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Introduction

The concept of fully autonomous robots able to perform missions in harsh and hazardous

environments is nowadays the Holy Grail of robotics research. Civilian applications of autonomous

robotics are tremendous. Landmines, for example, are one of the biggest problems in many countries

throughout the world; the so-called Ottawa convention, signed at the end of 1997, requires that all

landmines are eliminated before year 2010. Unfortunately, demining is an extremely dangerous task

that consequently requires a long time to completion. On the other hand, if a team of inexpensive

and simple robots is used, safety does not represent a problem and therefore demining operations

can be much faster.

Explorative space missions represent another important application: nowadays it is commonly

accepted that rover autonomy is a fundamental keyword in successful planetary explorations. In

fact, in order to compensate the fact that the robotic platform can be too far to be safely reached

in case of malfunctions or in case of unexpected situations, it is preferable that an extreme self-

reliance and functional autonomy capabilities are present on the rover.

Autonomous robots for hazardous environment exploration could also be helpful in more “practical”

problem like pipe inspection or sewer maintenance.

Unfortunately, autonomous and self-organizing robots aimed at hazardous missions represent a

huge technological challenge. The two fundamental issues to be addressed are:

• rover autonomous locomotion: robot should transverse uneven terrains with large obstacles

without man control;

• team coordination: robots should autonomously self-organize to accomplish the mission.

In this thesis, we deal with both problems: on one hand we study the design of a bio-inspired

autonomous hexapod robot, called GregorI, on the other hand we propose a simple algorithm

1
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to accomplish, in a distributed way, a prototypical problem: complete coverage of hazardous

environments.

As far as robot design is concerned, biology provides a wealth of inspiration: insects are able to

transverse harsh terrains, to climb over obstacles or even to walk upside down. Moreover, essential

aspects in unmanned missions, like reconfigurability of locomotion strategies, navigation capabilities

and robustness, are common features among insects. Thus, several efforts, both from a behavioral

and an architectural viewpoint, have been performed to design insect-like robots [9, 7, 14]. Strongly

believing that a bio-inspired approach can largely benefit the design of an autonomous robot, we

took explicitly inspiration from cockroach experimental observations. Biological results inspired

both the hexapod structure and the control system architecture design. The peculiarity of the

proposed structure is that, in order to replicate at least in part the cockroach extraordinary agility,

each of the three leg pairs has a unique design: front legs and middle legs have 3 degree of freedoms

and a kind of pantograph mechanism aimed at facilitating the climbing obstacle task, while the

rear legs have 2 degrees of freedom and a piston-like design suitable for powerful forward thrusting.

Dynamical simulations prove that, thanks to the careful linear/rotational actuation, GregorI is able

to successfully overcome high obstacles.

The control system architecture has a two-levels hierarchical organization and is based on biological

results discussed in [38] and on the behavior-based control theory. The low level control is based

on a CNN-based Central Pattern Generator (CPG), discussed in details in [16]; the CPG provides

the basic rhythmic signals needed for locomotion. The main focus is on the high level control,

whose purpose is adaptively handling complex tasks like obstacle climbing and target pursuing.

We adopted a behavior-based approach, since behavior-based systems have been praised for their

robustness and simplicity of construction and seem to be a really suitable approach to perform

autonomously exploration task in a unknown environment. We chose to formalize a behavior as

a Motor Map that adaptively maps sensory stimuli in signals that modulate the CPG outputs; in

order to confer the plasticity needed for autonomous systems, we further considered an adaptive

reward function able to learn its structure basing on experience. To the best of our knowledge, it is

the first time that a behavior is formalized with a Motor Map and an adaptive reward is introduced.

Unfortunately, in a hazardous mission a robot can break, thus it is necessary to use swarms
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of autonomous robots. The potential advantages of employing teams of agents are numerous. For

instance, the intrinsic parallelism of a multi-agent system can guarantee better time performance.

Further, a group of robots inherently provides robustness to failures of single agents. A prototypical

problem that could benefit from a multi-agent approach is coverage path planning in hazardous

environments, where the aim is to sweep all points in the target environment facing disturbances

and agent losses.

Multi-agent coverage path planning algorithm raises several challenging issues as coverage

completeness, robustness and coverage redundancy.

Our main concern is to study the feasibility of a coverage algorithm for non-holonomic robots (like

an hexapod) that:

1. does not rely on costly grid maps;

2. provides complete coverage;

3. takes into account only local sensory information, thus avoiding inter-agent communication,

landmark deployment and other possibly costly mechanisms for information exchange.

Our main assumption, necessary to achieve proof of correctness, is that robots can overcome all

obstacles placed in the environment without modifying their desired trajectory.

The key idea is to consider a modified version of the classical cycling pursuit control strategy

for non-holonomic robots, previously extensively studied in [25], where it is shown that system’s

equilibrium formations are generalized regular polygons. In our strategy, instead of pursuing the

leading neighbor along the instantaneous line of sight, each agent pursues its leading neighbor

along the line of sight rotated by an offset angle, function of locally available sensory information.

It is shown that the paths described by the system at equilibrium are Archimede’s spirals able to

provide complete coverage of the target environment. These spiral-like paths appear to be robust

against sensory noise, odometry error and agent loss.

The thesis is articulated into two parts: in chapters 1− 3 the hexapod robot is described, while

in chapters 4 − 5 the distributed path planning algorithm is discussed. In detail, in chapter 1 we

discuss GregorI structure and its biological inspiration; in chapter 2 both the low level and the high

level locomotion control are presented and discussed. In chapter 3 we report simulation results
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that validate the proposed structure and control system design. Chapter 4 provides the statement

of the distributed path planning coverage problem and the mathematical analysis of the proposed

control algorithm. In chapter 5 simulation results show the effectiveness of the proposed algorithm.

Finally we present our conclusion.

The first part of the thesis has been developed at the Electrical, Electronic and Systems

Engineering Department of the University of Catania under the supervision of prof. P. Arena, while

the second part has been developed at the Department of Mechanical and Aerospace Engineering

of the University of California at Los Angeles, USA, under the supervision of prof. E. Frazzoli.

Part of the work presented in this thesis has been published or is going to be published in

[4, 5, 31, 32]. Moreover, the part on the hexapod design is going to be presented at the 56th

International Astronautical Congress 2005, Fukuoka, Japan, under the European Space Agency

Sponsorship.
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Chapter 1

Structure of Blaberus Discoidalis and

Robot Design

Structure and kinematics of cockroach guided the robot structure design in all its aspects, from

leg design to body design to joint kinematics. Therefore, before discussing the proposed robot

structure, we outline some of the most important results coming from cockroach experimental

observations, with particular emphasis on the Blaberus Discoidalis. Then, after a literature review

of previous hexapod robots, we describe in detail the various steps that led to the final robot design,

emphasizing the parallelism with Blaberus Discoidalis.

1.1 Structure and kinematics of Blaberus Discoidalis

Structure and kinematics of Blaberus Discoidalis inspired leg design, body design and leg-body

articulation.

1.1.1 Structure

Most important structural features of Blaberus Discoidalis from an engineering viewpoint are:

• leg structure;

• leg articulation;

• body structure.

5
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Each cockroach leg is divided into several segments. Although the segments are reproduced in

each of the three pairs of legs, their dimensions are very different in the front, middle and rear legs.

The leg segments from the most proximal to the most distal segment are called coxa, trochanter,

femur, tibia and tarsus; the last one is indeed constituted by a series of foot joints.

The complex musculature coupled with complex mechanics confers upon the joint between body

and coxa three degrees of freedom (DOF), much like that of a ball and socket joint. The joints

between the coxa and trochanter, between the trochanter and femur, and between the femur and

tibia are, instead, simple one DOF rotational joints. The joint between the trochanter and femur

makes only a small movement and has often been referred to as fused. Each tarsal joint has several

passive DOF, guaranteeing agile foot placement. Finally, a claw located on the end of the tarsus

can be raised or lowered to engage the substrate during locomotion on slippery surfaces for climbing

[35].

Figure 1.1: Leg structure in Blaberus discoidalis [35].

Although, as stated above, front, middle and rear legs have the same segments, they are different

in lengths, yielding a ratio of front:middle:rear leg lengths of 1:1.2:1.7 [14]. Leg pairs with different

length provide agility and adaptability. Cockroach legs articulate differently with the body, with

the front legs oriented almost vertically at rest and middle and rear legs angled posteriorly of about

30◦ and 50◦ respectively [14]. This configuration confers a sprawled posture able to guarantee a

statically stable posture and thus a high margin of stability [39], [13] . In fact the center of mass

Scuola Superiore di Catania 6
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of the system is always inside the support polygon, obtained connecting all the legs in stance

phase. Finally, body is divided into three articulated segments called prothoracic, mesothoracic

and metathoracic segments. Anyway, dorsal flexion is seldom accomplished [41].

Legs perform different functions [41]:

• Front legs – are mainly use to push the body of the cockroaches over obstacles. They also

play an important role in turning and in decelerating their body.

• Middle legs – act to push the cockroaches forward but also push the body of the cockroaches

over obstacles.

• Rear legs generate the major part of the forward motion. They push directly toward the

mass center and the contact point is far behind to prevent the cockroaches falling on their

back when climbing obstacles.

