Dynamic Multi-Vehicle Routing with Multiple Classes of Demands

Marco Pavone Stephen L. Smith Francesco Bullo Emilio Frazzoli†

March 18, 2009

Abstract

In this paper we study a dynamic vehicle routing problem in which there are multiple vehicles and multiple classes of demands. Demands of each class arrive in the environment randomly over time and require a random amount of on-site service that is characteristic of the class. To service a demand, one of the vehicles must travel to the demand location and remain there for the required on-site service time. The quality of service provided to each class is given by the expected delay between the arrival of a demand in the class, and that demand’s service completion. The goal is to design a routing policy for the service vehicles which minimizes a convex combination of the delays for each class. First, we provide a lower bound on the achievable values of the convex combination of delays. Then, we propose a novel routing policy and analyze its performance under heavy load conditions (i.e., when the fraction of time the service vehicles spend performing on-site service approaches one). The policy performs within a constant factor of the lower bound (and thus the optimal), where the constant depends only on the number of classes, and is independent of the number of vehicles, the arrival rates of demands, the on-site service times, and the convex combination coefficients.

1 Introduction

Consider a bounded environment \(\mathcal{E} \) in the plane which contains \(n \) service vehicles. Demands for service arrive in \(\mathcal{E} \) sequentially over time and each demand is a member of one of \(m \) classes. Upon arrival, a demand assumes a location in \(\mathcal{E} \), and requires a class dependent amount of on-site service

*This research was partially supported by the National Science Foundation, through grants #0705451 and #0705453, by the Office of Naval Research through grant #N00014-07-1-0721, and by the Air Force Office of Scientific Research through grant #FA9550-07-1-0528.

†M. Pavone and E. Frazzoli are with the Laboratory for Information and Decision Systems, Aeronautics and Astronautics Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; email: {pavone,frazzoli}@mit.edu. S. L. Smith and F. Bullo are with the Center for Control, Dynamical Systems and Computation, Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA {stephen,bullo}@engineering.ucsb.edu.
time. To service a demand, one of the \(n \) vehicles must travel to the demand location and perform the on-site service. If we specify a policy by which the vehicles serve demands, then the expected delay for demands of class \(\alpha \), denoted \(D_\alpha \), is the expected amount of time between a demand’s arrival and its service completion. Then, given coefficients \(c_1, \ldots, c_m > 0 \), the goal is to find the vehicle routing policy that minimizes

\[
c_1 D_1 + \cdots + c_m D_m.
\]

By increasing the coefficients for certain classes, a higher priority level can be given to their demands. This problem, which we call \textit{dynamic vehicle routing with priority classes}, has important applications in areas such as UAV surveillance, where targets are given different priority levels based on their urgency or potential importance.

In classical queuing theory (i.e., queuing systems in which the demands are not spatially distributed), the problem of priority queues has received much attention, [1]. In [2] the authors characterize the region of delays that are realizable by a single server. This analysis is performed under the assumption that the customer (demand) interarrival times and service times are distributed exponentially. In [3] the achievable delays are studied in a more general setting known as queuing networks.

If service demands are spatially distributed, then providing service becomes a problem in dynamic vehicle routing (DVR). One of the first DVR problems was the dynamic traveling repairperson problem (DTRP) [4, 5]. The DTRP is the single class version of the dynamic vehicle routing with priority classes problem studied in this paper. In [4, 5], the authors study the expected delay of demands and propose optimal policies in both heavy load (i.e., when the fraction of time the service vehicles spend performing on-site service approaches one), and in light load (i.e., when the fraction of time the service vehicles spend performing on-site service approaches zero). In [7], and [8], decentralized policies are developed for the DTRP. Spatial queuing problems have also been studied in the context of urban operations research [9], where approximations are used to cast the problems in the traditional queuing framework. In our previous paper [10], we introduced and studied dynamic vehicle routing with priority classes, for the case of two classes and one vehicle. For this case we derived a lower bound on the achievable delay values and proposed the Randomized Priority policy, which performed within a constant factor of the lower bound, for all convex combination coefficients.

The contributions of this paper are as follows. We extend the dynamic vehicle routing with priority classes problem to \(n \) service vehicles and \(m \) classes of demands. The extension of our previous analysis to multiple classes of demands is very nontrivial. We derive a new lower bound on the achievable values of the convex combination of delays, and propose a new policy in which each class of demands is served separately from the others. We show that the policy performs with a constant factor of \(2m^2 \) of the optimal. Thus, the constant factor is independent of the number of vehicles, the arrival rates of demands, the on-site service times, and the convex combination coefficients. We also comment on the source of the gap between the upper and lower bounds.
The paper is organized as follows. In Section 2 we give some asymptotic properties of the traveling salesperson tour. In Section 2.2 we formalize the problem and in Section 3 we derive a lower bound, and in Section 4 we introduce and analyze the Separate Queues policy. Finally, in Section 5 we present simulation results.

2 Background and Problem Statement

In this section we summarize the asymptotic properties of the Euclidean traveling salesperson tour, and formalize dynamic vehicle routing with priority classes.

2.1 The Euclidean Traveling Salesperson Problem

Given a set Q of N points in \mathbb{R}^2, the Euclidean traveling salesperson problem (TSP) is to find the minimum-length tour of Q (i.e., the shortest closed path through all points). Let $TSP(Q)$ denote the minimum length of a tour through all the points in Q. Assume that the locations of the N points are random variables independently and identically distributed, uniformly in a compact set E with area $|E|$; in [11] it is shown that there exists a constant β_{TSP} such that, almost surely,

$$\lim_{N \to +\infty} \frac{TSP(Q)}{\sqrt{N}} = \beta_{TSP} \sqrt{|E|}.$$

(1)

The constant β_{TSP} has been estimated numerically as $\beta_{TSP} \approx 0.7120 \pm 0.0002$, [12]. The bound in equation (1) holds for all compact sets E, and the shape of E only affects the convergence rate to the limit. In [9], the authors note that if E is “fairly compact [square] and fairly convex”, then equation (1) provides an adequate estimate of the optimal TSP tour length for values of N as low as 15.

2.2 Problem Statement

Consider a compact environment E in the plane with area $|E|$. The environment contains n vehicles, each with maximum speed v. Demands of type $\alpha \in \{1, \ldots, m\}$ (also called α-demands) arrive in the environment according to a Poisson process with rate λ_α. Upon arrival, demands assume an independently and uniformly distributed location in E. An α-demand is serviced when the vehicle spends an on-site service time at the demand location, which is generally distributed with finite mean \overline{s}_α.

