Single-cell transcriptomics data purification with coreset selection

Róbert Pálovics¹, Tony Wyss-Coray¹, Baharan Mirzasoleiman²

1. Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA 2. Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA

Results I

without

purification

DGE

• We found that purification protects against replicate specific biases that contaminate DGE results • We performed a synthetic, data augmentation based, controlled experiment in 24 cell types of TMS (Fig. 4): Calculate the distance of each cell from its closest neighbor from a different replicate • Select the cell with highest such distance as well as any neighboring cells from the same replicate Create controlled bias: use SMOTE to augment the data based on the selected "outlier" cells • Perform DGE (Mann-Whitney U) between young and aged cells on the original data (D_{o}) , the augm. data (D_{a}) and the purified data (D_{b}) • Purif. parameters: k = 10; M = 20; r = 0.9 |V| Calculate Spearman correlations based on the obtained p-values: $S(D_0, D_a)$; $S(D_0, D_b)$ • Results indicate that $S(D_0, D_1) < S(D_0, D_2)$, i.e., purification rescues the augm. data (**Fig. 5**)

Method

Input and preprocessing

Motivation

 Annotated log-CPM normalized gene-cell count matrix with metadata (replicate info, ...)

• The number of cells captured per biological

introducing replicate specific biases that

- prevent the broad usage of predictive

specific biases within single-cell datasets

machine learning (ML) methods on single-cell

purification method to alleviate potential replicate

data (e.g., age or clinical data prediction)

gene expression (DGE) results

• We propose a coreset selection based

• First *M* principal components (PCs)

Step I: Discard replicate specific areas (Fig. 2)

• Calculate for each cell *c* the *k*-nearest neighbors of the cell (n_{c}) in the PC space based on Euclidean distances

• Include c if (replicate of c: I_{a}):

 $0 < |\{d: l_c = l_d, d \in n_c\}| < k$

Step II: Coreset selection (Fig. 3)

- We intend to select a set of cells best representing the included ones from Step I
- Define the similarity of cells c and d as

 $s_{cd} = \exp\{-|p_c - p_d|^2/(2\sigma^2)\}$

where σ is the standard deviation of the PC matrix and *p* is a PC • Objective: select a set of r|V| cells,

 $S^* \in rg\max_{S \subseteq V} F(S); \ F(S) := \sum_{\sigma \in V} \max_{d \in S} s_{cd}$ $|S| \leq r|V|$

 Greedy solution: start with an empty set and at each iteration *t* choose a cell *e* 3 that maximizes the marginal utility

 $F(e|S_t) = F(S_t \cup \{e\}) - F(S_t)$

• We identify coresets for each condition (e.g., control and treatment) separately

Data

Tabula Muris Senis (TMS)

• SmartSeq-2 data on male young (3 mo.) and aged (18/24 mo.) mice from 20 tissues

- Select cell types that have at least
- 2 replicates with a minimum of 20 cells both in the control (young) and treatment (aged) groups: 24 cell types in total
- Number of cells range between 100-10,000 per cell type

Murine aging cell atlas (Calico)

- Droplet based data from 3 tissues (kidney, lung, spleen) of young (7/8 mo.) and aged (22/23 mo.) mice
- 8 cell types in total found both in TMS and Calico
- Number of cells range between 500-20,000 per cell type

CallCo	wo. purilication
kidney endo. cell	balanced sampl.
kidney epith. cell	with purification
kidney monocyte	voung vs. aged
lung endo. cell	L1 LogReg opt.
lung monocyte	with replicate
lung T cell	based crossval.
spleen B cell	TMS AUC based
spleen T cell	evaluation

Conclusion

We introduced a coreset selection based method to purify single-cell data. Purification is protective against replicate specific biases and aids downstream analyses, in particular differ-

Additionally, it substantially improves the predictive performance of supervised models trained on single-cell data. Purification leads to more generalizable cell level aging classifier models indicated by the higher predictive performance when validated on multiple cell types of an inde-

Stanford University

