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Abstract Existing approaches to constrained dynamic pro-
gramming are limited to formulations where the constraints
share the same additive structure of the objective function
(that is, they can be represented as an expectation of the
summation of one-stage costs). As such, these formulations
cannot handle joint probabilistic (chance) constraints, whose
structure is not additive. To bridge this gap, this paper presents
a novel algorithmic approach for joint chance-constrained
dynamic programming problems, where the probability of
failure to satisfy given state constraints is explicitly bounded.
Our approach is to (conservatively) reformulate a joint chance
constraint as a constraint on the expectation of a summation
of indicator random variables, which can be incorporated
into the cost function by considering a dual formulation of
the optimization problem. As a result, the primal variables
can be optimized by standard dynamic programming, while
the dual variable is optimized by a root-finding algorithm
that converges exponentially. Error bounds on the primal
and dual objective values are rigorously derived. We demon-
strate algorithm effectiveness on three optimal control prob-
lems, namely a path planning problem, a Mars entry, de-
scent and landing problem, and a Lunar landing problem.
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Fig. 1 Autonomous landing of the Curiosity rover on Mars using the
Sky Crane maneuver. (Image credit: NASA/JPL-Caltech)

All Mars simulations are conducted using real terrain data
of Mars, with four million discrete states at each time step.
The numerical experiments are used to validate our theoret-
ical and heuristic arguments that the proposed algorithm is
both (i) computationally efficient, i.e., capable of handling
real-world problems, and (ii) near-optimal, i.e., its degree of
conservatism is very low.
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1 Introduction
1.1 Problem description and motivation

Autonomy is poised to play an increasingly important role
in robotic space exploration. Indeed, autonomy is already
playing an important role in current Mars missions. For ex-
ample, the entry, descent, and landing (EDL) phase of the
2012 Mars Science Laboratory (MSL) mission, which in-
volved a complex Skycrane maneuver [37] (see Figure 1),
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was performed completely autonomously, as the 14-minute
speed-of-light delay between Earth and Mars exceeded the
7-minute duration of the EDL phase. Autonomous path plan-
ning and hazard avoidance enabled Mars rovers to go be-
yond the sight of ground operators [9]. Also, an automated
scientific data collection system called the Autonomous Ex-
ploration for Gathering Increased Science (AEGIS) [16] is
being used onboard the Opportunity rover.

On the other hand, risk management in most space mis-
sions is largely a manual process. In the Mars Exploration
Rovers (MER) mission, for example, ground operators de-
cided whether or not to perform a trajectory correction ma-
neuver before atmospheric entry by checking if the prob-
ability of safe landing was above a pre-specified threshold,
which was set to 91% for Spirit and 96% for Opportunity [21].
As an additional example, when driving Mars rovers through
rocky terrain, paths are pre-planned by ground operators with
careful consideration of the uncertainty in rover position.

In order to continue advancing the frontier of robotic
space exploration, there is a clear need for an on-board risk
management capability. Indeed, in the Keck Institute Space
Studies (KISS) Workshop on Resilient Space Systems in
2012, experts from NASA centers and academia concluded
that risk-aware on-board decision making will significantly
benefit the future missions recommended by NASA’s Plan-
etary Science Decadal Survey [28], including Comet Sur-
face Sample Return, Saturn Probe, and Trojan Tour and Ren-
dezvous [26]. The workshop also identified chance-constrained
planning as a core component of the proposed Resilient Space-
craft Executive, as demonstrated later on in [25].

Specifically, in many applications, risk requirements are
formulated as bounds on the probability of success, as exem-
plified by the 91% and 96% bounds previously described for
MER EDL. Among the various risk-aware decision making
approaches such as [12,43,14,17], the chance-constrained
optimization framework, originally proposed in [13], nat-
urally fits this formulation, as one can explicitly impose a
bound on the probability of success in a stochastic problem
setting.

Accordingly, this paper focuses on chance-constrained
dynamic programming (CCDP) for three reasons. First, like
standard DP, the solution to CCDP is a closed-loop con-
trol policy, which explicitly maps states into control inputs.
Given a stochastic state transition model, an optimal con-
trol policy can be computed off-line, stored in a look-up ta-
ble, and then executed in real-time even on computationally-
limited vehicles such as spacecraft. Second, CCDP can per-
form sequential decision making over multiple time steps.
For example, future Mars EDL maneuvers will aim at re-
jecting uncertainty by active feedback control in three differ-
ent stages: entry-phase targeting, powered-descent guidance
(PDG) [1], and hazard detection and avoidance (HDA) [20].
Third, CCDP can also be used for trade analysis. For ex-

ample, in a mission to reach a specific target on a planetary
surface, increased rover mobility would relax the require-
ment on landing accuracy. In fact, in our previous work, we
designed the Combined EDL and Mobility Analysis Tool
(CEMAT) to perform such a trade based on a DP formula-
tion [23,22].

1.2 Literature review

CCDP was initially studied in the 1970s [4, 3], in the context
of water management. These studies, however were field-
specific and lacked a theoretical justification. A problem sim-
ilar to CCDP, which entails dynamic programming under
“reliability constraints,” was studied in [38]. In this formula-
tion, the objective was to limit the expected number of fail-
ures and the approach was to employ a Lagrangian method
to transform the constrained problem into an unconstrained
counterpart. More generally, a number of diverse approaches
have been proposed to address constrained Markov Deci-
sion Processes (MDP), including linear programming and
Lagrangian methods. An authoritative overview is provided
in [2]. A major assumption in the existing literature on con-
strained MDP is that the constraints must share the same ad-
ditive structure of the objective function (that is, they can be
represented as an expectation of the summation of one-stage
costs). Unfortunately, this assumption precludes the applica-
tion of existing tools to the problem of chance-constrained
MDP (since the structure of chance constraints is not addi-
tive), as also pointed out in [38]. One possibility to circum-
vent this issue is to consider penalty-based MDPs, whereby
one achieves risk aversion by imposing an arbitrary cost
penalty on failure states. Unfortunately, stakeholders usu-
ally desire explicit constraints on the probability of failure,
as is the case for most space missions.

