log information). With the dictionary, the post-processor can

decode the dynamic information and form the complete message.
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Log File

Header

Dictionary1

….

Dictionary2

….

Dictionary3

…

In-Memory Representation

Dictionary1

Dictionary2

Dictionary3

id Source Linenum Severity Format String

0 “main.cc” 5 WARN “Loop Index is %d”

1 “main.cc” 6 NOTICE “Loop Finished”

id Source Linenum Severity Format String

100 “lib.cc” 828 ERROR “Task %d failed”

…. …. … … …

id Source Linenum Severity Format String

2 “main.h” 42 NOTICE “Utilization at %0.2lf ”

… … … … …

99 “test.cc” 1234 WARN “Test message”

Reconstructed
Dictionary

(a) (b) (c)

Figure 6.2: Shows how the post-processor (a) collects the dictionary fragments in a log file
and (b) concatenates them together to form the reconstructed dictionary. (c) shows the contents
of the dictionary fragments from (a) and (b). Note how the id’s (unique log identifiers) for the
dictionary entries in the fragments are sequential; allowing them to be trivially concatenated
together to form the full dictionary.

6.1.2 Reconstructing the Log Message

The goal of the post-processor is to reconstruct complete messages for the user or another appli-

cation to consume. It can either produce the full, human-readable log messages that other logging

platforms produce (similar to what’s shown in the bottom left of Figure 6.1) or present the data via

an application programming interface. To perform either task however, it must reunite the log state-

ment’s dynamic information with its static information. The following section will describe how

this is done in the context of producing the full, human-readable log statement.

The encoding NanoLog uses for the dynamic portion of the log message is extremely minimal.

It only consists of an 8-byte timestamp, a 4-byte unique log identifier, and the dynamic arguments

encoded in their native C++ in-memory representations without delimiters or headers in between

the arguments1 (Figure 6.1).

What’s missing from this representation is the log message’s context information and how to

parse/format the dynamic arguments. The context information is typically needed to produce the

1In practice, compression is applied to both the header and the dynamic arguments, however this detail is omitted in
this discussion. See Chapter 8 for more details on compression.
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final, human-readable log message and consists of a log statement’s filename, line number, and

severity. It helps to orient the user in identifying the log statements in the source file, and is sim-

ply missing in this representation. Another piece of information that’s missing is how to parse the

dynamic arguments. Since the arguments are encoded without delimiters or headers, it’s impossi-

ble to know where one argument ends and another begins without additional information. Finally,

the representation is missing the format string, which tells the post-processor how to produce the

full-human readable message.

Fortunately, the missing information can be found by dereferencing the dictionary of static in-

formation built in the previous section. By using the unique log identifier encoded in the dynamic

portion of the log message as an index, post-processor can retrieve the log statement’s context in-

formation and format string from the dictionary. The context information can be used to format the

context portion of the human-readable string, and the format string both informs the post-processor

on how to parse the dynamic arguments and produce the full-human readable message. More specif-

ically, the post-processor uses the ordering of the format specifiers encoded in the format string [6]

to infer the type and order of the dynamic arguments. For example, a format string containing "%d"

such as in Figure 6.1 indicates that there is exactly one integer-width argument to parse and format.

Another example is "%ld %0.2lf %s %p", which indicates that there is a long, float, string, pointer

encoded in the dynamic arguments in that order. The post-processor can then use this information

parse the arguments and read them into memory.

At this point, the post-processor has all the information it needs to reform the original log state-

ment. It has the static log information (via the dictionary), the time of invocation, and a means

of parsing the dynamic arguments into in-memory representations. If the goal is to reproduce a

human-readable log message, then the system would convert the time of invocation into a “YYYY-

MM-DD HH:MM:SS.ns” format, output the context information (i.e. the filename, line number

severity), parse the dynamic arguments according to the specifiers in the format string, and pass the

arguments along with the format string into a final printf() statement to form the full message. If

the goal is to expose the log message via an API for another application to consume, then it would

buffer the static and dynamic information into a data structure and allow the application to query

the arguments (more on this later). The reconstruction of the log message is considered complete at

this point.

To summarize, the full order of operations to reform a single log statement is as follows: The

post-processor first starts reading the log file from the beginning. When it encounters a dictionary
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fragment, it reads the dictionary fragment into memory and stores it as an array of dictionary en-

tries. If more fragments are encountered, their entries are trivially append to the array of dictionary

entries. This forms the working dictionary. When the post-processor encounters a log statement, it

uses the unique log identifier as a key into the dictionary and retrieves the static information. The

format string from the static information is then used to infer the type and ordering of the dynamic

arguments, and the post-processor reads the arguments into an in-memory data structure. At this

point, the post-processor has all the information it needs to reconstruct the original log message and

can either output it in a human-readable format or present them to another application via an API.

6.1.3 Amortizing the Cost of Parsing the Format String

The operation of parsing the format string to interpret the dynamic arguments is amortized in the

NanoLog post-processor. The design in the previous section implies that the format string needs to

be repeatedly parsed in order to infer the order and types of the dynamic arguments. This operation

is expensive as the parsing code contains many branches and iterates through every character in

the format string. Fortunately, since the format strings never change in the NanoLog system, it is

sufficient to parse the format string once and build an auxiliary structure to describe the order and

type information. This data structure can then be used in lieu of the format string to interpret the

dynamic arguments.

The format specifiers in the format string are key to understanding types and order of the

dynamic arguments. They follow the prototype of “%[flags][width][.precision][length]specifier”

where the length and specifier together indicate the type of the dynamic argument to be used [6].

When placed in a format string, the sequence of specifiers determines the types and order of the

dynamic arguments. For example, “%d %10.2s %lf” indicates that the dynamic arguments should

encode an int, char*, and double in that order. Thus to eliminate the repetitive parsing of the for-

mat string, the post-processor needs to represent the information encoded in the specifier in a more

machine-friendly way.

The post-processor amortizes the cost of parsing the format string by building an auxiliary

structure to describe it. It splits format strings into smaller format fragments that contain at most

one format specifier each and tags each fragment with an enumeration describing the type of the

dynamic argument expected by this fragment. The concatenation of all the fragments results in

the original format string, and the order of the fragments in the array reflects the order of format

specifiers in the original format string. This array of fragments is then saved into the dictionary
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alongside the context information and format string. When parsing the dynamic arguments, the post-

processor can then simply lookup this data structure in the dictionary, iterate through the fragments,

and use the enumerations to determine the types of the arguments encoded. This avoids the need to

repeatedly parse the format string.

One detail omitted above is the specification of dynamic width and precision parameters in

the format specifiers. The NanoLog API is modeled after the printf API [6], and the printf API

allows users to specify asterisks ("*") for the width and precision parameters in the format specifier.

In these situations, the user is indicating that an additional dynamic value for the width and/or

precision is desired and will be passed in via the arguments list before the actual format argument.

For example, a specifier of "%*.*lf" indicates that two integers and a double will be passed into the

argument list; the first two integers are the dynamic width and precision parameters and the double

is the actual argument. To account for these extra arguments, each format fragment additionally

includes two booleans to indicate whether dynamic width and/or precision values have been used.

If so, the post-processor will read back the two integers before reading the argument itself.

In summary, the post-processor splits each format string in the system into an array of format

fragments. Each fragment contains a substring of the original format string with at most one format

specifier and is tagged with an enumeration describing the type of argument expected and two

booleans to indicate dynamic width/precision. When processing a dynamic log statement, the post-

processor will lookup this array in the dictionary, and iterate through the fragments to determine

the order and type of the arguments (along with the need for additional dynamic width/precision

values). This amortizes the cost of parsing the format string to just once per dictionary entry.

6.1.4 Sorting the Log Messages

The sections above describe how the post-processor reconstructs a single log message in a log file.

This section describe how the post-processor ensures proper chronological order before outputting

the log statements.

Simply processing the log statements in the order they appear in the log file will generally not

produce a time-ordered output in the NanoLog system2. Recall from Chapter 5 that the runtime

background thread does not output the log messages in chronological order at runtime. Instead,

the runtime simply iterates through the staging buffers in round-robin order and attempts to output

2Unless the application only had a single active logging thread at runtime. In this case, all messages will be naturally
ordered since they’re only produced by one thread.
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Figure 6.3: NanoLog outputs buffer extents in rounds. (a) shows the runtime configuration and
(b) shows the resulting log file. In (a), each row represents a different staging buffer (1, 2, 3)
storing the log data produced by a particular thread and the horizontal axis represents time.
Labels T1 and T3 indicate times when the background thread starts reading log data from the
staging buffers and encoding them into buffer extents (i.e. they indicate the start of an output
round), and labels T2 and T4 correspond to when the background finishes an output round
through all the staging buffers for T1 and T3 respectively. (b) shows the resulting log file with
three rounds of output. In between the times when the background thread is active ([T1, T2] and
[T3, T4]), log messages produced by the logging threads can appear either in the current output
round (N) or next round (N+1). These messages are highlighted via hashes in blue, yellow, and
green to indicate their uncertainty in (a) and (b). Finally, the jagged red lines that cuts through
(a) indicate the actual time position when the background thread stopped reading a particular
staging buffer before moving onto the next. These red lines delineate when an output round
starts and ends for each buffer. They are represented as horizontal lines in (b) to indicate the
limits of the “round” labels.
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the entire contents of a staging buffer into a buffer extent before moving onto the next. When the

background thread completes a transit through all the staging buffers, we call this an output round

and the runtime marks when this logically occurs with a bit in the buffer extent header. This results

in a fragmented log file similar Figure 6.3b, where log messages are time-ordered within a buffer

extent, but not between extents. If the post-processor were to process the log statements in file

order, it would see chunks of log messages that are ordered relative to each other, but jumps in time

between log messages whenever a new buffer extent is encountered.

A strawman approach to ordering the log statements would be to read all the buffer extents

into memory and perform a sort operation between all the messages. This solution can be improved

by treating the problem as an external sort problem [18]. Conceptually, the concatenation of all

buffer extents produced by a single runtime thread forms a sorted sublist of log messages in the

system. This is trivially true since all the log messages are produced by the same thread. Thus, the

post-processor can buffer at least one buffer extent per runtime thread at a time and perform the

merge operation from external sort. Whenever a buffer extent is emptied of log messages, the post-

processor would scan ahead in the log file, find the next extent belonging to the same thread, buffer

it, and continue merging.

However, both strawman solutions suffer from unbounded buffering or unbounded scanning

through the file. The first solution requires the entire log file to be read into memory, and the second

solution requires the post-processor to always be able to find the “next” buffer extent for a particular

runtime thread. If a thread is quiescent for a long period of time, the “next” buffer extent may be

very far in the file. This would require the post-processor to scan arbitrarily far in the log file to find

the “next” buffer extent.

Fortunately, we can bound the amount of buffering to just two rounds of output for the merge

sort technique. To understand why, let us consider how the runtime operates. At runtime, each

logging thread is allowed to produce log messages in parallel and store them in staging buffers

independent of each other. At some point in time, say T1 from Figure 6.3, the background thread

will start an output round, read the buffers one-by-one, and write their complete contents to disk as

buffer extents. Since the buffer extents within a output round originate from different threads, they

must be buffered and merge sorted. This explains why buffering at least one round is necessary. At

some point in the future, say T2, the background thread will finish encoding the output round and go

to sleep. Now since the logging threads are allowed to add new log messages while the background

thread is reading the contents of the staging buffer, there is a period of uncertainty between T1 and

T2, depending on which staging buffer the background thread is currently processing, where a log
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message from that time period can either appear in the current round (round a in Figure 6.3) or the

next round (round b). Thus, the post-processor must buffer at least two output rounds and perform

merge-sort. The reason why a third round (c) is not required, is because the second round (b) must

have started encoding at some time T3 > T2, which means that all the log data generated during the

uncertainty period (T1 ≤ x ≤ T2) will be captured in that second round. Thus, the post-processor

only needs to buffer at least two rounds to perform a successful merge sort.

Admittedly, there can be one extremely rare scenario in which two rounds of output may not

be sufficient. This situation occurs when a thread executing record()is preempted after it reads the

log message’s timestamp counter, but before it finishes saving the arguments to the staging buffer.

In this case, it’s possible for this thread to pause for greater than two rounds of output before finally

persisting the rest of the log message to the staging buffer and allowing the background thread to

process it. This could result in the background thread outputting a log message with a timestamp

significantly earlier than any log other log message in the previous output round. However, this

scenario is extremely unlikely in practice for two reasons. First, the amount of code between reading

the timestamp and persisting the arguments is extremely short and contains no branches, so it is

unlikely to be preempted at this point. Second, the problem can only occur if the thread is preempted

and stays descheduled for more than two disk round-trips, two periods of NanoLog background

thread wakeups, and two rounds of compression. This is a long period of time that the thread is

unlikely to stay descheduled for. I have inserted assertions in the post-processor that will trigger and

throw an error if this scenario is encountered. However despite multiplexing thousands of threads

onto 4-8 core machines, the assertions have never triggered. So in practice, the event occurs so rarely

that buffering two output rounds is sufficient3.

6.2 Directly Consuming the Binary Log

One of the most interesting aspects of the post-processor is the promise it holds for faster analytics.

Most analytics engines have to gather human-readable logs, parse the log messages into a binary

format, and then compute on the data. Almost all the time is spent reading and parsing the log file.

Directly consuming the NanoLog log file can significantly speed this operation in two ways: first,

it saves I/O by consuming a smaller, compressed log file, and second, it forgoes the expensive for-

matting and ASCII parsing of a traditional analytics engine. Taken together, it’s possible to perform

3Although the GitHub implementation of the post-processor [70] buffers three output rounds to be additionally safe.
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Decoder decoder;
decoder.open("logFile");

int count = 0;
int sum = 0;

// Assume there is exactly one log message that matches our search
int targetMsgId = decoder.getLogIdsContainingSubstring("Student \%d scored \%d points out

of 100.")[0];

LogMessage msg;
while(getNextLogStatement(msg)) {

if (msg.getLogId() == targetMsgId) {
int score = msg.get<int>(2);
sum += score;
++count;

}
}

printf("The average score was %d", sum/count);

Figure 6.4: Sample application using the NanoLog aggregation API to perform a mean aggre-
gation on the second argument of log messages starting with “Student %d scored %d points out
of 100.” One simplification made in the code above is the getLogIdsContainingSubstring()
function; it does not exist in the implementation of NanoLog API (as of the writing of this dis-
sertation). Instead, there exists an equivalent CLI tool to dump all the log identifiers containing
a certain substring into the terminal, and the user is expected to manually inspect the list and
assign targetMsgId to the correct value in their application.

aggregations 1-2 orders of magnitude faster than conventional methods (See Chapter 9: Evaluation).

As a proof of concept, the NanoLog post-processor offers an analytics API to consume log files in

a binary format.

The post-processor aggregation API allows users to iterate through the log file message by

message and query the static and dynamic arguments. Figure 6.4 show a sample application using

the post-processor’s API to perform a mean aggregation on the second argument of a specific log

statement in the log file. The user first creates a Decoder object, open()’s the file, and iterates

through the log file via getNextLogStatement(). While the post-processor is able to get a new log

statement, the user is given a LogMessage object from which they can query the unique log identifier

and the dynamic arguments via getLogId() and template<typename T> T get() respectively.

The get function is templated as the arguments can have any basic type and C++ disallows functions

with multiple return types in any other circumstance. This does mean the user must know the type

of the argument they want to access. The user can also query the log message’s timestamp, filename,

line number, and severity of the log statement via separate functions, but that is not shown in the
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“Pure” Preprocessor inflate() API
1 inline void
2 inflate(char *in, FILE *outputFd void (*aggregate)(...))
3 {
4 // Static info directly embedded in source
5 const char *fileName = "TableManager.cc"
6 const int lineNum = 1031;
7 const char *logLevel = formatLogLevel(NOTICE);
8 const char *fmtString = "Creating table ’%s’ with id %d";
9

10 // Dynamic information extraction
11 int id = unpack<int>(in);
12 const char *time = formatTime(unpackTime(in));
13 const char *arg1 = unpackString(in);
14 int arg2 = unpack<int>(in);
15
16 ...
17
18 // At this point we have all information, can either
19 // print the log message or call an aggregation method.
20 if (aggregate != NULL) {
21 *aggregate(fmtString, arg1, arg2);
22 } else {
23 fprintf(outputFd, "%s %s:%d %s: ", time, fileName, lineNum, logLevel);
24 fprintf(outputFd, fmtString, arg1, arg2);
25 }
26 }

Figure 6.5: Sample inflate()code generated by “Pure” Preprocessor NanoLog for the log
statement "Creating table ’%s’ with id %d" in file “TableManager.cc” on line 1031. The
function in-lines the static information and the extraction of the dynamic information directly
in code, and it passes the information into an aggregate() function. The function accepts the
same parameters as the original NANO LOG statement.

example.

Overall, the API is fairly rudimentary at the moment. It primarily serves as a proof-of-concept

to show the performance gains of such an API. Future users of NanoLog are expected to implement

a more expressive system.

6.3 “Pure” Preprocessor NanoLog

In this chapter thus far, I have only discussed an implementation of the post-processor that uses a

dictionary encoded in the log file (common to both C++17 and Preprocessor NanoLog and used

by default). There exists another version of the post-processor that avoids encoding a dictionary in

the log file altogether. This version of the post-processor is specific to preprocessor NanoLog only,
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and it uses the front-end to compile the dictionary directly into the post-processor application. This

version of the post-processor is now deprecated as it’s more difficult to maintain, however it will be

discussed here for posterity.

This version of the post-processor relies on the preprocessor to generate and inject the functions

necessary to interpret the dynamic log statements directly into the post-processor application. For

each log statement in the source, the preprocessor generates an inflate()function that both reads

back the dynamic data encoded in the binary log file and formats the final log message. The static

information that’s normally encoded in the dictionary is instead embedded as logic directly in the

function itself. For example in Figure 6.5, the context information (such as the filename, line num-

ber, severity, and format string) is directly inserted into the source as local variables and the logic

to parse and format each dynamic argument is in-lined. The inflate()functions are then placed

into an array and compiled into the post-processor. The post-processor can then use the unique log

identifier encoded in each log statement as a lookup index to dereference the array and invoke the

correct inflate()function per log message.

