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Mechanism for Designing Metallic Metamaterials with a High Index of Refraction
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We introduce a mechanism for creating artificial high refractive index metamaterials by exploiting the
existence of subwavelength propagating modes in metallic systems. As an example, we investigate
analytically and numerically metal films with a periodic arrangement of cut-through slits. Because of the
presence of TEM modes in the slits, for TM polarization such a system can be rigorously mapped into a
high refractive index dielectric slab when the features are smaller than the wavelength of light. The
effective refractive index is entirely controlled by the geometry of the metal films, is positive, frequency
independent, and can be made arbitrarily large.
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FIG. 1. (a) Schematic of the metal film with periodic slits. The
parameters are defined as in the figure: a is the width of the slit, d
is the periodicity, and L is the thickness of the metal film. The
black regions indicate the metal parts, and the white regions are
the vacuum. The film is extended in the x� y plane. (b) The
equivalent effective dielectric slab corresponding to (a). The
effective refractive index is n � d=a, and the thickness is L �
L=n.
Recently, there has been great interest in exploiting
subwavelength resonances in metallic structures to create
artificial materials with unusual effective electromagnetic
responses. Notable examples include high-impedance sur-
faces used as an antenna substrate [1–3], negative refrac-
tive index metamaterials [4–7], effective surface plasmon
behavior [8] on perfect metal surface with gratings [9], and
effective bulk plasmon behavior [10] in thin-wire struc-
tures [11–16]. In this Letter, we show that a perfect metal
film with a periodic arrangement of cut-through slits can be
regarded as a dielectric slab with a frequency-independent
effective refractive index. The effective index in this sys-
tem is entirely controlled by geometry, and indices that are
arbitrarily high can be straightforwardly synthesized. Such
a capability is potentially important for miniaturization of
optical or electromagnetic devices and for improving reso-
lution in imaging. More fundamentally, the refractive in-
dex is commonly regarded as an intrinsic material property
that is directly related to the underlying electronic states.
By pointing out that the refractive index can be controlled
by geometry only, and that ranges of large refractive index
that are not previously accessible can in fact be generated
with metamaterials, this work adds evidence to the impor-
tant potential of replacing electronic states with subwave-
length electromagnetic resonances, which could open up a
new world of possibilities in optical physics.

The key to creating the desired effective index behavior
lies in the existence of subwavelength propagating modes
in metallic structures. As an example, let us consider a
metal film with one-dimensional periodic cut-through slits,
as shown in Fig. 1(a). Without losing generality, we assume
hereafter vacuum for the ambient environment and the slit
regions. In the slits, regardless of how small the width is,
there exists a propagating TEM mode, with the electric
field pointing in the x direction. It has been shown [17–20]
that the presence of this mode permits perfect transmission
of light through subwavelength slit arrays. Here, in order to
define an appropriate effective index, we focus on the
behavior of this structure in the long wavelength limit.
As it turns out, the properties of the metal film for the
TM polarization asymptotically approach those of a di-
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electric slab with a uniquely defined refractive index n and
a width L, as depicted in Fig. 1(b).

We first give a heuristic derivation to establish this
connection. Our heuristics are based on fundamental con-
cepts such as resonance, instantaneous power flow, and
energy conservation. Specifically, the Fabry-Perot reso-
nance condition for the TEM mode in the slit is k� L �
m�, where k is the wave vector of the incident light, L is
the thickness of the metal film, and m is a positive integer.
This condition can be written as �nk� � �L=n� � m� as
well for any numerical value of n, which implies that any
dielectric slab with refractive index n and thickness L �
L=n would give the same Fabry-Perot resonances. To
uniquely determine n, we compare the fields in both sys-
tems. We will use an overhead line over a variable to
denote the corresponding quantity in the effective medium
hereafter. Suppose that the effective homogeneous electric
field in the effective medium is E; we then have E � a

dE.
Requiring the instantaneous energy flow across the surface
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FIG. 2 (color). The transmission coefficient of the metal film
(black lines) and the corresponding effective dielectric slab (red
lines). The thickness of the metal film is L=d � 25=4. The
effective refractive index of the slab is n � d=a � 4.
(a) Spectrum at normal incidence. (b) Transmission at oblique
incidence for the frequency ! � 0:05� d=�.
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to be the same for both the metal film and the effective
dielectric slab, �E�H�z � a � �E�H�z � d, we obtain
the scaling condition for the magnetic fields H � H. Note
that, for the TEM mode considered here, the only nonzero
fields are Ex andHy. In addition, Maxwell’s equations give
the following relations between the electric and magnetic
fields: E=H �

����������
�=�

p
and E=H �

����������
�=�

p
. By imposing the

condition that the total energy for both systems is the same
for any time t,

1

2
��E2��H2��L�d�

1

2
��E2��H2��L�a; (1)

we have � � � and �=� � �d=a�2, and therefore the
effective refractive index is n � d=a. Consequently, an
effective refractive index can be synthesized entirely by
geometrical means. This allows the creation of arbitrary
frequency-independent refractive indices larger than 1
without having to change the intrinsic electronic states of
the material.