Over the last decade, due to major breakthroughs in em-
bedded optimization and a need to explicitly bound failure
probabilities, chance-constrained optimization has been in-
tensively studied within the Model Predictive Control (MPC)
community [40,18,24,10,15,30,35,32], under the name of
Chance-Constrained MPC (CCMPC). Successful applications
include building climate control [31,46] and electrical power
grids [34,41,42,45]. A chance-constrained extension to stan-
dard optimal control methods such as LQR and LQG has
also been studied in [19,39]. From this perspective, the ob-
jective of this paper is to integrate into dynamic program-
ming (DP) the rich insights obtained from the MPC com-
munity, and develop a general CCDP framework that can be
applied to a broad range of stochastic optimal control prob-
lems.
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1.3 Contributions

Specifically, the contributions of this paper are threefold.
First, we propose an algorithm for CCDP, whereby a joint
chance constraint is (conservatively) transformed into an ex-
pectation over a summation of indicator random variables,
which enjoys the same additive structure of the cost func-
tion and can be incorporated into the cost function by con-
sidering a dual formulation of the optimization problem. The
algorithm evaluates the dual objective function by minimiz-
ing the Lagrangian via standard dynamic programming (i.e.,
Bellman’s recursion), given a fixed dual variable. The dual

variable is then optimized via a root-finding algorithm, namely

the Brent’s method [5], which has an exponential conver-
gence rate and a complexity that does not change with pri-
mal problem’s size. Simulations show that the algorithm typ-
ically converges within 10 to 30 iterations.

Second, we derive bounds on the suboptimality of both
the primal and dual objective values, which provide rigorous
stopping criteria for the root finding method. The technical
hurdle in our analysis is that the dual objective function is,
in general, non-differentiable.

Finally, we demonstrate our algorithm on a path plan-
ning problem, a Mars entry, descent and landing problem,
and a Lunar landing problem. Mars simulations are con-
ducted using real terrain data of Mars, with four million dis-
crete states at each time step. These numerical experiments
support our theoretical and heuristic arguments that the pro-
posed algorithm is both (i) computationally efficient, i.e.,
capable of handling real-world problems, (ii) near-optimal,
i.e., its degree of conservatism is very low.

The rest of the paper is organized as follows. In Section
2 we present known concepts from optimization, on which
we will rely extensively in this paper. In Section 3 we formu-
late the problem we wish to solve, i.e., CCDP, together with
a reformulation that allows us to apply dual optimization
techniques. In Section 4 we present a dual formulation of
CCDP, exact and approximate optimality conditions, related
suboptimality bounds, and, finally, the proposed algorithm
for CCDP. In Section 5 we present numerical experiments.
Finally, we draw our conclusions in Section 6.

2 Background

Given a convex function f(z) : R" — R, a vector d € R"
is said to be a subgradient of f ata point z € R" if

f(z) > f(x)+ (2 — x)d, forall z € R". (1)

If instead f is a concave function, a vector d is said to be a
subgradient of f at x if —d is a subgradient of the convex
function —f at x [6, Appendix B]. The set of all subgra-
dients of a convex (or concave) function f at x € R" is

referred to as the subdifferential of f at x, and is denoted by
Of (x). Intuitively, subdifferentiability is a generalization of
differentiability to non-differentiable functions. In fact, one
can show that f is differentiable at « with gradient V f(z)
if and only if it has V f(x) as its unique subgradient at x [6,
Appendix B].

A fundamental result in convex optimization is that a
point £ minimizes a convex function f over a convex set
X C R™ if and only if there exists a subgradient d € Jf(z)
such that ([6, Appendix B])

d(z—xz)>0, forall z € X. ()

Equation (2) generalizes the optimality condition for the case
where f is differentiable, that is V f(z)'(z — ) > 0 for all
z € X. In the special case where X = R", one obtains
a basic necessary and sufficient condition for unconstrained
optimality of x:

0 € df(x).
We next discuss basic properties concerning dual formu-

lations of optimization problems. Consider the optimization
problem

min  f(z) 3)
gi(x) <0, j=1,....m “4)
where f : R" = R, g; : R” — R are given functions. We

refer to this problem as the primal problem and we denote
its value with f*. The dual of the above problem is given by

subject to

max q(A) ®)
subject to Aj>0, j=1,...,m (©6)
where
a(0) = Jnf | @)+ Z Aj 95(2)

The function g(\) is referred to as the dual function. The
function L(z, \) := f(z)+Y.i_; Aj g;(z) is referred to as
the Lagrangian. We denote the the value of the dual problem
as ¢*. Let A := (A1, ..., A\p).

It turns out that the dual problem is always a concave
problem (concave cost, convex constraint set) even if the
primal is not convex [6, Chapter 6]. An important result con-
necting primal and dual problems is the weak duality theo-
rem, according to which ¢* < f* [6, Chapter 6]. If ¢* = f~*
we say that there is no duality gap, while if ¢* < f* we say
that there is a duality gap.

