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Abstract— The objective of this paper is to devise a systematic
approach to apply the tube MPC framework to non-linear
continuous-time systems. In tube MPC, an ancillary feedback
controller is designed to keep the actual state within an invari-
ant “tube” around a nominal trajectory computed neglecting
disturbances. Our approach is to leverage recent results in con-
traction theory together with tools from convex optimization to
devise ancillary feedback controllers that (a) enjoy quantifiable
bounds for the state tube, (b) provide exponential convergence,
and (c) fully exploit the nonlinearity of a system, thereby
minimizing conservatism. We present a number of methods to
design contraction-based ancillary feedback controllers, along
with numerical results corroborating our analytical insights.

I. INTRODUCTION

Model Predictive Control (MPC) is one of the most
popular methods to solve optimal control problems in an
online setting [1]–[3], owing to its ability to explicitly ac-
count for complex state/control constraints while optimizing
performance criteria. The key idea behind MPC is to obtain
the control action by repeatedly solving, at each sampling
instant, a finite horizon open-loop optimal control problem
using the current state of the system as the initial state. The
result of the optimization is an open-loop control sequence
whose first portion is applied to control the system, following
which, the algorithm repeats [4]. The solution to the standard
MPC optimization problem provides a predicted optimal
state trajectory and a corresponding open-loop control se-
quence for a finite time interval, under the assumption that
the disturbances are equal to zero. Since most systems
are indeed subject to modeling uncertainty and exogenous
disturbances, the actual state trajectory will deviate from the
one predicted. If not controlled, such deviation may grow
unboundedly and cause the system to violate performance
and stability constraints. This highlights the need to robustify
the nominal MPC controller, specifically, the need to design
a feedback control policy, rather than an open-loop control
sequence [3], [5].

Most of the existing literature on the topic of robust
MPC may be broadly categorized into two branches: (1)
min-max formulations, and (2) tube MPC approaches [6]–
[8]. In the min-max formulation, open-loop performance is
optimized assuming a worst-case disturbance input sampled
from a bounded set [8]. This leads to extremely conservative
control policies and a small domain of feasibility. Alter-
natively, closed-loop min-max formulations (usually termed
“feedback MPC”), while possessing improved feasibility
properties, are prohibitively complex to implement as the
optimization involves searching over control policies – an
infinite-dimensional problem [9]. In the tube MPC approach,
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an ancillary feedback controller that acts on the deviation
between the states is used to keep the actual state within
an invariant “tube” around the nominal trajectory computed
by solving the nominal MPC problem [10]–[12]. The ad-
vantages of a tube-based approach are twofold. First, the
online optimization problem is converted back into a search
over control sequences rather than control policies, thereby
reducing computational complexity. Second, the ancillary
controller ensures that even in the presence of uncertain
dynamics and bounded exogenous disturbances, the deviation
remains bounded. Accordingly, in this paper we will consider
a tube MPC approach to robustify the MPC control of a non-
linear continuous-time system.

While tube MPC has been studied extensively for linear
dynamics [12], the construction of invariant tubes and the
design of the associated ancillary controller in the non-
linear setup is significantly more complicated than in the
linear case. Some techniques proposed in existing litera-
ture include integral sliding mode control [13]; ellipsoidal
invariant tubes constructed using linear-matrix-inequalities
(LMI) and bounds on the Lipschitz constant [14] or assum-
ing a polytopic linear differential inclusion model for the
dynamics [15]; systems with matched non-linearities [16];
and dual-MPC [17]. In the last example, the idea is to
employ two parallel MPC algorithms; the first algorithm
generates a nominal state and control trajectory assuming
no disturbances. The second MPC algorithm acts as an ef-
fective ancillary controller by penalizing deviations from the
nominal trajectory computed within the first algorithm. More
recently, the concept of incremental input-to-state stability
(δ − ISS) for discrete-time systems was used in [18] to
derive the invariant tube as a sublevel set of the associated
δ − ISS Lyapunov function.

In comparison with existing literature on tube MPC al-
gorithms, our method boasts several key advantages. First, it
yields a direct, tangible measure of the “size” of the invariant
state tube around the nominal trajectory (in other approaches,
e.g., [17], this is instead often difficult to quantify). Second,
in case of vanishing disturbances, our approach guarantees
exponential stabilizability (see Definition IV.1) between the
actual and nominal state trajectories by design, as opposed to
only asymptotic guarantees in [17]. Third, our construction
of the invariant tube is based on analyzing the intrinsic
nonlinear properties of the system as opposed to relying on
Lipschitz bounds as in [14], [17], or assuming conservative
polytopic bounds on the dynamics’ Jacobians as in [15] – as
such, our method is less conservative. Finally, with regards to
the work in [18] which most closely resembles the spirit of
this paper, namely the use of δ−ISS to derive invariant tubes,
our approach simultaneously allows for both the design and
the optimization of the invariant tubes, rather than assuming
the existence of a suitable δ−ISS Lyapunov function.

Organization: The remainder of the paper is organized as
follows. In Section II we define the notation used in this
paper. In Section III we rigorously formulate the problem



we address in this paper and state our objectives. In Section
IV we review some results from contraction theory that our
instrumental to our approach. In Section V we present a
number of methods to design contraction-based ancillary
feedback controllers. In Section VI we discuss the practical
implementation of our algorithms from a computational
standpoint. In Section VII we present results from numer-
ical experiments and, finally, in Section VIII we draw our
conclusions and provide directions for future research.

II. NOTATION

Let S+
j be the set of symmetric positive definite matrices

and Sj the set of symmetric positive semidefinite matrices in
Rj×j . Given a matrix X , let X̂ := X+XT . The set of twice
differentiable functions from a space D to R is denoted by
C2(D,R). We denote the components of a vector y ∈ Rn
as y[j], j = 1, . . . , n, and its Euclidean norm as ‖y‖. Let
‖y‖A=

√
yTAy denote a weighted norm for A ∈ Rn×n.

Let σ(A) denote the maximum singular value of a matrix A
and ∂yF (x) the directional derivative of the matrix valued
function F at x along the vector y. Given sets A and B, the
operation A ∼ B denotes the Pontryagin set difference, and
A⊕ B, the Minkowski sum.

