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Single-cell transcriptomics data purification
with coreset selection 
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• The number of cells captured per biological
  replicates can vary across the "single-cell landscape" (Fig.1)
  introducing replicate specific biases that
    - result in false discoveries contaminating differential
      gene expression (DGE) results
    - prevent the broad usage of predictive
      machine learning (ML) methods on single-cell
      data (e.g., age or clinical data prediction)
• We propose a coreset selection based
  purification method to alleviate potential replicate
  specific biases within single-cell datasets  
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Method
Input and preprocessing
• Annotated log-CPM normalized gene-cell
  count matrix with metadata (replicate info, ...)
• First M principal components (PCs)

Step I: Discard replicate specific areas (Fig. 2)
• Calculate for each cell c the k-nearest neighbors
  of the cell (nc) in the PC space based on Euclidean   
  distances
• Include c if (replicate of c: lc):

Step II: Coreset selection (Fig. 3)
• We intend to select a set of cells
  best representing the included
  ones from Step I
• Define the similarity of cells
  c and d as

  where σ is the standard deviation
  of the PC matrix and p is a PC
• Objective: select a set of r|V| cells,

• Greedy solution: start with an empty set and
  at each iteration t choose a cell e
  that maximizes the marginal utility

• We identify coresets for each
  condition (e.g., control and
  treatment) separately

Data
Tabula Muris Senis (TMS)
• SmartSeq-2 data on male
  young (3 mo.) and aged (18/24 mo.)
  mice from 20 tissues
• Select cell types that have at least
  2 replicates with a minimum of 20 cells both in the
  control (young) and treatment (aged) groups:
  24 cell types in total
• Number of cells range between 100-10,000
  per cell type

Murine aging cell atlas (Calico)
• Droplet based data from 3 tissues
  (kidney, lung, spleen) of young (7/8 mo.) and
  aged (22/23 mo.) mice
• 8 cell types in total found both in TMS and Calico
• Number of cells range between 500-20,000
  per cell type

Results II

• We found that purification protects against replicate
specific biases that contaminate DGE results

• We performed a synthetic, data augmentation based,
controlled experiment in 24 cell types of TMS (Fig. 4):

• Calculate the distance of each cell from its closest
neighbor from a different replicate 

• Select the cell with highest such distance as well as
any neighboring cells from the same replicate

• Create controlled bias: use SMOTE to augment
the data based on the selected “outlier” cells
• Perform DGE (Mann-Whitney U) between

young and aged cells on the original data (D0),
the augm. data (Da) and the purified data (Dp)
• Purif. parameters: k = 10; M = 20; r = 0.9 |V|  

• Calculate Spearman correlations based on
the obtained p-values: S(D0, Da); S(D0, Dp)

• Results indicate that S(D0, Da) < S(D0, Dp), i.e,
purification rescues the augm. data (Fig. 5)
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lung T cells

• Purification improved the prediction of age
at the cell level, experiment is shown in Fig. 6:

• Train cell type specific LogReg classifiers with
L1 reg. (α : 0.02 − 2) for young vs. aged on
Calico with replicate based cross-validation 

 • Repeat the same training procedure but purify 
the training set before model fitting

• Balanced sampling: select equal number of
cells per replicate uniformly at random

• Purification results in the highest AUC
scores measured on TMS (Fig. 7)    

• Fig. 8: Purification of the lung T cells 

We introduced a coreset selection based 
method to purify single-cell data. Purification is 
protective against replicate specific biases and  
aids downstream analyses, in particular differ-
ential gene expression.
Additionally, it substantially improves the predic-
tive performance of supervised models trained 
on single-cell data. Purification leads to more 
generalizable cell level aging classifier models 
indicated by the higher predictive performance 
when validated on multiple cell types of an inde-
pendent cohort.
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