For a given A € R", let ) be a value minimizing the
Lagrangian, i.e.,

T += argmin Lz, \).
A useful fact is that g(z ) is a subgradient of the dual func-

tion g at A, thatis g(zx) € dg()) [6, Chapter 6]. This result
will be exploited in Section 4.
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3 Formulation of Joint Chance-Constrained DP
3.1 Problem Statement

We consider a discrete-time stochastic dynamic system, whose
state at time k is represented by a vector x; € X. The state
space X’ can be continuous, discrete, or hybrid. We assume
the following general dynamical model:

Trp1 = fag, up, w)
Uk Euk(xk) cu
wy, ~ pr(w), k=0,....,N—1,

where wuy, is a control input constrained to belong to a pos-
sibly state-dependant control set Uy (xy), U is the control
space, wy, is a disturbance with a known probability distri-
bution (density) function py(wy), and N is the number of
decision stages. We assume that the state xj, is directly ob-
servable with no uncertainty at time k, and the initial state
x¢ is given. We define a control policy p as a map from
states to controls, i.e., ug : X — U (zy) fork =0,..., N.
A policy sequence is denoted by:

b= {0, 1,y N -1}

Given an initial state z(, the objective is to find an optimal
policy sequence p* that achieves the following:

1. Satisfaction of a joint chance constraint: The proba-
bility that the state stays within a feasible region X} C
X over the control horizon N is at least 1 — A, where
A € [0, 1] is a user-specified risk bound.

2. Minimization of a cost function: Given a one-stage
cost function g, : X x U — R and a terminal cost
function g5 : X — R, the expected total cost over the
control horizon is minimized.

The problem we are interested in can then be formulated
as follows:
Problem 1: Joint Chance-Constrained Optimal Control

N—-1
mlin E {QN(CL‘N) +> gk(fﬂk,uk(%))} (M

k=0

N
subjectto  Pr { A @ € X ‘ :170} >1- A @)
k=1

Existing constrained DP/MDP methods, such as those
presented in [38,8], only consider the case where the con-
straint function is in the same form as the objective function
(i.e., terminal cost plus summation over one-stage costs).
Hence, they are not directly applicable to Problem 1 as the
left hand side of (8) has a form different from that of the
objective function (7); in other words, it does not have an
additive structure.

3.2 Reformulation via Boole’s Approximation

Our technical approach is to reformulate the joint chance
constraint (8) into a constraint over an expectation of a sum-
mation of indicator random variables, so that a Lagrangian-
based approach can be applied. An indicator random vari-
able Iy (xy) is defined as follows:

L 1, if Tk ¢ Xk,
Ti(we) := {07 otherwise. ©)

In other words, I () is equal to one if xy, is infeasible. Us-
ing indicator random variables and Boole’s inequality, Prob-
lem 1 can be approximated as follows:

Problem 2: Approximation of Problem 1

N—-1
win - E {QN(xN) + > gk(xkvﬂk(xk))} (10)

k=0
N
subject to E{ka(ﬂ?k) ’ xo} < A. (11)
k=1
The following theorem holds:

Theorem 1 (Conservatism of Problem 2) Problem 2 is a
conservative approximation of Problem 1. In other words, a
feasible solution to Problem 2 is guaranteed to be a feasible
solution to Problem 1.

Proof We prove this theorem by showing that (11) is a suf-
ficient condition for (8). Indeed, the probability of the event
{zy ¢ X} is equal to the expectation of the random vari-
able Iy (xy), that is

Pr{z, ¢ X | zo} = E{Ix(xg) | zo}-

Using the above equation, the left hand side of (8) can be
lower bounded as

Pr{/\mkeé\,’k|xo}:1—Pr{\/xk¢2€k|aﬁo}

k=1 k=1

N
>1-) Priz ¢ X |20}

k;l
=1-> E{Ii(zx) | 20}
k=1
N
=1 —E{ka(l‘k) | $0} .
k=1

12)

In the second step we used Boole’s inequality, i.e., Pr[A U
B] < Pr[4] + Pr[B]. Equation (12) implies that (11) is a
sufficient condition for (8), which proves the theorem.
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Note that in Problem 2 the constraint has an additive
structure, hence Problem 2 is much easier to solve than Prob-
lem 1. Accordingly, our approach is to solve Problem 2 as a
conservative approximation to Problem 1. Specifically, Prob-
lem 2 falls within the class of constrained Markov Decision
Processes (CMDP), discussed extensively in [2]. In this pa-
per we exploit the fact that Problem 2 has a single constraint,
and design a tailored, exponentially-converging solution ap-
proach that relies on root-finding methods. The Boole’s ap-
proximation used in the derivation of Problem 2 is the same
approximation used in [35] within the context of chance-
constrained MPC. It has been shown that the conservatism
introduced by this approximation is, in practice, very small.
More specifically, it has been shown that, under the assump-
tion that failures occur independently between time steps,
the conservatism measured by the difference between the
left hand side and the right hand side of the inequality in
(12) is of the order of O(A?) [33]. In most practical cases,
the risk bound A is set to a small value, which implies (at
least under the assumption of independent failures) that the
degree of conservatism is moderate. This aspect will be veri-

fied numerically in Section 5. Furthermore, previous works [11,

35] showed that the Boole’s approximation yields substan-
tially less conservatism compared to other approaches, such
as those in [10,18,24,29].

4 An Approximation Algorithm for CCDP

In this section we develop a computationally-efficient algo-
rithm to solve Problem 2. Our approach, which relies on dual
optimization, is inspired by a number of earlier works on
constrained MDP [8,38,44]. The key difference is that in
this paper we derive conditions that allow users to explicitly
specify a tolerance for the suboptimality of the dual opti-
mization problem. This is important as the dual objective
function is often non-differentiable, and hence it is difficult
to obtain an exact solution.