1.1.2 Kinematics: horizontal walking

Electrophysiological recordings of motor activity show that the joints more involved during

horizontal walking are the CTF joint (coxa-trochanter-femur) and the FT joint (femur-tibia). Both

in the rear legs and in the middle legs CTF and FT joints move in synchrony (Fig. 1.2). Front

legs movements are, instead, unique and more complex, since they are also aimed at exploring the

environment [41], [35].

Figure 1.2: Typical joint angle data from a rear leg of a cockroach [35].

1.1.3 Kinematics: climbing obstacle

Electrophysiological recordings of motor activity show also the strategies adopted by cockroaches to

climb over an obstacle. To overcome an obstacle, animals must elevate their CoM over the barrier;

in general three different strategies can be adopted:

• overcoming the obstacle without any changes of the locomotion gait;

Scuola Superiore di Catania 7
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Figure 1.3: Rear leg movement [35].

• performing a drastic change of the leg movements;

• carrying out slight changes in the locomotion pattern and at the same time making some

postural adjustments.

In [41, 42] an exhaustive set of experimental data referring to kinematic changes associated with

climbing in the Blaberus Discoidalis is reported. Experimental data show that cockroaches do not

deviate from normal running kinematic in surmounting obstacles whose height is smaller than one

reached by front legs during swing trajectory: once one or both front tarsi are naturally placed

on top of the barrier, they push downward, changing the animal’s posture so that the subsequent

movements of all legs drive the Center of Mass (CoM) upward; therefore for small barriers there is

not an anticipatory change in running strategy. A remarkable stability of the structure, guaranteed

by a sprawled posture, is fundamental to perform this strategy. On the other hand, several different

strategies have been observed when an hexapod insect faces an high obstacle whose top is beyond

the height of front legs during swing phase [41]:

• Elevate – Simultaneous extension of all the legs with consequent elevation of the CoM.

• Elevator Reflex – Increase of leg elevation during the swing phase when the body is still in

the horizontal position.

• Head Butt – The collision between the head of the insect and the obstacle increases the

elevation of the body.

• Jumping – Jump on the top of the obstacle.

Scuola Superiore di Catania 8
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• Rear Up – An anticipatory postural adjustment occurs when an obstacle is detected. The

pitch angle is increased before the collision and the insect is able to move the frontal legs on

the step.

The Rear Up strategy is the most common strategy performed by cockroaches, that normally

accomplish an anticipatory attitude change tilting the body upward. The animal performs this

postural adjustment before front legs are placed on top of the barrier, principally by rotating the

middle legs in order to bring them perpendicular to the ground. In the subsequent phase, the

animal’s CoM is raised upward with little or no further change in body-substrate angle.

Thus, climbing high barriers is accomplished in two stages:

• rearing stage: cockroaches change the body-substrate angle before any leg reaches the barrier;

• rising stage: animal’s CoM is raised upward.

The main point is that climbing does not require radical departures from running control

mechanism, but possibly just an anticipatory rearing stage.

Since reorientation of middle legs in rearing stage is initiated only after the height of the obstacle

has been evaluated, postural changes appear to be directed, at least in part, by higher centers, as

supraesophageal ganglia, driven by sensory feedback (presumably by visual feedback and antennae)

[41].

Figure 1.4: Postural adjustment in cockroaches [35].

1.2 Previous hexapod design

In this section, we review some literature results regarding hexapod robot design, analyzing in

detail the adopted criteria for leg design and actuator selection.

Scuola Superiore di Catania 9
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Figure 1.5: Sprawlita robot [13].

1.2.1 Leg design

A fundamental issue in leg design is the number of degrees of freedom that each leg should possess:

many DOF imply better agility and flexibility, but a more difficult control. An example of robot

with just one DOF per leg is Rhex [1]. Robot structure consists of a rigid body with six equal

compliant legs, each possessing only one independently actuated revolute degree of freedom. The

attachment points of the legs as well as the joint orientations are all fixed relative to the body.

Basically, spoked wheel concept is exploited. This very simple design guarantees surprisingly good

locomotion properties, but lacks of the agility needed for more complex tasks.

Several hexapod robots reported in literature have legs with 2 DOF; one example is Sprawlita [13].

Sprawlita has 6 identical legs with 2 degrees of freedom each. The primary thrusting action in

Sprawlita is performed by a prismatic actuator, implemented by a pneumatic piston. This piston

is attached to the body through a compliant rotary joint at the hip. This unactuated rotary joint

is based on studies of the cockroachs compliant trochanter-femur joint, which, as stated above, is

largely passive. In the prototype, the compliant hip joint allows rotation mainly in the sagittal

plane. These active-prismatic, passive-rotary legs are sprawled in the sagittal plane to provide

specialized leg function (although all legs are indeed identical). Servo motors rotate the base of

the hip with respect to the body, thus setting the nominal, or equilibrium, angle about which the

leg will rotate. By changing this angle, the function that the leg performs is affected; e.g. aiming

the thrusting action towards the back, robot accelerates, on the contrary towards the front robot

decelerates. Sprawlita is fast and able to overcome small obstacles, but can not perform more
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Figure 1.6: Pantograph mechanism of Boadicea robot leg [44].

Figure 1.7: UIUC Robot [14].

complex task like climbing high obstacle due to its structure and control simplicity.

Another interesting example of two DOF robot is Boadicea [44]; its legs use a 2 dimensional

pantograph mechanism that produces linear foot motions, with the advantage of simpler software

control. A second advantage of the pantograph mechanism is that it provides a large leg workspace

with a relatively simple and compact mechanism. Like an insect, Boadicea has different front,

middle, and rear legs.

A very interesting example of robot with 3 DOF per leg is UIUC, discussed in [14]. Legs are

divided into three segments, corresponding to the three main segments of insect legs: coxa, femur,

and tibia. The coxa articulates with the body, the femur with the coxa, and the tibia with the

femur. Each of the joints between leg segments and between the coxa and the body is a simple

hinge joint. The length ratio for the robots legs is 1 : 1.1 : 1.5. The coxae of the front legs are

attached vertically, while the middle leg coxae are attached at an angle of about 75◦ from horizontal.

Finally, rear legs are attached at an angle of about 30◦. This structure, taking into account the

most important features of a cockroach, confers to the robot a high stability and avoids a useless
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Architectures for Autonomous Robots: Adaptive Locomotion and Distributed Covering

complexity.

An hexapod robot with kinematics remarkably similar to those of the Blaberus Discoidalis is Robot

V, discussed in [19] and shown in Fig. 1.8. Rear legs have three DOF, middle legs have four DOF

and front legs have five DOF. Leg design attempts to capture in detail all cockroach leg faetures,

but the resulting robot is more useful from a theoretical than from a practical viewpoint due to its

complexity.

(a) Overall structure (b) Leg - Detail

Figure 1.8: Robot V.

1.2.2 Actuators

Actuator selection represents a fundamental issue in robot design, since the shape, size, weight and

strength of an actuator and its power source provides the greatest constraint on robots potential

abilities. Biological organisms have a great advantage over mechanical systems in that muscles,

the biological actuators, have a favorable power-to-weight ratio and require low levels of activation

energy, compared to any actuator.

The most frequently used actuators are electric motors and pneumatic/hydraulic cylinders. Electric

motors are the most commonly used actuators since they are readily available in a wide range of

sizes and are very easy to control and integrate in a hardware scheme. However, electric motors

have some disadvantages: they can provide just a rotational motion and, most importantly, they

have a low power-to-weight ratio. On the contrary, pneumatic and hydraulic actuators have a high

power-to-weight ratio and produce linear motion. Unfortunately, pneumatic/hydraulic cylinders

are better suited to “bang-bang” operations, need a complex mechanics and require a sophisticated
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control; furthermore, pneumatic actuators need an expensive and heavy compressor. Recently,

many new types of actuators are being introduced like Shape Memory Alloys, Piezoelectric Motors

and Electroactive Polymers. In [33] the feasibility of a worm-like robot actuated by IPMC is

discussed.

Referring to previous robots, Rhex is electrically actuated, Sprawlita, Boadicea and UIUC are

pneumatically actuated, Robot V is actuated by means of McKibben artificial muscles.

1.3 Robot design

Biological principles and previous hexapod prototypes guided the structure design phase. Our main

concern was to replicate the cockroach features that are mainly responsible of its extreme agility,

adaptability and stability. We also took into careful consideration fundamental engineering issues

like actuator selection.

In this section, we outline the various steps that led to the final robot structure, from the leg design

to the overall structure.

Before the structure design is started, it is necessary to specify what GregorI is intended to do,

since the final task deeply affect the overall design: e.g., as far as leg design is concerned, if the

focus is just on horizontal walking, two DOF per leg are enough.

Final task of GregorI is efficiently walking on uneven terrains and overcoming obstacles with height

at least equal to robot mass center height.

The dynamic robot model was built in a C++ environment basing on DynaMechs libraries [27].

Dynamical simulation of the model allowed us to asses structure and control suitability, as it will

be discussed in chapter 3.

1.3.1 Leg design

Let us briefly recapitulate the lesson learnt form the previous sections:

• Leg function – front legs are mainly used to push the body upward, to explore and to

prevent falling on the front part; middle legs act to push the cockroaches forward but also

push the body of the cockroaches over obstacles; finally, rear legs generate the major part of
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the forward motion and confer to the overall structure high stability.

• Sprawled posture – a sprawled posture is essential to guarantee a statically stable posture.