Consider the arrival of the ith α-demand. The service delay for the ith demand, $D_\alpha(i)$, is the time elapsed between its arrival and its service completion. The wait time is defined as $W_\alpha(i) := D_\alpha(i) - s_\alpha(i)$, where $s_\alpha(i)$ is the on-site service time required by demand i. A policy for routing the vehicles is said to be stable if the expected number of demands in the system for each class is
bounded uniformly at all times. A necessary condition for the existence of a stable policy is

$$\varrho := \frac{1}{n} \sum_{\alpha=1}^{m} \lambda_{\alpha} \bar{s}_{\alpha} < 1.$$ \hspace{1cm} (2)

The load factor ϱ is a standard quantity in queueing theory \cite{1}, and is used to capture the fraction of time the n servers (vehicles) must be busy in any stable policy. In general, it is difficult to study a queueing system for all values of $\varrho \in [0, 1)$, and a common technique is to focus on the limiting regimes of $\varrho \to 1^-$, referred to as the heavy-load regime, and $\varrho \to 0^+$, referred to as the light-load regime.

Given a stable policy P the steady-state service delay for α-demands is defined as $D_{\alpha}(P) := \lim_{i \to +\infty} \mathbb{E}[D_{\alpha}(i)]$, and the steady-state wait time for α-demands is $W_{\alpha}(P) := D_{\alpha}(P) - \bar{s}_{\alpha}$. Thus, for a stable policy P, the average delay per demand is

$$D(P) = \frac{1}{\Lambda} \sum_{\alpha=1}^{m} \lambda_{\alpha} D_{\alpha}(P),$$

where $\Lambda := \sum_{\alpha=1}^{m} \lambda_{\alpha}$. The average delay per demand is the standard cost functional for queueing systems with multiple classes of demands. Notice that we can write $D(P) = \sum_{\alpha=1}^{m} c_{\alpha} D_{\alpha}(P)$ with $c_{\alpha} = \lambda_{\alpha}/\Lambda$. Thus, we can model priority among classes by allowing any convex combination of D_1, \ldots, D_m. If $c_{\alpha} > \lambda_{\alpha}/\Lambda$, then the delay of α-demands is being weighted more heavily than in the average case. Thus, the quantity $c_{\alpha} \Lambda/\lambda_{\alpha}$ gives the priority of α-demands compared to that given in the average delay case. Without loss of generality we can assume that priority classes are labeled so that

$$\frac{c_1}{\lambda_1} \geq \frac{c_2}{\lambda_2} \geq \cdots \geq \frac{c_m}{\lambda_m},$$ \hspace{1cm} (3)

implying that if $\alpha < \beta$ for some $\alpha, \beta \in \{1, \ldots, m\}$, then the priority of α-demands is at least as high as that of β-demands. With these definitions, we are now ready to state our problem.

Problem Statement: Let Π be the set of all causal, stable and stationary policies for dynamic vehicle routing with priority classes. Given the coefficients $c_{\alpha} > 0$, $\alpha \in \{1, \ldots, m\}$, with $\sum_{\alpha=1}^{m} c_{\alpha} = 1$, and satisfying equation (3), let $D(P) := \sum_{\alpha=1}^{m} c_{\alpha} D_{\alpha}(P)$ be the cost of a policy $P \in \Pi$. Then, the problem is to determine a vehicle routing policy P^*, if one exists, such that

$$D(P^*) = \inf_{P \in \Pi} D(P).$$ \hspace{1cm} (4)

We let D^* denote the right-hand side of equation (4). A policy P for which $D(P)/D^*$ is bounded has a constant-factor guarantee. If $\limsup_{\varrho \to 1^-} D(P)/D^* = \kappa < +\infty$, then the policy P has a heavy-load constant-factor guarantee of κ. In this paper we focus on the heavy-load regime, and look for policies with a heavy-load constant-factor guarantee that is independent of the number of vehicles, the arrival rates of demands, the on-site service times, and the convex combination coefficients.
3 Lower Bound in Heavy Load

In this section we present two lower bounds on the delay in Eq. (4). The first holds only in heavy load (i.e., as $\varrho \to 1^-$), while the second (less tight) bound holds for all ϱ.

Theorem 3.1 (Heavy load lower bound). In heavy load ($\varrho \to 1^-$), for every routing policy P,

$$D(P) \geq \frac{\beta^2_{\text{TSP}} |\mathcal{E}|}{2n^2v^2(1-\varrho)^2} \sum_{\alpha=1}^{m} \left(c_\alpha + 2 \sum_{j=\alpha+1}^{m} c_j \right) \lambda_\alpha.$$ \hspace{1cm} (5)

where c_1, \ldots, c_m satisfy Eq. (3).

Proof. Consider a tagged demand i of type α, and let us quantify its total service requirement. The demand requires on-site service time $s_\alpha(i)$. Let us denote by $d_\alpha(i)$ the distance from the location of the demand served prior to i, to i’s location. In order to compute a lower bound on the wait time, we will allow “remote” servicing of some of the demands. For an α-demand i that can be serviced remotely, the travel distance $d_\alpha(i)$ is zero (i.e., a service vehicle can service the ith α-demand from any location by simply stopping for the on-site service time $s_\alpha(i)$). Thus, the wait time for the modified remote servicing problem provides a lower bound on the wait time for the problem of interest. To formalize this idea, we introduce the variables $r_\alpha \in \{0, 1\}$ for each $\alpha \in \{1, \ldots, m\}$. If $r_\alpha = 0$, then α-demands can be serviced remotely. If $r_\alpha = 1$, then α-demands must be serviced on location. We assume that $r_\alpha = 1$ for at least one $\alpha \in \{1, \ldots, m\}$. Thus, the total service requirement of α-demand i is $r_\alpha d_\alpha(i) + s_\alpha(i)$. The steady-state expected service requirement is $r_\alpha d_\alpha + s_\alpha$, where $\bar{d}_\alpha := \lim_{i \to +\infty} E[d_\alpha(i)]$. In order to maintain stability of the system we must require

$$\frac{1}{n} \sum_{\alpha=1}^{m} \lambda_\alpha \left(\frac{r_\alpha \bar{d}_\alpha}{v} + \bar{s}_\alpha \right) < 1.$$ \hspace{1cm} (6)