This design leads to a more performant post-processor. The logic to interpret the dynamic data is

directly inlined into the sources. It does not require the post-processor to reconstruct the dictionary,

nor parse the format string to interpret the dynamic arguments. Instead, everything is encoded as

straight, in-lined logic. This both reduces the number of branching statements to be executed at

post-execution (as parsing is no longer required), and allows the compiler to more aggressively

optimize the function (as the functions are straight, in-lined code).

Furthermore, this design changes the API to consume the log messages programatically. Instead

of being handed a LogMessage object to retrieve the static/dynamic log data, the user is expected to

pass an aggregation function pointer to the inflate()function. This function is invoked after all the

dynamic arguments have been parsed (as shown near the bottom of Figure 6.5) and is expected to

accept the same arguments in the same order as the original NANO LOG statement. Note, the other

static information is retrieved outside the inflate()function via a dictionary lookup table, and the

static information embedded in the function is for the fprintf invocation.

However, this version of the post-processor is deprecated4 due to two usability issues. First, it

does not work with the C++17 implementation of NanoLog, as it relies on a preprocessor to inject

logic into the post-processor. Second, this design requires users to maintain specific versions of

the post-processor for specific versions of the application. Since the dictionary of information is

4Though it is still accessible on the NanoLog GitHub page [70].
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locked into the post-processor at compile-time, only a specific post-processor can be used with a

specific compilation of application. If the post-processor is lost or the wrong one is used, the log

file becomes indecipherable. Thus, the dictionary variant of the post-processor is preferred as it is

compatible with C++17 NanoLog and allows users to use a generic post-processor for all NanoLog

applications.

6.4 Summary

The NanoLog post-processor is the final component in the NanoLog pipeline. It consumes the bi-

nary log files produced by the runtime application and presents the log data for either human or

robot consumption. In operation, it rebuilds the dictionary of static log information, parses the dy-

namic log data, and either formats the final message in a human-readable format or presents it via

an aggregation API. The post-processor optimizes the parsing of the dynamic log data by build-

ing an auxiliary data structure to describe the format specifiers in format string, and it leverages

how the runtime encodes log data to limit the amount of buffering used for sorting. Finally, the

post-processor offers an aggregation API to consume the log messages programatically, and it can

optionally have the dictionary compiled directly into itself for performance in “pure” preprocessor

NanoLog.



Chapter 7

The Staging Buffers: A Cache Conscious
Design

The NanoLog staging buffers exist as part of the runtime component (Chapter 5) and serve to buffer

application log data before consumption by the background I/O thread. Due to their position in the

NanoLog system, the design of the staging buffers must be simultaneously low latency to support

the logging threads’ nanosecond scale operations and high throughput to support optimized, batched

I/O by the background thread.

In this chapter, I will discuss the various techniques and optimizations used by the staging

buffers to achieve nanosecond scale operations. This discussion will start with a strawman imple-

mentation that suffers micro- to millisecond delays then improve it in several steps to an implemen-

tation that can provide operations on the scale of single digit nanoseconds.

7.1 The Problem/Setup

The core function of the staging buffers is to decouple the logging threads’ low-latency operations

from the high-latency ones, such as disk I/O. The NanoLog system is optimized to produce ex-

tremely minimal log data at extremely low latency. The messages are on the order of tens of bytes

and the log operation can complete in under ten nanoseconds per message. Disk devices, on the

other hand, are optimized for large I/O. Disk drives take on the order of microseconds to millisec-

onds to seek and only achieve their highest throughput with large I/O’s. Thus, there is a mismatch in

performance. If each logging thread were to directly write log data to disk with each log invocation,

then each operation would have to wait on the order of milliseconds for disk writes to complete. To

73
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bridge this performance gap, NanoLog uses buffering.

The NanoLog system uses in-memory buffers, called staging buffers, and a background thread to

collect many small log messages and group them into one large I/O. In this design, each application

thread writes the log data to an in-memory buffer, and a background thread will poll the buffer,

collect the log entries, and write them in large batches to disk. This design amortizes the cost of the

disk seek operation and effectively allows the disk device to write at a higher speed. Furthermore,

the use of in-memory buffers allows the logging thread to perform very lean operations; it only needs

to push log data into a queue before returning. The overheads of organizing the log data, applying

compression, and performing the disk I/O are all offloaded to the background thread. Together, these

two mechanisms can allow the logging thread to operate in the nanosecond scale.

Since the in-memory buffers directly interact with the application threads, the implementation

details of the buffers directly affects logging performance as seen by the user. The rest of this chapter

will describe the techniques used by NanoLog’s staging buffers to minimize log latency.

7.2 The Strawman: A Monitor-Style Queue

The simplest design for the buffer is a single, monitor-style queue. In this implementation, there is

a centralized queue that all threads use, and the queue is protected with a single lock that controls

access to the queue. Each application logging thread and the background thread must acquire the

lock to read and write data to the buffer, and they must release the lock after use.

The benefit of this implementation is that is simple. Most modern programming languages in-

clude locking mechanisms and queue-like data structures. Thus to implement this version of the

staging buffers, the implementer only needs to import the system libraries for the lock and queue,

and instantiate global references for the logging and background threads to use.

This implementation also simplifies the runtime and post-processor. Since all the logging opera-

tions are serialized with one another, the log messages produced are naturally ordered by time. This

simplifies the runtime and the post-processor as neither will need to sort the log messages before

consumption by the user (more on this in Chapter 6: Post-Processor).

The downsides to such a simple implementation are contention, serialized access, and locking

delay. In this design, all logging threads must serialize access to a single data structure. This limits

the maximum performance of the system to that of a single logging thread, even when multiple

cores are available. Additionally, the monitor-style lock implies that the background thread cannot

operate in parallel with the logging threads; it cannot consume log data already written in the buffer
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while the logging threads add new data. This further slows down the logging threads as they must

not only wait for each other, but also the background thread to complete its operations.

Furthermore, the locking operations provided by most languages are not appropriate for NanoLog’s

nanosecond scale operations. The log operation in the NanoLog system can complete in as little as

seven nanoseconds, but a lock operation can take several times longer as it requires explicit and

excessive cache synchronization. Even worse, certain implementations of language-level locks can

put waiting threads to sleep. This can cause the logging threads to experience milliseconds of delay

as the operating system reschedules the thread, even though the logging operation only requires

nanoseconds to complete. Thus, locks can artificially slow down the system by several orders of

magnitude.

7.3 Allocating Private Buffers

NanoLog’s staging buffers attempt to avoid the problems associated with the strawman design. It

allocates a separate buffer per logging thread, avoids the use of locks, and allows for concurrent

access to the data structure between the logging and background threads.

NanoLog allocates a private staging buffer per logging thread instead of sharing a global data

structure between the threads. This design avoids the need to synchronize access across logging

threads and allows them to place log data into the buffers in parallel. The buffers are allocated either

when the thread invokes a logging statement for the first time, or when the application explicitly

invokes the NanoLog::preallocate() function1. The buffers are destroyed after the associated

thread exits and all buffered log statements have been written to disk. The benefit of this design is

that it allows for concurrent logging operations, but the downsides are that it requires more memory

allocations/deallocations (at most one per thread creation/destruction) and the log messages are no

longer ordered between threads.

One problem introduced with this design is that the natural, chronological ordering of the log

statements is lost. In the strawman design, since all threads are serialized to a global queue, all log

messages are naturally ordered by time. In this design, the logging threads are allowed to write log

statements in parallel into separate buffers. Each buffer will maintain a chronological ordering of

log statements, but messages between buffers are not necessarily ordered. Thus, additional sorting

1This function is to allow the user to control when the allocation occurs to prevent it from overlapping with perfor-
mance critical log statements.
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work needs to be performed at some point to re-order the log messages. In NanoLog, this problem

is solved by deferring sorting to the post-processor. This is discussed in further detail in Chapter 6.

7.4 Lock-Free and Concurrent

An issue I have not addressed so far is that even with private staging buffers, the logging threads

can still contend with the background thread. In particular, the background thread could lock the

data structure and prevent the logging thread from placing data, even when there is free space in the

buffer. Thus, the NanoLog staging buffers are also implemented as lock-free and concurrent data

structures.

The NanoLog staging buffers are also lock-free and allow for concurrent operations. In this de-

sign, a logging thread is allowed to place data into its respective staging buffer while the background

thread is reading data already written to it. This design improves throughput as the logging thread is

no longer stalled by the background thread and vice versa. To achieve this result, the staging buffers

carefully order memory operations to ensure that invalid data is never read, and they segregate state

variables so that some are only written to by the logging thread and others are only written to by the

background thread.

The NanoLog staging buffers allow for lock-less and concurrent reads/writes to the buffer by

separating “ownership” of the internal variables such that there is at most one writer per variable.

More specifically, each staging buffer is implemented as a circular queue with two variables mark-

ing the position where data can be added (producerPos) and another where data can be read from

(consumerPos). Only the logging thread (the producer) can modify the producerPos, and only the

NanoLog background thread (the consumer) can modify the consumerPos. However, both are free

to read from either variable.

To understand how this design can allow for safe and concurrent reads/writes to the buffer with-

out locks, consider the operation of a producer/logging thread in Figure 7.1(a-c). To add data to the

queue, the producer thread checks that there is enough free space by reading both the producerPos

and consumerPos and subtracting them to find the size of the free space region (the non-shaded

regions in the figures). If there’s enough space, the producer then copies data into the producer-

Pos position, and bumps the producerPos pointer. If there’s not, then it returns with an error and

repeatedly retries. To read data from the buffer, the background thread performs a similar opera-

tion; it queries the consumable space, reads the data immediately after consumerPos and bumps the

consumerPos pointer.
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Figure 7.1: Portions (a-c) show the operations required to insert new data into a staging buffer
and (d-e) shows what happens when stale values are used. (a) The staging buffer performs a
“Free Space” calculation by taking the difference between the consumer position (consumer-
Pos) and producer position (producerPos). (b) If there is enough space, the new data item is
copied into the buffer at the producer position. (c) After the data is copied, the producer posi-
tion is updated to after the new data added. (d) If a producer uses a stale value of consumerPos
to calculate the free space (as could happen if the consumer concurrently consumed data and
updated the pointer), then it will conservatively report less free space than the actual free space.
(e) If a consumer uses a stale value of producerPos to calculate the consumable space, it will
also conservatively report less space. In both cases, it’s safe to use the stale values to determine
usable space, as they will both underestimate the true value (and not overwrite/overread data).
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The important thing to notice is that the producer and consumer can operate concurrently in

this design without causing corruption. Consider the producer in Figure 7.1(d). To calculate free

space, it must query both the producerPos and consumerPos variables. The producer will always

have an up-to-date value for producerPos, since it “owns” the variable, and only the consumerPos

may be old, or outdated, as the consumer may have consumed space and written to consumerPos

since the calculation started. However, it is safe for the producer to use the outdated consumerPos.

Since “free space” can only increase with time (the consumerPos moves to the right in the figure),

using an old value would only at worse underestimate the free space. This estimate, “old free space”

in Figure 7.1(d), is a subset of the true “free space,” so it’s guaranteed to be truly free and safe to

use. Thus, the producer can effectively ignore the fact that consumerPos may be updated by the

consumer, since it is safe to use an older value. A similar argument can be made with the consumer

and its usage of producerPos variable to determine the “consumable bytes” (Figure 7.1(e)).

Additionally, the memory operations are carefully ordered in the staging buffers to prevent in-

consistent reads. In the case of the logging thread, it will place data into the buffer (with a store

fence) before bumping the producerPos. This ordering of operations prevents the background thread

from reading the log data before it is completely written, as the producerPos variable used in the

space calculation would not be updated until the writes complete. Similarly, the background thread

reads the log data (with a load fence) before modifying the consumerPos. This prevents the logging

thread from overwriting data that has not yet been completely read by the background thread. And

lastly, since only the logging thread can write to the buffer/producerPos and the background thread

can only write to the consumerPos, there are no conflicting writes to the same variables2.

One simplification made to the discussion above is the omission of an endOfRecordedSpace

pointer. The pointer is owned by the logging thread/producer and is used to mark the last valid byte

in the buffer. This pointer is needed when the producer runs out of space to store a complete log

entry at the end of the buffer and needs to wrap around to the beginning. When this happens, the

logging thread will mark the endOfRecordedSpace and reset producerPos to the beginning of the

buffer to write the new log entry. The background thread can then use the pointer to detect when it

has reached the end of valid data in the buffer and also needs to wrap around to continue reading

data. This technique discards a bit of space at the end of the buffer, but it allows log statements

to be written contiguously, which simplifies the log processing logic later. Again, care is taken to

ensure that the endOfRecordedSpace pointer is written (with a store fence) before the producerPos

2Individual reads and writes to single-word values are assumed to be atomic.
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is updated to ensure that the background thread will either see a stale value of producerPos and

underestimate the space, or an up-to-date value of endOfRecordedSpace and wrap around in its

space calculations.

Overall, the lock-less design of the staging buffers allows for concurrent and parallel access

to the staging buffers. This increases the overall throughput of the system as both the logging and

background threads can proceed in parallel (assuming multiple cores). Additionally, it lowers the log

latency for the logging threads; they no longer have to wait for the background thread to complete

its operations, and they do not need to acquire/release a lock for every operation.

7.5 Memoized Space Calculations

The current design induces excessive cache misses in highly active systems. Every read/write oper-

ation requires the logging and background threads to query both the consumerPos and producerPos

variables to calculate the amount of space available. In a highly actively system, both variables

would be constantly updated by the two threads as data is produced/consumed. Thus, a cache miss

will be induced whenever one thread attempts reads the other’s position. This cache miss can slow

the operation by tens of nanoseconds; this is several times higher than the cost of logging. Even

worse, it is possible for the logging and background threads to operate in lock step, causing cache

misses for every operation as the threads repeatedly read and update the position variables. Fortu-

nately, these cache misses can be mitigated through memoization.

The solution to this problem is to memoize the space calculations. More specifically, the pro-

ducer and consumer will each save a private space counter indicating the amount of free/consumable

space available in the buffer. They will then read and deduct from their private space counters for

every operation until the variable is exhausted. Only when the space counter is exhausted would the

producer or consumer take a cache miss and read both variables to update the private space counter.

This strategy is equivalent to the producer saving the “Free Space” value from Figure 7.1a and de-

ducting from it until the value reaches zero. Using this strategy reduces the number of cache misses

and amortizes the cost of the space calculation.

This optimization is safe to perform for the same reason why utilizing a stale value for the

producer/consumer positions is safe. We reasoned earlier that it is safe for the producer to read

a stale value of the consumerPos for its free space calculation, because the free space can only

grow with time. Saving a copy of the free space and deducting from it is equivalent to intentionally

freezing the consumerPos to a specific stale value. The free space calculated from it is guaranteed
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to be less than or equal to the actual free space. Similarly, the amount of free space represented

by the space counter is also guaranteed to be less than or equal to the actual free space, so using

this value to calculate usable space is safe. An equivalent argument exists for the consumer and the

producerPos pointer.

7.6 Mitigating False Sharing

The current design described so far can suffer from false sharing. False sharing occurs when multiple

variables share the same cache line, and threads modifying independent variables within that cache

line cause cache invalidations for the other threads. This is called “false sharing” because the threads

may not actually be sharing the variables, but nonetheless cause cache invalidations. False sharing

applies to the current design, because although the consumer and producer threads can now operate

independently with their memoized space counters, the variables may still share the same cache

line. As a result, whenever one thread updates their private space counter, it may cause a cache

invalidation to occur for the other.

NanoLog mitigates this style of false sharing by utilizing cache line spacers. It places dummy

arrays the size of a cache line in between variables that are exclusively written to by the producer

and variables that are exclusively written to by the consumer. This effectively pushes the two sets

of variables apart to separate cache lines and helps reduce false sharing. With this optimization, the

logging and background threads write to their private variables without inducing superfluous cache

invalidations for the other.

7.7 Polling and Avoiding Signals

Another optimization NanoLog utilizes is polling instead of signaling to notify the background

thread of log data. One challenge the logging threads have is how to notify the background thread

there’s log data in one of the buffers. The traditional solution to this problem is to use C++ condition

variables [2]. In this design, the logging threads would invoke condition_variable::notify()

after every log message. This call notifies the background thread that there is log data and can wake

up a potentially sleeping background thread. However, condition variables are too expensive for

NanoLog. The notify operation takes on the order of 14 nanoseconds in my measurements, which

is already double the target 7ns for logging. As a result, the logging threads simply place data into

the staging buffers and do nothing. It relies on the background thread to round-robin between the
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Figure 7.2: The alternate designs of staging buffers (a-b) and their potential memory layout
when multiple buffers are allocated (c-d). The blue sections represent staging buffer metadata,
tan represents the log storage area, and white indicates unrelated memory areas. (a) Shows the
design of a staging buffer where the metadata and bulk log storage are allocated adjacent to
each other. (b) Shows the design where the metadata and bulk storage are allocated separately
and the metadata has a pointer to the bulk storage. Portions (c-d) show the potential memory
layout when multiple staging buffers of type (a-b) are allocated.

buffers and find the log data itself.

7.8 Coalesced Metadata

A final avenue for improvement is reducing the cache misses for the background thread. The cur-

rent design of NanoLog requires the background thread to round-robin between the staging buffers

and read their metadata (such as the position pointers or memoized space variables) to determine

if there’s log data to consume. Each metadata read can potentially incur a cache miss. However,

through careful arrangement of the staging buffer’s metadata, the cache misses can be mitigated.

The key to mitigating the cache misses is to store the metadata for multiple staging buffers in

a contiguous chunk of memory3. When I initially designed the staging buffers, I had allocated the

metadata to be contiguous with the log storage area for each staging buffer as in Figure 7.2a. This

design meant that the metadata for each consecutively allocated staging buffer would be separated

by at least the size of the log storage area (Figure 7.2c). This in turn resulted in slower performance

3The “metadata” in this case includes the producerPos/consumerPos pointers, the memoized space counters, and the
cache line spacers that separate the consumer and producer variables.
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for the background thread as the processor’s prefetcher and speculative execution engine would not

properly predict the next metadata to fetch. The optimization I came up with was to allocate the

metadata separate from the staging buffer’s log storage area and store the metadata from multiple

staging buffers in a contiguous chunk of memory (Figure 7.2b,d). This allowed the background

thread to poll the staging buffers more efficiently as the processor was able to execute speculatively

and prefetch the next metadata. Overall, this reduced the cost to poll each buffer by about a cache

miss.