III. PROBLEM FORMULATION

Consider the nonlinear, time-invariant, control-affine dy-
namics model given by

ẋ(t) = f(x(t)) +B(x(t))u(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, t denotes time, and f(x) and B(x) are nonlinear, con-
tinuously differentiable vector- and matrix-valued functions.
We write B(x) in column form as [b1(x), b2(x), . . . , bm(x)].
A state-input trajectory satisfying the above dynamics is
denoted as a pair (x, u). We assume that f(0) = 0, and
thus (x, u) = (0, 0) is an equilibrium point for the dynamics
in (1).

The perturbed dynamics model is given by

ẋ(t) = f(x(t)) +B(x(t))u(t) +Bww(t), (2)

where w(t) ∈ Rnw is a disturbance input and Bw ∈ Rn×nw

is a constant matrix with σ̄(Bw) = 1 (in other words, Bw
simply selects the channels where the disturbance is active).
The ideal problem we wish to solve is stated as follows:

Optimization Problem OPT ∞ — Solve

min
π∈Π(X ,U)

J(x(t), π(x(t))) (3)

subject to
Perturbed dynamics: eq. (2) (4)
Initial condition: x(0) = x0 (5)
Disturbances: w(t) ∈ W, ∀t ≥ 0 (6)
State constraints: x(t) ∈ X , ∀t ≥ 0 (7)
Control constraints: π(x) ∈ U , ∀x ∈ X (8)

where x0 is the initial state and Π(X ,U) denotes
the set of control policies mapping states in X to
the allowable control inputs in U . The cost function
J is defined as:

J(x(t), π(x(t))) :=

∫ ∞
0

φ(x(t), π(x(t)))dt. (9)

We consider the following assumptions about problem
OPT ∞.

Assumption 1 (State, Control, and Disturbance Sets). The
sets X , U and W are closed, bounded, and connected
subsets of Rn, Rm, and Rnw respectively, with the origin
contained in their interior.

Assumption 2 (Cost Function). The incremental cost func-
tion φ(·, ·) is quadratic, i.e.,

φ(x, u) = xTQx+ uTRu, (10)

where Q ∈ Sn and R ∈ S+
m.

Note that problem OPT ∞ involves an optimization with
respect to closed-loop policies, given that the dynamics are
perturbed by a disturbance. As such, problem OPT ∞ is
extremely difficult to solve, thereby motivating the use of
a robust receding-horizon approach. A tractable formulation
of robust MPC is represented by the tube MPC framework,
discussed next.

A. Robust Tube MPC
The basic idea of the tube MPC approach is to decompose

the computation of a receding-horizon control law into
(a) a deterministic MPC problem which uses the nominal
dynamics model in (1) to compute a desired state and con-
trol trajectory pair (x∗(t), u∗(t)) over a finite time horizon
[t, t+ T ], and (b) a feedback control problem that provides
a control policy to keep the actual state x(t) close to x∗(t).
For tractability, we parameterize the net control u(t) as

u(t) = u∗(t) + k(x∗(t), x(t)), (11)

where k(x∗(t), x(t)) is referred to as the ancillary control
law, designed such that x(t) remains within a robust control
invariant set (defined below) centered on x∗(t).

Definition III.1 (Robust Control Invariant Set). Define
e(t) := x(t)−x∗(t). A set Ω ⊂ Rn is termed a robust control
invariant (RCI) set if there exists an ancillary feedback
control law k(x∗, x) such that: (a) ∀e ∈ Ω, k(x∗, x) + ū ∈
U , ∀ū ∈ Ū , and (b) if e(t0) ∈ Ω, then for all allowable
realizations of the disturbance w(t) ∈ W , e(t) ∈ Ω for all
t ≥ t0.

Accordingly, the nominal MPC problem solved at the
discrete time instant ti, i ∈ N is:

Optimization Problem MPCnominal — Solve

min
ū(t)∈Ĉ([ti,ti+T ],U)

JT (x̄, ū)

subject to
x̄(ti) = x̄0

˙̄x = f(x̄(τ)) +B(x̄)ū(τ), ∀τ ∈ [ti, ti + T ]

x̄(τ) ∈ X̄ , ∀τ ∈ [ti, ti + T ]

ū(τ) ∈ Ū , ∀τ ∈ [ti, ti + T ]

x̄(ti + T ) ∈ Xf ,

where Ĉ([ti, ti + T ], U) is the set of piecewise
continuous functions from [ti, ti+T ] to U , Xf ⊂ X̄
is a terminal set, X̄ := X ∼ Ω is the tightened
state constraint, and Ū is the tightened control
constraint, defined as Ū := {ū ∈ U : ū +
k(x∗(t), x(t)) ∈ U , ∀e(t) ∈ Ω} – for a given



ancillary feedback control law. The finite horizon,
nominal cost function JT is defined as:

JT =

∫ ti+T

ti

φ(x̄(τ), ū(τ))dτ + Ψ(x̄(t+ T )),

(12)
where Ψ(·) is a terminal cost function.

The choice of the initial state for problem MPCnominal, i.e.,
x̄0 is discussed further on. The control trajectory solution
to problem MPCnominal is denoted as u∗T (t; x̄(ti)) and the
nominal associated state trajectory is denoted as x∗T (t; x̄(ti))
for t ∈ [ti, ti + T ]. Problem MPCnominal is solved at regular
time intervals of length δ. The net control implemented
within the time interval [ti, ti + δ) is then given as:

u(t) = u∗T (t; x̄(ti)) + k(x∗T (t; x̄(ti)), x(t)), t ∈ [ti, ti + δ).
(13)

This defines the sampled MPC strategy commonly employed
for continuous time systems. The next subsection addresses
the recursive feasibility and closed-loop stability properties
under the tube-MPC framework.

B. Recursive Feasibility and Closed-Loop Stability
The following definition provides a notion of stability for

systems with non-vanishing disturbances.

Definition III.2 (Ultimate Boundedness). The system in (2)
is asymptotically ultimately bounded if there exists a control
law such that the closed-loop system converges asymptoti-
cally to a bounded set.

In order to ensure recursive feasibility and closed-loop
stability within the tube-MPC framework, we make the
following assumptions:

Assumption 3 (Terminal Constraint Set). There exists a
feasible control law kf (x̄) that renders the terminal set
Xf control invariant for the nominal dynamics. That is,
kf (x̄) ∈ Ū for all x̄ ∈ Xf , and if x̄(t0) ∈ Xf , then the
solution to (1) with ū = kf (x̄) ensures that x̄ ∈ Xf for all
t ≥ t0.