Applying the definition of ϱ in Eq. (2), we write Eq. (6) as

$$\sum_{\alpha=1}^{m} r_\alpha \lambda_\alpha \bar{d}_\alpha < (1 - \varrho)nv.$$ \hspace{1cm} (7)

For a stable policy P, let \bar{N}_α represent the steady-state expected number of unserviced α-demands. Then, the expected total number of outstanding demands that require on-site service (i.e., cannot be serviced remotely) is given by $\sum_{j=1}^{m} r_j \bar{N}_j$. We now apply a result from the dynamic traveling repairperson problem (see [13], page 23) which states that in heavy load ($\varrho \to 1^-$), if the steady-state number of outstanding demands is N, then a lower bound on expected travel distance between demands is $(\beta_{\text{TSP}}/\sqrt{2}) \sqrt{|\mathcal{E}|/N}$. Applying this result we have that

$$\bar{d}_\alpha \geq \frac{\beta_{\text{TSP}}}{\sqrt{2}} \sqrt{\frac{|\mathcal{E}|}{\sum_{j=1}^{m} r_j \bar{N}_j}} =: \bar{d},$$ \hspace{1cm} (8)

5
for each $\alpha \in \{1, \ldots, m\}$. Combining with Eq. (7), squaring both sides, and rearranging we obtain
\[\frac{\beta_{TSP}^2 |E|^2}{2 n^2 v^2 (1 - \rho)^2} < \sum_{\alpha} r_{\alpha} \tilde{N}_{\alpha}. \]

From Little's law, $\tilde{N}_{\alpha} = \lambda_{\alpha} W_{\alpha}$ for each $\alpha \in \{1, \ldots, m\}$, and thus
\[\sum_{\alpha} r_{\alpha} \lambda_{\alpha} W_{\alpha} > \frac{\beta_{TSP}^2 |E|^2}{2 n^2 v^2 (1 - \rho)^2} \left(\sum_{\alpha} r_{\alpha} \lambda_{\alpha} \right)^2. \] (9)

Recalling that $W_{\alpha} = D_{\alpha} - \bar{s}_{\alpha}$ and $r_{\alpha} \in \{0, 1\}$ for each $\alpha \in \{1, \ldots, m\}$, we see that Eq. (9) gives us $2^m - 1$ constraints on the feasible values of $D_1(P), \ldots, D_m(P)$. Hence, a lower bound on D^* can be found by minimizing $\sum_{\alpha=1}^m W_{\alpha}$ subject to the constraints in Eq. (9). By considering the dual of this problem, one can verify that under the class labeling in Eq. (3), the problem is equivalent to:

\[
\begin{aligned}
\text{minimize} & \quad \sum_{\alpha=1}^m c_{\alpha} W_{\alpha}, \\
\text{subject to} & \quad \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ \lambda_1 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1 & \lambda_2 & \cdots & \lambda_m \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_m \end{bmatrix} \geq \Psi \begin{bmatrix} \lambda_1^2 \\ (\lambda_1 + \lambda_2)^2 \\ \vdots \\ (\lambda_1 + \cdots + \lambda_m)^2 \end{bmatrix},
\end{aligned}
\]

where
\[\Psi := \frac{\beta_{TSP}^2 |E|^2}{2 n^2 v^2 (1 - \rho)^2}. \]

Under the class labeling in Eq. (3) the above linear program is feasible and bounded, and its solution (W_1^*, \ldots, W_m^*) is given by
\[W_{\alpha}^* = \Psi \left(\lambda_{\alpha} + 2 \sum_{j=1}^{\alpha-1} \lambda_j \right). \]

After rearranging, the optimal value of the cost function, and thus the lower bound on D^*, is given by
\[\sum_{\alpha=1}^m c_{\alpha} W_{\alpha}^* = \Psi \sum_{\alpha=1}^m \left(c_{\alpha} + 2 \sum_{j=\alpha+1}^m c_j \right) \lambda_{\alpha}. \]

Applying the definition of Ψ we obtain the desired result. \qed
Remark 3.2 (Lower bound for all $\varrho \in [0,1)$). With slight modifications, it is possible to obtain a less tight lower bound valid for all values of ϱ. In the above derivation, the assumption that $\varrho \to 1^-$ is used in Eq. (8). It is possible to use, instead, a lower bound valid for all $\varrho \in [0,1)$ (see [5]):

$$\bar{d}_\alpha \geq \sqrt{\frac{|E|}{\sum_\alpha r_\alpha N_\alpha + n/2}},$$

where $\gamma = 2/(3\sqrt{2\pi}) \approx 0.266$. Using this bound we obtain the same linear program as in the proof of Theorem 3.1, with the difference that Ψ is now a function given by

$$\Psi(x) := \frac{\gamma^2 |E|}{n^2 v^2 (1 - \varrho)^2} x - \frac{n}{2},$$

Following the procedure in the proof of Theorem 3.1

$$W_1^* = \frac{\gamma^2 |E|}{n^2 v^2 (1 - \varrho)^2} \lambda_1 - \frac{n}{2\lambda_1},$$

$$W_\alpha^* = \frac{\gamma^2 |E|}{n^2 v^2 (1 - \varrho)^2} \left(\lambda_\alpha + 2 \sum_{j=1}^{\alpha-1} \lambda_j \right),$$

for each $\alpha \in \{2, \ldots, m\}$. Finally, for every policy P, $D_\alpha(P) \geq W_\alpha^* + \bar{s}_\alpha$, and thus

$$D(P) \geq \frac{\gamma^2 |E|}{n^2 v^2 (1 - \varrho)^2} \sum_{\alpha=1}^{m} \left(c_\alpha + 2 \sum_{j=\alpha+1}^{m} c_j \right) \lambda_\alpha - \frac{n c}{2\lambda_1} + \sum_{\alpha=1}^{m} c_\alpha \bar{s}_\alpha, \quad (10)$$

for all $\varrho \in [0,1)$ under the labeling in Eq. (3). \hfill \Box

4 Separate Queues Policy

In this section we introduce and analyze the Separate Queues (SQ) policy. We show that this policy is within a factor of $2m^2$ of the lower bound in heavy load.