7.9 Summary

The staging buffers employ a series of techniques to enable low-latency and high throughput oper-

ation. They are lock-free and allocated per thread to allow for concurrent logging and background

thread operations. Shared variables are separated onto separate cache lines to avoid false sharing,

and space counters are utilized to minimize references to shared variables. Finally, the staging

buffers’ metadata is allocated contiguously to mitigate cache misses for the background thread’s

polling operations.

Overall, these optimizations allow the staging buffers to operate in the range of single digit

nanoseconds vs. the micro- to milliseconds incurred by a centralized, monitor-style queue.



Chapter 8

Compression

When I designed NanoLog, I knew that reducing I/O would play a large part in enabling nanosec-

ond scale logging. After formatting, I/O is the second most expensive operation in a logging system.

When I started the project, 125MB/s disks and gigabit networks were common, so outputting a typ-

ical 100-byte message would consume at least 800 nanoseconds of bandwidth1. Thus, NanoLog

employs two strategies to deal with the I/O bottleneck. The first is that it utilizes a dictionary to

deduplicate static, non-changing information in the log file, and the second is applying variable

length encoding as a form of compression on the data remaining in the log file. The former transfor-

mation is described in detail in Chapter 4 and leaves the log file with only binary values to represent

log statements. The second warrants more discussion and will be the main focus of this chapter.

In this chapter, I will describe the structure of the NanoLog log file to motivate the compres-

sion algorithm, explain why traditional dictionary-based compression schemes are inappropriate for

NanoLog, and explain why variable length integer encodings are more performant. Finally, I will

describe NanoLog’s compression algorithm and conclude with some benchmarks and limitations.

8.1 Background

NanoLog uses a variable-length integer representation in the log file as the primary form of com-

pression. This type of compression is most appropriate for the types of data that typically appear

in a NanoLog log file and offers the best performance for modern I/O devices when compared to

traditional, dictionary-based compression schemes.

1This is the best-case assuming large, batched I/O.
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8.1.1 The Structure of Log Data

To understand the motivation behind NanoLog’s compression strategy, we first have to understand

the types of of data that NanoLog encounters.

The predominant data type in the NanoLog system is the integer type. Recall from Chapter 5 that

the NanoLog log file primarily consists of log messages, which contain a 64-bit timestamp delta,

a 32-bit identifier, and the message’s dynamic arguments. This means that a log statement with

no arguments is entirely represented by just two integers. Furthermore, integers are also the most

common dynamic argument type. This claim is based on both personal observation and a survey of

several popular, open-source projects that use printf-like statements (see Section 8.3.1). These two

facts make integers the most common data type found in NanoLog log files.

Furthermore, the integers encountered by NanoLog tend to be small relative to their type defined

container size. For example, NanoLog allocates 32-bits for the message identifiers, but most systems

have fewer than 16,000 unique log messages. This means the identifiers could be represented in as

few as 1-2 bytes, and a similar argument can be made about the 8-byte timestamp deltas between

log messages. To be explicit, the NanoLog system allocates 8 bytes to store the absolute worst case

time, but deltas less than 15ms can be represented in 3 or fewer bytes. Additionally, my experience

informs me that users tend to log integers significantly smaller than their container size. Some

popular examples include logging 64-bit metrics which have values in the billions, logging 32-bit

thread ids that may have values in the hundreds, and printing out 32-bit enumerations which may

only have values in the tens. Overall, the NanoLog log file tends to be comprised of many integers

with small values.

8.1.2 Picking a Compression Scheme

When thinking of compression, one may be tempted to use traditional dictionary-based compres-

sion algorithms such as the LZ77 algorithm used in gzip[17]. However, they are not appropriate for

the types of data and throughput produced by NanoLog. These algorithms specialize in deduplicat-

ing ASCII data by building a dictionary of repeating patterns. However, after passing through the

NanoLog front-end, very little ASCII data remains in the NanoLog log file. Instead, the log file is

mostly comprised of binary data in the form of integers such as timestamps, unique log identifiers,

and user arguments2. Essentially, the NanoLong front-end already performs much of the work that

2The exception to this is if the user of NanoLog repeatedly logs strings.
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Original
(Decimal) Original (Hex)

Tag
(Binary)

Smallest Representation
(Hex)

Byte
Size

100 0x0000000000000064 0001 0x64 1.5
1 0x0000000000000001 0001 0x01 1.5
-1 0xffffffffffffffff 1001 0x01 1.5

50000 0x000000000000c350 0010 0x0c35 2.5
-50000 0xffffffffffff3cb0 1010 0x0c35 2.5

2ˆ62 0x4000000000000000 1000 0x8000000000000000 8.5
-2ˆ62 0xc000000000000000 1000 0x8000000000000000 8.5
50000 0x0000000000000000000000000000c350 0010 0x0c35 2.5
2ˆ127 0x80000000000000000000000000000000 0000 0x80000000000000000000000000000000 16.5
2ˆ64 0x00000000000000010000000000000000 0000 0x00000000000000010000000000000000 16.5
-2ˆ64 0xffffffffffffffff0000000000000000 0000 0xffffffffffffffff0000000000000000L 16.5

Table 8.1: Various endings of 64-bit and 128-bit numbers in the NanoLog compression scheme.
The two leftmost columns represent the original integer to be compressed, the next two columns
show encoded representation, and the last column shows the final byte size of the representation.
Values above the horizontal divider represent 64-bit numbers and values below represent 128-
bit numbers.

a dictionary-based compression scheme would perform.

Additionally, these dictionary-based algorithms are computationally too slow for high-throughput

applications. They are optimized for maximal compression and will trade large amounts of compu-

tation time to save I/O time. On modern output devices, this trade-off rarely makes sense; it is often

faster to output the raw data than it is to perform any sort of compression (see Section 8.3.2). As a re-

sult, modern high-throughput, low latency applications such as stream processing [48] and database

queries [58] instead prefer a faster strategy that offers a better compute to compression trade-off:

variable length encoding.

Variable length integer representations are a relatively simple way to reduce the size of integers

with minimal computation. The base algorithm is to truncate the leading zero bytes to an integer

and use a tag or marker bits to indicate the number of remaining bytes. For example, a 64-bit integer

with the value 100 (or 0x0000000000000064 in hex) may be represented in as few as 1 byte in

encodings such as Little Endian Base-128 [10]. These algorithms also tend to be extremely fast as

they only operate on a word at a time and do not require random memory access to perform lookups

in a dictionary. This low cost and high performance makes variable length encoding an attractive

choice for NanoLog.
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8.2 NanoLog’s Variable Length Encoding

At the time of NanoLog’s development, I was unaware other variable length encoding implemen-

tations, so I developed a new one for NanoLog. The implementation is about as performant as the

other variable length encoding schemes (Section 8.3.2) and does not appear to offer any clear ad-

vantages or disadvantages. Nonetheless, the scheme will be presented here for completeness.

The NanoLog system uses an encoding of a 4-bit tag followed by the number of bytes remaining

after truncating the leading zeros. Table 8.1 shows some sample encodings. A tag with a decimal

value from [1,8] indicates the number of remaining bytes encoded and a value between [9,15] indi-

cates that [1,7] bytes have been encoded with a negation.

The negation representation exists to enable further compression on small negative numbers. For

example, the value of -1 (0xffffffffffffffff) is normally incompressible since it contains

no leading zero bytes. However, with a negation, the representation changes to 0x000000000000-

0001, which is highly compressible due to the leading zeros. Note that the negation representation

only exists for [1,7] bytes remaining, since an 8-bytes remaining negation would not save any addi-

tional space compared to the non-negated version.

Finally, a tag value of 0 indicates that a 128-bit, or 16-byte, integer has been encoded. This tag

is used to support GNU GCC’s arcane __int128 extension[20]. Due to the limited number of tag

bits, the system can only encode [1-8] and 16 bytes remaining. This means all representations that

could ben encoded in [9,15] bytes would automatically be encoded as the full 16-bytes integer plus

the 0.5 tag byte. The last two rows of Table 8.1 show examples of this encoding.

One peculiarity of this design is that nowhere is the width of the original integer type encoded.

This information is particularly important to the NanoLog system as the post-processor needs to

restore the correct argument type for use with printf. However, the omission is intentional. The

reason why this type information has been omitted is because the front-end treats it as static infor-

mation and instead encodes it into the dictionary for the post-processor. Thus, the type information

does not need to be explicitly encoded here, and the post-processor can refer to the dictionary to

retrieve it.

Lastly, when used in the NanoLog log file, all tag bits pertaining to a single log message are

stored contiguously. This is done so that each pair of 4-bit tags forms a full byte. For example, if a

log message contains two integer arguments a and b, the encoding would be 4-bits for tag a followed

by 4-bits for tag b (which forms one full byte) followed by the remainders of a and b.
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System Name
Static

Characters Integers Floats Strings Others Messages

Memcached 56.04 0.49 0.00 0.23 0.04 378
httpd 49.38 0.29 0.01 0.75 0.03 3711
linux 35.52 0.98 0.00 0.57 0.10 135119
Spark 43.32 n/a n/a n/a n/a 2717
RAMCloud 46.65 1.08 0.07 0.47 0.02 1167

Table 8.2: The average number of static characters and dynamic variables in formatted log
statements for five open source systems. These numbers were obtained by applying a set of
heuristics to identify log statements in the source files and analyzing the embedded format
strings; the numbers do not necessarily reflect runtime usage, and the heuristics may not have
identified every log invocation. The “Messages” column counts the total number of log mes-
sages found in the source files. The argument type statistics are omitted for Spark since their
logging system does not use format specifiers, and thus argument types could not be easily ex-
tracted. The static characters column represents the log message’s format string with variable
references (such as "%4.2f" or "$variable" in Spark) removed and represents the minimum
number of characters that would be trivially saved by using NanoLog. The sources that gener-
ated this table are available on GitHub [69].

8.3 Evaluation

In this section, I will show that integers are the most common data type encountered by NanoLog,

that Variable Length Encoding (VLE) strategies far outperform traditional dictionary-based algo-

rithms for compressing integers, and that VLE algorithms are the best choice for compressing

NanoLog’s binary log file on modern hardware.

8.3.1 Log Message Types

The decision to use variable integer representation in NanoLog is based on personal observations

that the most common argument type logged is integers. To verify this hypothesis, I wrote scripts to

analyze five open-source projects that use printf-like logging APIs and report the average occurrence

of integers, strings, and float specifiers in the projects’ log messages’ format strings[69]. Table 8.2

shows the results for Memcached [15], The Apache HTTP Server Project [61], RAMCloud [45],

Spark [63], and linux [34].

In Table 8.2, all but one of the projects have integers as the most commonly logged data type.

The Apache HTTP Server Project stands out as the only project logging the most strings. I suspect

the reason why Apache logs more strings is because it primarily processes human-readable and
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highly variable HTTP requests and serves files. Thus, the log statements in the project typically

output the header and file contents to aid in debugging. This is not an issue in the other projects as

they deal more with metrics or binary data.

The other surprising finding from the table is that strings are the second most common argument

type. This may inform us to use a different compression scheme for NanoLog. However, on closer

inspection of the log messages themselves, it appears most of these strings can be represented in

an integer fashion. For example, linux commonly prints the module name associated with a log

message or C enumerations which are static and unchanging. With a stronger front-end, one could

further extract these static components and integrate them into the dictionary. Chapter 10 discusses

these potential enhancements in more detail.

One limitation of this survey is that it weighs all log statements in the applications’ sources

equally. It may be the case that certain log messages are executed more often than others at runtime

(and others may never execute). This would result in a log message distribution that differs from

what is shown in the table. Thus, one should only use this survey as a indicator of what may appear

in a log file and not a representative of the ground truth at runtime.

Nonetheless, this survey provides us with the hint that applications mostly log integer values.

The only exceptions are applications that deal with human-readable data such as httpd.

8.3.2 Variable Length Encoding Performance

In this section, I evaluate the effectiveness of variable length encoding (VLE) as a compression

algorithm for NanoLog by comparing the performance of traditional dictionary-based compression

vs. VLE for integer data types.

Table 8.3 shows the throughput and compression efficiency of various compression algorithms

on an input of 1 million 64-bit integers that are uniformly distributed on bit-length. The left cluster

of columns shows the throughput in MB/s and the right cluster shows the compression efficiency in

the form of bytes/integer. Throughput is measured as the ingest rate for uncompressed data.

In this benchmark, the variable length encoding (VLE) algorithms outperform traditional algo-

rithms by up to 3 orders of magnitude; most VLE algorithms can encode at a rate of 1 to 5GB/s for

integers while gzip remains under 0.1GB/s. Additionally, the VLE algorithms maintain the smallest

output sizes. Snappy closes the throughput gap at 3-8x slower than the compression speed of VLE

algorithms, but that speed comes at a cost of a 30%-100% larger output size. Overall, the VLE algo-

rithms outperform traditional dictionary based strategies for integer data types, making them viable

for NanoLog’s needs.
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Throughput (MB/s) Output Size (Bytes/Integer)
Algorithm 0-8 bits 0-16 bits 0-24 bits 0-64 bits 0-8 bits 0-16 bits 0-24 bits 0-64 bits
PrefixVarint 1362.78 839.25 691.32 571.97 1.12 1.69 2.25 5.07
LEB128 3345.44 1515.94 1146.37 746.12 1.12 1.69 2.25 5.08
leSQLite2 5132.32 1638.61 1172.22 853.66 1.07 1.66 2.31 5.25
leSQLite 5698.86 1614.49 1231.49 817.84 1.06 1.65 2.44 5.29
NanoLog 4671.51 1633.32 1279.63 940.74 1.50 2.00 2.50 5.00
gzip-1 95.45 68.14 57.12 35.78 1.62 2.46 3.16 5.76
gzip-6 22.33 16.15 13.94 14.04 1.39 2.27 2.95 5.57
gzip-9 1.57 1.32 1.28 1.87 1.27 2.17 2.86 5.53
snappy 769.40 475.48 387.35 303.02 2.24 3.29 4.17 6.57

Table 8.3: The encoding throughput of several variable length encoding algorithms taken from
GitHub [31] and two dictionary-based compression libraries [17, 23]. The input is one million
64-bit numbers that are uniformly distributed in bit length (i.e. the position of the most sig-
nificant bit is uniformly distributed). Each column limits the maximum value of each integer
such the position of the most significant bit does not exceed 8, 16, 24, or 64. The left cluster of
columns report the compression throughput, or the rate at which uncompressed data is ingested.
The right cluster reports the compression efficiency, or the average number of bytes required to
represent each integer in the dataset. The horizontal divider separates the variable integer rep-
resentation algorithms (top) from the dictionary-based ones (bottom). The number after gzip
indicates the compression level, where 1 is fastest, 9 is most compressed, and 6 is default.
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Comparing NanoLog’s algorithm to the other VLE’s, NanoLog is not as performant nor as effi-

cient for ultra small 0-8 bit numbers, but NanoLog closes the gap as the integer bit lengths increase.

At 0-64 bits, NanoLog is the most performant and efficient compression algorithm. However at 0-8

bits, NanoLog’s algorithm suffers as it requires an additional 4-bits to store the tag information. The

main conclusion for this section is that one should use VLE algorithms for NanoLog’s binary data

and not necessarily that NanoLog has the best algorithm. If I were to design the system again, I

would probably choose to use the leSQLite algorithm as it performs the best for smaller integers.

8.3.3 End-To-End Compression Throughput

NanoLog’s compression mechanism is not very sophisticated in comparison to alternatives such as

gzip [17] and Google snappy [23]3. However, in this section I show that for compressing NanoLog’s

binary log data, NanoLog’s approach provides a better overall balance between compression effi-

ciency and execution time.

Figure 8.1 compares NanoLog, gzip, and snappy using 93 test cases. Each test case mimics a

NanoLog log file with varying argument types, lengths, and entropy chosen to cover a range of

log messages and to show the best and worst of each algorithm. For each test case and compres-

sion algorithm combination, I measured the overall logging throughput at a given I/O bandwidth.

Here, the overall throughput is determined by the lesser of the compression throughput (i.e. CPU

throughput) and I/O throughput (i.e. time to output the compressed data). Since the NanoLog back-

ground thread performs compression in parallel with disk writes, the slower of the two operations

ultimately becomes the bottleneck at runtime. I then counted the number of test cases where an

algorithm produced highest throughput of all algorithms at a given I/O bandwidth and graphed the

results in Figure 8.1.

In Figure 8.1a, we see that aggressive compression only makes sense in low bandwidth situa-

tions; gzip,9 produces the best compression, but it uses so much CPU time that it only makes sense

for devices with I/O bandwidth less than 5MB/s. As I/O bandwidth increases, gzip’s CPU time

quickly becomes the bottleneck for throughput, and compression algorithms that don’t compress as

much but operate more quickly become more attractive.

At the other extreme, “memcpy” performs the best with extremely high bandwidth devices

3Snappy is an LZ77 inspired compression algorithm that claims “memcpy-like” compression speeds.
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Figure 8.1: (a) shows the number of test cases (out of 93) for which each compression algo-
rithm attained the highest throughput, and (b) shows the same except with layering where mul-
tiple compression algorithms were applied on top of each other. Here, “throughput” is defined
as the minimum of an algorithm’s compression throughput and I/O throughput (determined by
output size and bandwidth). The numbers after the “gzip” labels indicate compression level, and
“memcpy” represents “no compression.” For figure (b), “NL” is NanoLog, “g” is gzip, and “S”
is snappy. All combinations of the three algorithms were benchmarked, however only the high-
est performing algorithms are shown due to the limited space. The input test cases were 64MB
chunks of binary NanoLog logs with arguments that varied in 4 dimensions: argument type
(int/long/double/string), number of arguments, entropy, and value range. Strings had [10, 15,
20, 30, 45, 60, 100] characters and an entropy of “random”, “zipfian” (θ=0.99), or “Top1000”
(sentences generated using the top 1000 words from [42]). The numeric types had [1,2,3,4,6,10]
arguments, an entropy of “random” or “sequential,” and value ranges of “up to 2 bytes” and “at
least half the type defined width.” The full benchmark is available on GitHub [71].
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(>2200MB/s). The “memcpy” line represents the minimal amount of computation that a compres-

sion algorithm has to do; it simply copies the data verbatim from one buffer to another. At extremely

high bandwidth, this scheme tends to perform the best, as with large bandwidths, it’s often cheaper

to simply output the raw data than to perform any sort of processing on it. Surprisingly, NanoLog

is sometimes better than memcpy even for devices with extremely high I/O throughput. I suspect

this is due to out-of-order execution on modern Intel processors[30], which can occasionally overlap

NanoLog’s compression with loads and stores of the arguments; this makes NanoLog’s compression

effectively free. However, I have not been able to verify this suspicion.