Specifically, in this section we first formulate the dual of
Problem 2 (Section 4.1). Then, we proceed to a discussion of
exact and approximate optimality conditions (Section 4.2).
Finally, exploiting the suboptimality bounds derived in Sec-
tion 4.3, we present an algorithm that provides a conserva-
tive, approximate solution to Problem 2 (Section 4.4). This
solution, in turn, represents a conservative, approximate so-
lution for Problem 1 (CCDP).

4.1 Dual of Problem 2

To formulate the dual of Problem 2, we define a step-wise
Lagrangian as

go(ig,ﬂo) lf k = 0,
9k (Tr, ug) + M (xk)
gn(zN) + AN (zN)

Lﬁ(mk,uk) =
if k= N,

ifk=1,...,N—1,

where A > 0 is a dual variable. With this definition, the dual
of Problem 2 can be written as

Problem 3: Dual of Problem 2

N
maxmﬁnE {Z Lﬁ(xkvlik(xk))} —AA.

A>0
k=0

The objective function in Problem 3 can be written as
q(A) :== Jg(x) — AA, where

N

I (o) == mﬁnE{Z Lg(xk,pk(xk))} . (13)
k=0

Thus, Problem 3 can be compactly written as maxy>o g(A).

Note that, for a given A, Jg‘(:vg) can be efficiently solved via

standard dynamic programming. Specifically, .J¢ (x¢) can be

computed by performing the following backward recursion:

J(zn) = Ly (zn), (14)

Ji(zr) = min  E {Lp(ek, up)+Jrer (f (@r, un, wr)}
u €U (z)) Wk
(15)

fork =0,1,... N — 1. In the next section we discuss opti-
mality conditions for the dual objective function g(\), which
will be exploited to derive an iterative algorithm for the so-
lution of Problem 2.

4.2 Optimality and Approximate Optimality Conditions for
the Dual Problem

The goal of this subsection is to obtain approximate optimal-
ity conditions for Problem 3, which will then be leveraged
in our iterative solution algorithm. Let us start with three ad-
ditional definitions. First, let \* be an optimal dual solution
for Problem 3. Second, for a given A, let u* be an opti-
mal solution for the optimization problem in equation (13),
where

=g, 13-}

Finally, we define a risk-to-go function, r()\(xo), as the left
hand side of equation (11) given the optimal policy p*, that
is

N
r{)\(xo) ::E{ka(xk) |9c0,p/\}. (16)

k=1

In the rest of the paper, we simply denote the risk-to-go
function by 77, as the initial state is assumed to be given
and equal to x¢. Intuitively, 7 represents the conditional
probability of failure’ when the optimal policy p* is applied

! Strictly speaking, the risk-to-go function 7 (xo) does not repre-
sent the probability of failure, but an upper bound on it, due the refor-
mulation from Problem 1 to Problem 2.
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starting from the given initial state x. The risk-to-go func-
tion can be computed via the following backward recursion:

ry(zn) = In(zn),

re(zx) == Ik(ffk)+/ rien (f (@ns i wi)) pi(wi ) dw,
W

for k =0,1,... N — 1. If the distribution is discrete, the in-
tegral should be replaced with a summation. It is straightfor-
ward to verify that 7 is monotonically not increasing with
respect to A. Note that, once a dual solution A is given, the
value of the primal problem (i.e., Problem 2) corresponding
to a policy p*, denoted by h*, can be readily computed as

= q(\) = A1) — A). (17)

We are now in a position to discuss optimality conditions
for Problem 3. According to the results in Section 2, the dual
problem is concave, in particular the dual objective function
q(A) is concave (the constraint set, that is A > 0, is clearly
convex). Note that ¢(\) is possibly non-differentiable. Ac-
cording to equation (2), a dual variable A* maximizes ¢(\)
over A > 0 if and only if there exists a subgradient d €
0q(A\*) such that

d(\—)\") <0, for all A > 0. (18)

(Recall that ¢()) is concave, so the sign in equation (2) is
reversed.) From the discussion at the end of Section 2, one
has

o — A€ dg(N). (19)

To gain intuition about our proposed algorithm, assume
that A* > 0 (see Figure 2). In this case, equations (18) and
(19) imply that a necessary and sufficient condition for dual
optimality is

0 € dg(N). (20)

This motivates our approach whereby we use a root-finding
algorithm, such as the bisection method or Brent’s method,
to iteratively compute an interval, denoted by [\, AY], such
that

0<r) —A, )" —A<0, and @1
(AE =) (1" = A) < ea. (22)

Given equations (19) and (20) and the fact that r()\ is mono-
tonically not increasing, equation (21) ensures that \* €
[AL, AY] (see Figure 2). Equation (22) is a complementary
slackness condition ensuring that the approximation error in
the dual objective function is bounded by an arbitrarily small
design constant €; — this fact will be rigorously proven in
Theorem 2. Figure 3 represents graphically the role of the
complementary slackness condition. Note that the optimal
policy corresponding to A” (slightly) violates the chance

)\*

Fig. 2 Dual objective function (left) and its subgradient (right). The
dual objective function is always concave. The subgradient contains
zero at the optimum, A*.

constraint, while the optimal policy corresponding to AV re-
spects it. Hence, once the bisection algorithms has found an
interval [A\L, \U] that satisfies the complementary slackness
condition, we use AU as a conservative, approximate solu-
tion to Problem 3.

The special case \* = 0 is treated separately by the solu-
tion algorithm (see Lines 1-4 in Algorithm 1). We note that
the case A* = 0 corresponds to the trivial case where the
constraint is not active (i.e., the solution to the unconstrained
problem is also a solution to the constrained problem).