To present the SQ policy we need some notation. We assume vehicle $k \in \{1, \ldots, n\}$ has a service region $R^{[k]} \subset E$, such that $\{R^{[1]}, \ldots, R^{[n]}\}$ form a partition of the environment E. In general the partition could be time varying, but for the description of the SQ policy this will not be required. We assume that information on outstanding demands of type $\alpha \in \{1, \ldots, m\}$ in region $R^{[k]}$ at time t is summarized as a finite set of demand positions $Q^{[k]}_\alpha(t)$ with $N^{[k]}_\alpha(t) := \text{card}(Q^{[k]}_\alpha(t))$. Demands of type α with location in $R^{[k]}$ are inserted in the set $Q^{[k]}_\alpha$ as soon as they are generated. Removal from the set $Q^{[k]}_\alpha$ requires that service vehicle k moves to the demand location, and provides the on-site service. With this notation the policy is given as Algorithm 1.
Algorithm 1: Separate Queues (SQ) Policy

Assumes: A probability distribution \(p = [p_1, \ldots, p_m] \).

1. Partition \(\mathcal{E} \) into \(n \) equal area regions and assign one vehicle to each region.

2. **foreach** vehicle-region pair \(k \) do

3. **if** the set \(\bigcup \alpha Q^{[k]}_\alpha \) is empty **then**

4. Move vehicle toward the median of its own region until a demand arrives.

5. **else**

6. Select \(Q \in \{Q^{[1]}_1, \ldots, Q^{[m]}_m\} \) according to \(p \).

7. **if** \(Q \) is empty **then**

8. Reselect until \(Q \) is nonempty.

9. Compute TSP tour through all demands in \(Q \).

10. Service \(Q \) following the TSP tour, starting at the demand closest to the vehicle's current position.

11. Repeat.

12. **Optimize over** \(p \).

4.1 Stability Analysis of the SQ Policy in Heavy Load

In this section we will analyze the SQ policy in heavy load, i.e., as \(\varrho \to 1^- \). In the SQ policy each region \(R^{[k]} \) has equal area, and contains a single vehicle. Thus, the \(n \) vehicle problem in a region of area \(|\mathcal{E}| \) has been turned into \(n \) independent single-vehicle problems, each in a region of area \(|\mathcal{E}|/n \), with arrival rates \(\lambda_\alpha/n \). To determine the performance of the policy we need only study the performance in a single region \(k \). For simplicity of notation we omit the label \(k \). We refer to the time instant \(t_i \) in which the vehicle computes a new TSP tour as the epoch \(i \) of the policy; we refer to the time interval between epoch \(i \) and epoch \(i + 1 \) as the \(i \)th iteration and we will refer to its length as \(T_i \). Finally, let \(N_\alpha(t_i) := N_{\alpha,i}, \alpha \in \{1, \ldots, m\} \), be the number of outstanding \(\alpha \)-demands at beginning of iteration \(i \).

The following straightforward lemma, proved in [10], will be essential in deriving our main results.

Lemma 4.1 (Number of outstanding demands). In heavy load (i.e., \(\varrho \to 1^- \)), after a transient, the number of demands serviced in a single tour of the vehicle in the SQ policy is very large with high probability (i.e., the number of demands tends to +\(\infty \) with probability that tends to 1, as \(\varrho \) approaches \(1^- \)).

Let \(TS_j \) be the event that \(Q_j \) is selected for service at iteration \(i \) of the SQ policy. By the law
of total probability

\[E[N_{\alpha,i+1}] = \sum_{j=1}^{m} p_j E(N_{\alpha,i+1}|TS_j), \quad \alpha \in \{1, \ldots, m\}, \]

where the conditioning is with respect to the task being performed during iteration \(i\). During iteration \(i\) of the policy, demands arrive according to independent Poisson processes. Call \(N_{\alpha,i}^{\text{new}}\) the \(\alpha\)-demands \((\alpha \in \{1, \ldots, m\})\) newly arrived during iteration \(i\); then, by definition of the SQ policy

\[E(N_{\alpha,i}^{\text{new}}|TS_j) = \begin{cases} E(N_{\alpha,i}^{\text{new}}|TS_j), & \text{if } \alpha = j \\ E(N_{\alpha,i}|TS_j) + E(N_{\alpha,i}^{\text{new}}|TS_j), & \text{o.w.} \end{cases} \]

By the law of iterated expectation, we have

\[E(N_{\alpha,i}^{\text{new}}|TS_j) = \left(\frac{\lambda_{\alpha}}{n} \right) E(T_i|TS_j). \]

Moreover, since the number of demands outstanding at the beginning of iteration \(i\) is independent of the task that will be chosen, we have

\[E(N_{\alpha,i}|TS_j) = E[N_{\alpha,i}]. \]

Thus we obtain

\[E(N_{\alpha,i+1}|TS_j) = \begin{cases} \frac{\lambda_{\alpha}}{n} E(T_i|TS_j), & \text{if } \alpha = j \\ E[N_{\alpha,i}] + \frac{\lambda_{\alpha}}{n} E(T_i|TS_j), & \text{o.w.} \end{cases} \]

Therefore, we are left with computing the conditional expected values of \(T_i\). The length of \(T_i\) is given by the time needed by the vehicle to travel along the TSP tour plus the time spent to service demands. Assuming \(i\) large enough, Lemma (4.1) holds, and we can apply Eq. (1) to estimate from the quantities \(N_{\alpha,i}, \alpha \in \{1, \ldots, m\}\), the length of the TSP tour at iteration \(i\). Conditioning on \(TS_j\) (when only demands of type \(j\) are serviced), we have

\[E(T_i|TS_j) = \frac{\beta_{\text{TSP}} \sqrt{|E|/n}}{v} E\left(\sqrt{N_{j,i}}|TS_j \right) + E\left(\sum_{k=1}^{N_{j,i}} s_{j,k}|TS_j \right) \]

\[\leq \frac{\beta_{\text{TSP}} \sqrt{|E|/n}}{v} \sqrt{E[N_{j,i}]} + E[N_{j,i}] \bar{s}_j, \]

where we have: (i) applied Eq. (1), (ii) applied Jensen’s inequality for concave functions, in the form \(E\left[\sqrt{X} \right] \leq \sqrt{E[X]}\), (iii) removed the conditioning on \(TS_j\), since the random variables \(N_{\alpha,i}\) are independent from future events, and in particular from the choice of the task at iteration \(i\), and (iv) used the crucial fact that the on-site service times are independent from the number of outstanding demands.