NanoLog provides the highest compression throughput for most test cases in the bandwidth

range for modern disks and flash drives (30–2200 MB/s). The cases where NanoLog is not the best

are those involving strings and doubles, which NanoLog does not compress; snappy is better for

these cases. Overall, NanoLog’s compression scheme is the most efficient given the capability of

current I/O devices and the types of data expected in a NanoLog log file.

As an academic curiosity, I also layered the compression algorithms and found that NanoLog

enhanced the performance of dictionary-based compression schemes. Here, “layering” means pip-

ing the compression algorithms where the output of one is passed as input in the other. Figure 8.1b,

shows the top performers of layering gzip, snappy, and NanoLog in all valid combinations4. The

combination of NanoLog then gzip or snappy produced throughputs greater than either gzip or

snappy alone in the low bandwidth region (<30MB/s). The addition of snappy ontop of NanoLog

overtook NanoLog alone in the 30–300MB/s region, but NanoLog alone still dominated the 300MB/s+

range. Combinations of gzip and snappy did not provide a more performant algorithm. Overall,

NanoLog is still extremely performant for high bandwidth devices, and layering snappy ontop of

NanoLog may provide better performance for modern devices.

Lastly, while I believe NanoLog’s compression is superior for modern devices, the right com-

pression algorithm to use ultimately depends on the types of information logged by the application

and the I/O constraints of the operating environment. I therefore encourage those who are inter-

ested to download the benchmark and determine the right compression algorithm for themselves at

https://github.com/syang0/NanoLogCompression.

4To be explicit, the combinations are gzip, gzip→ snappy, snappy, snappy→ gzip, NanoLog, NanoLog→ snappy,
NanoLog→ gzip, NanoLog→ snappy→ gzip, NanoLog→ gzip→ snappy

https://github.com/syang0/NanoLogCompression
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8.4 Limitations and Extensions

The obvious limitations of using variable length encoding as a form of compression are (a) it only

works with integers and (b) it only performs well for small integers. In fact, if an integer is full width

(i.e. uses all bytes allowed by its type), then these variable length encoding schemes will typically

add additional bytes per integer. This style of compression also does not operate on string and float

types, which means if the user logs many strings, then traditional dictionary-based algorithms may

be more viable than VLE.

Lastly, while traditional dictionary-based algorithms don’t work well for the binary logs shown

in the evaluation, they can still be useful in certain situations. For example, the dictionary created

by the NanoLog front-end contains a lot of ASCII that can be compressed using traditional means;

the format strings contain 45 characters on average (Table 9.2) and the source filenames removed

by the front-end could contain repeated directory paths. However, the compression of the dictionary

was not explored further, as it is considered an amortized cost.

8.5 Conclusion

Overall, I believe that variable length integer encodings are more effective form of compression

than traditional dictionary-based algorithms for NanoLog’s binary log data in the common case.

However, depending on the bandwidth/compute limitations of the device and the types of data the

user logs, other compression schemes may still be viable.



Chapter 9

Evaluation

In this chapter, I evaluate the performance of the NanoLog system for C++ applications. The library

was written by me and is publicly available on GitHub [70]. In the library, the preprocessor/com-

biner component comprises about 1500 lines of Python, the C++17 front-end comprises about 1000

lines, and the NanoLog runtime/post-processor consists of about 6000 lines of C++ code.

I evaluated the system to answer the following questions:

• How does NanoLog’s throughput and latency compare to other modern logging systems?

• How does NanoLog perform when embedded in a real, open-source application?

• What is the performance of the NanoLog post-processor?

• What performance gains can be had by directly querying the compressed, binary log file?

• What are NanoLog’s primary bottlenecks?

• How does NanoLog’s staging buffer size affect tail latency performance?

Additional experiments embedded in the other chapters (and not replicated here) include:

• How does NanoLog’s compression scheme perform relative to other algorithms (Chapter 8)?

All experiments were conducted on quad-core machines with SATA SSDs that had a measured

throughput of about 250MB/s for large writes (Table 9.1).

CPU Xeon X3470 (4x2.93 GHz cores)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Samsung 850 PRO (250GB) SSDs
OS Debian 8.3 with Linux kernel 3.16.7

OS for ETW Windows 10 Pro 1709, Build 16299.192

Table 9.1: The server configuration used for benchmarking.

94
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9.1 System Comparison

To compare the performance of NanoLog with other systems, I ran microbenchmarks with six log

messages (shown in Table 9.3) selected from an open-source datacenter storage system [45].

9.1.1 Test Setup

I chose to benchmark NanoLog against Log4j2 [62], spdlog [37], glog [21], Boost log [1], and

Event Tracing for Windows (ETW) [47]. I chose Log4j2 for its popularity in industry; I configured

it for low latency and high throughput by using asynchronous loggers and including the LMAX

Disruptor library [35]. spdlog was chosen because it was the first result in an Internet search for

“Fast C++ Logger”; I configured spdlog with a buffer size of 8192 entries (or 832KB). I chose glog

because it is used by Google and configured it to buffer up to 30 seconds of logs. I chose Boost

logging because of the popularity of Boost libraries in the C++ community; I configured Boost

to use asynchronous sinks. I chose ETW because of its similarity to NanoLog; when used with

Windows Software Trace PreProcessor [28], the log statements are rewritten to record only variable

binary data at runtime. I configured ETW with the default buffer size of 64 KB; increasing it to 1

MB did not improve its steady-state performance.

I configured each system to output similar metadata information with each log message; they

prepend a date/time, code location, severity, and thread id to each log message as shown in Fig-

ure 9.1. However, there are implementation differences in each system. In the time field, NanoLog

and spdlog computed fractional seconds with 9 digits of precision (nanoseconds) vs. 6 for Boost-

/glog and 3 for Log4j2 and ETW. In addition, Log4j2’s code location information (ex. “TableM-

anager.cc:1031”) was manually encoded due to inefficiencies in its code location mechanism [64].

The other systems use the GNU C++ preprocessor macros “ LINE ” and “ FILE ” to encode

the code location information.

NANO_LOG(NOTICE, "Creating table ’%s’ with id %d", name, tableId);

2017/3/18 21:35:16.554575617 TableManager.cc:1031 NOTICE[4]: Creating table
’orders’ with id 11

Figure 9.1: A typical logging statement (top) and the resulting output in the log file (bottom).
“NOTICE” is a log severity level and “[4]” is a thread identifier.
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System Name
Static
Chars Integers Floats Strings Others Logs

Memcached 56.04 0.49 0.00 0.23 0.04 378
httpd 49.38 0.29 0.01 0.75 0.03 3711
linux 35.52 0.98 0.00 0.57 0.10 135119
Spark 43.32 n/a n/a n/a n/a 2717
RAMCloud 46.65 1.08 0.07 0.47 0.02 1167

Table 9.2: Shows the average number of static characters (Static Chars) and dynamic variables
in formatted log statements for five open source systems. These numbers were obtained by
applying a set of heuristics to identify log statements in the source files and analyzing the
embedded format strings; the numbers do not necessarily reflect runtime usage and may not
include every log invocation. The “Logs” column counts the total number of log messages
found. The dynamic counts are omitted for Spark since their logging system does not use format
specifiers, and thus argument types could not be easily extracted. The static characters column
omits format specifiers and variable references (i.e. $variables in Spark), and represents the
number of characters that would be trivially saved by using NanoLog.

9.1.2 Choosing the Log Messages

The six log messages in Table 9.3 were selected to cover a spectrum of scenarios that seemed likely

to occur in practice. They include messages where NanoLog offers the maximum performance

benefit (with a completely static log message that can be removed at compile-time) and expected

worst cases with floats and strings where NanoLog can perform no compression on the arguments.

The selected log statements do not cover all possible combinations of log messages and dynamic

arguments, but they should provide the reader with a feel for NanoLog’s expected performance.

To ensure that the log messages chosen were representative of real world usage, I additionally

statically analyzed log statements from five open source systems [15, 61, 34, 63, 45]; the results

are in Table 9.2. The table shows that log messages have around 45 characters of static content on

average and that integers are the most common dynamic type. Strings appear to be the second most

common dynamic type, but upon manual inspection most strings logged are static. They typically

contain pretty print error messages, enumerations, object variables, and other static/formatted types.

This static information could in theory be also extracted by NanoLog and replaced with an identifier.

However, since NanoLog does not currently perform this optimization, I will count these instances

towards the “strings” datatype category. The log analyzer used to survey the log messages is a

modified version of the NanoLog preprocessor and is publicly available on GitHub [69].
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Figure 9.2: The maximum throughput attained by various logging systems when logging a sin-
gle message repeatedly. Log4j2, Boost, spdlog, and Google glog logged the message 1 million
times; ETW and NanoLog logged the message 8 and 100 million times respectively to generate
a log file of comparable size. “NanoLog” in the figure refers to preprocessor NanoLog while
“C++17 NanoLog” refers to C++17 NanoLog. The number of logging threads varied between
1 and 16 and the maximum throughput achieved is reported. All systems except Log4j2 include
the time to flush the messages to disk in its throughput calculations (Log4j2 did not provide
an API to flush the log without shutting down the logging service). The message labels on the
x-axis are the same as those used in Table 9.3.

9.1.3 Throughput

Figure 9.2 shows the maximum throughput achieved by each logging system. NanoLog is faster

than the other systems by 1.8x - 136.7x. The largest performance gap between NanoLog and the

other systems occurs with staticString, and the smallest occurs with stringConcat.

NanoLog performs best when there is little dynamic information in the log message. This is

reflected by staticString, a static message, in the throughput benchmark. Here, NanoLog only needs

to output about 3-4 bytes per log message due to its compression and static log data extraction

techniques. Other systems require over an order of magnitude more bytes to represent the messages

(41-90 bytes). Even ETW, which uses a preprocessor to strip messages, requires at least 41 bytes in

the static string case. NanoLog excels with static messages, reaching a throughput of 82 million log

messages per second.

NanoLog performs the worst when there’s a large amount of dynamic information. This is re-

flected in stringConcat, which logs a large 39 byte dynamic string. NanoLog performs no compres-

sion on string arguments and thus must log the entire string. This results in an output of 41-42 bytes

per log message and drops throughput to about 4.9 million log messages per second. Even in this
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ID Example Output
staticString Starting backup replica garbage collector thread
stringConcat Opened session with coordinator at basic+udp:host=192.168.1.140,port=12246
singleInteger Backup storage speeds (min): 181 MB/s read
twoIntegers Buffer has consumed 1032024 bytes of extra storage, current allocation: 1016544 bytes
singleDouble Using tombstone ratio balancer with ratio = 0.4
complexFormat Initialized InfUdDriver buffers: 50000 receive buffers (97 MB), 50 transmit buffers

(0 MB), took 26.2 ms

Table 9.3: Log messages used to generate Figure 9.2 and Table 9.4. The underlines indicate dy-
namic data generated at runtime. staticString is a completely static log message, stringConcat
contains a large dynamic string, and other messages are a combination of integer and floating
point types. Additionally, the logging systems were configured to output each message with the
context “YY-MM-DD HH:MM:SS.ns Benchmark.cc:20 DEBUG[0]:” prepended to it.

scenario, NanoLog will consistently outperform its competitors, as it will always output fewer bytes

than systems that materialize the full, human-readable log message with context.

Overall, NanoLog is faster than all other logging systems tested. This is primarily due to NanoLog

consistently outputting fewer bytes per message and secondarily because NanoLog defers the for-

matting and sorting of log messages.

9.1.4 Latency

NanoLog lowers the logging thread’s invocation latency by deferring the formatting of log mes-

sages. This effect can be seen in Table 9.4. NanoLog’s invocation latency, or time between when

the application executes the log function and when it returns, is 18-500x lower than other systems.

In fact, NanoLog’s 50/90/99/99.9th percentile latencies are all within tens of nanoseconds while the

median latencies for the other systems start at hundreds of nanoseconds.

All of the other systems except ETW require the logging thread to either fully or partially mate-

rialize the human-readable log message before transferring control to the background thread, result-

ing in higher invocation latencies. NanoLog on the other hand, performs no formatting and simply

pushes all arguments to the staging buffer. This means less computation and fewer bytes copied,

resulting in a lower invocation latency.

Although ETW also produces binary log files like NanoLog, its latencies are still much higher

than those of NanoLog. I am unsure why ETW is slower than NanoLog, but one hint is that even

with the preprocessor, ETW log messages are larger than NanoLog (41 vs. 4 bytes for staticString).
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ID NanoLog NanoLogCpp17 spdlog ETW

Percentiles 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9

staticString 7 8 10 27 7 8 10 34 230 236 323 473 180 187 242 726
stringConcat 8 9 25 37 7 8 10 28 436 494 1579 1641 208 218 282 2954
singleInteger 7 8 8 29 7 8 10 34 353 358 408 824 189 195 237 720
twoIntegers 7 8 8 32 7 8 8 27 674 698 807 1335 200 207 237 761
singleDouble 8 8 9 35 7 7 10 34 607 637 685 1548 187 193 248 720
complexFormat 7 8 10 34 7 8 10 34 1234 1261 1425 3360 242 252 304 1070

ID Log4j2 glog Boost

Percentiles 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9

staticString 192 311 470 1868 1201 1229 3451 5231 1619 2338 3138 4413
stringConcat 230 1711 3110 6171 1235 1272 3469 5728 1833 2621 3387 5547
singleInteger 223 321 458 1869 1250 1268 3543 5458 1963 2775 3396 7040
twoIntegers 160 297 550 1992 1369 1420 3554 5737 2255 3167 3932 7775
singleDouble 157 252 358 1494 2077 2135 4329 6995 2830 3479 3885 7176
complexFormat 146 233 346 1500 2570 2722 5167 8589 4175 4621 5189 9637

Table 9.4: Unloaded tail latencies of NanoLog and other popular logging frameworks. This ex-
periment was performed by a single application thread repeatedly logging a single log message
back to back 100,000 times with a 600 nanosecond delay between each invocation to ensure
that I/O is not a bottleneck. Latency is measured by the application as the time between when
the application invokes the log function (e.x. NANO LOG) to when the function returns. Each
row shows the results for a different log message (taken from Table 9.3), and each column
represents the 50th/90th/99th/99.9th percentile latency in nanoseconds. “NanoLog” represents
Preprocessor NanoLog while “NanoLogCpp17” represents C++17 NanoLog. The bottom table
is an extension of the top table and represents the same experiment.
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ETW also emits extra log information such as process ids and does not use the efficient compres-

sion mechanism of NanoLog to reduce its output. There may be more differences between the two

systems, however I was unable to measure further on ETW further as it is closed-source.

Furthermore, NanoLog’s performance is extremely consistent in this microbenchmark. Although

it may not be immediately clear, the 600 nanosecond delay between each log message (see caption

in Table 9.4) was added primarily for the benefit of the traditional, ASCII-based logging systems.

These systems materialized log messages that required around 100 bytes to represent, so a delay of

600 nanoseconds was chosen to account for 150 bytes of I/O on our 250MB/s disks. NanoLog does

not need such a delay to maintain its low latency; a later benchmark (Section 9.6) shows that even

with the delay removed, NanoLog still maintains a 99.9th percentile within tens of nanoseconds.

One caveat with these results is that they may represent an unrealistic, best-case performance

for all logging systems. The application in this microbenchmark is only performing logging and is

not performing any other operation that can interfere with the logging latency, such as contending

for I/O and compute resources or polluting the instruction/data caches. This means that the perfor-

mance reported here may be overoptimistic, and the invocation latencies may actually be higher

when integrated in a real application. However since this caveat applies to all logging systems

benchmarked, this microbenchmark should give readers a sense of NanoLog’s relative performance

(1-2 orders of magnitude faster than other systems). Section 9.4 evaluates a subset of the logging

systems (NanoLog and spdlog) in a more realistic environment.

Overall, NanoLog’s unloaded invocation latency is extremely low; it is 1-2 orders of magnitude

lower than other logging systems.

9.2 Decompression

Since the NanoLog runtime outputs the log in a binary format, it is also important to understand the

performance implications of transforming it back into a human readable log format.

The post-processor can decompress/format messages at a peak of about 0.5M log messages/sec-

ond (Figure 9.3). Traditional logging systems such as Log4j2 can achieve a higher throughput of

over 2M log messages/second at runtime, because they utilize multiple threads to perform format-

ting. NanoLog’s post-processor is currently single threaded, so its performance is limited to that of

a single thread. I made the assumption that the decompression operation is fairly uncommon, so I

kept the post-processor single threaded for simplicity. However, NanoLog’s post-processor could be

modified to use multiple threads to achieve higher throughput.
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Figure 9.3: Impact on NanoLog’s post-processor performance as the number of buffer ex-
tents that need to be merged increases. The post-processor was tested in four configurations:
“Sorted” where the system outputs log messages in a chronological order to disk (this is the
default/expected operating mode), “Unsorted” where the system outputs the log messages to
disk without ordering the log messages, and “Sorted to /dev/null” and “Unsorted to /dev/null”
which are the same as the above except they discard the log messages to /dev/null. The log
files decompressed contained 224 log messages (about 16M) and were formatted in the form
of “2017-04-06 02:03:25.000472519 Benchmark.cc:65 NOTICE[0]: Simple log message with
0 parameters”. The compacted log file was 49MB and the resulting decompressed log output
was 1.5GB. The number of buffer extents (x-axis) was varied by increasing the number of
concurrent logging threads at runtime.
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The throughput of the post-processor could potentially drop if the post-processor is required

to sort the log messages by time and there were many active logging threads when the log was

created. The reason is that the log is divided into different buffer extents for each logging thread,

and the post-processor must collate and sort the log messages from multiple extents into a single

chronological ordering. This is done by performing a merge sort amongst the active buffer extents

(two per thread) and using a heap to find the next log message to decompress.