• DOF – many DOF guarantee high flexibility but at the cost of a complex control. We can

allege that an agile hexapod robot should possess 3 − 5 DOF in front and medium legs and

2 − 3 DOF in rear legs.

• Mechanics – center of mass position has to be placed carefully.

• Actuators – just referring to conventional robot actuators, we have

Pneumatic actuators Advantages: powerful, able to deliver high forces for linear motion

actuation. Disadvantages: “bang-bang” actuation, complex control, need of a

compressor.

Electrical motors Advantages: ease of control, low payload for power supply.

Disadvantages: unable to deliver high torques, low stiffness.

Clearly, all these issues are intrinsically interlaced.

Front legs

Front legs have to provide enough flexibility to guarantee an efficient obstacle approach and an

effective postural control. Toward this end, front legs are divided into three segments (analog to

coxa, femur and tibia), articulated through 3 DOF rotational joints (α, β and γ joints in Fig.

1.9). In order to facilitate climbing obstacle task, we chose a segment assembly that resembles

the pantograph mechanism; in Fig. 1.9, rotation axes are depicted. These rotational joints clearly

require a precise control, but they do not need high actuation torques, therefore they can be

actuated by conventional electrical motors.

As far as mechanical details are concerned, all segments are simply modelled as cylinders whose

weights are reported in Tab. 1.1 together with the physical dimensions (radius and height

respectively). The apparently ridiculous coxa height is due to the fact that we modelled the coxa

segment just as a motor placed on the body structure. As far as the dynamics is concerned, joint
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Table 1.1: Front Coxa, Femur and Tibia properties

Segment Weight g Dimensions cm

Coxa 60 0.5 × 0.1

Femur 60 0.5 × 3

Tibia 60 0.5 × 5

Figure 1.9: Front leg structure (not in scale).

α allows leg forward movement, joint β allows raising movement and, finally, joint γ guarantees a

roll and pitch angles control. The γ joint plays a fundamental role in the attitude control, but is

not needed for basic locomotion; therefore, as far as basic locomotion is concerned, γ joint is kept

at the constant value −1.2 rad.

Middle Legs

Basically, middle leg design is identical to front leg design as far as number of segments, physical

dimensions, joint type and actuation are concerned; nevertheless, middle legs have to provide part

of the forward thrust, so a different segment assembly is needed; in particular, referring to Fig.

1.10, the α axis is modified. As far as the dynamics is concerned, similarly to front legs, joint α

allows leg forward movement, joint β allows raising movement and joint γ guarantees a roll and

pitch angles control. For basic locomotion the γ joint is kept at the constant value −1.2 rad.
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Figure 1.10: Middle leg structure (not in scale).

Rear Legs

In the rear leg design we bring the most important innovation as far as the robot structure is

concerned. Since main function of rear legs is powerful thrust, we considered a robust and compact

design that allows the use of a “bang-bang” pneumatic actuation.

Rear legs are divided into two segments (coxa and tibia respectively); coxa segment is articulated

with the body with a rotational joint (α joint), while the coxa-tibia joint is prismatic (d joint), as

shown in Fig. 1.11. Therefore, rear legs possess a peculiar hybrid linear/rotational actuation that

could allow the use of a combination of electrical and pneumatic actuators.

Rear legs are considerably longer in order to facilitate the climbing obstacle task. Both segments

are simply modelled as cylinders whose weights and dimensions are reported in Tab. 1.2. As far as

Table 1.2: Rear Coxa and Tibia properties

Segment Weight g Dimensions cm

Coxa 60 0.5 × 0.1

Femur 60 0.5 × 12

the dynamics is concerned, joint α allows leg forward movement, joint d allows raising movement.
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Figure 1.11: Rear leg structure (not in scale).

1.3.2 Body

Body is modelled by just one segment with parallelepiped shape; we also considered the presence of

a payload, similarly modelled as a parallelepiped. Weights and dimensions are reported in Tab. 1.3

and Tab. 1.4. Position of the mass center is critical for good performance, as observed in several

Table 1.3: Body properties

Mass g Length cm Width cm Height cm

420 20 8 2

Table 1.4: Payload properties

Mass g Length cm Width cm Height cm

300 5 5 1

simulations. Therefore, we studied in detail payload placement through a trial and error process.

Assuming a body reference system with the z-axis aligned along the body longitudinal axis and the

origin located at the body mass center, we finally placed the payload mass center at coordinates, in

the body reference system, (0, 0,−3.5). Simulation proved that with this arrangement speed and

stability are enhanced. In Fig. 1.12 the body is shown (dark part represents the payload).

1.3.3 Overall structure

In order to confer a sprawled posture with a pitch angle of ϕ ' 15◦, legs articulate differently

with the body; articulation angles between leg and body are shown in Tab. 1.5. The sprawl, or
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Figure 1.12: Body structure.

Table 1.5: Leg angles from horizontal at rest

Front legs 90◦

Middle legs 60◦

Rear legs 20◦

inclination, angle for each leg is limited by foot traction: for larger animals (or robots), it becomes

progressively harder to sustain the necessary tangential forces.

The overall structure is shown in Fig.1.13, where the sprawled posture, the peculiar leg articulation

and the payload placement are evident. Overall, robot length is 20 cm and robot CoM height is

(a) Overall structure: side view (b) Overall structure: front view

Figure 1.13: Overall structure.

3.5 cm.
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Chapter 2

Locomotion control

As for the structure design, biological results guided the design of the control system architecture.

The proposed locomotion control is divided into two levels; the low level control provides, according

to the Central Pattern Generator theory, the basic rhythmic movements needed for locomotion,

while the adaptive high level control, modulating the rhythmic signals, is responsible for complex

task execution, like pursuing a target.

The main focus in this thesis is on the high level control, based on the behavioral approach. We

introduce a novel formalization of “behavior” based on the Motor Map theory and, in order to

confer plasticity to the whole system, we study the feasibility of Motor Maps with adaptive reward

functions.

Before outlining the proposed control system architecture, we discuss some essential biological

results and their implication in our work.

2.1 Control system architecture: biological inspiration

In this section we discuss in some detail the Central Pattern Generator theory, that led to the

design of the low level control, and the bio-inspired Motor Map theory at the base of the high level

control.
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2.1.1 CPG and locomotion gaits

Most insects exhibit a locomotion hierarchical control and use a modular organization of the control

elements. The activation of the appropriate muscles in the legs and their coordination take place

locally by means of groups of neurons functionally organized in modules called Central Pattern

Generators (CPG). Walking insects adopt several distinct periodic patterns of leg movements,

called gaits, which are believed due to patterns of neural activity within the CPG [37]. The output

signals of the CPG control directly the effector organs. The CPG receives stimuli from the high

level control layers that monitor overall locomotion and take decisions about the high level task for

example by changing the locomotion gait. Three different gaits are typically shown by hexapods

during walking: fast, medium and slow gait. They are adopted under different conditions to

perform high speed locomotion (fast gait) or extremely stable and secure movements (slow gait).

The characteristics of these locomotion gaits can be rigorously defined through the concepts of

cycle time, duty factor, and leg phases. The cycle time is the time required for a leg to complete a

locomotion cycle. The duty factor dfi is the time fraction of a cycle time in which the leg i is in

the power stroke phase. The leg phase ϕi is the fraction of a cycle period by which the beginning

of the return stroke of leg i lags behind the beginning of the return stroke of the left front leg (L1),

chosen as a reference. Basing on these quantities, a precise gait classification is shown in Tab. 2.1:

Table 2.1: Classification of fast, medium and slow gaits

Fast ϕL2 = 1
2

ϕL3 = 0 ϕR1 = 1
2

ϕR2 = 0 ϕR3 = 1
2

dfi = 1/2

Medium ϕL2 = 3
4

ϕL3 = 2
4

ϕR1 = 2
4

ϕR2 = 1
4

ϕR3 = 0 dfi = 5/8

Slow ϕL2 = 4
6

ϕL3 = 2
6

ϕR1 = 3
6

ϕR2 = 1
6

ϕR3 = 5
6

dfi = 9/12

2.1.2 Brain topology-preserving maps and Motor Maps

The importance of topology-preserving maps in the brain relies on both the representation of

sensory input signals and the ability to perform an action in response to a given stimulus. Neurons

in the brain are organized in different local assemblies which are able to perform a given task such as

sending appropriate signals to muscles. These neural assemblies constitute two-dimensional layers

in which the locations of the excitation are mapped into movements.
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In this thesis, to address the stimulus-action relation issue we considered the Motor Map

paradigm. Motor Maps are artificial neural networks based, like neural assemblies, on a two-

dimensional neural layer, a set of synaptic weights that determine the correspondence between

input signals and neurons and a set of output values [37].

The learning algorithm is the key to obtain a correct mapping between stimuli and actions. This

is achieved by considering an extension of the winner-take-all algorithm; at each learning step,

when a pattern is given as input, the winner neuron is identified: this is the neuron that best

matches the input pattern. Then, a neighborhood of the winner neuron is considered and an

update involving both the input and output weights for neurons belonging to this neighborhood is

performed according to the reward function. The reward function, measuring how well the control

is being performed, plays the central role in Motor Maps learning. Weight updating takes place

only if the corresponding control action leads to an improvement in the system being controlled,

i.e. an increase in the reward function; it should be point out that no a priori information, except

the form of the reward function, is taken into account during the learning process.