Collecting the above results (and using the shorthand \(\bar{X}\) to indicate \(E[X]\), where \(X\) is any random variable), we have

\[\bar{N}_{\alpha,i+1} \leq (1 - p_\alpha) \bar{N}_{\alpha,i} + \sum_{j=1}^{m} p_j \frac{\lambda_{\alpha}}{n} \left[\frac{\beta_{\text{TSP}} \sqrt{|E|/n}}{v} \sqrt{\bar{N}_{j,i}} + \bar{N}_{j,i} \bar{s}_j \right], \quad (11) \]
for each $\alpha \in \{1, \ldots, m\}$. The m inequalities above describe a system of recursive relations that allows to find an upper bound on $\bar{N}_{\alpha,i}$, $\alpha \in \{1, \ldots, m\}$. The following theorem (see Appendix for its proof) bounds the values to which they converge.

Theorem 4.2 (Queue length). In heavy load, for every set of initial conditions $\{\bar{N}_{\alpha,0}\}_{\alpha \in \{1, \ldots, m\}}$, the trajectories $i \mapsto \bar{N}_{\alpha,i}$, $\alpha \in \{1, \ldots, m\}$, resulting from Eqs. (11), satisfy

$$\limsup_{i \to +\infty} \bar{N}_{\alpha,i} \leq \frac{\beta^2_{\text{TSP}} |\mathcal{E}|}{n^2 v^2 (1 - \varrho)^2} \frac{1}{p_\alpha} \left(\sum_{j=1}^{m} \sqrt{\lambda_j p_j} \right)^2.$$

4.2 Delay of the SQ Policy in Heavy Load

From Theorem 4.2, and using Little’s law, the delay of α-demands is

$$D_\alpha(\text{SQ}) \leq \frac{n}{\lambda_\alpha} \limsup_{i \to +\infty} \bar{N}_{\alpha,i} + \bar{s}_\alpha$$

$$= \frac{\beta^2_{\text{TSP}} |\mathcal{E}|}{n^2 v^2 (1 - \varrho)^2} \frac{1}{p_\alpha} \left(\sum_{j=1}^{m} \sqrt{\lambda_j p_j} \right)^2,$$

where we neglected \bar{s}_α because of the heavy-load assumption.

Thus, the delay (as defined in Eq. (4)) of the SQ policy, satisfies in heavy load

$$D(\text{SQ}) \leq \frac{\beta^2_{\text{TSP}} |\mathcal{E}|}{n^2 v^2 (1 - \varrho)^2} \sum_{\alpha=1}^{m} \frac{c_\alpha}{p_\alpha} \left(\sum_{i=1}^{m} \sqrt{\lambda_i p_i} \right)^2.$$ \hspace{1cm} (12)

With this expression we prove our main result on the performance of the SQ policy.

Theorem 4.3 (SQ policy performance). In heavy load, the delay of the SQ policy is within a factor $2m^2$ of the optimal, independent of the arrival rates $\lambda_1, \ldots, \lambda_m$, coefficients c_1, \ldots, c_m, service times $\bar{s}_1, \ldots, \bar{s}_m$, and the number of vehicles n.

Proof. We would like to compare the performance of this policy with the lower bound. To do this, consider setting $p_\alpha := c_\alpha$ for each $\alpha \in \{1, \ldots, m\}$. Defining $B := \frac{\beta^2_{\text{TSP}} |\mathcal{E}|}{n^2 v^2 (1 - \varrho)^2}$, Eq. (12) can be written as

$$D(\text{SQ}) \leq B m \left(\sum_{i=1}^{m} \sqrt{c_i \lambda_i} \right)^2.$$

Next, the lower bound in Eq. (5) is

$$D^* \geq \frac{B}{2} \sum_{i=1}^{m} \left(c_i + 2 \sum_{j=i+1}^{m} c_j \right) \lambda_i \geq \frac{B}{2} \sum_{i=1}^{m} (c_i \lambda_i).$$
Thus, comparing the upper and lower bounds

$$\frac{D(SQ)}{D^*} \leq 2m \left(\frac{\sum_{i=1}^{m} \sqrt{c_i \lambda_i}}{\sum_{i=1}^{m} (c_i \lambda_i)} \right)^2.$$ \tag{13}

Letting $x_i := \sqrt{c_i \lambda_i}$, and $\mathbf{x} := [x_1, \ldots, x_m]$, the numerator of the fraction in Eq. (13) is $\|\mathbf{x}\|_2^2$, and the denominator is $\|\mathbf{x}\|_1^2$. But the one- and two-norms of a vector $\mathbf{x} \in \mathbb{R}^m$ satisfy $\|\mathbf{x}\|_1 \leq \sqrt{m} \|\mathbf{x}\|_2$. Thus, in heavy load we obtain

$$\frac{D(SQ)}{D^*} \leq 2m \left(\frac{\|\mathbf{x}\|_1}{\|\mathbf{x}\|_2} \right)^2 \leq 2m^2,$$

and the policy is a $2m^2$-factor approximation. \hfill \square

Remark 4.4 (Relation to RP policy in [10]). For $m = 2$ the SQ policy is within a factor of 8 of the optimal. This improves on the factor of 12 obtained for the Randomized Priority (RP) policy in [10]. However, it appears that the RP policy bound is not tight, since for two classes, simulations indicate it performs no worse than the SQ policy. \hfill \square

5 Simulations and Discussion

In this section we discuss, through the use of simulations, the performance of the SQ policy with the probability assignment $p_\alpha := c_\alpha$, for each $\alpha \in \{1, \ldots, m\}$. In particular, we study (i) the tightness of the upper bound in equation (12), (ii) conditions for which the gap between the lower bound in equation (5) and the upper bound in equation (12) is maximized, (iii) the suboptimality of the probability assignment $p_\alpha = c_\alpha$, and (iv) the difference in performance between the SQ policy and a policy that merges all classes together irrespective of priorities. Simulations of the SQ policy were performed using linkern\footnote{The TSP solver linkern is freely available for academic research use at http://www.tsp.gatech.edu/concorde.html.} as a solver to generate approximations to the optimal TSP tour.

5.1 Tightness of the Upper Bound

We consider one vehicle, four classes of demands, and several values of the load factor ρ. For each value of ρ we perform 100 runs. In each run we uniformly randomly generate arrival rates $\lambda_1, \ldots, \lambda_m$, convex combination coefficients c_1, \ldots, c_m, and on-site service times $\bar{s}_1, \ldots, \bar{s}_m$, and normalize the values such that the constraints $\sum_{\alpha=1}^{m} \lambda_\alpha \bar{s}_\alpha = \rho$ and $\sum_{\alpha=1}^{m} c_\alpha = 1$ are satisfied. In each run we iterate the SQ policy 4000 times, and compute the steady-state expected delay by considering the number of demands in the last 1000 iterations. For each value of ρ we compute the ratio χ between the expected delay and the theoretical upper bound in equation (12). Table 1 reports the ratio, its standard deviation, and its minimum and maximum values for each ρ value.
Figure 1: Experimental results for the SQ policy in worst-case conditions; \(\varrho = 0.85 \) and \(\lambda_1 = 1 \).