The “Sorted” line in Figure 9.3 shows that sorting only has a minimal impact on decompres-

sion costs. Even with 4096 active logging threads, the post-processor’s decompression throughput

only drops by about 10%. Increasing the logging threads beyond 4096 active logging threads may

degrade performance further, however this setup was not tested due to practical limitations; mod-

ern applications would not utilize that many threads, and 4096 threads already far overwhelms our

4-core experimental setup. However, I suspect that the performance would continue to drop loga-

rithmically with increasing logging threads, as the post-processor uses a heap to manage the active

buffer extents (Note: An earlier publication of NanoLog [73] showed a linear degradation in perfor-

mance with increasing buffer extents. This was because the post-processor used a linear sort rather

than a heap at the time).

Sorting is only necessary if order matters during post-processing. For some applications, such

as analytics, the order in which the log messages are processed may be unimportant. In these cases,

sorting can be skipped. The “Unsorted” line in Figure 9.3 shows that decompression in these cases

is unaffected by the number of runtime logging threads; the throughput remains steady at about

500,000 log messages/second.

Furthermore, Figure 9.3 shows that the post-processor is compute-bound. We see similar per-

formance from the post-processor whether it persists the log messages to disk or discards them to

“/dev/null”. This indicates that the bottleneck in the system is not from writing the log messages

to disk, but rather from formatting/sorting. Digging a little deeper, I found that most of the de-

compression cost comes from formatting the log message. Each log message requires about two

microseconds to process: about 1 microsecond is spent on formatting the time into a “YY-MM-DD

HH:MM:SS.ns” format and another is spent formatting the log context information (as shown in

Figure 9.1). Very little time is spent interpreting the data in the log statement (Section 9.3 quantifies

this cost further), and only about 10% of the time is spent on sorting at 4096 threads. This suggests

that the post-processor could easily utilize multiple formatting threads for additional speedups.

For completeness, the same evaluation was performed with all the log messages from Table 9.3.

The results, shown in Table 9.5, show that the cost to decompress each message depends on how
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Sorted Unsorted
Number of Buffer Extents to Merge Number of Buffer Extents to Merge

ID 1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096

staticString 0.48 0.49 0.48 0.45 0.47 0.45 0.42 0.50 0.51 0.50 0.51 0.50 0.50 0.50
stringConcat 0.47 0.46 0.46 0.44 0.44 0.45 0.41 0.48 0.47 0.46 0.48 0.47 0.47 0.47
singleInteger 0.47 0.45 0.46 0.46 0.45 0.45 0.42 0.49 0.49 0.48 0.48 0.49 0.47 0.48
twoIntegers 0.45 0.43 0.43 0.41 0.42 0.41 0.40 0.45 0.44 0.45 0.44 0.44 0.44 0.44
singleDouble 0.44 0.42 0.40 0.43 0.43 0.40 0.38 0.44 0.45 0.45 0.43 0.44 0.43 0.43
complexFormat 0.34 0.31 0.33 0.33 0.33 0.32 0.31 0.34 0.34 0.34 0.33 0.34 0.34 0.34

Table 9.5: The decompression performance of the post-processor with a varying number of
overlapping buffer extents and log messages. The log messages are shown in the first column;
they’re taken from Table 9.3 and each datum shows the decompression throughput in millions
of log messages per second. The log messages were decompressed to disk, each log file con-
tained about 223 (about 8M) log messages, and the messages were formatted with the header
“2017-04-06 02:03:25.000472519 Benchmark.cc:65 NOTICE[0]: ” followed by the log mes-
sage as specified in Table 9.3. The “Sorted” columns indicate that the post-processor ordered
the log messages by time before output whereas the “Unsorted” columns indicate that the sys-
tem output the log messages without ordering them first.

much formatting and sorting is required. The message with the least formatting required, static-

String, can achieve a throughput up to 0.51 million log messages per second and the log message

with the most, complexFormat, achieves 0.34 million log messages per second. As with the previous

results, the throughput is nearly constant up to around 1024 threads when sorting is required, and

drops off with more threads as the sorting costs increase. Otherwise, the performance remains con-

stant with no sorting. The results shown in Table 9.5 are consistent with the previous microbench-

mark in Figure 9.3.

Overall, NanoLog can decompress log messages at rate of about 500,000 messages/second in

applications with fewer than 1024 active logging threads, or in systems where log messages do not

need to be processed in chronological order. The post-processor can potentially be improved via

multi-threading support, however that is not explored here.

9.3 Aggregation Performance

NanoLog’s compact, binary log output promises more efficient log aggregation/analytics than its

full, uncompressed counterparts. To demonstrate this, I implemented a simple min/mean/max ag-

gregation in four systems, NanoLog, C++, Awk, and Python. Conceptually, they all perform the

same task; they search for the target log message “Hello World # %d”, read the value of the

“%d” integer, and perform calculations on the integer. They track of the minimum and maximum
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Figure 9.4: The average processing time per log message to perform a min/mean/max aggre-
gation over 100 million log messages using various systems. The x-axis varies the percentage
of log messages matching the target aggregation pattern “Hello World # %d” and the rest
“UnrelatedLog #%d”. The NanoLog system operated on a compacted file (∼747MB) and
the remaining systems operated on the full, uncompressed log (∼7.6GB). The C++ application
searched for the “Hello World # ” prefix and utilized atoi() on the next word to parse
the integer. The Awk and Python applications used a simple regular expression matching the
prefix: “.*Hello World # (\d+)”. “Simple Read” reads the entire log file and discards
the contents. The file system cache was flushed before each run. “NanoLog” refers to the “Pure
Preprocessor” version of NanoLog.
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values encountered, as well as calculate the arithmetic mean by summing all values and dividing by

the number of values. The difference between the systems is that the C++, Awk, and Python imple-

mentations operate on the full, uncompressed version of the log while the NanoLog post-processor

operates directly on the output from the NanoLog runtime. The NanoLog post-processor also did

not time-order the log statements or format them before processing.

Figure 9.4 shows the execution time for this aggregation over 100M log messages. NanoLog is

nearly an order of magnitude faster than the other systems, taking on average 35-44 nanoseconds

per log message to process the compact log file vs. 350+ ns for the other systems. The primary

reason for NanoLog’s low execution time is disk bandwidth. The compact log file only amounted

to about 747MB vs. 7.6GB for the uncompressed log file. In other words, the aggregation was disk

bandwidth limited and NanoLog used the least amount of disk IO. I verified this assumption with

a simple C++ application that performs no aggregation and simply reads the file (“Simple Read” in

the figure); its execution time lines up with the “C++” aggregator at around 359 nanoseconds per

log statement.

I also varied how often the target log message “Hello World # %d” occurred in the log file

to see if it affects aggregation time. The compiled systems (NanoLog and C++) have a near constant

cost for aggregating the log file while the interpreted systems (Awk and Python) have processing

costs correlated to how often the target message occurred. More specifically, the more frequent the

target message, the longer the execution time for Awk and Python. I suspect the reason is because the

regular expression systems used by Awk and Python can quickly disqualify non-matching strings,

but perform more expensive parsing when a match occurs. However, I did not investigate further.

Lastly, “pure” preprocessor NanoLog performs about 20% better than C++17 NanoLog in post-

processing (35 ns vs. 45 ns per log message). This is due to the architectural differences between

the two systems. In particular, C++17 NanoLog requires logic to interpret the log statements at

post-processing time while preprocessor NanoLog directly compiles specialized code for each log

statement into the post-processor application. This results in less work being performed at post-

processing and allows the compiler to perform more aggressive optimizations, netting a 20% per-

formance improvement.

Overall, the compactness of the NanoLog binary log file allows for fast aggregation relative to

traditional log processing methods.

There are two shortcomings I’d like to address with this benchmark. First, the aggregation was
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No Logs NanoLog spdlog RAMCloud
Throughput

(kop/s)
Read 994 (100%) 809 (81%) 122 (12%) 67 (7%)
Write 140 (100%) 137 (98%) 59 (42%) 32 (23%)

Read
Latency

(µs)

50% 5.19 (1.00x) 5.33 (1.03x) 8.21 (1.58x) 15.55 (3.00x)
90% 5.56 (1.00x) 5.53 (0.99x) 8.71 (1.57x) 16.66 (3.00x)
99% 6.15 (1.00x) 6.15 (1.00x) 9.60 (1.56x) 17.82 (2.90x)

Write
Latency

(µs)

50% 15.85 (1.00x) 16.33 (1.03x) 24.88 (1.57x) 45.53 (2.87x)
90% 16.50 (1.00x) 17.08 (1.04x) 26.42 (1.60x) 47.50 (2.88x)
99% 22.87 (1.00x) 23.74 (1.04x) 33.05 (1.45x) 59.17 (2.59x)

Table 9.6: The impact on RAMCloud [45] performance when more intensive instrumentation
is enabled. The instrumentation adds about 11-33 log statements per read/write request with
1-3 integer log arguments each. “No Logs” represents the baseline with no logging enabled.
“RAMCloud” uses the internal logger while “NanoLog” and “spdlog” supplant the internal
logger with their own. The percentages next to Read/Write Latency represent tail latency per-
centiles, and all results were measured with RAMCloud’s internal benchmarks with 16 clients
used in the throughput measurements. Throughput benchmarks were run for 10 seconds and la-
tency benchmarks measured 2M operations. Each configuration was run 15 times and the best
case is presented.

deliberately simple. It only required the post-processor to track four variables: a minimum, a max-

imum, a sum, and a counter1. The aggregation did not include more complex operations such as

tracking dependencies between log messages or correlating events, which may incur additional

costs. It was explicitly chosen to showcase the minuscule overheads of using NanoLog; a more

complex aggregation may require so much compute that it hides the performance differences be-

tween NanoLog and the other systems. Second, the aggregation was performed without first sorting

the log messages by time. The reason why sorting was not measured is because it is currently not

implemented in the proof-of-concept aggregation API. Additional costs may be incurred if sorting

was required, as hinted by the decompression benchmark (Section 9.2).

9.4 Integration Benchmark

While microbenchmarks are useful to quantify the best-case performance in a vacuum, I also at-

tempted to gauge NanoLog’s real world performance by integrating it into an application. I inte-

grated preprocessor NanoLog and spdlog into a well instrumented, open-source key value store,

1The sum and counter are divided to retrieve the arithmetic mean.
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RAMCloud [45], and evaluated the logging systems’ impact on performance using existing bench-

marks in the RAMCloud repository. In keeping with the goal of increasing visibility, I enabled

all verbose logging options and changed existing performance sampling statements in RAMCloud

(normally compiled out) to always-on log statements. This added an additional 11-33 log statements

per read/write request in the RAMCloud system. With this heavily instrumented system, I could an-

swer the following questions: (1) how much of an improvement does NanoLog provide over other

state-of-the-art systems in this scenario, (2) how does NanoLog perform in a real system compared

to microbenchmarks and (3) how much does NanoLog slow down compilation and increase binary

size?

Table 9.6 shows that, with NanoLog, the additional instrumentation introduces only a small per-

formance penalty. Median read/write latencies increased only by about 3-4% relative to an uninstru-

mented system and write throughput decreased by 2%. Read throughput sees a larger degradation

(about 19%)2. In contrast, the other logging systems incur such a high performance penalty that this

level of instrumentation would probably be impractical in production: latencies increase by 1.6-3x,

write throughput drops by more than half, and read throughput is reduced to roughly a tenth of

the uninstrumented system (8-14x). These results show that NanoLog supports a higher level of

instrumentation than other logging systems.

Using this benchmark, we can also estimate NanoLog’s invocation latency when integrated in

a low-latency system; i.e. in a non-microbenchmark setting. For RAMCloud’s read operation, the

critical path emits 8 log messages out of the 11 enabled. On average, each log message increased

latency by (5.33-5.19)/8 = 17.5 ns. For RAMCloud’s write operation, the critical path emits 27 log

messages, suggesting an average latency cost of 17.7 ns. These numbers are higher than the median

latency of 7-8 ns reported by the microbenchmarks in Table 9.4, but they are still reasonably fast.

I suspect the slowdowns are caused by cache misses on the staging buffers and are potentially

unavoidable. The calculated latencies for spdlog are closer to the microbenchmark’s results (around

380ns). I suspect this is because the operation is so expensive that slowdowns due to cache misses

are lost in the noise. However, I have not been able to measure one level deeper to confirm either of

these suspicions.

Lastly, I compared the compilation time and binary size of RAMCloud with and without

NanoLog. Without NanoLog, building RAMCloud takes 9.27 minutes and results in a binary size

2This additional degradation occurs because the RAMCloud dispatch thread is already bottlenecked for reads [45] and
the benchmark made it worse by adding additional logging to that thread.
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Figure 9.5: Runtime log message throughput achieved by the preprocessor NanoLog system as
the number of logging threads is increased. For each point, 227 (about 134M) static messages
were logged. The Full System is Preprocessor NanoLog as described in this dissertation, No
Output pipes the log output to /dev/null, No Compact omits compression in the NanoLog back-
ground thread and directly outputs the staging buffers’ contents, and No Output + No Compact
is a combination of the last two.

of 122 MB. With preprocessor NanoLog, the build time increased by 97 seconds (+17%), and the

binary size increased by 19 MB (+16%). With C++17 NanoLog, the build time only increased by 9

seconds (+2%), and the binary size increased by 23 MB (+ 19%). Compilation times were measured

by invoking “make” without any parameters, and the binary size is the sum of the coordinator exe-

cutable, sever executable, and RAMCloud library. The dictionary of static log information amounted

to 229KB for 922 log statements (∼ 248B/message). The log message count differs from Table 9.2

because RAMCloud compiles out certain log messages depending on build parameters.
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9.5 Throughput Bottlenecks

I was curious about how NanoLog’s performance would scale with newer technologies, so I created

a benchmark that would remove NanoLog’s greatest bottleneck: I/O bandwidth. NanoLog’s perfor-

mance is limited by I/O bandwidth in two ways. First, the I/O bandwidth itself is a bottleneck for

outputting raw log messages. Second, the compression that NanoLog performs in order to reduce

the I/O cost can make NanoLog compute bound as I/O speeds improve. Figure 9.5 explores the

limits of the system by removing these bottlenecks for preprocessor NanoLog.

Compression plays a large role in improving NanoLog’s throughput, even on our testbed’s

SATAII flash devices (250MB/s). The “Full System” as described in the dissertation achieves

a throughput of nearly 80 million operations per second while the “No Compact” system only

achieves about 13 million operations per second. This is due to the 5x difference in I/O size; the

full system outputs 3-4 bytes per message while the no compression system outputs about 16 bytes

per message.

If I remove the I/O bottleneck altogether by redirecting the log file to /dev/null, NanoLog “No

Output” achieves an even higher peak throughput of 138 million logs per second. At this point, the

compression becomes the bottleneck of the system. Removing both compression and I/O allows the

“No Output + No Compact” system to push upwards of 259 million operations per second.

Since the “Full System” throughput was achieved with a 250MB/s disk and the “No Output”

has roughly twice the throughput, one might assume that compression would become the bottleneck

with I/O devices twice as fast as ours (500MB/s). However, that would be incorrect. To sustain 138

million logs per second without compression, one would need an I/O device capable of 2.24GB/s

(138M logs/sec x 16B).

Lastly, I suspect I was unable to measure the maximum processing potential of the NanoLog

background thread in “No Output + No Compact.” Our testbed only had 4 physical cores with 2

hyperthreads each; beyond 4-5, the logging threads start competing with the background thread for

physical CPU resources, lowering throughput. Since the background thread is primarily performing

memory copies in the “No Output + No Compact” scenario, I suspect the true maximum throughput

would be a function of the message size (16B) divided by the machine’s memcpy speed. However,

no additional measurements have been made to confirm or deny this suspicion.
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Figure 9.6: Complementary CDF showing the effect of staging buffer size on preprocessor
NanoLog’s tail latency when log messages are generated rapidly enough to bottleneck on I/O.
The top figure uses the staticString message and the bottom figure uses complexFormat. Each
curve represents 1 billion log messages logged back to back with no delay by one thread. A
point (x, y) in the graph means that a fraction y of all messages had an invocation latency of
at least x nanoseconds. The cliff that occurs near 105 nanoseconds for smaller buffers (4KB
- 512KB) is due to the background thread intentionally sleeping between rounds of polling
through the staging buffers. Finally, the “rdtsc” line in (a) is a microbenchmark that records 1
billion consecutive Intel Timestamp Counter [29] readings into a contiguous byte array.
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9.6 Tail Latency and Staging Buffer Size

This section evaluates the extreme tail latency performance of NanoLog and how it changes with

different sizes of the staging buffer. Under normal operating conditions, the staging buffer decou-

ples the speed of the logging application from the speed of compression and I/O, and the logging

application sees low latency for logging. However, if log messages are produced faster than the un-

derlying I/O device can handle them, then the buffers back up and the logging thread will experience

additional delays. Under these conditions, the size of the staging buffers impacts the frequency and

length of the delays experienced by the logging application.

Figure 9.6 shows the distribution of latencies experienced by an application with a single thread

that is generating log messages faster than they can be output. Each curve represents a different size

for the staging buffer, and the two graphs represent two different log messages being repeatedly

logged by a single thread. Each line outlines a shape where the left-most region is a sharp drop, fol-

lowed by a plateau, followed by two sharp drops on the right at around 50µs and 100+ milliseconds.

The regions where these transitions occur will be referred to as “knees” in the rest of this discussion.

Looking at Figure 9.6, we see that regardless of the staging buffer size, the NanoLog system

achieves a 90th percentile latency (10-1) under 10 nanoseconds. This range of low latencies occurs

while the staging buffer still has free space to fill, allowing the logging thread to execute unim-

peded at the highest performance. Once the staging buffer fills up, the logging thread is blocked and

experiences additional delays.