Assumption 4 (Terminal Set Stability). The terminal cost
function Ψ(x̄) is a continuous positive definite function such
that

∂Ψ(x̄)

∂x̄
(f(x̄) +B(x̄)kf (x̄)) ≤ −φ(x̄, kf (x̄)),∀x̄ ∈ Xf .

That is, Ψ(x̄) is a Lyapunov function inside the terminal set
Xf for the nominal closed-loop dynamics under the terminal
control law kf (x̄).

Assumption 5. The set Ω is a RCI set under the action of
the ancillary feedback law k(x∗(t), x(t)).

Given the assumptions above, one can prove recursive
feasibility and closed-loop stability for the closed-loop dy-
namics:

Theorem III.3 (Recursive Feasibility and Closed-Loop Sta-
bility). Consider the perturbed system dynamics in (2).
Suppose Assumptions 1, 2, 3, 4, 5 are satisfied and problem
MPCnominal is feasible at time t = 0. Then under the control
law in (13):

1) Problem MPCnominal is recursively feasible at all solve
times ti, i > 0.

2) The system is asymptotically ultimately bounded and the
state trajectory converges to the RCI set Ω centered at
the origin.

Proof. See for e.g. [19].

Remark III.4 (Initial State for MPCnominal). The initial state
for problem MPCnominal, i.e., x̄0, at time ti+1 may be chosen
as x∗T (ti+1; x̄(ti)) computed at the preceding time step. In
this paper, we adopt the improved strategy in [20], where
the initial state is also an optimization variable subject to
the following additional constraint:

x(ti+1) ∈ x̄0 ⊕ Ω. (14)

Through application of the ancillary feedback and Assump-
tion 5, we are guaranteed that x(ti+1) ∈ x∗T (ti+1; x̄(ti))⊕Ω,
and consequently, recursive feasibility is unaffected. The
above relaxation then simply allows for a better nominal
trajectory to be computed at time ti+1 while ensuring that
the true state remains within the RCI set Ω centered on x̄0.

C. Objective of the Paper
The objective of this paper is to leverage contraction-

theoretical techniques to design an ancillary feedback law
such that (a) convergence to the nominal MPC trajectory is
exponential, (b) the associated RCI set is as small as possible,
and (c) the net control effort is as small as possible.

We start with an overview of some concepts from contrac-
tion theory that will be instrumental to design of an ancillary
feedback controller.

IV. CONTROL CONTRACTION METRICS AND
DIFFERENTIAL CONTROLLERS

In this section we review some definitions and properties
about incremental exponential stability, control contraction
metrics, and differential controllers. Note that all state-
control trajectories referred to within this section are assumed
to be solutions to the nominal dynamics in (1).

A. Incremental Exponential Stability
Incremental exponential stability is defined as,

Definition IV.1 (Incremental Exponential Stability). Con-
sider a nominal state/control trajectory pair (x∗(t), u∗(t)).
Suppose there exist positive constants λ and C and a
feedback controller of the form u∗(t) + k(x∗(t), x(t)) such
that

‖x∗(t)− x(t)‖≤ Ce−λtκ(‖x∗(0)− x(0)‖), (15)

where κ ∈ K∞ and (x, u∗ + k) is a state/control solution
trajectory for the dynamics (1). Then, the state trajectory
x∗(t) is said incrementally exponentially stabilizable (IES)
with rate λ. Furthermore, if inequality (15) holds uniformly
(i.e., with same κ(·), λ, and C) for all nominal state/control
trajectory pairs (x∗(t), u∗(t)), then the dynamical system (1)
is said to be uniformly incrementally exponentially stabiliz-
able (UIES) with rate λ.

The goal of the feedback controller k(·), referred to as
the ancillary feedback controller within the tube MPC frame-
work, is to stabilize a nominal trajectory x∗(t) obtained from
the solution to a nominal MPC problem where disturbances
are neglected.



B. Control Contraction Metrics
Denote the tangent space of X at x ∈ X by TxX and

the tangent bundle of X by TX =
⋃
x∈X {x} × TxX .

The variational dynamics for the dynamical system (1) are
defined (over TX ) as

δ̇x =

(
∂f(x)

∂x
+

m∑
j=1

u[j]
∂bj(x)

∂x

)∣∣∣∣∣∣
(x,u)︸ ︷︷ ︸

:=A(x,u)

δx +B(x)δu, (16)

where δx ∈ TX is a tangent vector to a smooth path of
states at x ∈ X , and δu ∈ TU is a tangent vector to a
smooth path of controls at u ∈ U . Let M(x) : Rn → S+

n
be a continuous symmetric positive definite matrix function
that is uniformly bounded (i.e., there exist constants 0 <
α < α such that αI � M(x) � αI). The inner product
V (x, δx) := δTxM(x)δx on TX defines a Riemannian metric
on TX according to the metric tensor M(x), and represents
an infinitesimal measure of length on TX . For a given
smooth curve c : [0, 1] → X , we define its length l(c) and
energy E(c) as:

l(c) :=

∫ 1

0

√
V (c(s), cs(s))ds, E(c) :=

∫ 1

0

V (c(s), cs(s))ds

where cs(s) = ∂c(s)/∂s. Let Γ(p, q) be the set of smooth
curves on X that connect the points p and q, i.e., for all
c ∈ Γ(p, q), c(0) = p and c(1) = q. Let d(p, q) :=
infc∈Γ(p,q)) l(c) and let the geodesic be a curve γ ∈ Γ(p, q)
that achieves this infimum (which, by the Hopf-Rinow the-
orem, is guaranteed to exist and lie entirely in X since we
assume X to be a closed, connected, compact subspace in
Rn). Note that d2(p, q) = E(γ).

A control contraction metric (CCM) on X is a tensor
metric M(x) such that the induced Riemannian metric
V (x, δx) := δTxM(x)δx shrinks at all points in X , that is
V̇ (x, δx) < 0 at all x ∈ X . In other words, the inner product
V (x, δx) acts as a differential Lyapunov function on the
tangent bundle TX and can be used to ascertain incremental
exponential stabilizability of a given nominal trajectory.
Given the system dynamics in (1) and the variational system
in (16), V̇ (x, δx) can be written as:

V̇ (x, δx) = δTx Ṁδx + δTxM(x)δ̇x + δ̇TxM(x)δx

= δTx
(
∂f(x)+B(x)uM(x)

+
∂f(x)T

∂x
M(x)

∧

+

m∑
j=1

u[j]
∂bj(x)T

∂x
M(x)

∧ δx

+ 2δTxM(x)B(x)δu. (17)

Suppose now that the following two conditions hold for
some constant λ > 0 and all (x, δx) ∈ TX :

∂bjM(x) +
∂bj(x)T

∂x
M(x)

∧

= 0, j = 1, . . . ,m (18)

δTx

(
∂fM(x) +

∂f(x)T

∂x
M(x)

∧)
δx ≤ −2λδTxM(x)δx

(19)

for all δx such that δTxM(x)B(x) = 0.