Basically, the learning process is articulated as follows:

• Step 1 – Determine the lattice site s (winner neuron) whose input weight vector best matches

the input v(t) according to some distance function ψ(·)

• Step 2 – Perform the control action using as output value:

ζ(t) = wwinner,out + asλ (2.1)

wwinner,out is the output value of the winner neuron, as is a parameter determining the mean

value of the search step for the neuron and λ is a Gaussian random variable with zero mean

aimed at guaranteeing a random search for all possible solutions.

• Step 3 – Compute the actual increase ∆R in the reward function; if ∆R exceeds the mean

increase bs of the reward function at lattice site s update the input weights wi,in and the

output weights wi,out of neuron s and its neighboring neurons as follows:

wi,in(t+ ∆t) = wi,in(t) + ηξ (v(t) − wi,in)

wi,out(t+ ∆t) = wi,out(t) + ηξ (ζ(t) − wi,out)
(2.2)
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where η is the learning rate, ξ(·) is a neighborhood function and the index i spans through

the neighbors of the winner neuron s.

• Step 4 – Update the mean increase in the reward function:

bnew
s = bolds + γ

(

∆R− bolds

)

(2.3)

where γ is the learning rate; update ai of neuron s and its neighboring neurons:

anew
i = aold

i + ηaξa

(

a− aold
i

)

(2.4)

where ηa is the learning rate, ξa is the neighborhood function, a is a threshold value and the

index i spans, again, through the neighbors of the winner neuron s.

• Step 5 – Repeat steps 1) - 4). If a = 0 the learning phase stops when the weights converge.

2.2 Control system architecture

Most of researches on locomotion control in insects reveal the presence of a hierarchical organized

neural system [38]. Therefore, following a bio-inspired approach, most of the proposed control

schemes for legged robots use a hierarchical organization [8].

Accordingly, we subdivided the locomotion control into two levels: a low level control implementing

a Central Pattern Generator and an high level control implementing basic behaviors. In this section

we will discuss in detail both the low level and the high level control.

2.2.1 CNN-CPG and leg dynamics

The basic units of the adopted artificial CPG are nonlinear oscillators coupled together to form a

network able to generate a pattern of synchronization that is used to coordinate the robot actuators.

The dynamics of each oscillator can be efficiently exploited to control the leg kinematics of an insect-

like hexapod robot by carefully mapping oscillator limit cycles in the limit cycles performed by legs

in the joint space.

Cellular Nonlinear Network paradigm, introduced in [12], provides a framework for the

implementation of these nonlinear oscillators: each oscillator is simply viewed as a cell of a CNN.
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This technique has been used to control the locomotion of several different bio-inspired robotic

structures: hexapods, octopods and lamprey-like robots [16, 3]. One fundamental advantage of

CNN implementation is that a direct VLSI realization of the control system is possible: a chip for

locomotion control implemented by a CNN-based CPG is introduced in [6]. Further advantages are

ease of implementation, flexibility and modularity, allowing an arbitrarily large number of actuators

to be controlled.

The following equations describe the nonlinear oscillator (CNN cell) acting as a neuron of the

artificial CPG:






ẋ1 = k(−x1 + (1 + µ)y1 − sy2 + i1 +
∑

s I1,s)

ẋ2 = k(−x2 + sy1 + (1 + µ)y2 + i2 +
∑

s I2,s)
(2.5)

where yi = 1
2
(|xi + 1| − |xi − 1|) with i = 1, 2. The terms

∑

s I1,s and
∑

s I2,s represent the sum

of all the synaptic inputs coming from the other neurons, i.e. represent the interconnection with

the other neurons. For the choice of the parameters given in Tab. 2.2, system (2.5) admits a

periodic solution with slow-fast dynamics (in particular the outputs y1 and y2 perform a unitary

and square-shaped limit cycle): these regular oscillations provide the rhythmic movements for the

robot actuators.

Table 2.2: CNN Parameters

µ s i1 i2 k

0.5 1.2 -0.3 0.3 10
3

To coordinate the movements it is necessary to properly synchronize the CPG neurons. This

can be done by establishing suitable connections among the nonlinear oscillators, as discussed in

[2].

As stated above, legs perform in the joint space a limit cycle, therefore it is natural to map the

dynamics of the neuron into leg dynamics through suitable transformation functions. In [2] this

approach is applied to a robot equipped with identical legs based on a pantograph mechanism.
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GregorI actuation is more complex, since each leg has a unique design; anyway it is still possible

to adopt a CNN-CPG with identical cells, basing on the following considerations. As far as basic

locomotion is concerned, we can just actuate the α and β joints in front and middle legs and α and

d joints in rear legs, since the γ joint actuation is needed just for postural adjustments. The key

point is that these joints play an analogous role during locomotion (forward movement and raising

respectively) and, therefore, perform a similar limit cycle in the joint space.

Thus, we can still consider, through ad hoc transformations, a mapping between CNN cell limit

cycles and leg dynamics limit cycles.

In detail, the CPG is composed by six neurons, each one controlling through its two outputs

y1
CPG and y2

CPG a leg (the α and β joints in front and middle legs and α and d joints in rear

legs). The CNN outputs do not directly control the actuators; they instead undergo a two stages

transformation in order to fit the peculiar leg design.

In the first stage, the identical and unitary limit cycles performed by CNN cells are mapped

through the maps Zfront, Zmiddle and Zrear into three different unitary limit cycles. These

transformations are graphically shown in Fig. 2.1. After this stage, the following new outputs

for front, middle and rear legs are obtained:

ζfront
i = Zfront

(

yfront
i

)

(2.6a)

ζmiddle
i = Zmiddle

(

ymiddle
i

)

(2.6b)

ζrear
i = Zrear (yrear

i ) (2.6c)

In the second stage the new outputs are differently scaled and biased and the suitable actuation
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Figure 2.1: CPG signals transformation.

signals are obtained:

αfront = afrontζ
front
2 (2.7a)

βfront = bfrontζ
front
1 (2.7b)

αmiddle = amiddleζ
middle
2 (2.7c)

βmiddle = bmiddleζ
middle
1 (2.7d)

αrear = λ+ arearζ
rear
2 (2.7e)

drear = brearζ
rear
1 (2.7f)

Synchronization is achieved through suitable connections among the neurons depending on the

adopted gait, as discussed in [2]. Actuation values are shown in Tab. 2.3

Table 2.3: Actuation parameters

afront bfront amiddle bmiddle λ arear brear

0.6 rad 0.9 rad 0.4 rad 0.7 rad 0 rad 0.2 rad 6 cm

2.2.2 High level control

High level control has to deal with complex tasks like climbing obstacles or looking for a target.

There are four basic classes of high level control for autonomous mobile robots, that can be briefly
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summarized as follows:

• Reactive control – Don’t think, act.

• Deliberative control – Think hard, then act.

• Hybrid control – Think and act independently, in parallel.

• Behavior-based control – Think the way you act.

Reactive control tightly couples sensory inputs and effector outputs, to allow the robot to quickly

respond to changing and unstructured environments, according to a biological “stimulus-response”

scheme. In deliberative control, the robot uses all of the available sensory information and all of the

internally stored knowledge to reason about what actions to take, where reasoning is typically in the

form of a planning algorithm. Hybrid control combines the real-time response of reactivity with the

rationality and optimality of deliberation. As a result, the control system contains two different

components, the reactive and the deliberative ones, which must interact in order to produce a

coherent output. Finally, behavior based systems are based on a representational substrate, the

behaviors, which are observable patterns of activity emerging from interactions between the robot

and its environment. Like hybrid systems, behavior based systems may have different layers, but

the layers do not differ drastically in terms of time-scale and representation used [26].

Behavior-based systems have been praised for their robustness and simplicity of construction [28]

and seem to be a really suitable approach to perform autonomously exploration task in a unknown

environment. Therefore, in our control scheme we have adopted a behavior-based approach.

Basically, behavior-based systems are composed of a collection of “behavior producing” modules

that map environment states into low-level actions, and a coordination mechanism that decides,

basing on the state of the environment, which behavior has to be executed. Some learning

algorithms have been proposed both for the behavior learning task and the coordination task.

However, the task of programming in each individual behavior remains the burden of a human

designer since it requires a deep knowledge of the interactions between a particular robot and its

application to the environment, typically not available if an exploration mission is considered [28].
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In this thesis, we focus the attention on behavior formalization, since it plays the crucial role

to achieve an adaptive control scheme. On the contrary, the behavior coordination issue exceeds

the objectives of this work.

2.2.3 Behavior formalization

Different ways have been proposed to implement a behavior, like stimulus-response diagrams,

mathematical functional and finite state machines. Basically, a behavior is such any mapping

from possible stimuli to possible responses. The difference with a reactive control is that behaviors

do not require a tight coupling between stimuli and actions in the form of a look up table.

Since an adaptive mapping between stimuli and actions is needed, we chose to formalize a

behavior as a Motor Map. For example, the behavior “Avoiding obstacle” is translated in a Motor

Map whose input is the obstacle distance and whose outputs are the motor commands. In this

way it is possible to learn a behavior through the classical Motor Map learning. Motor Map

Behaviors (MMB) are thus adaptive and self organizing. On the other hand, if the robot has to

explore dynamic, hazardous and unknown environments, the definition of the Motor Map reward

function could represent a challenging task. Let us consider, for example, the “Pursuing target”

behavior and let us suppose that the robot measures the intensity of two different chemicals:

sensor performance could be not known in advance for the target environment; moreover, in case of

sensor malfunctioning, the reward function could take into account a wrong signal with detrimental

consequences for the behavior execution. As a consequence, the need of an adaptive reward arises.