One can see that the upper bound provides a reasonable approximation for load factors as low as \(\varrho = 0.75 \).

<table>
<thead>
<tr>
<th>Load factor ((\varrho))</th>
<th>(E[\chi])</th>
<th>(\sigma_\chi)</th>
<th>max (\chi)</th>
<th>min (\chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.803</td>
<td>0.092</td>
<td>1.093</td>
<td>0.354</td>
</tr>
<tr>
<td>0.8</td>
<td>0.778</td>
<td>0.108</td>
<td>0.943</td>
<td>0.256</td>
</tr>
<tr>
<td>0.85</td>
<td>0.773</td>
<td>0.111</td>
<td>1.150</td>
<td>0.417</td>
</tr>
<tr>
<td>0.9</td>
<td>0.753</td>
<td>0.159</td>
<td>1.162</td>
<td>0.203</td>
</tr>
<tr>
<td>0.95</td>
<td>0.716</td>
<td>0.131</td>
<td>0.890</td>
<td>0.257</td>
</tr>
</tbody>
</table>

Table 1: Ratio \(\chi \) between experimental results and upper bound for various values of \(\varrho \).

5.2 Unfavorable Conditions for the SQ Policy

One may question if for some sets \(\{\lambda_\alpha\} \) and \(\{c_\alpha\} \), \(\alpha \in \{1, \ldots, m\} \), the ratio between upper bound (12) and lower bound (5) is indeed close to \(2m^2 \). The answer is affirmative: consider, e.g., the case \(\lambda_1 \ll \lambda_2 \ll \ldots \ll \lambda_m \) and \(c_1 \gg c_2 \gg \ldots \gg c_m \), with \(\lambda_\alpha c_\alpha = a \), for some positive constant \(a \). Then, the upper bound is equal to \(Bm^3a \) and the lower bound is approximately equal to \(Bma/2 \), thus their ratio is (arbitrarily) close to \(2m^2 \). Then, we simulated the SQ policy for the case \(\lambda_m = a\lambda_{m-1} = a^2\lambda_{m-1} = \ldots = a^{m-1}\lambda_1 \) and \(c_1 = ac_2 = \ldots = a^{m-1}c_m \) with \(a = 2 \). Fig. 1 shows that the experimental value of the cost function (averaged over 10 simulation runs) indeed increases proportionally to \(m^2 \).
5.3 Suboptimality of the Approximate Probability Assignment

To prove Theorem 4.3 we used the probability assignment

\[p_{\alpha} := c_{\alpha} \quad \text{for each } \alpha \in \{1, \ldots, m\}. \] (14)

However, one would like to select \([p_1, \ldots, p_m] =: \mathbf{p}\) that minimizes the right-hand side of Eq. (12). The minimization of the right-hand side of Eq. (12) is a constrained multi-variable nonlinear optimization problem over \(\mathbf{p}\), that is, in \(m\) dimensions. However, for two classes of demands the optimization is over a single variable \(p_1\), and it can be readily solved. A comparison of optimized upper bound, denoted \(\text{upbd}_{\text{opt}}\), with the upper bound obtained using the probability assignment in Eq. (14), denoted \(\text{upbd}_c\), is shown in Fig. 2.

For \(m > 2\) we approximate the solution of the optimization problem as follows. For each value of \(m\) we perform 1000 runs. In each run we randomly generate \(\lambda_1, \ldots, \lambda_m, c_1, \ldots, c_m\), and five sets of initial probability assignments \(\mathbf{p}_1, \ldots, \mathbf{p}_5\). From each initial probability assignment we use a line search to locally optimize the probability assignment. We take the ratio between \(\text{upbd}_c\) and the least upper bound \(\text{upbd}_{\text{local opt}}\) obtained from the five locally optimized probability assignments. We also record the maximum variation in the five locally optimized upper bounds. This is summarized in Table 2. The second column shows the largest ratio obtained over the 1000 runs. The third column shows the largest % variation in the 1000 runs. The assignment in Eq. (14)
performs within a factor of two of the optimized assignment. In addition, the optimization appears to converge to values close to a global optimum since all five random conditions converge to values that are within $\sim 0.1\%$ of each other on every run.

5.4 The Merge Policy

The simplest possible policy for our problem would be to ignore priorities and service demands all together, by repeatedly forming TSP tours of outstanding demands (i.e., by using the SQ policy as though there were only one class). We call such a policy the Merge policy. However, the performance of the SQ and the Merge policy can be arbitrarily far apart. Indeed, by defining the overall arrival rate $\Lambda := \sum_{\alpha=1}^{m} \lambda_{\alpha}$ and overall mean on-site service $\bar{S} := \sum_{\alpha=1}^{m} \lambda_{\alpha}$, and by using the upper bounds in [4], we immediately obtain as an upper bound for the Merge policy: $D(\text{Merge}) \leq \frac{\beta_{\text{TSP}}^2 |E| \Lambda}{n^s v^2 (1-\varrho)^2}$. Then, we see that $D(\text{Merge})/D(\text{SQ})$ can be arbitrarily large by choosing $\lambda_m \gg \lambda_{\alpha}$ and $c_m \ll c_{\alpha}$, with $\alpha \in \{1, \ldots, m-1\}$. This behavior is confirmed by experimental results, as depicted in Fig. 3 where we show the experimental ratios of delays between Merge and SQ policy (the ratios are averaged values over 10 simulation runs).

6 Conclusions

In this paper we studied a dynamic multi-vehicle routing problem with multiple classes of demands. For every set of coefficients, we determined a lower bound on the achievable convex combination of the class delays. We presented the Separate Queues (SQ) policy and showed that its deviation from the lower bound depends only on the number of the classes. We believe that there is room for improvement in the lower bound, and thus the SQ policy’s performance may be significantly better than is indicated by its deviation from the current lower bound. Thus, our main thrust of future work will be in trying to raise the lower bound. We are also interested in combining the aspects of multi-class vehicle routing with problems in which demands require teams of vehicles for their service, and in extending our results to the case of non-uniform demand densities (possibly class dependent).
Figure 3: Ratio of experimental delays between Merge policy and SQ policy as a function of λ_2, with $m = 2$, $\lambda_1 = 1$, $c = 0.995$ and $\varrho = 0.9$.