Note that the left-hand sides in (18) are the components
multiplying the terms u[j] in equation (17). Thus, geomet-
rically, condition (18) implies that the vectors bj form a
Killing vector field for the metric tensor M(x), i.e., that
control cannot cause the infinitesimal distances to grow
unboundedly. On the other hand, condition (19) indicates
that for all directions where the system lacks controllability
(given by the nullspace of BT (x)M(x)), the system is
naturally contracting with rate λ. Under conditions (18) and
(19), V̇ (x, δx) reduces to:

V̇ (x, δx) =δx

(
∂f(x)T

∂x
M(x)

∧)
δx + 2δTxM(x)B(x)δu

+δTx (∂fM(x)) δx, ∀(x, δx) ∈ TX . (20)

Given conditions (18) and (19), [21] shows that there
always exists a differential feedback controller of the form
δu(x) = K(x)δx such that the following inequality holds for
all (x, δx) ∈ TX :

V̇ (x, δx) = δTx

(
∂fM(x) +

∂f(x)T

∂x
M(x)

∧

+ M(x)B(x)K(x)
∧

)
δx

≤ −2λδTxM(x)δx = −2λV (x, δx). (21)

Following the proof in [21], consider the geodesic
γ(s, t), s ∈ [0, 1], connecting points x∗(t) and x(t)
at time t. From the inequality above, we deduce that
V̇ (γ(s, t), δγ(s, t)) ≤ −2V (γ(s, t), δγ(s, t)), ∀s ∈ [0, 1],
where δγ(s, t) := ∂γ(s, t)/∂s. That is, the Riemannian met-
ric is contracting at all points along the geodesic connecting
x∗(t) and x(t). Thus, we may conclude the following:

Ė(γ(t)) =
d

dt

∫ 1

0

V (γ(s, t), δγ(s, t))ds

≤ −2λ

∫ 1

0

V (γ(s, t), δγ(s, t))ds = −2λE(γ(t)).

That is, the geodesic energy converges to zero exponentially
at rate 2λ. Consequently, the geodesic distance d(x∗(t), x(t))
converges exponentially to zero at rate λ, proving incremen-
tal exponential stability with respect to the trajectory x∗(t)
in the sense of Definition IV.1.

C. Incrementally Stabilizing Controllers
As shown in [21], conditions (18) and (19) can be written

in compact form as pointwise convex LMIs by introducing
the dual metric W (x) := M(x)−1 and the contravariant
transformation ηx := M(x)δx. Specifically, conditions (18)
and (19) are equivalent to the conditions, for all (x, ηx) ∈
T ∗X , where T ∗X denotes the co-tangent bundle,

∂bjW (x)−W (x)
∂bj(x)T

∂x

∧

= 0, j = 1, . . . ,m (22)

ηTx

(
−∂fW (x) +W (x)

∂f(x)T

∂x

∧)
ηx ≤ −2ληTxW (x)ηx,

(23)

for all ηx such that ηTxB(x) = 0.



By applying Finsler’s theorem [22] the contraction condi-
tion (23) can be equivalently written as

−∂fW (x)+W (x)
∂f(x)T

∂x

∧

−ρ(x)B(x)BT (x)+2λW (x) ≺ 0,

(24)
for all x ∈ X and where ρ(x) is a scalar multiplier. Note that
condition (24) is a jointly convex LMI in W (x) and ρ(x).

A key result is that the scalar multiplier ρ(x) yields a
differential feedback law (referred to as the ρ−multiplier
differential controller),

δu(x) = −(1/2)ρ(x)B(x)TM(x)︸ ︷︷ ︸
:=K(x)

δx, (25)

which verifies condition (21). Hence, given a desired nominal
state/control trajectory pair (x∗(t), u∗(t)), at time t, a control
law that ensures IES with respect to x∗(t) is given by

u(x(t)) = u∗(t) +

∫
γ(s,t)

δu(γ(s, t), δγ(s, t))ds

= u∗(t) +

∫ 1

0

K(γ(s, t))δγ(s, t)ds︸ ︷︷ ︸
=k(x∗(t),x(t))

. (26)

The key idea of this paper is to use the stabilizing feedback
controller k(·) as an ancillary feedback controller within the
tube MPC framework.

V. CONTRACTION-BASED TUBE MPC

In this section we show how to derive an ancillary
feedback controller by using contraction-theoretical tools.
Specifically, in Section V-A we consider the case where
one computes (offline) a CCM satisfying conditions (18) and
(19), and uses as ancillary feedback controller the associated
ρ−multiplier differential controller. In Section V-B we study
a similar approach, where, however, the CCM is computed
(offline) by minimizing a certain measure of the size of
the RCI set associated with the ρ−multiplier differential
controller. This approach yields, in general, significant im-
provements in the tracking capabilities of the tube MPC
algorithm. Third, and last, in Section V-C we investigate an
offline/online approach where a CCM is computed offline,
but the associated differential controller is computed online.
In this way, control effort can be significantly reduced.

Henceforth, x∗(t) denotes the solution to the nominal
disturbance-free dynamics in (1) using the MPC control
trajectory u∗(t), while x(t) denotes the actual state trajectory,
given by the solution to the perturbed dynamics subject to the
control law u∗(t)+k(x∗, x), where k(x∗, x) is a differential
controller associated to a CCM.

A. Feasible Contraction-Based Tubes
In this section we assume that the CCM is computed by

solving the LMIs (22) and (24), and the controller k(x∗, x)
is the associated ρ-multiplier differential controller. The next
theorem provides a characterization of the RCI set for this
case.