Many standard root-finding algorithms, including the bi-
section method and Brent’s method, have demonstrated ex-
ponential convergence rates [5]. This translates into an ex-
ponential convergence rate for our iterative algorithm for
dual optimization. Numerical experiments confirming this
statement will be provided in Section 5.2 (Figure 8). We
highlight the advantage of this approach over subgradient
methods [7], which represent a general solution approach
for dual optimization problems. The convergence of subgra-
dient methods is known to be very slow - it requires O(1/€?)
iterations to find an e-suboptimal solution. In contrast, the
bisection method requires only O(log,(1/€)) iterations, and
the Brent’s method is at least as fast as the bisection method.
A root-finding algorithm can be readily used in our case as
we reduced the joint chance-constrained optimization prob-
lem to a special case of a CMDP with a single constraint
(Problem 2).

Next, we prove in Section 4.3 that indeed equation (22)
ensures that the approximation error for the dual objective
function is bounded by €4, and we also provide a subopti-
mality bound for the primal objective. Then, in Section 4.4
we provide an algorithm that computes (with an exponential
convergence rate) an interval [A\Z, AU] fulfilling conditions
(21) and (22), and hence provides an approximate solution
to Problem 2 with provable suboptimality bounds.

4.3 Suboptimality Bounds

The approximate primal solution, p s in general differ-
ent from the optimal solution of Problem 2, denoted by h*.
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C—

Primal opt. sol. h*

Dual opt. sol. q*

Fig. 3 Graphical interpretation of Theorem 2. The numbers €, and €4
bound the primal and dual errors, respectively.

Since we pose Problem 2 as a minimization, Y > h*, as
illustrated in Figure 3. The suboptimality in the approximate
primal solution is due to the following two factors:

1. approximation error of the dual solution (i.e., \U — \*),
as discussed in the previous subsection, and
2. duality gap.

As for the first factor, the approximation error in the dual ob-
jective function is ¢* — ¢(A\Y) > 0, where ¢* is the optimal
dual objective value. Regarding the second factor, a duality
gap exists in general unless Problem 2 is a convex optimiza-
tion problem. The following theorem provides bounds on
the primal and dual optimization errors.

Theorem 2 (Suboptimality Bounds) Let \U be an approx-
imate dual solution that satisfies equations (21) and (22).
Then, the following holds:

1. the suboptimality of the dual objective value is bounded
according to

q" —q(\Y) < eq. (23)

2. the suboptimality of the primal objective value, corre-
sponding to the feasible solution v, is bounded ac-
cording to

W —ht <e,, (24)

where

€p 1= min (f)\U(r()\U — A), R )\L(T())‘L — A)) .

Proof We start by proving the first claim. Since the dual ob-
jective function g()\) is concave, one has, for all subgradi-
ents d € 9q(A\Y),

¢ <q\)+ (W =AY)d,

see equation (1). Since r(} is monotonically non-increasing,

equation (21) implies
A< <AL
By using (19) and equation (22) one readily obtains
" <q\)+ (V=) - A)
<gO) + (= AR — 4) < qAY) +ea,

which proves the first claim, that is equation (23).

We prove, now, the second claim. Since ¢* and h* are
the optimal dual and primal objective values, by the weak
duality theorem (see Section 2), one has

max (q(AV), g(A")) < ¢* < h*.
Therefore,
B < min (h)‘U —q(\Y), - Q(/\L))
= min (—)\U(TS‘U — A),
RN A L - A)) .
where the equality follows from equation (17).

See Figure 3 for a graphical interpretation of Theorem
2. Note that T())‘U — A s the slope of a tangent line to g()\) at
MY,

4.4 An Approximation Algorithm for CCDP

We next present an algorithm to compute an approximate
solution to Problem 2. Specifically, the algorithm computes
a value AU that satisfies conditions (21) and (22), as well as
the policy sequence u)‘U. Recall that the feasibility of u/\U
is guaranteed by equation (21), and a bound on the approxi-
mation error is provided in Theorem 2.

The algorithm is given in pseudo-code in Algorithm 1.
The algorithm starts by dealing with two special cases. First,
Lines 1 — 4 consider the special case A* = 0 (see the dis-
cussion in Section 4.2). Second, Lines 5 — 8 are aimed at
identifying the case where no feasible solution to the primal
optimization problem (Problem 2) exists. For this purpose,
the algorithm solves (via standard dynamic programming)
the optimization problem:

N
Amin = mﬁnE {Zlk(xk) | 330} .

k=1

Note that the objective function in the above optimization
problem is the same as that in the constraint of Problem 2.
Hence, A, represents the minimum risk-to-go that can be
achieved by any possible policy. If A, is larger than the
specified risk bound A, then Problem 2 is infeasible.
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If a given problem does not fall into the above two spe-
cial cases, then there exists a A™ such that ré‘+ (xg)—A<0.
In Line 9, AV is initialized with such a A*. Lines 10 — 20 are
the main loop of the algorithm. Line 11 computes one step
of a root-finding algorithm, namely Brent’s method, in order
to obtain A € [A\¥, AY]. Then, in Line 12, the optimal policy
p’ is obtained by computing J§ (7o) with this . Lines 13
— 17 update [AF, AU] so that (21) is always satisfied. The
algorithm terminates whenever inequality (22) is satisfied,
and returns the policy corresponding to AU

By construction the algorithm is guaranteed to compute
a dual variable \Y that satisfies conditions (21) and (22), and
hence a policy ,u’\U that is feasible for Problem 2 and with a
rigorous suboptimality bound as given in Theorem 2.