We therefore introduce a learning system for the reward function of a MMB. To the best of our

knowledge, it is the first time that an adaptive reward is considered. Aim of the adaptive reward

is to select the most significant sensory inputs and to combine them in the best way. The most

important challenge for this approach, as it will be discussed in the next session, is to keep small

the search space.
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2.2.4 Reinforcement learning for MMB reward: overview

For MMB reward learning we exploit the classical reinforcement learning theory, that requires just

an external feedback.

Reinforcement learning is usually formulated mathematically as an optimization problem with

the objective of finding an action, in our case a reward function, that is optimal in some well-defined

way. Optimality objectives provide a useful categorization of reinforcement learning into three

basic types, in order of increasing complexity: non-associative, associative, and sequential. Non-

associative reinforcement learning involves determining which of a set of actions is best in bringing

about a satisfactory state of affairs. In associative reinforcement learning, different actions are best

in different situations. The objective is to form an optimal associative mapping between a set of

stimuli and the actions having the best immediate consequences when executed in the situations

signaled by those stimuli (by the way, Motor Maps belong to this type). Sequential reinforcement

learning retains the objective of forming an optimal associative mapping but is concerned with more

complex problems in which the relevant consequences of an action are not available immediately

after the action is taken [30].

The MMB reward learning can be achieved just with a non-associative reinforcement learning,

since the reward function form does not depend on the the particular learning example, i.e. it does

not make any difference if for the MMB reward learning we consider, referring for example to the

“Climbing obstacle” behavior, an obstacle with height x instead of an obstacle with height x+∆x.

Fig. 2.2 shows the basic components of a non-associative reinforcement learning. The learning

Figure 2.2: Non-associative reinforcement learning [30].
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system’s actions influence the behavior of some process, which might also be influenced by random

or unknown factors (labelled “disturbances” in Fig. 2.2). A critic sends the learning system a

reinforcement signal whose value at any time is a measure of the “goodness” of the current process

behavior. Using this information, the learning system updates its action-generation rule, generates

another action, and the process repeats [30]. In our framework, the action is the reward function

form and the signal critic is the evaluation of behavior execution.

Unfortunately, before a specific reward function form can be tested, the underlined Motor Map has

to be trained. Thus, at each MMB reward learning step, the learning system has to:

• select a reward function form;

• train the Motor Map with the selected reward function;

• evaluate the critic signal;

• update reward-generation rule.

We added to the classical non-associative learning algorithm the further step represented by Motor

Map training, necessary to test a selected reward form. At first glance, Motor Map training

represents a prohibitive obstacle, since it makes MMB reward learning excessively long. Luckily,

it is enough to train the Motor Map just in one input configuration; in fact, coherently with the

fact that a non associative learning is used, reward function form can be tested referring just to a

particular learning example.

2.2.5 Reinforcement learning for MMB reward: algorithm

Let us consider a behavior p 1; to this behavior we associate a set S of basic reward units rj , basing

on some guidelines discussed later. The S set induces, according to the exclusivity rule described

below, a general reward function:

R =
N

∑

j

−αjr
2
j (2.8)

1For sake of clarity, henceforth we will suppress the index p.
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where N is the total number of basic units and αj is a binary weight (i.e. α can take values 0 or

1).

Eq. 2.8 represents a family of reward functions. A particular reward function is obtained by

setting αj weights to the values 0 or 1; we will refer to a vector like (1, 0, 1, 1 . . . 0) as a reward

instantiation k and we will denote it with ᾱk. The problem is how to determine the optimal reward

instantiation, i.e. the reward the best fits the environment.

Let us now associate to a reward instantiation k a success probability dk: dk is the probability

that the execution of behavior p succeeds, given that the controlling Motor Map with the reward

function induced by ᾱk has been trained and used. Each dk can be any number between 0 and 1 (the

dks do not have to sum to one), and the learning system has no initial knowledge of these values.

The learning system’s objective is to asymptotically maximize the probability that a behavior is

successfully performed, which is accomplished when it is always used the reward function induced

by the instantiation ᾱh such that dh = max(dk|k = 1, . . . ,M), where M is the total number of

instantiations.

Suppose now that, on each trial, the learning system selects a reward instantiation ᾱk from the

set of reward instantiations R according to a probability vector (p1(t), . . . , pM (t)), where pk(t) =

Pr(ᾱ(t) = ᾱk(t)), i.e. the probability that at trial t the actual reward instantiation is the kth one.

The proposed learning algorithm performs the following linear reward-penalty (LR−P ) method

[30]: if instantiation k is chosen on trial t and the critics feedback is “success”, then pk(t) is

increased and the probabilities of the other reward instantiations are decreased; whereas if the critic

indicates “failure”, then pk(t) is decreased and the probabilities of the other reward instantiations

are appropriately adjusted.

In detail, if ᾱ(t) = ᾱk(t) and, after Motor Map training, the critic says “success”, then

pk(t+ 1) = pk(t) + β(1 − pk(t))

pl(t+ 1) = (1 − β)pl(t), l 6= k
(2.9)
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If ᾱ(t) = ᾱk(t) and, after Motor Map training, the critic says “failure”, then

pk(t+ 1) = (1 − γ)pk(t)

pl(t+ 1) =
γ

M − 1
+ (1 − γ)pl(t), l 6= k

(2.10)

where 0 < β < 1 and 0 ≤ γ < 1.

In this way, after a transient, the most suitable reward instantiations (i.e. the reward

instantiations with the highest dk) are detected.

2.2.6 S set and R set

If we assume that the robot does not create new sensors, all sensory information available to the

robot are known a priori ; what is unknown and has to be learnt is how to combine all sensory

inputs. Therefore the definition of the basic reward units is indeed simple and can be made in the

designing phase as follows.

Firstly, we have to associate to a behavior just the sensory information on which a behavior

could indeed rely; e.g, it does not make sense to consider for the “Climbing obstacles” behavior a

smell information. Once a proper set of sensory information is formed, we have to build the basic

reward units.

Toward this end, sensory information can be divided into four types:

• U1 – proprioceptive information with exteroceptive analogue, henceforth denoted π+, e.g

tarsus height and obstacle height.

• U2 –proprioceptive information without exteroceptive analogue, henceforth denoted π−, e.g

Euler angles.

• U3 –exteroceptive information with proprioceptive analogue, henceforth denoted η+, e.g,

trivially, obstacle height and tarsus height.

• U4 –exteroceptive information without proprioceptive analogue, henceforth denoted η−, e.g

smell.
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This subdivision is correct, since, trivially,
⋃4

i=1 Ui = U and Ui ∩ Uj = 0 if i 6= j.

According to this subdivision, possible types of basic reward units are:

• a) – combination between analog proprioceptive and exteroceptive information: ri = fi(π+ −

π−) (and its inverse), e.g ri = htarsus − hobs where htarsus is the tarsus height and hobs is the

obstacle height;

• b) – comparison between a space-varying or time-varying information I and its maximal (or

minimal) value, if it exists: ri = fi(I−Imax) (and its inverse), e.g. ri = htarsus−hmax, where

hmax is the maximum tarsus height;

• c) – maximization (or minimization) of a space-varying or time-varying information I: ri =

fi(I) (and its inverse), e.g. ri = 1/I;

• d) – tracking of a reference Iref : ri = fi(I − Iref ), e.g. ri = v − vref , where v is robot speed

and vref is a speed reference.

Clearly, S set definition is somewhat arbitrary; the key point is that the designer, basing on the fact

that he knows which are the available information (the signals coming from the sensors placed on

the robot), can easily decide generality and potentiality of the reward family R; the reward learning

system will find during the mission the best choice for the unknown environment. Therefore, in

this design stage, the designer has to accomplish two competing tasks:

• placing all his available a priori information in order to minimize the search space;

• guaranteeing behavior adaptability.

Once S set is formed, it is straightforward to form the R set. One rule to follow, in order to

avoid ridiculous rewards, is the obvious exclusivity rule: in a reward instantiation the direct form

and inverse form of a basic reward unit can not be present at the same time.

2.2.7 Remarks

Uncertainty

Uncertainty plays a key role in non-associative reinforcement learning. For example, if the critic

in the example above evaluated actions deterministically (i.e., dk = 1 or 0 for each k), then the

problem would be a much simpler optimization problem.
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Critic

The critic is an abstract entity that evaluates the learning systems actions. The critic does not

need to have direct access to the actions or have any knowledge about the interior workings of the

process influenced by those actions. The critic has just to measure the “goodness” of the current

behavior according to some criteria; clearly, critic criteria depend on the specific robot behavior

currently under learning. In the next chapter, critic criteria for different behavior learning examples

will be discussed.

Memory

The vector probability represents a sort of memory of past actions; this, in turn, it is fundamental

as far as the adaptability of the approach is concerned. If, in fact, due to sensory malfunctioning

or different environmental conditions the best reward function changes structure, the new learning

phase is greatly facilitated by previous trials.
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Chapter 3

Simulation results

In this chapter we study the effectiveness of the proposed structure and control architecture. In

order to asses the suitability of the structure, we firstly present simulation results for horizontal

walking and obstacle climbing, obtained by just exploiting in the control system architecture the

CPG level. Then we test the overall control system with the learning of some classical behaviors.