Theorem V.1 (RCI Set). Assume there exists a CCM M(x)
that satisfies conditions (22) and (24), and that there exist
constants 0 < α < α such that αI � M(x) � αI , for
all x ∈ X . Then, the geodesic distance between trajectories

x(t) and x∗(t), i.e., d(x∗(t), x(t)) = infc∈Γ(x∗(t),x(t)) l(c),
satisfies the differential inequality:

D+d(x∗(t), x(t)) ≤ −λd(x∗(t), x(t)) +
√
α ‖w(t)‖, (27)

where D+ denotes the upper-Dini derivative. Furthermore,
if the disturbance w satisfies the bound ‖w‖≤ w̄, then
the geodesic distance d is asymptotically upper bounded by√
ᾱw̄/λ.

Proof. At time t, consider the geodesic γ(s, t) connecting
x∗(t) and x(t). The energy of this geodesic E(γ(s, t)) is
given by the following integral:

E(γ(s, t)) =

∫ 1

0

V (γ(s, t), δγ(s, t))ds.

We now wish to study the change in this quantity as
the endpoints of the geodesic γ(s, t) move as dictated by
the dynamics. Accordingly, define the function ε(s, t) ∈
C2 ([0, 1]× R≥0,X ) that satisfies the following two prop-
erties:

ε̇(0, t) = ẋ∗(t), and ε̇(1, t) := ẋ(t), (28)

where ε̇(s, t) := ∂ε(s, t)/∂t. Thus, ε(0, t) and ε(1, t) track
the evolution of the state trajectories x∗(t) and x(t) respec-
tively. Let ∆t ∈ R>0 be an infinitesimal length of time. The
first variation of the energy due to the function ε̇(s, t)∆t at
time t is given as [23]:

∆E(γ, ε̇∆t) = ∆t

∫ 1

0

(
∂V (s, t)

∂γ(s, t)
+

∂

∂s

(
∂V (s, t)

∂δγ

))T
ε̇(s, t)ds

+ ∆t

[(
∂V (s, t)

∂δγ

)T
ε̇(s, t)

]∣∣∣∣∣
s=1

s=0

,

where we have employed the shorthand V (s, t) =
V (γ(s, t), δγ(s, t)). We now observe that by the Fundamental
Theorem of Calculus of Variations [24], for γ(s, t) to be the
geodesic at time t, the bracketed term within the integrand
in the expression above must equal 0 for all s ∈ [0, 1] and
any variation ε̇(s, t)∆t (thereby defining the Euler-Lagrange
equation characterizing a geodesic). Thus, the first variation
simply reduces to the two boundary terms. Dividing this
remaining expression on both sides by ∆t, taking the limit
∆t → 0+, and leveraging the identities in (28) yields the
following expression for the instantaneous rate of change of
the geodesic energy:

D+E(t) = 2δTγ (1, t)M(γ(1, t))(f(x(t)) +B(x(t))u(x(t))

+Bww(t))

− 2δTγ (0, t)M(γ(0, t)) (f(x∗(t)) + B(x∗(t))u∗(t)) .

where u(x(t)) is given by (26) using a differential controller
(e.g., the ρ−multiplier controller) associated with the CCM
M . Thus, by the IES property of the unperturbed system,
the above expression can be bounded as:

D+E(t) ≤ −2λE(t) + 2δTγ (1, t)M(γ(1, t))Bww(t).

Making use of the factorization M := ΘTΘ and defining
δz(s, t) := Θ(γ(s, t))δγ(s, t), the above expression may be
re-written as:

D+E(t) ≤ −2λE(t) + 2δTz (1, t)Θ(γ(1, t))Bww(t).



We now recall that a geodesic is characterized by “constant
speed” with respect to the metric tensor [23], i.e., V (s, t) =
E(t) = d2(x∗(t), x(t)) for all s ∈ [0, 1]. Thus, recognizing
that ‖δz(s, t)‖=

√
V (s, t), we conclude that ‖δz(1, t)‖=

‖δz(s, t)‖= d(x∗(t), x(t)). Using this relation and leveraging
the upper-bound σ(Θ(x)) ≤

√
α yields the inequality

D+E(t) ≤ −2λE(t) + 2d(x∗(t), x(t))
√
α‖w(t)‖.

Using the relation E(t) = d2(x∗(t), x(t)) and applying the
chain-rule gives the stated differential inequality, completing
the proof.

Remark V.2 (Euclidean Distance Bound). Note that since
d(x∗(0), x(0)) = 0, by the comparison lemma [25], the
geodesic distance is upper bounded by

√
ᾱw̄/λ, for all time

t. Hence, we may derive a bound on the Euclidean distance
error, thereby defining the RCI set centered at x∗(t), namely:

‖x∗(t)− x(t)‖≤
√
α

α

w̄

λ
. (29)

Note that the bound in Remark V.2 is proportional to the
square root of the condition number of M(x) (equivalently
of W (x)) and inversely proportional to the contraction rate.
In the next section we propose an approach to compute a
CCM (and associated differential controller) that optimizes
this bound.

B. Optimized Contraction-Based Tubes
In this section we replace the CCM feasibility problem

(i.e., the LMIs (22) and (24)), with a quasiconvex optimiza-
tion problem, with the goal of minimizing the size of the
RCI set as measured by the bound in (29).

Define β := 1/α and β̄ = 1/α (i.e., αI � M � ᾱI ⇔
βI �W � β̄I). Then, the CCM optimization problem that,
in theory, one would like to solve is

Optimization Problem OPT CCM — Solve

min
W∈C2(X ,S+n )

ρ∈C2(X ,R)

β,β,λ∈R>0

1

λ

√
β/β (30)

subject to eq. (22), eq. (24) (31)

βI �W (x) � βI (32)

where the conditions hold uniformly for all x ∈ X .
Unfortunately, problem OPT CCM is non-convex and

infinite-dimensional. Hence, we consider a tractable, finite-
dimensional, quasiconvex approximation, whereby the dual
metric W (x) is parameterized as a matrix polynomial and we
apply the sum-of-squares (SOS) relaxation over the bounded

set X . Recognizing that for a fixed contraction rate λ,
conditions (31) and (32) define a convex feasibility region for
W (x) and ρ(x), problem OPT CCM can be approximated
by the quasiconvex problem OPT

ĈCM
:

Optimization Problem OPT
ĈCM

— Solve

min
λ∈R>0

min
W∈C2(X ,S+n )

ρ∈C2(X ,R)

β,β∈R>0

β/β (33)

subject to eq. (22), eq. (24) (34)

βI �W (x) � βI (35)

where the conditions hold uniformly for all x ∈ X .
The condition number minimization of a positive definite

matrix over a closed convex set is a well studied problem in
optimization literature and has been shown to be solvable by
convex programming [26]. Furthermore, the constraints can
be reformulated as SOS constraints by applying Positivstel-
lensatz relaxations [27], thereby yielding an SDP. Problem
OPT

ĈCM
can then be solved by bisection search on λ,

where for a fixed λ one has to solve an SDP.
The solution to problem OPT

ĈCM
provides an optimized

CCM and associated optimized ρ-multiplier differential con-
troller that (often significantly) decreases the size of the RCI
set. Note that both the optimized CCM and the optimized
ρ-multiplier differential controller are computed offline, and
thus do not leverage any additional information available
online. In the next section we present an offline/online ap-
proach where the CCM is computed offline, but the ancillary
feedback controller is computed online, with the objective of
minimizing control effort.