Furthermore, we see that the larger the staging buffer size, the larger the fraction of log messages

that can complete in under 10 ns. For example, comparing 4KB vs. 512KB curves in Figure 9.6a,

we see that only about 90% of the messages for the 4KB buffer complete in under 10 ns whereas

99.8% of the messages complete in under 10 ns for 512KB buffers. It also appears that this effect

is most dramatic for small buffers, and the benefits of having a larger buffer drops off after about

512KB (i.e. the performance characteristics of 512KB, 1MB, and 4MB are similar)3.

After 10 ns, there are two sharp “knees” at around 50µs and 100+ milliseconds. The first knee

is due to the background thread sleeping betweens rounds of polling the staging buffer. It dispro-

portionately affects the smaller buffers, as the smaller buffers can completely fill up between sleeps.

This causes more log messages to be delayed as the logging thread has to wait for the background

3I am unsure why this performance drop-off occurs. I observe the same drop-off even in a microbenchmark that only
records Intel Timestamp Counter [29] readings to a contiguous byte array in memory (the rdtsc line in Figure 9.6a). This
suggests the drop-off is caused by something outside the application’s control.
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thread to wake up, process the log messages, and free more staging buffer space. The second knee

at 100+ milliseconds is due to I/O. In scenario, the background thread runs out of space in the I/O

buffer used to store compressed log data (64 MB for this test) and has to wait until the I/O completes.

This results in a significantly longer delay, but affects fewer log messages.

One interesting observation is that the more frequent the stalls, the better the worst-case perfor-

mance. This can be seen in Figure 9.6a. Although the 4KB buffer experiences a 99.5% tail latency

within 105 nanoseconds vs. the 99.9999% for the 4MB buffer, the slowest operation for the 4KB

buffer only takes tens of microseconds vs. the hundreds of milliseconds for the 4MB buffer. The

reason for this is because the smaller buffers cause the logging thread to stall more often due to

running out of staging buffer space. These more frequent, but short stalls give the I/O more time

to complete. This results in better worst-case performance for the 4KB line. In contrast, the 4MB

buffer stalls less frequently. This means a few messages have to wait a comparatively longer time

for I/O to complete. Said another way, slowing down the logging also lowers the worst case I/O

latency, because the I/O has more time to complete before the system runs out of buffer space.

Message size also plays an important part in determining how often delays will occur; the larger

the message size, the more often delays will occur. We can see this by comparing the curves between

Figure 9.6a and Figure 9.6b. In all cases, the curves in (b) appear ”higher” in the graph than (a). This

indicates that a larger fraction of the messages are taking longer to process. For example, for the

4KB line, we see that 90% of the log messages complete within 10 ns for the staticString case

(Figure 9.6a), but only about 60% do the same for the complexFormat case (Figuree 9.6b). This

difference is due to message sizes. The staticString requires only about 3 bytes to represent vs. 19

bytes for complexFormat. The larger message sizes of (b) fill up the buffer faster, which result in

fewer messages being buffered before the logging thread has to stall and wait for the background

thread. This causes the entire graph to shift up.

Overall, one should set the size of the staging buffers based on the desired tail performance

characteristics. Smaller buffers tend to cause more stalls, but can result in better worst-case latency

in the steady-state if log messages are small. Conversely, larger buffers can allow the system to

buffer larger bursts of log messages before experiencing I/O delay. NanoLog sets its default buffer

size to 1MB, where the system appears to see diminishing returns; i.e. increasing the buffer size

further does not appear to improve the fraction of log messages completing in under 10 ns.

One very important caveat/note is that this benchmark is a bit unrealistic/contrived. It assumes

that the application is logging as fast as possible without performing any work between each log

statement. This results in the buffers filling up and the logging thread blocking on I/O, which results
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Figure 9.7: The performance of C++17 vs. Preprocessor NanoLog on average record()and
compress()function execution times (top) and overall throughput (bottom). In each exper-
iment, a single message was logged 100M times back to back with no delay. The x-axis
shows the log messages used and the first six labels correspond to the messages in Table 9.3.
The rightmost message, mixedPointers, was specifically added to this benchmark to stress
the C++17 templated compress()function and alternates pointer and string format specifiers
i.e. NANO_LOG(‘‘%p %s %d %s %p’, ’abc’, ’abc’, 50, ’abc’, ’abc’). Each system was
measured with the log file set to /dev/null to demonstrate the performance without disk bot-
tlenecks. Furthermore, the average latency measurements (top) were performed with a single
logging thread, while the throughput varied the number of logging threads between 1-8 and
recorded the maximum throughput achieved. The results from this figure differ from Figure 9.2
as disk I/O was removed, and they differ from Table 9.4 as this figure reports average invocation
latency vs. median/tail percentiles.

in the millisecond delays. For applications with a more sane logging rate (say 1 message per 1000

ns or 1M log messages/second), I expect the extreme tail to be significantly better and closer to the

rdtsc line in Figure 9.6a4.

9.7 C++17 vs. Preprocessor NanoLog Performance

To compare the performance of C++17 NanoLog with Preprocessor NanoLog, I ran a micro-

benchmark with a single thread repeatedly logging one of seven log messages back to back with

no delay. I then measured the maximum throughput and average invocation latency for the gen-

erated record()and compress()functions with the log file piped to /dev/null to eliminate disk

4There can still be delays upwards of 105 nanoseconds for reasons outside the application’s control.
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interference. Figure 9.7 shows the results.

The first thing to notice is that C++17 NanoLog is not as performant as Preprocessor NanoLog.

The compress()functions it generates are consistently 1.5-2.4x slower than the preprocessor coun-

terparts, with the worst case being when the log message alternates pointer and string types (mixed-

Pointers). There are two reasons for this slowdown. First as mentioned in Section 4.4.2 of Chapter 4,

the C++17 compress()function must perform a small amount of computation at runtime to differ-

entiate between pointer and string types. In contrast, preprocessor NanoLog requires no such logic.

This is why the largest performance gap occurs with mixedPointers; it alternates logging pointer

and string types. Second, the C++17 front-end generates compress()functions that are not easily

in-lined or optimized by the compiler. The C++17 front-end specializes the compress()function

within the record()function and stores a pointer for later invocation. Since the compiler can nei-

ther “see” the arguments nor in-line the functionality at specialization time, it cannot make any

optimizing assumptions and generates more conservative, slower code.

Conversely, the record()functions generated by both systems are within a 10% or 1 ns margin

of each other. The performance is similar here because the C++17 record()function is specialized

and used in the same code location. As a result, the compiler can make optimizing assumptions on

the arguments and in-line the logic, resulting in similar performance as preprocessor NanoLog.

Lastly, the throughput of the system is ultimately determined by disk bandwidth or the slower

of the two generated functions. In Section 9.1.3, the two systems generated similar throughput per-

formance since they were both bottlenecked by disk performance (250MB/s). However, with the

disk bottleneck removed for Figure 9.7, performance is dictated by the slower of the record()and

compress()functions. This results in a throughput that is roughly the inverse of the slower opera-

tion. Preprocessor NanoLog dominates throughput in this scenario since the compress()function is

typically the slower operation, and Preprocessor NanoLog generates faster compress()functions.

As a side note, one may also notice that there is a base cost for compress()even when the

log statement has no arguments (staticString). This is an artifact of NanoLog’s architecture. Both

versions of NanoLog invoke the compress()function by dereferencing a function pointer. This op-

eration tends to cost 7-8 ns. Thus, even though the end function is effectively a no-op, it still requires

7-8 ns to dereference the no-op and execute it.

Overall, Preprocessor NanoLog is more performant than the C++17 version, as it generates more

optimized compress()functions.
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9.8 Concluding Remarks

Overall, NanoLog is a highly performant system. It offers a logging throughput higher than other

state-of-the art systems at dramatically lower latencies. Even when integrated in a logging project

with a realistic workload, the system still outperforms its competitors. Additionally, we’ve seen that

the NanoLog binary log offers performance benefits in log analytics applications, providing up to a

10x improvement on processing throughput. We’ve also measured one level deeper to break down

the performance of individual components and identified disk bandwidth as one of the major culprits

hindering performance. The only downsides to NanoLog are that it emits a binary log that needs to

be post-processed and slightly increases the application’s binary size and compilation time.



Chapter 10

Extensions and Limitations

NanoLog is not a perfect system and has limitations. In this chapter, I will describe some ways in

which one could improve NanoLog to address some of its limitations as well as list other limitations

that I believe are fundamental and cannot be fixed.

10.1 Extensions

The NanoLog system in its current form on GitHub [70] is a proof-of-concept implementation for

C++, and I’ve listed a few ways in which the system can be improved or extended below.

10.1.1 Support for Additional Programming Languages

As of the writing of this dissertation, the NanoLog system only supports C++ applications. However,

I believe the ideas and portions of the NanoLog system can be generalized to support any language

that exposes its source code. For example, the preprocessor component can be modified to recognize

the syntax of different languages and perform code injections. The runtime could be either linked

in via bindings (such as through JNI for Java) or a new runtime library can be developed for each

additional language1. The post-processor component can be reused without modification, so long as

the language-specific runtimes output a compatible format.

Furthermore, I suspect the ideas of NanoLog can be directly implemented in popular compiler

backends such as LLVM [32]. The background thread and NanoLog runtime would be absorbed

1The runtime can be fairly rudimentary as it only needs to provide storage for log statements and a mechanism to
persist them to disk.
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into the system library, and the NANO LOG () transformations into more optimized code can be

done by the compiler. This move would also make it fairly trivial to port the NanoLog system to

even more languages, as one would only need slight modifications to the compiler front-ends to

recognize NANO LOG () invocations.

The only limitation to NanoLog’s ideas and generalizability is that it would only be capable

of optimizing NANO LOG statements that follow a strict printf-like specification with a string-

literal format string. In other words, it would not be able to optimize any log statements that are

dynamically generated and evaluated (such as with JavaScript’s eval() [11]). It would also not

be able to optimize any log statements that log more complex data types than the ones supported

by the printf specification [6]. Overall, this limits the NanoLog system to one very specific style of

logging.

However, I believe that NanoLog’s ideas can be ported to most programming languages.

10.1.2 Remote Logging and Analysis with Other Frameworks

The NanoLog system currently only supports logging to the local disk, and the NanoLog aggrega-

tion API it offers is quite limited compared to third party log analysis frameworks like Splunk [57].

Fortunately, the design of the NanoLog system is amenable to streaming the log data in a com-

pressed format over the network to third party log storage/analysis systems. These systems can then

perform the analysis/inflation of the messages remotely. This method saves on network I/O as the

log messages remain in their compressed format, and in certain cases, reduces the cost of parsing

and indexing the log data. In this section, I will describe at a high level (a) the modifications that

need to be made to the NanoLog system to support streaming the log data over the network, and (b)

a hypothetical implementation of the receiving analytics engine on top of Splunk.

To stream NanoLog log data directly over the network, the NanoLog background thread requires

two modifications. First, after the plumbing is set up to connect to an external host, the background

thread should be modified to stream compressed buffer extents to the remote log processing frame-

work. The buffer extent structure is chosen as the basic building block, because it is already a well

encapsulated chunk of dynamic log data with a size field. Second, the background thread should

also be modified to accept incoming requests for the dictionary. This latter call is needed because

the dynamic log data encoded in the buffer extents cannot be interpreted without a dictionary. Thus,

if the remote processing framework ever loses the dictionary via a crash, host migration, or cold

start, it must be able to recover the dictionary from the NanoLog application.

On the remote analytics framework end, the framework needs to be able to maintain/query
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the NanoLog dictionary in a fashion similar to the post-processor (for example with the dictionary

entries in an indexable array) and be able to accept log data. Once the log data arrives, the framework

can use the same techniques as the post-processor to lookup the log message’s unique log identifier

in the dictionary, find the associated format string, and parse/interpret/index the arguments. The

log data can then be placed into the framework’s internal indexes without formatting (if the system

supports it) and only format the messages when the user views them. If the analytics framework

ever encounters a log message that it does not have the associated dictionary entry for, then it should

query it from the NanoLog application.

One additional feature the remote system needs is a way to manage sessions. More than likely,

there will be multiple applications using the NanoLog system. Each instance of the application will

have its own specific dictionary to interpret its log statements, and the dictionaries won’t be inter-

changeable. Thus, the system needs to handle mapping a specific dictionary with every connection

to a NanoLog application. This can be trivially done by maintaining sessions to the applications

(via persistent TCP sockets or cookies) and querying for the dictionary whenever a new session is

created.

To demonstrate the feasibility of this setup, I will describe hypothetical implementation involv-

ing Splunk [57] as the log processing framework. Splunk is a popular, log processing framework that

allows for searching, indexing, and analytics to be performed on log traces of any kind. However,

to get the most of the system, it is often recommended that the log sources match one of the default

data sources it can natively parse (such as syslog or Windows Events), or create an “Add-On” to

perform custom processing on the incoming data.

To process the log data in the Splunk platform, I would build/utilize a custom “Add-On”. For the

purposes of demonstrating feasibility, I would start with the Protocol Data Inputs Add-On [7]. This

Add-On already implements a framework that allows for custom processing of incoming binary

data via Python/Javascript scripts before passing it to the Splunk indexer. To to get a proof-of-

concept going, I would write a custom NanoLog log file parser in Python/Javascript and perform

the decompression of log statements within the Splunk framework. This configuration would allow

the NanoLog system to save network bandwidth and perform inflation on a remote system. To

obtain even higher performance gains, one could write a custom Add-On that would not only allow

for decoding of the binary log arguments on ingest, but also defer formatting until the user views

it in the Splunk application. To be performant, this custom Add-On would only partially inflate the

log messages’ arguments such that they’re indexable by the Splunk engine and then implement a

custom “Dashboard” that would only generate the full, human-readable log statements when viewed
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enum State
{

State1, // State 1
State2, // State 2
State3, // State 3
....

}

const char* enumToString(enum State s)
{

switch(s) {
case State1: return "State 1";
case State2: return "State 2";
case State3: return "State 3";
....
}

}

void logStatus(enum State s) {
// Normal Print Statement
NANO_LOG("The current state is %s", enumToString(s));

// Stream Print Statement
cout << "The current state is" << enumToString(s);

}

Figure 10.1: Pseudo C++ code that demonstrates a common method in which enums are logged
as static strings and how stream operators can also contain static string data.

on-demand.

Overall, NanoLog can be modified to stream its log data. It only needs the additional ability

to connect to a remote host, send over buffer extents, and accept requests for dictionary queries.

Furthermore, external log processing platforms like Splunk can be modified to accept NanoLog log

data.

10.1.3 Extracting Enums

Another avenue for improving NanoLog’s performance is to add the ability to extract pretty-print

strings for C++ enumerations. In C++, enumerations are a method of allowing developers to map

symbols (i.e. names) to integer values. These symbols typically only have meaning within the appli-

cation source itself, and the compiler will transform all references to integer values. Thus, to make

sense of the values when logging, developers often write pretty-print functions that take in the value

of an enumeration and output a human-readable string which they can then log with the “%s” speci-

fier. Figure 10.1 shows an example. This method makes it easier for developers to read enumeration

values in the log, but it is suboptimal for NanoLog, as NanoLog does not apply any compression to
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strings and will waste I/O outputting the full string every time.

NanoLog can improve upon this short-coming by applying a second level of extraction for enu-

merations. More specifically, the preprocessor can be modified to detect where enumerations are

logged, extract the static pretty-print string used by the enumeration, store the mapping of enumer-

ation values to static strings, and replace the code to log the raw value of the enumeration instead.

The post-processor can then be modified to read in the mapping of enumeration values to static

strings and perform the replacement before formatting the log message. This method would make

the runtime more efficient as the application would (a) log a smaller integer type rather than a string,

and (b) use its variable length encoding compression scheme to further reduce the I/O size.

The hardest part of implementing enumeration support would be finding the mapping of enu-

meration values to pretty-print strings. While I don’t have a concrete solution myself, I do have

some partial ideas of how one may be able to do this. One solution is to detect enumeration defini-

tions, use the enumerator names/values (i.e. State1, State2, State3 in Figure 10.1) as the static

string descriptor, communicate this information to the post-processor, and have the post-processor

use these values as the human-readable strings. Another method may be to detect pretty print func-

tions with some heuristic (i.e. identify functions that take an enumeration parameter and output a

static string), compile them into the post-processor instead, log only the values at runtime, and then

have the post-processor invoke the pretty-print function instead. A final method may be to require

users to define enumerations in a well documented way (such as having the pretty print name in

comments after the enumerator name/value as in Figure 10.1) and having the NanoLog system ex-

tract these values for the post-processor. All these suggestions are partial solutions, and they all have

different flaws. Nonetheless, I included these here in the hopes that someone will come up with a

better solution and contribute to the NanoLog GitHub repository [70].

10.1.4 Stream Logging

In my exploration of the logging space, I also found that developers often like to use stream operators

in-lieu of printf-style logging. In fact, some of the more popular logging libraries such as glog

by Google [21] introduce stream logging as the default method of logging. Another example of

streams’ prevalence may be how many C++ “Hello World” tutorials start by teaching developers to

log to use the “cout” stream to write to standard out. Clearly, streams are a common way developers

log, and it would be beneficial if NanoLog supported streams.

NanoLog currently does not support stream operators, however I believe that it is possible. For

example, in the last line of Figure 10.1, we can clearly see that the user outputs a well defined,
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human-readable static string followed by an invocation to the pretty print function. One can build

a NanoLog-like system that would extract the static text, replace it with an integer or enumeration

value, output the integer value to the stream instead of the static text, and use a post-processor to

reinterpret the stream of numbers. This setup would not be unlike how NanoLog currently operates,

except that the new system would search for NanoLog-defined stream classes and replace the static

text in between the << operators with integer mappings instead. One limitation of this setup when

using the current NanoLog techniques is that one may not be able to statically detect the type of the

arguments passed to the operator<< without compiler help. Thus, NanoLog would either have to

identify the arguments dynamically and note them in the log file, or it would need to integrate with

a compiler and ask the compiler for hints.

Nonetheless, I believe that with some effort, one can modify the NanoLog system to also support

streams.