3.1 Simulation environment

The dynamic robot model was tested in a C++ environment based on DynaMechs library [27].

The library efficiently simulates the dynamics of robotic articulations and provides a comfortable

framework to translate in C++ the control system architecture. The overall C++ program is

available upon request.

3.1.1 Environmental properties

Environmental properties to be set are: Ground Normal Spring Constant kN , Ground Planar

Spring Constant kP , Ground Normal Damper Constant γN , Ground Planar Damper Constant γP ,

Coefficient of Static Friction µs and Coefficient of Kinetic Friction µd.

Ground normal and planar spring and damper constants are used to define how the robot

interacts with the surface. The values chosen for GregorI are typical values for a hard terrain.

Coefficient of Static Friction and Coefficient of Kinetic Friction model sliding across the surface.
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The chosen values for friction parameters are typical values for a normal terrain. All values are

shown in Tab. 3.1

Table 3.1: Terrain properties

kN g/s2 kP g/s2 γN g/s γP g/s µs µd

75000 75000 2000 2000 1.5 1

3.1.2 Integration algorithm

Runge-Kutta of 4th Order was selected for GregorI simulation as it provides a good numerical

approximation with acceptable computational overhead. A step size of step = 0.001 was found to

be appropriate for the GregorI simulation, as values larger than this may cause the controller to

become unstable. All simulations were conducted on a 2.8 GHz Pentium class machine, running

Microsoft Windows XP. On this machine, 10 seconds of dynamical simulation correspond to 4

seconds of computer computation.

3.2 Horizontal walking and climbing obstacles

Firstly we tested the structure functionality and stability in two conditions: horizontal walking and

climbing obstacles. Since in these simulations our main concern was on structure testing, we just

took into account the low level control, i.e. the CPG controller. In all simulations we considered a

fast gait.

Unfortunately, there is not enough performance detail documented in the published robotics

literature to rigorously compare GregorI structure to previous structure. Thus structure analysis

is somewhat qualitative. Horizontal walking simulations show, overall, a great movement agility.

We can gain more insights into the efficiency of the proposed structure by simulating the

robot during obstacle climbing. Several simulations showed that thanks to the particular leg-

body articulation and, above all, to the innovative linear piston-like actuation of rear legs, GregorI

is able to overcome obstacles even beyond its CoM height (at least up to 5 cm) without any postural
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adjustment. This result proves the high stability of the overall structure and the efficiency of rear

legs thrust. In Fig. 3.1 some snapshots of GregorI climbing a 5 cm obstacle are shown. It is worth

noticing how the rear legs propel the robot forward.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Obstacle climbing snapshots.

3.3 Learning behaviors

In this section we test the capabilities of the proposed high level control. We focus, in particular,

the attention on learning “Climbing obstacle” behavior and “Pursuing target” behavior; the former

is more interesting from a theoretical viewpoint, while the latter is more interesting from a practical

viewpoint. In all simulations we consider a fast gait. We also assume that there are two chemicals

originating at the target location.

Let us suppose that the following information are available to the robot:

• front tarsus height hfront ∈ π+;

• body rear part height hpost ∈ π+;

• obstacle height hobs ∈ η+;

• chemical 1 intensity I1 ∈ η−;
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• chemical 2 intensity I2 ∈ η−.

The first step is associating to each behavior a Motor Map. The climbing Motor Map has:

• 12 neurons;

• 1 input (the obstacle height);

• 2 outputs (front femur joint gain bfront and rear coxa joint bias λ).

The Pursuing Motor Map has:

• 12 neurons;

• 2 input (I1 and I2 intensity);

• 1 output (yaw angle in the inertial reference frame Ξ).

Both Motor Maps possess the same learning parameters. In order to simplify the learning phase,

we consider a winner-take-all strategy by selecting unitary neighborhood functions ξ(·) and ξa(·).

The threshold value is a = 0.01, so that, after the learning phase, a residual plasticity for a later

re-adaptation is guaranteed. The learning rate is η = 0.5 as a trade-off between speed and accuracy

of learning, while the two adaptive rates are γ = 0.1 and ηa = 0.05.

The second step requires S set and R set definition for each Motor Map. It is natural to

consider for the S set concerning the Climbing Motor Map just the sensory information hfront,

hpost and hobs, while for the S set concerning the Pursuing Motor Map just I1 and I2. Following

the guidelines outlined in the previous chapter, we define the S set for the Climbing Motor Map

as:

Sclimbing = {(hobs − hfront), (hobs − hpost), 1/(hobs − hfront), 1/(hobs − hpost)} (3.1)

In the same way, we define the S set for the Pursuing Motor Map as:

Sclimbing = {I1, I2, 1/I1, 1/I2} (3.2)

From the S set we can easily derive the corresponding R set basing on the exclusivity rule.

Considering a instantiation vector notation, both R sets have the same following elements:
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• 1, 0, 0, 0

• 0, 0, 1, 0

• 0, 1, 0, 0

• 0, 0, 0, 1

• 0, 0, 1, 1

• 0, 1, 1, 0

• 1, 0, 0, 1

• 1, 1, 0, 0

The final step is defining the critic signal: trivially, the critic for the Climbing Motor Map

indicates a “success” if after an evaluation time tmax the robot is over the obstacle, while the critic

for the Pursuing Motor Map indicates a “success” if, after an evaluation time tmax, the distance

from the target is below a threshold dtreshold.

Behavior learning simulations are articulated as follows: at the beginning the robot is placed in

a starting position; a reward instantiation k is selected and the Motor Map is congruently trained

for 100 epoches with the same particular learning example (as a consequence of the non-associative

learning of the reward function). Each epoch lasts four times the cycle time, i.e. in one epoch

the robot performs four steps. At the end of each epoch the robot is placed again at the starting

position for ease of simulation. After 100 epoches the reinforcement signal is evaluated and a new

reward learning epoch begins, with different initial conditions in robot configuration in order to

provide uncertainty.

The simulation ends if a pk > 0.9 is found, otherwise the simulation keep running for ever. We

set the reward structure learning constants to the values β = 0.5 and γ = 0.6.

We are now ready to analyze the learning results.
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Figure 3.2: Climbing Motor Map training.

3.3.1 Climbing obstacle learning

Setting tmax = 55s we obtain that, on 10 different simulations, there is not a prevalent

probability pk; there are, instead, three preferred behaviors corresponding to the following reward

instantiations:

• 1, 0, 0, 0

• 1, 0, 0, 1

• 1, 1, 0, 0

The first instantiation induces a rearing strategy, the second one induces a slightly different rearing

strategy, while the last one induces an elevate strategy.

Setting, instead, tmax = 35s, i.e. a stricter critic signal, we obtain that the rearing strategy

tends to be, on average, prevalent (8 times over 10), with a surprising congruence to the biological

case.

In Fig. 3.2, the training of the Climbing Motor Map, i.e. the trend of the relative reward

function, is shown; on the x-axis epoch counter is represented. The sharp change in the reward

trend is due to the change after 100 epoches of the reward structure. In Fig. 3.3 temporal evolution

of Sclimbing set is reported, referring to a simulation with tmax = 35s; lighter bar refers to the
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Figure 3.3: Temporal evolution of Sclimbing set.
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selected reward instantiation. It is worth noticing how the uncertainty affects the learning phase:

for example, at reward learning epoch 5, reward instantiation 8 leads to a success, while in the next

reward learning epoch the same instantiation leads to a failure.

3.3.2 Pursuing target learning

Firstly we assume that chemical 1 follows a gaussian distribution centered in the target location,

while the chemical 2 is constant, thus not providing any information. The evaluation time is

tmax = 25 s.

It is easy to notice that the suitable reward instantiations are:

• 0, 0, 1, 0

• 0, 0, 1, 1

• 0, 1, 1, 0

All instantiations, in this case, induce a strategy that leads to a maximization of the chemical 1

intensity. Congruently, in simulation we obtain that all and only the three instantiations above are

selected as suitable reward candidates.

In Fig. 3.4, the training of the Pursuing Motor Map, i.e. the trend of the relative reward function,

is shown; on the x-axis epoch counter is represented. Again, the sharp change in the reward trend

is due to the change after 100 epoches of the reward structure.

In Fig. 3.5 the temporal evolution of Spursuing set is shown; lighter bar refers to the selected

reward instantiation. In the reported case, instantiation 6 becomes prevalent.

In a second experiment we assume that both chemicals spread with the same gaussian

distribution, but the detector of second chemical measures with some noise. The evaluation time is

again tmax = 25 s. Simulation results show that the robot is able to learn to disregard the second

chemical and to just rely on the maximization of the first chemical by selecting the instantiation 2.

This last example shows the effectiveness of the proposed high level control in case of

sensory malfunctioning.
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Figure 3.4: Pursuing Motor Map training.
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Figure 3.5: Temporal evolution of Spursuing set.
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Chapter 4

Cyclic-pursuit approach to

multi-agent coverage path planning

We now turn our attention to robot coordination. A prototypical problem that could benefit from

a multi-agent approach is coverage path planning in hazardous environments, where the aim is

to sweep all points in the target environment facing disturbances and agent losses. Specifically,

we study the following motion coordination problem: given n non-holonomic robots arbitrarily

deployed within a convex region in the plane, develop a static (i.e., memoryless) decentralized

control strategy able to guarantee efficient path coverage of the region, taking into account failures

and the possible loss of one or more agents.