Algorithm 1 Chance-Constrained Dynamic Programming

Input: Error tolerance ¢4 > 0
Output: Policy ;L>‘U that is feasible for Problem 2 (if a feasible solu-
tion exists) and with suboptimality bounds given in Theorem 2.
: Compute JO(z0) {Special case for A* = 0}
2 ifrd(zo) — A < 0 then
return °
end if
Solve

N
Amin —HE’HE{ZIIC(‘%IC) | xO}-

k=1

B

{Feasibility check}
:if Amin > A then
return Infeasible
: end if
9: (AL AY] « [0, A1)
10: while (AL — AU){rd" (x0) — A} > eq do
11: X < Brent’s method with [AZ, \V]
12:  Compute J§ (xo) and obtain p*
13:  ifr)(zo) — A = 0 then

0 o

14: return p*

15:  elseif 7)) (o) — A < O then
16: AU — )

17:  else

18: AL — A

19:  endif

20: end while
21: return p*°

5 Simulation results

We demonstrate the proposed algorithm on three problems:
path planning, Mars EDL, and Lunar landing. The algorithm
is implemented in MATLAB. Computation time is evaluated
on a machine with an Intel Core 2 CPU clocked at 2.93 GHz
and 2 GB of memory.

5.1 Path Planning

In this example, we consider a two-dimensional rectangular
state space discretized into a 100x100 grid, where the edge
length of each cell corresponds to a unit length. The follow-
ing dynamics are assumed:

Tht1 = Tk + U + Wi
Jukllz < die,  wi ~N(0,06°1),

where d, and o are constant parameters, (0, X) is a zero-
mean Gaussian distribution with covariance matrix 2/, and
1 is the two-dimensional identity matrix. We set d;, = 6 and
o = 1 for Figure 4(a), and d, = 5 and o = 1.67 for Figure
4(b) and Table 1. The control input and disturbance are also
discretized using the same interval as the state variable.

The dynamic programming problem is formulated with
50 time steps, i.e., N = 50. We choose the locations of the
start state x( and the goal state ¢ randomly. The terminal
cost is:
o) = {18

N =@,
otherwise,

while the stage cost is proportional to the path length of each
step, that is

gk(xkuuk) = aHukHa

where o > 0 is a constant. This constant must be set to a
very small value in order to avoid a trivial solution that stays
at the start state at all time steps. Here we use o = 107°.

An illustrative example of the path planning problem is
shown in Figure 4(a). The lines shown in the figure are the
nominal paths with different risk bounds A, while the black
blocks represent infeasible state regions. Here, a nominal
path means a state sequence xg, . . ., x that is obtained by
applying the resulting control policy p* to the system with-
out disturbances. When a 10% risk of failure is allowed, the
nominal path goes through a narrow gap between the obsta-
cles in order to minimize path length. With 1% and 0.1%
risk bounds, the nominal paths go through a wider gap in or-
der to avoid excessive risk. When the risk bound is 0.01%,
an even longer nominal path is chosen.

Next, we run the proposed algorithm in a state space
with five randomly placed rectangular obstacles. Figure 4(b)
shows an example of the state space as well as the resulting
nominal paths. The simulation is run 100 times with three
different risk bounds. The means and the standard deviations
of the cost function values and the computation times are
shown in Table 1. The change in cost between different A
is relatively small because the stage cost (i.e., path length)
is significantly smaller than the terminal cost (i.e., penalty
of failure to reach the goal at the final time step), due to the
very small value of .
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Fig. 4 Application of the proposed chance-constrained dynamic pro-
gramming algorithm to path planning problems with 50 time steps.

Table 1 Averages and standard deviations of the costs and computa-
tion times for different risk bounds. For each case, 100 simulations are

1. EDL (entry, descent and landing) targeting

\ 2. Péﬁretgd-descent guidance

Projected
Actual

?;f‘-ljjaza rd detection
and avoidance

Rocks = hazards

X1 Uy Xy X3zU3z Ug X

Fig. 5 A future Mars entry, descent, and landing scenario.

introduced by the proposed algorithm is moderate. More im-
portantly, since we only employed conservative approxima-
tions, the resulting solution always respects the given chance
constraint.

Table 2 Empirical evaluation of the conservatism of the proposed al-
gorithm. Optimal control policy is obtained for the map shown in Fig-
ure 4(b) with A = 0.1, 0.01, and 0.001. The risk-to-go with the ap-
proximate optimal solution, AV is shown in the second column. The
actual probability of failure shown in the third column is evaluated by
Monte-Carlo simulations with 10,000 samples.

Risk bound (A) | Risk-to-go (7“3‘L ) | Prob. of failure
10% 8.70% 8.05%
1% 0.95% 0.81%
0.1% 0.09% 0.06%

conducted with random location of obstacles.

Length of Computation

Risk bound Cost nominal path time [sec]
A=1% 0.88551 +£0.0176 | 82.58 £+ 25.10 172454
A=0.1% 0.88555 £ 0.0175 | 86.74 £+ 27.94 14.9+4.6
A =0.01% | 0.88556 & 0.0175 | 87.21 £ 28.11 12.24+4.7

Finally, in order to evaluate the conservatism of the pro-
posed algorithm, we obtained the approximate solution, AV,
for the map shown in Figure 4(b) with A = 0.1, 0.01, and
0.001. The resulting risk-to-go (r()\U) as well as the actual
probability of failure (Py,;;) evaluated by Monte-Carlo sim-
ulations with 10,000 samples are shown in Table 2. As ex-
pected, for all cases, A > ré‘U > Pyq4. The difference be-
tween A and ’I’é\U is due to the nonconvexity of the problem
as well as the tolerance of the zero-finding method. The dif-
ference between T())‘U and Py is due to the conservative ap-
proximation using Boole’s inequality in (12). The results in
Table 2 are consistent with our claim that the conservatism

5.2 Mars EDL Scenario

We next demonstrate the proposed algorithm on the Mars
EDL scenario shown in Figure 5. As we discussed in the in-
troduction, future Mars lander/rover missions aim to reduce
the uncertainty by using several new active control technolo-
gies, consisting of the following three stages: entry-phase
targeting, powered-descent guidance (PDG) [1], and haz-
ard detection and avoidance (HDA) [20], as shown in Fig-
ure 5. Each control stage is capable of making corrections
to the predicted landing position by a certain distance, but
each stage is subject to execution errors, which deviates the
spacecraft away from the planned landing position.