10.2 Fundamental Limitations

In addition to the fixable limitations, NanoLog also has four fundamental limitations that are likely

not fixable by further extending the system: NanoLog introduces extra complexity into an appli-

cation, can use more resources than a traditional logging system, is restricted to a specific style of

logging, and does not fully solve the problem of visibility in applications.

One of the biggest limitations of NanoLog is that it introduces extra complexity into an applica-

tion’s development cycle. In particular, NanoLog’s non-conventional design requires users to inte-

grate a preprocessor in their compilation chain2, to store intermediate, binary representations of log

messages, and utilize a post-processor to re-inflate the logs into something consumable by humans

or other machines. Compared to traditional logging systems where users only need to link against

the library and the runtime will automatically generate human-readable log messages, NanoLog

adds extra steps and extra levels of complexity. This makes NanoLog potentially more difficult to

integrate into existing environments and adds additional points of failure.

Furthermore, if the goal of the user is to obtain human-readable log messages, NanoLog actually

increases the end-to-end consumption of resources. In particular, the NanoLog front-end performs

additional analysis and inflates the binary size and compilation time by about 2-19%, the runtime

utilizes extra CPU and I/O to emit an intermediate binary log file, and the post-processor must

2...or use a more recent compiler for C++17 NanoLog.
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expend additional I/O to read back the binary log file and output it in a human-readable format. In

other words, NanoLog’s deferral of formatting log messages creates intermediate representations

that cost extra resources to produce and maintain. Thus, NanoLog only makes sense in situations

where runtime performance is paramount and either extra resources can be dedicated to the post-

processor or it is uncommon for humans to consume the log.

Third, NanoLog relies on a strict adherence to a single type of logging style; it requires the user

to have printf-style log statements with string-literal format strings. The NanoLog system exploits

the printf format string as a specification for the order and type of dynamic arguments that will be

passed into the system. In situations where this data is not readily available at compile-time (such

as with dynamic format strings), then NanoLog cannot extract the static information, and it cannot

infer the type/order of the log arguments to generate specialized functions. NanoLog would instead

have to fall back to outputting the dynamic format string and parsing it at runtime to infer the

argument data types3, negating most of the bandwidth and compute gains. Furthermore, NanoLog’s

strict adherence to printf-style logging means that it cannot support other forms of logging such as

outputting data structures (lists, maps, arrays, etc). In other words, NanoLog’s techniques are only

applicable to a very specific definition of logging.

Lastly, NanoLog is not a silver bullet to application visibility; it does not solve the problem of

what/when/where developers should log. NanoLog only focuses on making the logging operation

cheaper and does not attempt to make any suggestions on how to use this operation. It is entirely

possible for developers to saturate NanoLog’s throughput without gaining any additional visibility

into the application through suboptimal placement of log statements. Furthermore, with an increased

rate in logging, users will have to sift through more raw data in order to find interesting events.

This may have the adverse effect of making an application more difficult to understand as the user

is inundated with superfluous information. Thus, while NanoLog attempts to address application

visibility by allowing developers to log more often, it still relies on the developers to log the right

things at the right moments.

3C++17 NanoLog can infer the order/type of the arguments using variadic templates, and it can build the dictionary of
static information at runtime. However, it would still need to parse the format string at runtime and expend I/O to output
the dynamic format string (at least once per new string).
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10.3 Summary

In short, the NanoLog system can be extended to support other programming languages, log re-

motely, extract additional static information from enumerations, and support stream logging. How-

ever, regardless of modifications, NanoLog will always increase the complexity of development

environments, use more resources to produce human-readable log messages, and rely on extracting

static information at compile-time. It also does not directly solve the problem of gaining visibil-

ity into low-latency applications. However, even with this set of limitations, I still do believe that

NanoLog contributes to the state-of-the-art for logging and will speedup logging for most develop-

ers in most environments.
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Related Work

The NanoLog system shares many ideas and techniques found in other software systems. In this

chapter, I will discuss how NanoLog is similar to three broad categories of software: traditional log-

ging systems, software tracing packages, and remote procedure call (RPC) or serialization libraries.

Then, I will take a deeper dive into two specific software systems most similar to NanoLog: Event

Tracing for Windows [47] (ETW) and KUTrace [54]. Finally, I will conclude on work that is more

tangential to NanoLog itself, but related to the broader theme of increasing visibility in software

systems.

11.1 Traditional Logging Systems

At first glance, the NanoLog system is perhaps most similar to traditional logging systems. Like

these systems, NanoLog exposes a familiar printf-like API to allow developers to specify arbitrarily

complex log messages, and the system can emit a full human-readable log file. Other logging sys-

tems also include performance-enhancing designs such as buffering intermediate log messages at

runtime and utilizing a background thread to perform expensive I/O. However, these are only sur-

face level similarities; NanoLog employs techniques that changes how one interacts with the system

and greatly enhances its performance relative to traditional logging systems.

The greatest difference between NanoLog and traditional logging systems is that it intro-

duces extra steps at compile-time and post-execution. NanoLog adds a preprocessor to analyze

log statements and generate highly optimized, log-specific code to be injected into the application

at compile-time, and NanoLog utilizes a post-processor to defer formatting of log messages and

emits a binary log file at runtime. This contrasts with traditional logging systems that are only
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Source
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Log File

Compiler Post
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Traditional Logging Systems

Figure 11.1: The pipeline from source file to human-readable log for traditional logging
systems (top) vs. NanoLog (bottom). For traditional logging systems, users can expect their
sources to be directly compilable, and the resulting application will output the log file in a
human-readable format. In contrast, the NanoLog pipeline adds three new components: sources
must first pass through the front-end (i.e. either the preprocessor or the C++17 templating en-
gine) before being compiled, the application outputs a binary log file, and the binary log file
must be passed through the post-processor to obtain the full human-readable log file.

linked as libraries at compile-time and emit the full human-readable log file as soon as the applica-

tion executes. NanoLog’s optimizations complicate the deployment strategy relative to traditional

logging systems, as the user must integrate two additional components into their software stacks

(Figure 11.1). However these optimizations propel the performance of NanoLog far beyond that of

any traditional logging system.

Overall, while NanoLog exposes a similar user interface as traditional logging systems, its in-

ternal architecture, usage, and performance characteristics are very different.

11.2 Tracing Software

Given NanoLog’s ultra-low, nanosecond scale logging mechanisms, comparisons have been drawn

between it and highly specialized tracing software such as PerfUtils [49], kutrace [54], and wait-free

queuing [40]. These systems allow the user to record when certain code segments (events) execute

in the application and are primary used for performance debugging. They include a host of optimiza-

tions similar to NanoLog to achieve nanosecond scale performance, such as using high performance

CPU counters [29] to gather timing information, using lockless, in-memory ring buffers [40] to store
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events, and minimizing the number of bits required to represent each event. How they differ from

NanoLog is that they can typically only sample events and they limit the amount of information

recorded.

Tracing systems achieve their high performance by limiting the number/types of arguments

per event and sampling events. Tracing systems are often so high performance that most of their

events cannot be persisted to disk in a timely matter. Thus, they only record a burst of informa-

tion into an in-memory ring buffer and then pause to output the information. For example, Per-

fUtils::TimeTrace will only output the last 8192 events whenever print() is invoked [49], and

KUTrace will only record events for 30-120 second intervals at 200k events per second [54]. Fur-

thermore, the amount of information recorded by each event is severely limited; this is done to

minimize the byte size of each event and maximize the limited space space in the ring buffer. For

example, PerfUtils::TimeTrace will only record up to four 4-byte integers per event and even more

extreme, KUTrace will only record up to 3-bytes of arguments per event. In contrast, NanoLog is an

always-on, guaranteed logger, will never drop a log message, and can include a virtually unlimited

number of arguments.

The flip side of NanoLog’s design is that it can induce higher performance variation in the

application when compared to traditional tracing systems. This variation stems from three design

differences. First, NanoLog utilizes a separate thread to compress the log statements and output

them to disk. This extra thread utilizes extra resources that may cause cache or thread migration

interference with the application. Second, NanoLog’s guaranteed logging means that if log mes-

sages are generated faster than they can be output, the system will block, resulting in performance

variation. Tracing systems do not suffer from this problem as they typically utilize a ring buffer and

will simply overwrite older events when the application records faster than can be output. Lastly,

NanoLog’s acceptance of more varied or general log arguments means that each statement can take

a variable amount of time (for example, a 100-byte string would take longer to output than a 4-byte

integer). Tracing systems do not suffer from this problem as their arguments are more restricted

and fixed-size. Overall, NanoLog has a potential for higher performance variation than traditional

tracing systems.

Fortunately, NanoLog can emulate much of the consistent and high performance of tracing

systems with minor modifications. More specifically, NanoLog can disable its background thread

to reduce thread interference, only persist events to disk once a sample period is over, increase

the staging buffer sizes to match the ring buffers of other tracing systems, and limit the number
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of allowable arguments in a single log statement1. With these modifications, the NanoLog system

operates nearly identically to the tracing systems. The only difference after these modifications is

that NanoLog will still require more memory for the same number of events, as its in-memory

representation is not as compact as some other systems.

Overall, tracing systems offer more consistent performance than NanoLog, but they come at the

cost of requiring sampling and limited arguments.

11.3 RPC Systems

Lastly, the code generation techniques used by NanoLog are similar to low-latency RPC/serializa-

tion libraries such as Thrift [55], gRPC [22], Google Protocol Buffers [65], and Cap’n Proto [67].

The goal of these systems is to transmit messages between processes with the fewest number of

bytes possible. To do this, they use static message specifications (schemas) to name symbolic vari-

ables and their types (Figure 11.2) and use a special compiler to generate logic to encode/decode the

data in a succinct format for the application to use. This methodology is not unlike how NanoLog

utilizes a log message’s format string and a compile-time front-end. In particular, the NanoLog sys-

tem uses the formal specifications for a printf format string [6] to encode the order and allowable

types for a log statement’s arguments and uses a special preprocessor to generate logic to encode/de-

code that data.

Another similarity between the systems is the use of variable length encoding for integers as a

form of compression. Cap’n Proto [67] in particular came to the same conclusion as NanoLog that

most integer values transmitted/logged are small. As a result, both systems independently decided

that variable length integer representations are the best form of compression for their data types.

The exact encoding differs between systems [66], but the core principle is the same.

RPC systems differ from NanoLog in that they operate in a different domain, are typically

cross-language, and can communicate more data types than NanoLog. In particular, RPC systems

operate in the domain of networked communication between processes, whereas NanoLog aims to

communicate log messages to human users. Since the endpoint is other computers, RPC systems

can represent all their data in a binary-only format and support more complex data structures like

queryable lists, dictionaries, and C++ structs; NanoLog is limited to logging basic data types. RPC

1Experiments have shown that NanoLog can maintain its <10 ns response latency even when 5 or more integer
arguments are logged in a single message.
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Figure 11.2: An example schema file for the Cap’n Proto RPC system copied directly from
the online documentation [68]. This schema shows how users of the RPC system can define
C++-like structures that indicate a symbolic name for a variable, the order in which it appears
within the structure (as indicated by the numbers after @ symbols), and the type of the vari-
able (i.e. Text, Date, List(...)). This definition is then compiled by the Cap’n Proto compiler to
generate source code that serializes and deserializes the information, much like how NanoLog
uses the printf specifications [6] to generate specialized functions to serialize/deserialize log
information.
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systems are also more general and are built to operate across many different languages whereas

NanoLog is currently only implemented for C++ applications.

NanoLog’s limited scope does present usability and performance advantages. First, NanoLog’s

use of the existing printf specification [6] within the C++ language makes it easier to use. Unlike

the other systems, NanoLog does not require one to learn a new domain-specific language for the

schema, and it does not require the user to explicitly maintain a separate schema file to be used with

the sources. Instead, users simply write code as they would for a normal C++ printf statement and

compile. Second, NanoLog’s restrictions to a single language and more limited scope for argument

types allow for higher performance. Since NanoLog is limited to C++ (or more generally a single

language at a time), it can output data in a format most convenient for that language. In contrast,

RPC systems may need to perform conversions between languages or to a more general representa-

tion for wire transport. As a result, the serialization/deserialization costs in most RPC libraries are

significantly higher than NanoLog’s more tightly scoped argument types.

Overall, the goals and techniques used by NanoLog and RPC systems are similar in flavor, but

are applied to different domains with different performance envelopes.

11.4 Event Tracing For Windows

Event Tracing for Windows (ETW) [47] with the Windows Software Trace PreProcessor (WPP) [28]

deserves special attention as it is most similar to NanoLog. This system was unbeknownst to me

when I designed NanoLog, but WPP appears to use compilation techniques similar to NanoLog.

Both use a preprocessor to rewrite log statements to record only binary data at runtime and both

utilize a post-processor to interpret logs. However, ETW with WPP does not appear to be as per-

formant as NanoLog; in fact, it’s on par with traditional logging systems with median latencies at

180ns and a throughput of 5.3Mop/s for static strings. Additionally, its post-processor can only pro-

cess messages at a rate of 10k/second while NanoLog performs at a rate of nearly 500k/second (I

was not able to ascertain why ETW is slower than NanoLog given its closed-source nature).

As far as I can discern, there are five main differences between ETW with WPP and NanoLog:

(1) ETW is a non-guaranteed logger (meaning it can drop log messages) whereas NanoLog is

guaranteed. (2) ETW logs to kernel buffers and uses a separate kernel process to persist them vs.

NanoLog’s in-application solution. (3) The ETW post-processor uses a separate trace message for-

mat file to interpret encoded log files, whereas NanoLog uses dictionary information embedded
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directly in the log file. (4) WPP appears to be targeted at Windows Driver Development (only avail-

able in WDK), whereas NanoLog is targeted at applications. Finally, (5) NanoLog is an open-source

library [70] with public techniques that can ported to other platforms and languages while ETW is

proprietary and locked to Windows only. There may be more differences than what I’ve listed (such

as the use of compression). However since ETW is closed source, I can only list what is documented.

Overall, ETW uses similar techniques to NanoLog, but it is closed-source and not as performant.

11.5 KUTrace

KUTrace [54] is a Linux kernel tracing utility that uses some of the same techniques as NanoLog

and exhibits similar performance. KUTrace aims to instrument every kernel/userspace transition for

about a minute or two at a time and patches the kernel at the source level to do so. Its goal is to

provide a level of instrumentation that could help demystify 99th percentile latencies in unmodified

applications. It is similar to NanoLog in that it achieves a similar average performance as NanoLog

(about 12.5 ns per event), emits a binary log file, and utilizes a post-processor to make sense of

the binary log file. They both also share many of the same runtime optimizations such as using a

low-level instruction, RDTSC [29], to gather timing information and recording events to a lock-less

circular buffer [40]. However, there are three primary differences between NanoLog and KUTrace.

First, KUTrace was designed to sample trace data only. In particular, it was designed to burst

record all incoming events for 30-120 seconds into an in-memory buffer and then stop all recording

to process the event data and persist it to disk. NanoLog, on the other hand, was designed as a

persistent, always-on logging system. The trade-offs between the two systems is that KUTrace will

never block an application from executing (as it will simply drop new events once the buffers are

full), whereas NanoLog can block, but will never miss any critical events. This blocking can result

in more variable performance when compared with KUTrace.

Second, KUTrace is extremely limited in the information it collects. KUTrace events are highly

specialized to trace function call events and are thus optimized to fit within a single, 8-byte word.

This means that after accounting for timestamps and an event identifier, each event only has 3

bytes remaining to store arguments. These three bytes are used to save the first two bytes of the

first function argument and the first byte of the return value. NanoLog, on the other hand, allows

for as many arguments as the system’s built-in printf function would allow for, and this means

NanoLog’s log messages can contain more semantic information than KUTrace. The trade-off here

is that KUTrace has consistent message sizes and thus consistent performance, whereas NanoLog’s
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performance can vary with the number of arguments.

Third, KUTrace does not use an automated process to generate event identifiers. For every event

the user wishes to record in KUTrace, the user has to first define a unique C++ enumeration name

and value, pass the value to the record()function equivalent, and manually add the mapping into

the post-processor. In my opinion, this process is extremely error-prone (the user has to consistently

edit 3 lines of code in three different files for every line of instrumentation), and it reduces the us-

ability of the system. In contrast, the NanoLog system uses a preprocessor or front-end to inject a

unique log identifier for every log statement and communicates this information to the post proces-

sor automatically; the user only has to write one line of code to log a message. In my opinion, this

makes NanoLog much easier to use than KUTrace.

Lastly, here are a collection of minor, miscellaneous differences between NanoLog and KU-

Trace. KUTrace runs in the kernel whereas NanoLog runs purely in userspace. The benefit of the

former is that KUTrace can turn off preemption during the recording operations whereas NanoLog

cannot. KUTrace also has a graphical viewer for events, allowing users to view spans or how func-

tion calls nest. NanoLog currently does not have such a viewer.

Overall, the biggest similarity between KUTrace and NanoLog is their performance envelopes,

but the two systems are designed to serve different purposes. KUTrace is optimized for short(ish)

bursts of event tracing whereas NanoLog is always-on logging. KUTrace is optimized primarily

to trace function calls, whereas NanoLog can be used to instrument a larger variety of software

constructs. And lastly, NanoLog is easier to use than KUTrace as NanoLog uses a preprocessor

or front-end to automatically create and map event identifiers in the code. The consequence of

NanoLog’s features, however, is more varied performance, as it may block for free space or consume

more resources to represent more arguments.

11.6 Related Areas of Research

Logging plays only a small part in the grand scheme of increasing visibility into low latency systems.

Moving beyond a single machine, there are also distributed tracing tools such as Google Dap-

per [51], Twitter Zipkin [74], X-Trace [16], and Apache’s HTrace [60]. These systems operate in dis-

tributed settings where a software event (such as a user request) can propagate over thread, process,

machine, and even data center boundaries. In these settings, simply logging on a single machine is

not sufficient to fully understand the end-to-end performance of a system. Thus, distributed tracing
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tools are utilized to track the causality of log messages related to a single request2 and link them

together for later analysis. This provides the user with a full end-to-end picture of how a request

propagated through various software components. While these systems are great for understanding

distributed behavior, they do not accelerate core logging performance like NanoLog.