4.1 Path planning coverage: overview

Focusing firstly on a single-agent approach, most of coverage algorithms rely either implicitly

or explicitly on a cellular decomposition of the free space to complete the task. A cellular

decomposition breaks down the target region into cells such that coverage in each cell is simple.

Provably complete coverage is attained by ensuring the robot visits each cell in the decomposition

[11]. One popular exact cellular decomposition technique, which can yield a complete coverage

path solution, is the trapezoidal decomposition [21]. Since each cell is a trapezoid, coverage in each

cell can easily be achieved with simple back and forth motions. Coverage of the environment is
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achieved by visiting each cell in the adjacency graph. An enhancement of trapezoidal decomposition

is represented by the boustrophedon cellular decomposition [10], designed to minimize the number

of excess lengthwise motions. The Backtracking spiral algorithm makes use of spiral filling paths

instead of back and forth motion [17].

Unfortunately, grid maps based algorithms require considerable memory, centralized off-line

computation and costly localization sensors (e.g., GPS).

On the contrary, heuristic navigation methods, as presented in [18] for path planning of an

autonomous mobile cleaning robot and in [23] for a multi agent search-and-retrieve object

application, allow the use of far simpler robots, but do not guarantee complete coverage.

Some algorithms have been also proposed for a multi-agent approach, like in [43], where a set of

robots help clean a railway station, using magnetic lines on the floor as guidelines. [20] suggests an

off-line multi-robot coverage strategy using a Voronoi diagram-like and boustrophedon approach.

They define a cost function to pseudo-optimize the collective coverage task. In [40] a decentralized

covering algorithm is presented for covering of an un-mapped region by means of a group of robots

leaving traces: here, issue of memorization of already covered regions is solved trough abstract

chemical traces that play the role of a shared memory.

Our main concern is to study the feasibility of a coverage algorithm for non-holonomic robots

that:

1. does not rely on costly grid maps (unlike Cellular Decomposition approach)

2. provides complete coverage (unlike heuristic approach)

3. takes into account only local sensory information, thus avoiding inter-agent communication,

landmark deployment and other possibly costly mechanisms for information exchange.

Our main assumption, necessary to achieve proof of correctness, is that robots can overcome all

obstacles placed in the environment without modifying their desired trajectory. The key idea is

to consider a modified version of the classical cycling pursuit control strategy for non-holonomic

robots, previously extensively studied in [25], where it is shown that system’s equilibrium formations

are generalized regular polygons. In our strategy, instead of pursuing the leading neighbor along

the instantaneous line of sight, each agent pursues its leading neighbor along the line of sight
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rotated by an offset angle, function of locally available sensory information. It is shown that the

paths described by the system at equilibrium are Archimede’s spirals able to provide complete

coverage of the target environment. These spiral-like paths appear to be robust against sensory

noise, odometry error and agent loss.

4.2 Problem formulation

Let us consider n ordered robots; we associate to each robot a sensing region, modelled as a circle

of radius d, attached to the robot frame. The objective is to design a static, spatially-decentralized

feedback control policy that guarantees that the union of the sets swept by the sensing regions as

robots move covers the whole environment. In order to do this efficiently, we desire to exploit the

intrinsic parallelism of a multi-vehicle approach, under the following assumptions:

1. robots are unable to recall past actions and observations (i.e.,they are oblivious);

2. no robot can access the absolute positions of other robots or its own. Specifically, robot i can

measure only the relative positions of neighbor robots and their relative orientation;

3. robots are unable to communicate in any other ways than by observing each others position;

4. robots i pursues the next, i+ 1, modulo1 n;

5. circular environment with surmountable obstacles (more complex environment will be

analyzed in future).

4.3 Formation control for holonomic robots

Let us firstly model the agents as freely mobile robots, i.e. holonomic robots. In the next section

we will extend our results to non-holonomic robots with a single Pfaffian constraint.

Let us, therefore, consider n ordered holonomic agents h1,h2, . . . ,hn; the robot dynamics is simply:

ḣi = µi (4.1)

1Henceforth, all vehicle indices should be evaluated modulo n.
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where µi is a reference speed function of locally available information.

Considering the geometry of the problem, if all agents perform Archimede’s spiral-like trajectories,

complete coverage is guaranteed. Therefore, our desired feedback control law for the n dynamical

systems (4.1) must guarantee Archimede’s spiral-like trajectories and be robust against robots

losses in such a way that, when an agent disappears from the arena, a new spiral-like formation is

achieved without leaving uncovered any portion of the environment. Since each sensor has a circular

footprint with radius d, the feedback control law should provide Archimede spiral-like trajectories

with step at most equal to 2nd.

Let us assume, as stated above, that each robot does not have memory of the past (static

feedback) and can only measure the relative position of the leading robot:

ri = hi+1 − hi+1 (4.2)

and the angle:

2γi = arccos

(〈

(hi+1 − hi)

‖(hi+1 − hi‖
,

(hi − hi−1)

‖(hi − hi−1)‖

〉)

(4.3)

The key idea is to consider a modified version of the classical cycling pursuit control strategy:

instead of pursuing the front neighbor along the instantaneous line of sight, each agent pursues its

front neighbor along the line of sight rotated by an offset angle, function of (at most) ri and γi,

i.e.:

ḣi = λR(αi)ri (4.4)

where

αi = α(‖ri‖, γi) (4.5)

Let us now pose:

αi = arctan

(

2d sin γi

‖ri‖γi

)

+ γi (4.6)

note that α(‖r‖, γ) is differentiable for r 6= 0 and can be made continuous everywhere by setting

α(‖r‖, 0) = arctan(2d/‖r‖).

Before stating our main theorem, we define a regular configuration as follows.

Definition 4.3.1. A regular configuration is a configuration where 2γi = 2π
n

and ‖ri‖ = ‖rj‖ ∀i, j.
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Theorem 4.3.1. Let us assume that the initial configuration is a regular configuration. Then the

feedback control law:

µi = λR(αi)ri (4.7)

guarantees that each robot performs Archimede’s spiral-like trajectories with step λ = 2 · n · d

Proof. To prove the claim, we should prove that:

λ =

∫ 2π

0

d%i

dϕi
dϕi = 2 · n · d (4.8)

Let us express the position of the ith robot in polar coordinates:

hi
x = %i cosϕi

hi
y = %i sinϕi

(4.9)

Hence, deriving with respect to time we get:




%̇i cosϕi − %iϕ̇i sinϕi

%̇i sinϕi + %iϕ̇i cosϕi



 = µi (4.10)

Let us now derive an expression of µi in polar coordinates. Basing on the definition of regular

configuration and on the symmetry of the problem we can write %i+1 = %i and ϕi+1 = ϕi + 2γi;

hence we can express µi as follows:

µi = λ





cosαi sinαi

− sinαi cosαi









%i cos(ϕi + 2γi) − %i cos(ϕi)

%i sin(ϕi + 2γi) − %i sin(ϕi)



 (4.11)

After some (rather tedious) algebraic manipulation we get:




%̇i

ϕ̇i



 =





2λ%i sin(αi − γi) sin γi

2λ cos(αi − γi) sin γi



 (4.12)

Therefore we obtain:
d%i

dϕi
= %i tan(αi − γi) = 2d

sin γi

γi

%i

‖ri‖
(4.13)

By noticing that, for symmetry, γi keeps constant and equal to π/n and that we can write ‖ri‖ =

2%i sin γi, we can conclude that λ = 2 · n · d

Clearly, in practical application, it would be better to choose d smaller than the actual footprint

radius (d is indeed a control parameter).

Since with the proposed control law we are able to provide Archimede’s spiral like trajectories, in

the nominal case complete coverage of target environment is guaranteed.
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4.4 Formation control for non-holonomic robots

It is possible to extend the previous formation control law to non-holonomic robots with a single

Pfaffian constraint.

Let us model each vehicle as a Hilare-type mobile robot with nonlinear state model:
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 (4.14)

where ui = (η1
i η

2
i )

T are the control inputs. In Eq. 4.14 it is evident the Pfaffian constraint:

ẋi sin θi − ẏi cos θi = 0 (4.15)

The design of a decentralized feedback control policy for the system (4.14) requires

nonholonomic control laws due to the Pfaffian constraint 4.15. However, if we only require that

a point off the wheel axis of robots be maintained in formation, than the system can be feedback

linearized. Feedback linearization about off wheel axis point was used in [34] and [22].

Specifically, let us define, as in [22], the “hand” position of a robot to be the point h = (hx, hy)

that lies a distance L along the line that is normal to the wheel axis and intersects the wheel axis

at the center point r = (x, y). The kinematics of the hand position is holonomic for L 6= 0.

Since we can reasonably consider sensor located at the hand, this approach does not represent a

significant limitation.

The hand position is given by the equation:

hi = pi + L





cos θi

sin θi



 (4.16)

To feedback linearize system (4.14), let us differentiate to get:

ḧi =





−viωi sin θi − Lω2
i cos θi

viωi cos θi − Lω2
i sin θi



 +





cos θi −L sin θi

sin θi L cos θi









η1
i

η2
i



 (4.17)
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Since:

det





cos θi −L sin θi

sin θi L cos θi



 = L 6= 0 (4.18)

the system (4.14) with output (4.16) has constant relative degree equal to two and can, therefore,

be output feedback linearized [22].