C. Offline/Online Tube MPC via Contraction Theory
To minimize the suboptimality gap of the tube MPC

approach, one desires to minimize ‖u∗+k(x∗, x)‖2R (i.e., the
control effort), where k(x∗, x), as usual, denotes the ancillary
feedback controller. To this purpose, consider the inequality:

‖u∗ + k(x∗, x)‖2R = ‖u∗‖2R+2u∗TRk(x∗, x) + ‖k(x∗, x)‖2R
≤ ‖u∗‖2R+2‖Ru∗‖‖k(x∗, x)‖

+ ‖R‖‖k(x∗, x)‖2 (36)

Hence, by minimizing ‖k(x∗, x)‖, one can approximately
minimize the control effort. In this section we consider an
offline/online approach where the (dual) CCM metric is
computed offline by solving problem OPT

ĈCM
, while the

ancillary controller is computed online by minimizing its
norm subject to the pointwise inequality constraint given in
(21). Specifically, at each time t, the ancillary controller is
computed as a solution to the (infinite-dimensional) convex
optimization problem OPT online:

Optimization Problem OPT online — At time t ≥ 0, given a dual CCM W (x), a desired state x∗(t), the current
state x(t), and the geodesic γ(s, t) connecting these two states (i.e., γ(0, t) = x∗(t) and γ(1, t) = x(t)), let
W (s, t) := W (γ(s, t)), and ηx(s, t) := M(s, t)δγ(s, t). Solve

δ∗u = argmin
δu∈C2([0,1],Rm)

∥∥∥∥∫ 1

0

δu(s, t)ds

∥∥∥∥2

subject to ηx(s, t)T

(
−∂f(x)W (x) + W (x)

∂f(x)T

∂x

∧)∣∣∣∣∣
x=γ(s,t)

ηx(s, t) + 2ηx(s, t)TB(γ(s, t))δu(s, t)

≤ −2ληx(s, t)TW (s, t)η(s, t), ∀s ∈ [0, 1]. (37)



The ancillary controller is then given by k(x∗(t), x(t)) =∫ 1

0
δ∗u(s, t)ds (henceforth, we will refer to such a controller

as the “optimized differential controller”).
A few comments are in order. First, the existence of the

dual metric W (x) (and, thus, the existence of the associated
ρ−multiplier differential controller) ensures that problem
OPT online is always feasible. Second, the linear inequality
(37), written using the dual metric W (x), is essentially a
relaxation of the contraction inequality in (21), in that it
only enforces contraction tangent to the given geodesic. (In
contrast, the ρ−multiplier differential controller ensures that
the system contracts in all directions with at least rate λ.)
Such a relaxation still guarantees incremental exponential
stabilizability, as only the flow along the geodesic affects
the convergence of x(t) to x∗(t). On the other hand, such a
relaxation can often dramatically decrease control effort, as
investigated via numerical experiments in SectionVII.

Problem OPT online is convex, yet infinite dimensional.
Furthermore, it requires the online computation of the
geodesic γ(s, t). In the next section we present efficient nu-
merical methods to enable the real-time solution to problem
OPT online.

VI. NUMERICAL IMPLEMENTATION

In this section we discuss numerical methods for the online
computation of the geodesic and the solution to problem
OPT online.

A. Geodesic Computation

Computation of the geodesic between two points p, q ∈
X can be framed as the following functional optimization
problem:

Optimization Problem OPT γ — At time t ≥ 0,
given desired state x∗(t) and current state x(t),
solve

min
c(s,t)∈Γ(x∗(t),x(t))

∫ 1

0

cTs (s, t)M(c(s, t))cs(s, t)ds

(38)

where cs(s, t) = ∂c(s, t)/∂s.
Following the approach in [28], such a problem can be
efficiently solved by applying the Chebyshev global pseu-
dospectral method, i.e., by discretizing the interval [0, 1]
using the Chebyshev-Gauss-Lobatto (CGL) nodes and using
Chebyshev interpolating polynomials up to degree N to ap-
proximate the solution. The integral in (38) is approximated
using the Clenshaw-Curtis quadrature (CCQ) scheme with
K > N nodes. As in [28], we choose K > N since the
integral involves the inverse of the dual metric W and is not
guaranteed to be polynomial.

B. Solution to OPT online

Given the solution to the geodesic problem OPT γ ,
parameterized by a set of values {γ(sk)}Kk=0 and
{δγ(sk)}Kk=0, sk ∈ [0, 1], problem OPT online is solved
by applying again the Chebyshev pseudospectral method.
In this case, however, Lagrange polynomials are used for
interpolation. In fact, as these polynomials satisfy the iso-
lation property with respect to the CGL nodes [29], the

discretized version of problem OPT γ can be transformed
into a quadratic program (QP):

min δTu Fδu (39)
subject to Aδu ≤ b (40)

where F ∈ S(K+1)m and δu ∈ R(K+1)m is the stacked
vector of all the δu(sk), k = 0, . . . ,K. The integral yielding
k(x∗, x) is computed using the aforementioned CCQ scheme.

VII. SIMULATIONS

A. Dynamics Model & Constraints
In this section we investigate the performance of

“contraction-based” tube MPC. Consider the following
second-order nonlinear dynamics system (taken from [14]):

ẋ(t) =

[
−1 2
−3 4

]
x+

[
0

−0.25x3
2

]
+

[
0.5
−2

]
u(t) +

[
0
1

]
w(t)

(41)
The control constraints are:

−2 ≤ u(t) ≤ 2 for all t ≥ 0.