We employ the same dynamics model as [23], except
that we assume stochastic disturbances at all stages while
[23] assumed set bounded disturbances at the PDG and HDA
stages. At the kth stage, x; represents the projected land-
ing location without further control, as shown as the dashed
lines in Figure 5. By applying a control at the kth stage,
the lander can correct the projected landing location to wg,
which must be within an ellipsoid centered around zj. At
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the end of the kth control stage, the projected landing loca-
tion x4 1 deviates from wuy, due to a disturbance wy, which is
assumed to have a Gaussian distribution. State x3 is the final
landing location. This EDL model is described as follows:

Tpt+1 = Uk + Wk,

(ur, — 21)" Di(up — x1) < dz,  wr ~N(0,Z),

where Dy, and Xj;, are positive definite matrices, and dy, is a
scalar constant. In this simulation, Dy, is set to be the 2-D
identity matrix, and dy, is set as follows:

do =3000m, d;=20m, dy=06m.

We assume that the covariance matrix X is a diagonal ma-
trix with all diagonal elements being equal to o7, where oy,
is the standard deviation. The 3-o of each stage is:

300 =500m, 301 =10m, 302 =2m.

The state space X is a 2 km-by-2 km square, which is dis-
cretized at a one meter resolution. As a result, the problem
has four million states at each time step. The control and the
disturbance are also discretized at the same resolution. The
infeasible areas are specified using the data from the HiRISE
(High Resolution Imaging Science Experiment) camera on
the Mars Reconnaissance Orbiter. We use the real landscape
of a site named “East Margaritifer” on Mars.

Figure 7(a) shows the Lagrangian of the terminal stage,
L?. The blue flat areas are infeasible areas for landing due
to either steep slope or existence of obstacles, such as rocks.
We only consider the terminal cost gn (2 ), which is equal
to the minimum driving distance in order to visit a specified
number of science targets starting from the landing site. The
method to obtain the minimum driving distance is described
in detail in [23]. We place nine science targets, represented
by squares in Figure 7(a) and labeled as A, B, ..., L.

Figure 6(a) shows the dual objective function g(\) for
a case with a 1% risk bound. The function is concave and
achieves its maximum at A = 725.2. The probability of fail-
ure, 73 (o), is 0.990% and is within the risk bound. The
expected cost is h* = 637.81 m. Using Theorem 2, the sub-
optimality bound on the expected cost is €, = 7.25 x 1072
m. The optimal EDL target ug is shown in Figure 7(b) as
well as a circle representing the three sigma of the distur-
bance wg. The optimal EDL target is near the science target
D.

With a smaller risk bound, A = 0.1%, the optimal EDL
target moves to a location near science target E, as shown
in Figure 7(c). This is because, although the cost around
science target E is higher than around target D, there are
fewer obstacles in its proximity, and hence target E involves
a smaller risk of landing failure. As a result, the expected
cost increases to h* = 644.82 m, with a suboptimality bound
of ¢, = 6.73 x 10~! m. With an even smaller risk bound,

A = 0.01%, the optimal EDL target location changes only
slightly, as shown in Figure 7(c). The expected cost is h* =
645.54 m, and the suboptimality bound is €, = 5.46 x 1073
m.

An interesting aspect to note is that, when the risk bound
is A = 0.1%, the resulting probability of failure with the
optimal policy is 7 (z¢) = 0.0160%, which is significantly
smaller than the given risk bound. Such a large gap between
A and ) () is explained by Figure 6(b), which plots 7y ()
against \. Note that the function is discontinuous at around
A = 800, which corresponds to a non-differentiable point
of the dual objective function, shown in Figure 6(a). Since
there is no \ that achieves 7 (zo) = 0.1%, the algorithm
chooses a dual variable A that is slightly right of the discon-
tinuous point in order to satisfy the chance constraint. Such
a discontinuous change in ) (z¢) occurs due to a “jump” of
the optimal EDL target from D to E, as shown in Figures
7(b) and 7(c). On the other hand, r{ () is nearly continu-
ous when it crosses 0.01 and 0.0001. As a result, the prob-
abilities of failure for A = 1% and 0.01% are 77 (z0) =
0.990% and 0.0094%, respectively, which are relatively close
to the risk bounds.

The exponential convergence of Algorithm 1 is demon-
strated in the semi-log plots in Figure 8. Note that a straight
line in a semi-log plot represents an exponential relation-
ship. In this simulation, we set the risk bound A = 0.1%
and the convergence tolerance ¢; = 1072, Figure 8(a) plots
the dual suboptimality bound, which corresponds to the left
hand side of (22), against the number of dual iterations (i.e.,
the number of times Jg' (o) is computed). The algorithm
terminates when the dual suboptimality bound goes below
€q. Figure 8(b) plots the width of the search interval of the
root-finding method, that is A — ). It is shown in the plots
that both the suboptimality bound and the search interval
decrease exponentially and converge within 23 iterations in
this case.

In order to evaluate the computation time and the num-
ber of iterations, we run the algorithm 40 times with ran-
domly located science targets. We set A = 0.1% and ¢4 =
1073, The average and the standard deviation of the compu-
tation time are 188.1 &+ 76.1 seconds, while the statistics of
the number of iterations are 16.1 + 5.8.