Let us define the map g as in [29]:

ξi = g(xi) ,























xi + L cos θi

yi + L sin θi

vi cos θi − Lωi sin θi

vi sin θi + Lωicosθi
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(4.19)

The map g is a diffeomorphism [29]. In the transformed coordinates we get:
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(4.20)

Therefore a natural choice for the output feedback linearizing control is given by:

ui =





cos θi −L sin θi

sin θi L cos θi





−1 

νi −





−viωi sin θi − Lω2
i cos θi

viωi cos θi − Lω2
i sin θi







 (4.21)

which gives:




ξ̇1i

ξ̇2i



 =





ξ3i

ξ4i
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 = νi

ξ̇5i = −
ξ3i

L
sin ξ5i +

ξ4i
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cos ξ5i

(4.22)

where:

hi =





ξ1i

ξ2i



 (4.23)
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The last equation represents the internal dynamics rendered unobservable by the coordinate

transformation g(·). Setting ξ1i = ξ2i = ξ3i = ξ4i = 0 we find that the internal dynamics is

stable but not asymptotically stable, as observed in [22].

The input output dynamics of each robot will be represented by the double integrator system:

ḧi = νi (4.24)

. We also set:




ξ1i

ξ2i



 = ξa
i (4.25)

and




ξ3i

ξ4i



 = ξb
i (4.26)

The proposed formation control law can, therefore, be simply extended to non-holonomic robots

by setting 4.7 as a reference speed for the system 4.24 through a speed tracking control law as

follows:

ξ̇a
i = ξb

i

ξ̇b
i = k(ξb

i − µi)
(4.27)

where µi is given in 4.7, remembering that now hi = ξa
i
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Chapter 5

Simulation results

Simulations confirm that the proposed control law guarantees Archimede’s spiral path with step

2 ·n · d and hence complete coverage of a circular environment with surmountable obstacles. In the

next sections we present simulation results for both holonomic robots and non-holonomic robots.

5.1 Simulation parameters and performance criteria

In all simulations we assume a footprint radius d = 0.2 and a gain λ = 1; moreover, we consider a

gain k = 800 in the speed tracking control law. In trajectory figures, one trajectory is dotted for

image clarity.

Agents are deployed on a regular configuration with radius ρ = 1 (in practical application, in order

to avoid the initial central hole it is enough to deploy agents “sufficient” close each other). To

add perturbation, we simply add noise to the initial position and orientation of each robot with

magnitude σpos and σor respectively.

To assess robustness against perturbation and agent loss, we define two error functions. Let us

define the Phase Error as:

Eγ =
n

∑

i=1

(γi − π/n)2 (5.1)

and the Distance Error as:

Er =

n
∑

i=1

(

‖ri‖
2 − ‖ri−1‖

2
)2

(5.2)
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Figure 5.1: N = 8 holonomic robots starting from a regular configuration.

Phase error and Distance error “measure” the distance from a regular configuration. Clearly,

if Eγ = Er = 0, agents are on a regular configuration and therefore perform, as proved, the

desired Archimede’s spiral trajectories. Thus, the two error functions give us a way to evaluate the

robustness of the system: a fast convergence of both functions to zero means robustness against

perturbations.

5.2 Formation of holonomic robots

Results shown in Fig. 5.1 refers to a scenario with n = 8 robots starting from a regular configuration.

Resultant trajectories are Archimede’s spirals as desired; the spiral step sequence corresponding to

the dotted trajectory is S = [3.200, 3.199, 3.200], in agreement with the desired value s = 2 ·n · d =

3.2.

As far as robustness is concerned, simulation results show that, thanks to the proposed control

law, all robots, starting from a perturbed configuration, gather on a regular configuration and

hence they start performing Archimede’s spiral paths; equivalently, error functions converge quickly

to zero. This behavior (gathering on a regular configuration) was previously observed for a

conceptually analogous control law in [24].

Several simulations (more than 100) have been carried out to assess robustness against perturbation

and agent losses.

In the first reported experiment, we added to a regular configuration with n = 3 holonomic agents

Scuola Superiore di Catania 52



Architectures for Autonomous Robots: Adaptive Locomotion and Distributed Covering

−15 −10 −5 0 5

−6

−4

−2

0

2

4

6

8

10

12

(a) Spiral trajectories

−10 −5 0 5

−4

−2

0

2

4

6

8

(b) Spiral trajectories - detail

Figure 5.2: N = 3 holonomic vehicles starting from a perturbed configuration.
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Figure 5.3: Error function for the perturbed holonomic system with N = 3.

a position perturbation with magnitude σpos = 5 and a heading perturbation with magnitude

σpos = 1.3 rad. Fig. 5.2 shows resulting trajectories and a zoom in the first part of the simulation;

arrows indicate initial agent positions. Fig. 5.3 shows that the two error functions go quickly

to zero, thus indicating a fast convergence to a regular configuration and hence to the desired

Archimede’s spiral-like trajectories with step s = 1.2.

We then repeat the experiment with n = 8 holonomic robots, adding to the regular initial

configuration a position perturbation with magnitude σpos = 1.5 and a heading perturbation

with magnitude σpos = 0.6 rad. Again, after a fast transient, robots start performing spiral-

like trajectories with the desired step s = 3.2. Simulation results are shown in Figg. 5.4 and 5.5.
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Figure 5.4: N = 8 holonomic vehicles starting from a perturbed configuration.
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Figure 5.5: Error function for the perturbed holonomic system with N = 8.

In Fig. 5.6 we report a simulation in which an agent is lost; in detail, we simulate that n = 7

holonomic robots start from a n = 8 regular configuration with an agent missing (i.e. from a

regular configuration for n = 8 with a hole). As shown, robots reconfigure autonomously their

trajectories, just relying on locally available information, to provide Archimede’s spiral paths with

the desired step s = 2.8. The arrow in Fig. 5.6 indicate the missing agent.

5.3 Formation of non-holonomic robots

Results shown in Fig. 5.7 refers to a scenario with n = 8 non-holonomic robots starting from

a regular configuration. Resultant trajectories are Archimede’s spirals as desired; the spiral step

sequence corresponding to the dotted trajectory is S = [3.201, 3.204, 3.211], in agreement with the
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Figure 5.6: Trajectories after one holonomic agent loss.
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Figure 5.7: N = 8 non-holonomic robots starting from a regular configuration.

desired value s = 2 · n · d = 3.2. Fig. 5.7 shows the tracking error for the reference speed.

Again, several simulations have been carried out to assess robustness against perturbation and

agent losses.

In the reported experiment, we added to a regular configuration with n = 8 non-holonomic agents

a position perturbation with magnitude σpos = 1.5 and a heading perturbation with magnitude

σpos = 0.6 rad. Fig. 5.9 shows resulting trajectories and a zoom in the first part of the simulation.

Fig. 5.10 shows that the two error functions go quickly to zero, thus indicating a fast convergence

to a regular configuration and hence to the desired Archimede’s spiral-like trajectories with step

s = 3.2.
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Figure 5.8: Tracking error for the reference speed.
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Figure 5.9: N = 8 non-holonomic vehicles starting from a perturbed configuration.

In Fig. 5.11 we report a simulation in which an agent is lost; in detail, we simulate that n = 7

non-holonomic robots start from a n = 8 regular configuration with an agent missing (i.e. from

a regular configuration for n = 8 with a hole). As shown, robots reconfigure autonomously their

trajectories, just relying on locally available information, to provide Archimede’s spiral paths with

the desired step s = 2.8. The arrow in Fig. 5.11 indicate the missing agent.
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Figure 5.10: Error function for the perturbed non-holonomic system with N = 8.
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Figure 5.11: Trajectories after one non-holonomic agent loss.
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Conclusion

In this thesis we studied from two different but complementary perspectives the problem of robot

autonomy.

On one hand we proposed a novel structure and control system architecture for an hexapod

robot. As far as the structure is concerned, each leg has a unique design and a peculiar articulation

with the body; moreover an innovative linear/rotational actuation is introduced. Dynamical

simulations proved that this design provides superior agility. The control system architecture is

based on a behavior-approach: each behavior is modelled as a Motor Map with an adaptive reward.

Reward learning is achieved through a reinforcement learning. To the best of our knowledge, it

is the first time that an adaptive reward for a Motor Map is introduced. Dynamical simulations

showed the suitability of the approach.

On the other hand, we dealt with a classical coordination problem for autonomous robots:

distributed coverage path planning. We firstly studied the case when all robot are holonomic.

We presented an innovative distributed algorithm, based on a cyclic pursuit approach, whose

correctness has been analytically proved. Then we successfully applied the developed algorithm,

through input-output feedback linearization, to the case when all robots have one non-holonomic

constraint. Simulation results confirm the effectiveness of the proposed algorithm.

The first part of the thesis has been developed at the Electrical, Electronic and Systems

Engineering Department of the University of Catania under the supervision of prof. P. Arena, while

the second part has been developed at the Department of Mechanical and Aerospace Engineering

of the University of California at Los Angeles, USA, under the supervision of prof. E. Frazzoli.
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