After producing log files, a developer often has to sift through a mountain of log data to find

anomalous behavior or interesting events. To aid in this effort, multiple online machine learning and

database services have emerged to collect log messages and provide insights such as Splunk [57],

Datadog [8], DISTALYZER [41], and others [43]. These systems typically work by ingesting raw

human-readable log messages, performing various transformations or statistical analysis on the data,

and then presenting the user with an interface that either highlights anomalous events (such as

longer-than-expected requests) or allows the user to perform SQL-like queries to narrow the list

of interesting events. These systems enhance a user’s ability to “see” the behavior of a system

and quickly identify problem spots. NanoLog hopes to increase the efficiency of these systems

by presenting the log files in a compressed, binary format rather than the full human-readable log

messages to save I/O and processing time.

In addition to the static log messages I’ve discussed so far, there are also systems that employ dy-

namic instrumentation [26] to gain visibility into applications at runtime such as Dtrace [25], Pivot

Tracing [36], Fay [12], and Enhanced Berkley Packet Filters [24]. These systems allow a developer

to insert log new log messages into a system while the system is executing. This contrasts with

conventional logging where log messages are determined a priori at compile-time and remain un-

changed until the application is modified and recompiled. This alternate method of logging enables

faster debugging iteration as a developer can inspect a system live, quickly add new log messages,

and repeat until the bug is found without ever shutting down the system. The downside to this ap-

proach when compared to more traditional logging methods like NanoLog, is that instrumentation

must already be in place in order to initially detect problems or enable post-mortem debugging.

As a result, I imagine future developers will use a synergy of extremely fast logging to provide an

operational baseline and only add new log statements with dynamic tracing when slowness or bugs

are encountered.

2They do this by propagating and logging a unique identifier for each request in the system.
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11.7 Remarks

The NanoLog system shares techniques with a variety of software systems, but it brings to the table

a unique blend of high performance and flexibility. NanoLog inherits the API of traditional logging

systems, the performance characteristics of tracing systems, and the code generation techniques of

RPC/serialization systems. Moving forward, I imagine NanoLog’s techniques may find their way

into distributed tracing tools and log analysis engines and synergize with dynamic instrumentation

tools. NanoLog alone does not solve the issue of limited application visibility, but it plays a part by

providing low-latency logging.



Chapter 12

Conclusion

NanoLog is a highly performant, nanosecond scale logging system that shifts work out of the run-

time hot-path and into the compilation and post-execution phases of the application. It aims to

increase visibility into low-latency, high performance applications by allowing developers to log

more information while utilizing the same amount of resources at runtime.

Several key techniques allow for NanoLog’s high performance:

• Separation of Static and Dynamic Information: NanoLog separates the static and dynamic

log information and puts them on separate data paths. Static information is persisted just once

in the log file, while the dynamic information is saved on every log invocation. This allows

the system to dramatically reduce the amount of data flowing through the system at runtime.

• Precomputed Logic: NanoLog predetermines the logic that needs to occur for each log state-

ment at compile-time. It generates the logic to record and compress a log statement’s argu-

ments to disk and compiles it into the application. This allows the application to execute

highly optimized, in-line code instead of parsing the log statements at runtime to determine

the logic.

• Deferred Formatting: NanoLog assumes that most log messages are never consumed by

humans in the normal case, so it doesn’t waste resources to format them at runtime. Instead,

it outputs a binary log file and provides a separate, post-processor application to perform

formatting.

• Extremely Light Weight Compression NanoLog compresses its log arguments with vari-

able length integer encoding. This style of compression can be performed much faster and

134
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with fewer resources than traditional dictionary based systems. This compression allows the

runtime to emit a smaller log file with minimal compute and enables fast log processing.

Experiments show that with these techniques, NanoLog is able to achieve a logging throughput

of 80 million log messages per second at a median latency of 7-19 nanoseconds. This is significantly

more performant than current state of the art systems that can only achieve a few million messages

per second with latencies in the hundreds or thousands of nanoseconds. Furthermore, the binary log

files produced by the NanoLog system are easier to consume by machines, making log aggregation

and analysis cheaper.

Overall, NanoLog is an extremely performant system. It allows for an order of magnitude more

log messages with the same amount of resources, and its printf-like API means it can be readily

used today. An implementation for C++ is available on GitHub [70].

12.1 The Future of Logging

In my time in the instrumentation field, I’ve noticed a trend. Software is becoming so complex and

distributed that it’s difficult to understand from the standpoint of a single machine. As a result, large

technology companies are investing more and more in distributed tracing infrastructures beyond a

single machine, and multiple startups are banking on providing distributed tracing infrastructures

to smaller companies that cannot afford to build the infrastructure themselves. All the signs point

towards distributed logging as the future.

This is understandable, with the rise of micro-services and instant access to distributed infras-

tructures via cloud services, the need to move logging and instrumentation beyond a single ex-

ecutable, beyond a single, and in some case beyond a single data center is important. Knowing

exactly what’s happening with an application is key to driving down bugs, improving the user expe-

rience, and reducing waste in data centers. There’s a lot of money to be made there.

As a result, I don’t envision that the NanoLog system will become a staple of logging anytime

soon, especially not the prototype implementation on GitHub. Instead, I hope that the ideas and

techniques that I’ve explored would be integrated into newer systems; systems that integrate well

with distributed tracing and provide value beyond a single machine.
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12.2 Final Comments

With traditional logging systems, developers often have to choose between application visibility or

application performance. However using the techniques of NanoLog, I hope that developers will

be able to log more often and log in more detail, making the next generation of applications more

understandable.
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[12] ERLINGSSON, Ú., PEINADO, M., PETER, S., BUDIU, M., AND MAINAR-RUIZ, G. Fay: ex-

tensible distributed tracing from kernels to clusters. ACM Transactions on Computer Systems

(TOCS) 30, 4 (2012), 13. 132

[13] FELDERMAN, B. Personal communication, June 2015. Google. 2

[14] FISCHER, K., YANG, S., MOK, B., MAHESHWARI, R., SIRKIN, D., AND JU, W. Initiating

interactions and negotiating approach: a robotic trash can in the field. In 2015 AAAI Spring

Symposium Series (2015). vi

[15] FITZPATRICK, B., ET AL. memcached: a Distributed Memory Object Caching System.

http://www.memcached.org/, Jan. 2011. 87, 96

[16] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STOICA, I. X-trace: A perva-

sive network tracing framework. In Proceedings of the 4th USENIX conference on Networked

systems design & implementation (2007), USENIX Association, pp. 20–20. 131

[17] GAILLY, J.-L., AND ADLER, M. GNU Gzip. http://www.gzip.org. 84, 89, 90

[18] GEEKSFORGEEKS. External Sorting. https://www.geeksforgeeks.org/

external-sorting/. 67

[19] GNU COMMUNITY. 6 Line Control. https://gcc.gnu.org/onlinedocs/cpp/

Line-Control.html, 2002. 32

[20] GNU COMMUNITY. 6.8 128-bit Integers. https://gcc.gnu.org/onlinedocs/

gcc-5.3.0/gcc/_005f_005fint128.html, 2002. 86

[21] GOOGLE. glog: Google Logging Module. https://github.com/google/glog. 3,

95, 120

[22] GOOGLE. gRPC: A high performance, open-source universal RPC framework. http://

www.grpc.io. 127

[23] GOOGLE. Snappy, a fast compressor/decompressor. https://github.com/google/

snappy. 89, 90

http://www.memcached.org/
http://www.gzip.org
https://www.geeksforgeeks.org/external-sorting/
https://www.geeksforgeeks.org/external-sorting/
 https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html 
 https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html 
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/_005f_005fint128.html
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/_005f_005fint128.html
https://github.com/google/glog
http://www.grpc.io
http://www.grpc.io
https://github.com/google/snappy
https://github.com/google/snappy


BIBLIOGRAPHY 139

[24] GREGG, B. Linux BPF Superpowers. http://www.brendangregg.com/blog/

2016-03-05/linux-bpf-superpowers.html, 2016. 132

[25] GREGG, B., AND MAURO, J. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and

FreeBSD. Prentice Hall Professional, 2011. 132

[26] HOLLINGSWORTH, J. K., MILLER, B. P., AND CARGILLE, J. Dynamic program Instrumen-

tation for Scalable Performance Tools. In Scalable High-Performance Computing Conference,

1994., Proceedings of the (1994), IEEE, pp. 841–850. 132

[27] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y., CHINTALAPATI, M., AND YAO,

R. Gray failure: The achilles’ heel of cloud-scale systems. In Proceedings of the 16th Work-

shop on Hot Topics in Operating Systems (2017), ACM, pp. 150–155. 1

[28] HUDEK, T., BAZAN, N., GOLDEN, B., AND VARMA, S. WPP Software Trac-

ing. https://docs.microsoft.com/en-us/windows-hardware/drivers/

devtest/wpp-software-tracing, 2007. 95, 129

[29] INTEL CORPORATION. Using the rdtsc instruction for performance monitoring. Techn. Ber.,

tech. rep., Intel Coorporation (1997), 22. 50, 54, 110, 111, 125, 130

[30] INTEL CORPORATION. Intel 64 and IA-32 Architectures Optimization Reference Manual.

Intel Corporation, June (2016). 92

[31] JAKOB STOKLUND OLESEN, S. Y. Varint, variable-length integer encodings. https://

github.com/syang0/varint. 89

[32] LATTNER, C., AND ADVE, V. LLVM: A compilation framework for lifelong program analysis

& transformation. In Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization (2004), IEEE Computer Society,

p. 75. 116

[33] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. MICA: A holistic approach to

fast in-memory key-value storage. USENIX. 2

[34] The Linux Kernel Organization. https://www.kernel.org/nonprofit.html, May

2018. 87, 96

http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/wpp-software-tracing
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/wpp-software-tracing
https://github.com/syang0/varint
https://github.com/syang0/varint
https://www.kernel.org/nonprofit.html


BIBLIOGRAPHY 140

[35] LMAX Disruptor: High Performance Inter-Thread Messaging Library. http://lmax-

exchange.github.io/disruptor/. 95

[36] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Tracing: Dynamic Causal Monitoring for

Distributed Systems. In Proceedings of the 25th Symposium on Operating Systems Principles

(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 378–393. 132

[37] MELMAN, G. spdlog: A Super fast C++ logging library. https://github.com/

gabime/spdlog. 3, 95

[38] MOK, B., YANG, S., SIRKIN, D., AND JU, W. Empathy: interactions with emotive robotic

drawers. In 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

(2014), IEEE, pp. 250–251. vi

[39] MOK, B. K.-J., YANG, S., SIRKIN, D., AND JU, W. A place for every tool and every tool

in its place: Performing collaborative tasks with interactive robotic drawers. In 2015 24th

IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)

(2015), IEEE, pp. 700–706. vi

[40] MORTORAY, E. Wait-free queueing and ultra-low latency logging. https:

//mortoray.com/2014/05/29/wait-free-queueing-and-ultra-low-

latency-logging/, 2014. 125, 130

[41] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured Comparative Analysis of Systems

Logs to Diagnose Performance Problems. In Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation (2012), USENIX Association, pp. 26–26. 132

[42] NORVIG, P. Natural Language Corpus Data: Beautiful Data, 2011 (accessed January 3,

2018). 91

[43] OLINER, A., GANAPATHI, A., AND XU, W. Advances and challenges in log analysis. Com-

munications of the ACM 55, 2 (2012), 55–61. 132

[44] OTT, D. Personal communication, June 2015. VMWare. 2

[45] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE, C., MONTAZERI, B.,

ONGARO, D., PARK, S. J., QIN, H., ROSENBLUM, M., ET AL. The RAMCloud Storage

System. ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 7. 2, 87, 95, 96, 106,

107

http://lmax-exchange.github.io/disruptor/
http://lmax-exchange.github.io/disruptor/
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://mortoray.com/2014/05/29/wait-free-queueing-and-ultra-low-latency-logging/
https://mortoray.com/2014/05/29/wait-free-queueing-and-ultra-low-latency-logging/
https://mortoray.com/2014/05/29/wait-free-queueing-and-ultra-low-latency-logging/


BIBLIOGRAPHY 141

[46] PAOLONI, G. How to benchmark code execution times on Intel IA-32 and IA-64 instruction

set architectures. Intel Corporation, September 123 (2010). 14, 55

[47] PARK, I., AND BUCH, R. Improve Debugging And Performance Tuning With ETW. MSDN

Magazine, April 2007 (2007). 3, 95, 124, 129

[48] PEKHIMENKO, G., GUO, C., JEON, M., HUANG, P., AND ZHOU, L. TerseCades: Effi-

cient Data Compression in Stream Processing. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18) (Boston, MA, July 2018), USENIX Association, pp. 307–320. 85

[49] Performance Utilities. https://github.com/PlatformLab/PerfUtils. 5, 125,

126

[50] SANFILIPPO, S. Redis. http://redis.io. 2

[51] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M., STEPHENSON, P., PLAKAL, M.,

BEAVER, D., JASPAN, S., AND SHANBHAG, C. Dapper, a large-scale distributed systems

tracing infrastructure. Tech. rep., Technical report, Google, 2010. 131

[52] SIRKIN, D., MOK, B., YANG, S., AND JU, W. Mechanical ottoman: how robotic furniture

offers and withdraws support. In Proceedings of the Tenth Annual ACM/IEEE International

Conference on Human-Robot Interaction (2015), ACM, pp. 11–18. vi

[53] SIRKIN, D., MOK, B., YANG, S., MAHESHWARI, R., AND JU, W. Improving design thinking

through collaborative improvisation. In Design Thinking Research. Springer, 2016, pp. 93–

108. vi

[54] SITES, R. L. Benchmarking” Hello, World! Benchmarking 16, 5 (2018). 124, 125, 126, 130

[55] SLEE, M., AGARWAL, A., AND KWIATKOWSKI, M. Thrift: Scalable cross-language services

implementation. Facebook White Paper 5, 8 (2007). 127

[56] SONITAAAAA. SohWhy9.png. https://commons.wikimedia.org/wiki/File:

SohWhy9.png. vii

[57] Splunk. https://www.splunk.com. 117, 118, 132

[58] SQLITE CONSORTIUM. SQLite4 Variable-Length Integers. https://sqlite.org/

src4/doc/trunk/www/varint.wiki. 85

https://github.com/PlatformLab/PerfUtils
http://redis.io
https://commons.wikimedia.org/wiki/File:SohWhy9.png
https://commons.wikimedia.org/wiki/File:SohWhy9.png
https://www.splunk.com
https://sqlite.org/src4/doc/trunk/www/varint.wiki
https://sqlite.org/src4/doc/trunk/www/varint.wiki


BIBLIOGRAPHY 142

[59] STALLMAN, R. M., MCGRATH, R., AND SMITH, P. GNU Make: A Program for Directed

Compilation. Free software foundation, 2002. 16, 21

[60] THE APACHE SOFTWARE FOUNDATION. Apache HTrace: A tracing framework for use with

distributed systems. http://htrace.incubator.apache.org. 131

[61] THE APACHE SOFTWARE FOUNDATION. Apache HTTP Server Project. http://httpd.

apache.org. 87, 96

[62] THE APACHE SOFTWARE FOUNDATION. Apache Log4j 2. https://logging.

apache.org/log4j/log4j-2.3/manual/async.html. 3, 95

[63] THE APACHE SOFTWARE FOUNDATION. Apache Spark. https://spark.apache.

org. 87, 96

[64] THE APACHE SOFTWARE FOUNDATION. Log4j2 Location Information.

https://logging.apache.org/log4j/2.x/manual/layouts.html#

LocationInformation. 95

[65] VARDA, K. Protocol buffers: Googles data interchange format. Google Open Source Blog,

Available at least as early as Jul (2008). 127

[66] VARDA, K. Capn proto: Encoding Spec. https://capnproto.org/encoding.

html, 2013. 127

[67] VARDA, K. Capn proto: Introduction. https://capnproto.org/index.html, 2013.

127

[68] VARDA, K. Capn proto: Schema Language. https://capnproto.org/language.

html, 2013. 128

[69] YANG, S. Log Analyzer: A collection of scripts to statically analyze log statements in open-

source software. https://github.com/PlatformLab/Log-Analyzer. 87, 96

[70] YANG, S. NanoLog: an extremely performant nanosecond scale logging system for C++ that

exposes a simple printf-like API. https://github.com/PlatformLab/NanoLog. 2,

3, 10, 21, 26, 44, 68, 71, 94, 116, 120, 130, 135

http://htrace.incubator.apache.org
http://httpd.apache.org
http://httpd.apache.org
https://logging.apache.org/log4j/log4j-2.3/manual/async.html
https://logging.apache.org/log4j/log4j-2.3/manual/async.html
https://spark.apache.org
https://spark.apache.org
https://logging.apache.org/log4j/2.x/manual/layouts.html#LocationInformation
https://logging.apache.org/log4j/2.x/manual/layouts.html#LocationInformation
https://capnproto.org/encoding.html
https://capnproto.org/encoding.html
https://capnproto.org/index.html
https://capnproto.org/language.html
https://capnproto.org/language.html
https://github.com/PlatformLab/Log-Analyzer
https://github.com/PlatformLab/NanoLog


BIBLIOGRAPHY 143

[71] YANG, S. NanoLogCompression: Contains the benchmarks used to compare the

NanoLog compression algorithm vs. zlib and snappy. https://github.com/syang0/

NanoLogCompression. 91

[72] YANG, S., MOK, B. K.-J., SIRKIN, D., IVE, H. P., MAHESHWARI, R., FISCHER, K., AND

JU, W. Experiences developing socially acceptable interactions for a robotic trash barrel. In

2015 24th IEEE International Symposium on Robot and Human Interactive Communication

(RO-MAN) (2015), IEEE, pp. 277–284. vi

[73] YANG, S., PARK, S. J., AND OUSTERHOUT, J. NanoLog: A Nanosecond Scale Logging

System. In 2018 USENIX Annual Technical Conference (USENIX ATC 18) (Boston, MA, July

2018), USENIX Association, pp. 335–350. 102

[74] Twitter Zipkin. http://zipkin.io. 131

https://github.com/syang0/NanoLogCompression
https://github.com/syang0/NanoLogCompression
http://zipkin.io