5.3 Lunar Landing Scenario

Optimal planning of Lunar landing is an interesting prob-
lem since the availability of low-energy transfer trajecto-
ries adds another dimension to the decision space. Low-
energy transfer trajectories exploit the four-body dynamics
between Earth, Moon, Sun, and the spacecraft [36]. As op-
posed to direct transfer trajectories, such as those used by
the Apollo program, low-energy transfer trajectories require
significantly smaller AV (i.e., less amount of propellant) but
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Fig. 7 (a) The Lagrangian function J3, = L7 (zx) at the final stage with the dual solution X\ = 725.2. The blue flat areas are the infeasible
regions (i.e., obstacles), penalized with a cost X. The Lagrangian values at the feasible locations represent the required distance to traverse after
landing. Squares are science targets, to which the rover must drive after landing. (b)-(d) Expected cost at the initial stage as a function of ug,
Jéx(uo) = E{J;(f(mo, uo, wo))}, with A = 1%, 0.1%, and 0.01%, respectively. The red x-mark is the optimal EDL target uo, while the
red circle represents 3o of the disturbance in the first stage w,. The dual solution A is shown above each figure. The dimension of the map is 2000

x 2000 meters, which is discretized at a 1-meter resolution.

can involve significantly longer transfer times. Such trajec-
tories were employed by multiple missions, including JAXA’s
Hiten in 1990 and NASA’s GRAIL in 2011. Figure 9 shows
the trajectories taken by the two GRAIL spacecraft, which
took 112 and 113 days, respectively, to complete the trans-
fer.

An additional benefit of low-energy transfer trajectories
is that some of them allow a lander to arrive on the surface
with a large elevation angle, resulting in smaller landing el-
lipses, as illustrated in Figure 10. In general, by allowing
a longer transfer time, options with a greater elevation an-
gle become available. The orientation of the ellipse is deter-
mined by the azimuth angle.

The resulting optimal Lunar landing problem is formu-
lated as a CCDP with an additional decision variable with
respect to the Mars EDL problem, namely, trajectory selec-
tion. In order to solve the problem, we first generate a table
that contains a finite number of trajectory options. Each op-
tion specifies elevation and azimuth angles at arrival, trans-
fer time, and required AV'. In addition to the chance con-
straint, we also impose a constraint on the transfer time by
removing the options for which the transfer times are greater
than an upper bound. We use the same terrain as Section 5.2.
The latitude and longitude of the landing site is assumed to
be 0° and 310°, respectively. The risk bound is set to be
A = 10%. With this setup, we use CCDP to obtain the opti-
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Fig. 9 Low-energy transfer trajectory used by GRAIL [27].

mal control policy with various settings of the upper bound
on the transfer time.

Figure 11 shows some sample results. With only 10 day
transfer time allowed, the best elevation angle is 40°, result-
ing in the highly elliptical landing ellipse as shown in the
figure. The expected surface driving distance to visit the two

= Major axis of
landing ellipse

Fig. 10 At a given level of trajectory dispersion of a lander, the major
axis of the landing ellipse becomes smaller by arriving at a greater
elevation angle.

-3.695 -3.69 -3.685
(a) tr < 10 days, 0 = 40°, E{d} = 676.5m

-3.695 -3.69 -3.685
(b) tr < 100 days, 0 = 73°, E{d} = 648.5m

Fig. 11 Lunar landing problem result.

pre-specified targets is 676.5 m. On the other hand, when
100 day transfer time is allowed, a trajectory option with 73°
elevation angle becomes available. Even though the landing
target is not significantly different from the previous case,
the smaller landing ellipse results in a reduced expected sur-
face driving distance.
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Fig. 12 Suboptimality of the primal objective value, as well as the pri-
mal suboptimality bound, of 100 solutions for the simplified Mars EDL
scenario with randomly placed scientific targets. The vertical axis of

the plot represents the observed suboptimality, that is h* — h*, while
the horizontal axis represents the primal suboptimality bound, €;,. The-
orem 2 is empirically validated by the fact that all samples are below
the 45° line, shown with a the dotted line.

5.4 Suboptimality bound

Finally, we empirically validate Theorem 2. We consider a
variant of the Mars EDL scenario, where only one time step
(EDL targeting) is considered. With this simplified problem
setting, the exact optimal solution can be found by a brute-
force approach (i.e., finding the best ;o among four mil-
lion options). We compare the approximate primal objective
value h*, obtained from the proposed chance-constrained
dynamic programming algorithm, with the optimal primal
objective value h*, obtained from the brute-force approach.
The simulation is run 100 times with randomized location of
science targets and a risk bound A = 0.1%. Figure 12 plots
the observed suboptimality, i.e., h* — h*, against the subop-
timality bound given by Theorem 2, €, = —X (1) (7o) — A).
In all the 100 runs, the error is less than the error bound.
Furthermore, in 24 runs, the suboptimality is exactly zero,
meaning that the solution of the proposed algorithm is the
exact optimal solution.

6 Conclusion

This paper presented a novel chance-constrained dynamic
programming algorithm, which outputs a control policy that
minimizes an expected cost while guaranteeing that the prob-
ability of constraint violation is within a user-specified risk
bound. Through a careful reformulation of the problem us-
ing Boole’s inequality and dual optimization, the original
problem is converted into a combination of standard dy-
namic programming and root-finding problems, which are
solved iteratively. Although the obtained solution is subopti-
mal, such suboptimality is practically quite moderate. Appli-
cations to path planning, Mars EDL, and Lunar landing are

shown in simulation, together with the numerical verifica-
tion of our theoretical results. Future work towards on-board
deployment includes validation of the algorithm with more
complex dynamics and probability distributions, as well as
development of a compact representation of the control pol-
icy (e.g., through table look-ups) for systems with limited
on-board resources.
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