References

Appendix

In this appendix we prove Theorem 4.2. Henceforth, we consider the relation “≤” in \mathbb{R}^m as the product order of m copies of \mathbb{R} (in other words, given two vectors $v, w \in \mathbb{R}^m$, the relation $v \leq w$ is interpreted component-wise).

Proof of Theorem 4.2. Define $q_j := 1 - p_j$ and let $\hat{\lambda}_\alpha$ denote the arrival rate in region $R^{[k]}$. Thus $\hat{\lambda}_\alpha := \lambda_\alpha/n$ for each $\alpha \in \{1, \ldots, m\}$. Let $x(i) := (\bar{N}_{1,i}, \bar{N}_{2,i}, \ldots, \bar{N}_{m,i}) \in \mathbb{R}^m$ and define two matrices

$$A := \begin{bmatrix}
\hat{\lambda}_1 p_1 \bar{s}_1 + q_1 & \hat{\lambda}_1 p_2 \bar{s}_2 & \cdots & \hat{\lambda}_1 p_m \bar{s}_m \\
\hat{\lambda}_2 p_1 \bar{s}_1 & \hat{\lambda}_2 p_2 \bar{s}_2 + q_2 & \cdots & \hat{\lambda}_2 p_m \bar{s}_m \\
\vdots & \ddots & \ddots & \vdots \\
\hat{\lambda}_m p_1 \bar{s}_1 & \hat{\lambda}_m p_2 \bar{s}_2 & \cdots & \hat{\lambda}_m p_m \bar{s}_m + q_m
\end{bmatrix},$$

and

$$B := \frac{\beta_{\text{TSP}} \sqrt{|E|}}{\sqrt{n v}} \begin{bmatrix}
\hat{\lambda}_1 p_1 & \hat{\lambda}_1 p_2 & \cdots & \hat{\lambda}_1 p_m \\
\hat{\lambda}_2 p_1 & \hat{\lambda}_2 p_2 & \cdots & \hat{\lambda}_2 p_m \\
\vdots & \ddots & \ddots & \vdots \\
\hat{\lambda}_m p_1 & \hat{\lambda}_m p_2 & \cdots & \hat{\lambda}_m p_m
\end{bmatrix}.$$
Then Eqs. (11) can be written as

\[x(i + 1) \leq Ax(i) + B \begin{bmatrix} \sqrt{x_{1(i)}} \\ \sqrt{x_{2(i)}} \\ \vdots \\ \sqrt{x_{m(i)}} \end{bmatrix} =: f(x(i)) \] (15)

where \(f : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0} \), and \(x_j(i), j \in \{1, \ldots, m\} \), are the components of vector \(x(i) \). We refer to the discrete system in Eq. (15) as System-X. Next we define two auxiliary systems, System-Y and System-Z. We define System-Y as

\[y(i + 1) = f(y(i)). \] (16)

System-Y is, therefore, equal to System-X, with the exception that we replaced the inequality with an equality.

Pick, now, any \(\varepsilon > 0 \). From Young’s inequality

\[\sqrt{a} \leq \frac{1}{4\varepsilon} + \varepsilon a, \quad \text{for all } a \in \mathbb{R}_{\geq 0}. \] (17)

Hence, for \(i \mapsto y(i) \in \mathbb{R}^m_{\geq 0} \), the Eq. (16) becomes

\[y(i + 1) \leq Ay(i) + B\left(\frac{1}{4\varepsilon}1_m + \varepsilon y(i)\right) \]

\[= \left(A + \varepsilon B \right)y(i) + \frac{1}{4\varepsilon}B1_m. \]

where \(1_m \) is the vector \((1, 1, \ldots, 1)^T \in \mathbb{R}^m \). Next, define System-Z as

\[z(i + 1) = \left(A + \varepsilon B \right)z(i) + \frac{1}{4\varepsilon}B1_m =: g(z(i)). \] (18)

The proof now proceeds as follows. First, we show that if \(x(0) = y(0) = z(0) \), then

\[x(i) \leq y(i) \leq z(i), \quad \text{for all } i \geq 0 \] (19)

Second, we show that the trajectories of System-Z are bounded; this fact, together with Eq. (19), implies that also trajectories of System-Y and System-X are bounded. Third, and last, we will compute \(\limsup_{i \to +\infty} y(i) \); this quantity, together with Eq. (19), will yield the desired result.

Let us consider the first issue. We have \(y(1) = f(y(0)) \) and \(z(1) = g(z(0)) \). Since, by assumption \(z(0) = y(0) \), we have that \(g(z(0)) = g(y(0)) \geq f(y(0)) \), where the last inequality follows from Eq. (17) and by definition of \(f \) and \(g \). Therefore, we get \(y(1) \leq z(1) \). Then, we have \(y(2) = f(y(1)) \) and \(z(2) = g(z(1)) \). Since \(z(1), y(1) \in \mathbb{R}^m_{\geq 0} \), and the elements in matrices \(A \) and \(B \) are all non-negative, then \(y(1) \leq z(1) \) implies \(g(y(1)) \leq g(z(1)) \). Using same arguments as before, we can write
\[z(2) \geq g(y(1)) \geq f(y(1)) = x(2); \] therefore, we get \(y(2) \leq z(2) \). Then, it is immediate by induction that \(y(i) \leq z(i) \) for all \(i \geq 0 \).

Similarly, we have \(x(1) \leq f(x(0)) = f(y(0)) = y(1) \), where we have used the assumption \(x(0) = y(0) \). Then, we get \(x(1) \leq y(1) \). Since \(x(1), y(1) \in \mathbb{R}^{m}_{\geq 0} \), the elements in matrices \(A \) and \(B \) are nonnegative, and by the monotonicity of \(\sqrt{\cdot} \), then \(x(1) \leq y(1) \) implies \(f(x(1)) \leq f(y(1)) \). Therefore, we can write \(x(2) \leq f(x(1)) \leq f(y(1)) = y(2) \); thus, we get \(x(2) \leq y(2) \). Then, it is immediate by induction that \(x(i) \leq y(i) \) for all \(i \geq 0 \), and Eq. (19) holds.

We now turn our attention to the second issue, namely boundedness of trajectories for System-Z (in Eq. (18)). Notice that System-Z is a discrete-time linear system. The eigenvalues of \(A \) are characterized in the following lemma.