The state constraints, while not explicitly given in [14], are
taken to be the [−5, 5]2 box. The disturbance w(t) is norm
bounded, namely ‖w‖≤ 0.1, and the state and control cost
matrices are Q = diag(0.5, 0.5) and R = 1.

In the following, we first solve the quasi-convex problem
OPT

ĈCM
to obtain a feasible dual metric W (x) and

the associated ρ−multiplier differential controller. We then
compare the optimized (i.e., obtained by solving OPT online)
and ρ−multiplier differential controllers in an unconstrained
scenario as they attempt to regulate the state from (3, 3) to
the origin.

B. CCM Synthesis and RCI set
To derive the CCM and associated ρ−multiplier differen-

tial controller, we solved problem OPT
ĈCM

by sweeping
through a range of values for the contraction rate λ. Figure 1
plots the normalized (with respect to w̄) RCI bound in (29)
as a function of λ.
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Fig. 1: RCI bound vs contraction rate.

From the plot above, the optimal solution for λ, denoted
λ∗, is found to be 1.74 with an associated normalized RCI
bound value of 0.7333. In particular, we found that the
optimal dual metric is in fact constant for all x ∈ X (i.e., is
a flat metric), and is given by:

W (x) =

[
2.09508 −0.46066
−0.46066 1.85833

]
.

Therefore, in this scenario, since the geodesic between two
points is simply given by the straight line connecting those
two points, we use the geodesic distance bound derived in



Theorem V.1 instead of the Euclidean bound, yielding the
following RCI set:

Ω = {x ∈ X : xTW−1x ≤ 0.2193w̄2}.

In Figure 2 we plot the above RCI set using w̄ = 0.1, along
with the RCI set computed in [14] for the same disturbance
level (in [14], a linear state feedback ancillary controller
is used). As one can see, our approach yields a markedly
smaller invariant set for a given disturbance upper bound.

Fig. 2: Comparison of the CCM-derived RCI set (shaded
black) and the RCI set computed in [14] (shaded red) for
the same disturbance upper bound w̄ = 0.1.

C. Performance of Differential Controllers
In this section we compare the ρ−multiplier and op-

timized differential controllers. In particular, consider an
unconstrained scenario where we ignore the state and control
constraints and attempt to regulate the state to the origin.
Figure 3 compares the resulting control trajectories when
using the ρ−multiplier and optimized differential controllers
for regulating the state from the point (3, 3) to the origin.

Notice that there is a large initial spike in control effort
when using the ρ−multiplier differential controller. This is
due to the fact that the contraction condition in (24) is
a sufficient condition for guaranteeing convergence at rate
at least λ∗. In particular, consider Figure 5 which plots
the geodesic energy E(γ) over time. One can see that
the ρ−multiplier differential controller provides convergence
with a rate faster than λ∗. On the other hand, the optimized
differential controller (aimed at minimizing control effort)
provides a control input equal to zero at points along the
geodesic which are naturally contracting at rate λ∗ and con-
sequently, the geodesic energy curve for the corresponding
state trajectory overlaps nearly exactly with the upper bound
dictated by λ∗. The reduction in the maximum control effort
is quite drastic, as observed in Figure 3. The corresponding
state trajectories are shown in Figure 4.

D. Comparison with State-of-the-Art-Methods
Finally, in this section we compare the optimal differential

controller with its state-of-the-art counterparts. Specifically,
we implemented the tube MPC algorithms from [17] and [14]
for system (41). In order to ensure fair comparison, we kept
the nominal MPC algorithm parameters the same for all
three implementations, namely, MPC recalculation sample
time δ = 0.1 s, MPC time horizon T = 1.5 s, and
control trajectory time resolution εt = 0.01 s (i.e., the
ancillary feedback was computed every 0.01 s). For the tube
algorithm in [17], which uses a secondary MPC controller for
computing the ancillary feedback, we varied the recalculation
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Fig. 3: Control trajectories using the ρ−multiplier and
optimized differential controllers for system (41) in the
unconstrained case starting at (3, 3).
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Fig. 4: Closed-loop state trajectories using the ρ−multiplier
(top) and optimized differential (bottom) controllers for
system (41) in the unconstrained case starting at (3, 3).

time resolution while maintaining the same control trajectory
resolution of 0.01 s. The terminal control invariant set Xf
was also taken from [14] and kept fixed. The initial state was
(3.5,−2.5).

Consider the state trajectory plot in Figure 6, obtained
assuming a constant disturbance with magnitude 0.1. Due
to space constraints, we present this plot only for the
optimal differential controller. The actual trajectory (in
blue) is virtually indistinguishable from that predicted by
the nominal MPC algorithm. Under the optimized differ-
ential ancillary controller the state has a steady-state value
equal to (0.02575, 0.006689), while the steady-state values
using the algorithms from [14] and [17] were found to
be (0.03891, 0.01437) and (0.072, 0.034), respectively. The
control histories are almost identical and satisfy the control
bounds (Figure 7 shows the control trajectory using the
contraction-based method).

While the performance characteristics in terms of state-
boundedness and control effort for all three algorithms are
in the same order of magnitude for this example, the “dual-
MPC” algorithm from [17] is less suitable for fast, contin-
uous dynamical systems as it essentially requires solving
an additional optimal control problem for the ancillary con-
troller (albeit with relaxed constraints) – a heavier computa-
tional burden. Indeed, relaxing the nominal and/or ancillary
re-computation times for this controller led to noticeably
worse performance. In addition, as mentioned earlier and
in [17], the bound on the deviation of the state from the
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Fig. 5: Comparison of the geodesic energy E(γ) for the state
trajectories corresponding to the ρ−multiplier and optimized
differential controllers, respectively.

nominal MPC trajectory is difficult to quantify exactly. On
the other hand, the algorithm from [14] is perhaps most
computationally efficient since the ancillary controller has
an analytical closed-loop form and requires no iterations.
However, through efficient parameterization of the problem
(as discussed in Section VI), the additional computational
burden of computing the optimized differential controller is
negligible (consistently in the order of 3-4 milliseconds).
Furthermore, our method of optimizing the RCI set by
analyzing the intrinsic properties of the non-linearities in the
system dynamics rather than relying on Lipschitz bounds
yielded a significant reduction in the size of the RCI set.
This has important consequences for increasing the domain
of feasibility for the nominal MPC problem which uses
tightened constraints. In the appendix, we provide an ad-
ditional example where the resulting metric is not flat, i.e.,
it is a smooth function of the state, and characterize the
robust stabilizability and performance characteristics using
our generalized, optimized tube-MPC framework.

