Single-cell transcriptomics data purification
with coreset selection

Rébert Palovics', Tony Wyss-Coray', Baharan Mirzasoleiman?

1. Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
2. Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA

Motivation Results |

« We found that purification protects against replicate
specific biases that contaminate DGE results
« We performed a synthetic, data augmentation based,

» The number of cells captured per biological
replicates can vary across the "single-cell landscape" (Fig.1)
introducing replicate specific biases that

Single-cell gene expression data

- result in false discoveries contaminating differential i controlled experiment in 24 cell types of TMS (Fig. 4):
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- prevent the broad usage of predictive | dt /..--------.-------.- neighbor from a different replicate
machine learning (ML) methods on single-cell condition | | | L] « Select the cell with highest such distance as well as
data (e.g., age or clinical data prediction) ©g-age [ ] | B any neighboring cells from the same replicate

» We propose a coreset selection based N L |  Create controlled bias: use SMOTE to augment
purification method to alleviate potential replicate ;Il B 5E the data based on the selected “outlier” cells
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Al | ] the augm. data (D,) and the purified data (Dp)

* Purif. parameters: k=10; M=20; r=0.9 |V]
 Calculate Spearman correlations based on
the obtained p-values: S(D,, D,); S(D,, Dp)

* Results indicate that S(D,, D) < S(D,, Dp), l.e,
purification rescues the augm. data (Fig. 5)

Method

Input and preprocessing

» Annotated log-CPM normalized gene-cell
count matrix with metadata (replicate info, ...)

* First M principal components (PCs)

replicate specific
areas

imbalanced replicates

Step I: Discard replicate specific areas (Fig. 2)

* Calculate for each cell ¢ the k-nearest neighbors Q‘ ®
of the cell (n ) in the PC space based on Euclidean
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» Greedy solution: start with an empty set and 0.0 0.0 « Purification improved the prediction of age
at each iteration t choose a cell e ' ' at the cell level, experiment is shown in Fig. 6:
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that maximizes the marginal utility S(Dg, Da) S(Dg, Da) * Train cell type specific LogReg classifiers with
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* Fig. 8: Purification of the lung T cells
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* 8 cell types in total found both in TMS and Calico -
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