Lemma 6.1. The eigenvalues of \(A \) are real and with magnitude strictly less than 1 (i.e., \(A \) is a stable matrix).

Proof. Let \(w \in \mathbb{C}^{m} \) be an eigenvector of \(A \), and \(\mu \in \mathbb{C} \) be the corresponding eigenvalue. Then we have \(Aw = \mu w \). Define \(r := (p_1\bar{s}_1, p_2\bar{s}_2, \ldots, p_m\bar{s}_m) \). Then the \(m \) eigenvalue equations are

\[
\hat{\lambda}_j w \cdot r + q_j w_j = \mu w_j, \quad j \in \{1, \ldots, m\},
\]

where \(w \cdot r \) is the scalar product of vectors \(w \) and \(r \), and \(w_j \) is the \(j \)th component of \(w \).

There are two possible cases. If \(w \cdot r = 0 \), then Eq. (20) becomes \(q_j w_j = \mu w_j \), for all \(j \). Since \(w \neq 0 \), there exists \(j^* \) such that \(w_j^* \neq 0 \); thus, we have \(\mu = q_j^* \). Since \(q_j^* \in \mathbb{R} \) and \(0 < q_j^* < 1 \), we have that \(\mu \) is real and \(|\mu| < 1 \).

Assume, now, that \(w \cdot r \neq 0 \). This implies that \(\mu \neq q_j \) and \(w_j \neq 0 \) for all \(j \), thus we can write for all \(j \)

\[
w_j = \frac{\hat{\lambda}_j}{\mu - q_j} w \cdot r
\]

Therefore

\[
w_j = \frac{\hat{\lambda}_j \mu - q_1}{\hat{\lambda}_1 \mu - q_j} w_1.
\]

Therefore, (21) can be rewritten as

\[
\sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j}{\mu - q_j} = 1.
\]

Eq. (22) implies that the eigenvalues are real. To see this, write \(\mu = a + ib \), where \(i \) is the imaginary unit: then

\[
\sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j}{a + ib - q_j} = \sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j[(a - q_j) - ib]}{(a - q_j)^2 + b^2}
\]
Thus Eq. (22) implies
\[b \sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j}{(a - q_j)^2 + b^2} > 0 \]
that is, \(b = 0 \). Eq. (22) also implies that the eigenvalues (that are real) have magnitude strictly less than 1. Indeed, assume, by contradiction, that \(\mu \geq 1 \), then we would have \(\mu - q_j \geq 1 - q_j > 0 \) (recall that the eigenvalues are real and \(0 < q_j < 1 \)) and we could write
\[\sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j}{\mu - q_j} \leq \sum_{j=1}^{m} \frac{r_j \hat{\lambda}_j}{1 - q_j} = \sum_{j=1}^{m} \bar{s}_j \hat{\lambda}_j = \varrho < 1, \]
and we get a contradiction. Assume, again by contradiction, that \(\mu \leq -1 \), then we would trivially get another contradiction \(\sum_{j=1}^{m} r_j \hat{\lambda}_j / (\mu - q_j) < 0 \), since \(\mu - q_j < 0 \).

Hence, \(A \in \mathbb{R}^{m \times m} \) has eigenvalues strictly inside the unit disk, and since the eigenvalues of a matrix depend continuously on the matrix entries, there exists a sufficiently small \(\varepsilon > 0 \) such that the matrix \(A + \varepsilon B \) has eigenvalues strictly inside the unit disk. Accordingly, each solution \(i \mapsto z(i) \in \mathbb{R}^{m}_{\geq 0} \) of System-Z converges exponentially fast to the unique equilibrium point
\[z^* = (I_m - A - \varepsilon B)^{-1} \frac{1}{4\varepsilon} B 1_m. \]
Combining Eq. (19) with the previous statement, we see that the solutions \(i \mapsto x(i) \) and \(i \mapsto y(i) \) are bounded. Thus
\[\limsup_{i \to +\infty} x(i) \leq \limsup_{i \to +\infty} y(i) < +\infty. \]
Finally, we turn our attention to the third issue, namely the computation of \(y := \limsup_{i \to +\infty} y(i) \).

Taking the \(\limsup \) of the left- and right-hand sides of Eq. (16), and noting that
\[\limsup_{i \to +\infty} \sqrt{y_{\alpha}(i)} = \sqrt{\limsup_{i \to +\infty} y_{\alpha}(i)} \]
for \(\alpha \in \{1, 2, \ldots, m\} \), since \(\sqrt{\cdot} \) is continuous and strictly monotone increasing on \(\mathbb{R}_{>0} \), we obtain that
\[y_{\alpha} = (1 - p_{\alpha}) y_{\alpha} + \hat{\lambda}_{\alpha} m \sum_{j=1}^{m} p_j \left(\frac{\beta_{\text{TSP}} \sqrt{|E|}}{\sqrt{v}} \sqrt{y_j + \bar{s}_j y_j} \right). \]
Rearranging we obtain
\[p_{\alpha} y_{\alpha} = \hat{\lambda}_{\alpha} m \sum_{j=1}^{m} p_j \left(\frac{\beta_{\text{TSP}} \sqrt{|E|}}{\sqrt{v}} \sqrt{y_j + \bar{s}_j y_j} \right). \]
(25)
Dividing $p_\alpha y_\alpha$ by $p_1 y_1$ we obtain

$$y_\alpha = \frac{\hat{\lambda}_\alpha p_1}{\hat{\lambda}_1 p_\alpha} y_1.$$ \hfill (26)

Combining Eqs. (25) and (26), we obtain

$$p_1 y_1 = \rho p_1 y_1 + \frac{\beta_{TSP} \sqrt{|E|}}{\sqrt{nv}} \sqrt{p_1 \hat{\lambda}_1 y_1} \sum_{j=1}^{m} \sqrt{\hat{\lambda}_j p_j}.$$

Thus, recalling that $\hat{\lambda}_\alpha = \lambda_\alpha / n$, we obtain

$$y_\alpha = \frac{\beta_{TSP}^2 |E|}{n^3 v^2 (1 - \rho^2)} \frac{\lambda_\alpha}{p_\alpha} \left(\sum_{j=1}^{m} \sqrt{\hat{\lambda}_j p_j} \right)^2.$$

Noting that from Eq. (24), $\limsup_{i \to +\infty} N_{\alpha,i} \leq y_\alpha$, we obtain the desired result. \qed