VIII. CONCLUSIONS

In this paper we presented a contraction-based approach to
tube MPC. Specifically, we presented (a) methods to derive
bounds on the size of the invariant tubes as a function of the
properties of the control contraction metric and the associated
ancillary feedback controller, (b) a tractable quasiconvex op-
timization program to compute a control contraction metric
that minimizes the size of these tubes, and (c) an optimization
program (together with numerical methods for its solution)
to design a differential controller that optimizes control
effort. Future work should address (1) extensions for model
uncertainties, (2) offset-free tracking via integral feedback,
and (3) robustness to time delays, together with experiments
on physical systems.

REFERENCES

[1] J. Qin and T. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 2003.

[2] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, 2010.

[3] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[4] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained Model
Predictive Control: Stability and Optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

(a) Full closed-loop state trajectory.

(b) Zoomed-in view, which highlights the RCI sets centered
on the nominal trajectory.

Fig. 6: Closed-loop state trajectory using the optimized
differential ancillary controller. Red: nominal MPC solution,
Blue: actual trajectory. Also plotted is the terminal invariant
set (shaded red) and the RCI sets along the nominal MPC
trajectory (shaded black).

[5] D. Limon, T. Alamo, D. Raimondo, D. M. de la Pena, J. Bravo,
A. Ferramosca, and E. Camacho, “Input-to-state stability: a unifying
framework for robust model predictive control,” in Nonlinear model
predictive control. Springer, 2009, pp. 1–26.

[6] B. Kouvaritakis and M. Cannon, “Developments in Robust and
Stochastic Predictive Control in the Presence of Uncertainty,” ASCE-
ASME Journal of Risk and Uncertainty in Engineering Systems, Part
B: Mechanical Engineering, vol. 1, no. 2, p. 021003, 2015.

[7] L. Magni, D. M. Raimondo, and F. Allgöwer, Nonlinear model
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APPENDIX

IX. NON-POLYNOMIAL DYNAMICS

A. Dynamics Model & Constraints

We now investigate the performance of contraction-based
tube MPC for a non-polynomial, second-order, nonlinear
dynamics system (taken from [30]):

ẋ(t) =

[
x2(t)

−x1(t) + x2(t) sinh(x2
1(t) + x2

2(t))

]
+

[
0
1

]
u(t)

+

[
0
1

]
w(t) (42)

The control constraints are:

−1 ≤ u(t) ≤ 1 for all t ≥ 0.

The state constraints, while not explicitly given in [30], are
taken to be the [−1.3, 1.3]2 box. These bounds were selected
based on two factors. The first is an attempt to increase
the problem feasibility domain from that achievable using a
feedback linearizing controller or an infinite-horizon optimal
controller. Both are shown in [30] to be unable to stabilize
the closed-loop system when subject to control saturation.
The second factor stems from the approximation used to
derive a suitable CCM using a polynomial expansion for
the dynamics and the dual metric. This is discussed further
in the following subsection. The disturbance w(t) is norm
bounded, namely ‖w‖≤ 0.02, and the state and control cost
matrices are Q = diag(0, 1) and R = 1.

B. CCM Synthesis and RCI set

As the dynamics in (42) are non-polynomial, we used a
Taylor series approximation for the hyperbolic terms in f(x)
and ∂f(x)/∂x within problem OPT

ĈCM
. Consequently,

the size of the state constraint set X was adjusted appro-
priately to ensure that the desired pointwise LMIs hold for
the original non-polynomial dynamics.

As for the example in the main body of the paper, we
solved problem OPT

ĈCM
by sweeping through a range

of values for the contraction rate λ. Figure 8 plots the
normalized (with respect to w̄) RCI bound in (29) as a
function of λ.
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Fig. 8: RCI bound vs contraction rate. The maximum allowed
degree for the polynomials in W was 4 and the maximum
allowed condition number was 50.

From the plot above, λ∗ was chosen to be 2 with an
associated normalized RCI bound value of 2.31. Note that
while feasible solutions were found up to λ = 3, these
solutions yielded more aggressive controllers that required

lower sampling times when implemented using zero-order-
hold. The optimal dual metric was

W (x) =

[
0.2543 −0.5586
−0.5586 2.4924− 0.0065x4

1

]
.

As the optimal CCM for this example is a function of x,
we must use the conservative Euclidean bound to define the
RCI set, given below:

Ω = {e ∈ Rn : ‖e‖≤ 2.31w̄},

where we recall from Definition III.1 that e = x−x∗. Having
obtained our RCI set, we are now ready to implement the
contraction based tube MPC algorithm.

C. Integration with Tube MPC
The terminal set Xf for the nominal MPC problem was

taken from [30] as a sublevel set of the terminal cost
function:

Ψ(x) = exp
(
‖x‖2

)
− 1,

Xf = {x ∈ X : Ψ(x) ≤ 0.53}.

Note that this is simply the set {x ∈ X : ‖x‖2≤ 0.43}. The
algorithm timing characteristics were δ = 0.1 s, T = 2 s,
and εt = 0.005 s. The initial state for the nominal MPC
problem at solve time ti was allowed to be an optimization
variable as discussed in Remark III.4 subject to the constraint
given in (14) using a tightened RCI set. This was done
to avoid transient overshoots due to the zero-order-hold
implementation. Figures 9 and 10 show the resulting state
and control trajectories respectively for an initial state given
by (−1,−0.2) and assuming a constant disturbance signal
w(t) = w̄ = 0.02. All state and control constraints are
satisfied and the true state converges to a steady-state value of
(0.002, 0.0001) while remaining inside the RCI set centered
on x∗(t) at all times.



(a) Full closed-loop state trajectory.

(b) Zoomed-in view, which highlights the RCI sets (shaded
green and red) centered on the nominal trajectory.

Fig. 9: Closed-loop state trajectory using the optimized
differential ancillary controller. Red: nominal MPC solution,
Blue: actual trajectory. Also plotted is the terminal invariant
set (shaded grey) and the RCI sets along the nominal MPC
trajectory (shaded red and green).
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Fig. 10: Control trajectory using the optimized differential
controller for computing the ancillary feedback. Blue: nom-
inal MPC solution, Red: net control applied.
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