We now confirm this intuitive argument by performing
rigorous calculations. Consider a TM wave (the magnetic
fields pointing in the y direction) incident on the metal film.
The transmission amplitude for the pth diffraction order is
given by [18–20]

tp �
!=c
�p

gp

�
4fu

�1���2 � �1���2u2

�
; (2)

where ! is the frequency, c is the speed of light, Gp �

kx � 2�p=d is the parallel quasimomentum along the
metal surface of the pth diffraction order, �p ����������������������������
�!=c�2 �G2

p

q
is the momentum in the z direction, f �

a=d is the area filling factor of the slits, u � ei�!=c�L is the
phase accumulation across the metal film with thickness L,
gp � sinc�Gpa=2�, and

� �
X1

p��1

fg2p
!=c
�p

: (3)

At normal incidence, g0 � 1 and �0 � !=c. The zeroth
order amplitude, which is the amplitude of the only field
that propagates afar when the wavelength � is larger than
the periodicity d, can be written as

t0 �
4
�f=�2�=�1� 1=��2�ei�!=c�L

1� 
�1� 1=��=�1� 1=���2e2i�!=c�L
: (4)

Comparing this to the transmission amplitude of a plane
wave normally incident on a dielectric slab with refractive
index n and thickness L,

t �
4
n=�1� n�2�ein�!=c�L

1� 
�1� n�=�1� n��2e2in�!=c�L
; (5)

it follows immediately that by identifying n � 1=� and
L � L=n, these two amplitudes are asymptotically identi-
cal. Note that, in this case, 1=� � 1=f � d=a, while
higher diffraction orders due to the periodicity introduce
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a small purely imaginary correction. It is easy to show that
the identification becomes very accurate for a large d=a
ratio, i.e., high effective refractive index n. This confirms
the notion of the corresponding ‘‘effective dielectric slab’’
given earlier by the heuristic argument: the transmission
properties of a metal film with slits are asymptotically
identical to those of a dielectric slab with the refractive
index n � d=a and the thickness L � L=n. This identifi-
cation to the dielectric slab remains valid for all oblique
incident angles as well.

The transmission spectrum, for normally incident light,
is shown in Fig. 2(a) for the case n � 4. This spectrum is
calculated using the exact analytic expression Eq. (4). The
transmission coefficient becomes 100% when k� L �
!=c� L � m�, as expected from the Fabry-Perot reso-
nance condition in the slit. Remarkably, the entire spec-
trum matches almost perfectly with that of a high index
slab with n � d=a and L � L=n. By increasing L by only
2.5%, the two spectra can be made to completely overlap
with each other in the frequency region shown in the figure.
For obliquely incident light, the transmission spectrum is
shown in Fig. 2(b) as a function of the incident angle. The
same correction factor of L from Fig. 2(a) also brings the
two spectra in Fig. 2(b) to coincide. Note that the correc-
tion factor for L vanishes for larger n.

With the transmission equivalence established, it would
be of great interest if the notion of the effective dielectric
slab could be carried over to other optical properties, such
as wave-guiding properties along the medium. As noted by
the expression for �p, i.e., the momentum of the pth
diffraction order field external to the metal film in the z
direction, when the periodicity of the slits is much smaller
than the free-space wavelength of light, all diffraction
orders are evanescent in the z direction. These diffraction
orders form sizable high intensity bulges centered around
the openings of the slits [20]. When these bulges overlap
with each other and create propagating modes in the struc-
ture, the metal film could act as a waveguide. Recently, it
has been shown that structured surfaces on perfect metal
can support surface modes that are evanescent inside the
structures [9]. In contrast, in our system, due to the prop-
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agating nature of the TEM modes in the slits, the guided
modes are not surface states but rather closely resemble
waveguide modes in a dielectric slab.

The properties of such guided modes can be solved for
analytically. When there is no external source present, the
magnetic fields in the mth slit, above the metal film and
below the metal film, have the following forms:

Hm
y �x; z� �

�
Am�x� cos

�
!
c
z
�
� Bm�x� sin

�
!
c
z
��

for jx�mdj 

a
2
;

Habove
y �x; z� � eikxx

X1
p��1

rpe
i�p��z�L=2�ei�2�p=d�x;

Hbelow
y �x; z� � eikxx

X1
p��1

tpei�p�z�L=2�ei�2�p=d�x; (6)

respectively; Am, Bm, rp, and tp are the amplitudes. The
electric fields are then obtained from �@E=@t � r�H.

The even eigenmodes (rp � tp for all p, and Bm � 0 for
all m) satisfy the dispersion relation

1

i�
� tan

�
!
c
L
2

�
; (7)

and the odd eigenmodes (rp � �tp for all p, and Am � 0
for all m) satisfy the dispersion relation
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FIG. 3 (color). Dispersion curves of the waveguide modes in
the first Brillouin zone. Shown in the figures are the first three
even modes of the metal films (black lines) and the correspond-
ing effective dielectric slabs (red lines). The dashed lines are the
light lines in vacuum and in the slab waveguides, respectively.
L=d � 25=4. (a) n � 4; (b) n � 16. (The odd modes, not shown
here, are located between the even bands and behave similarly.)
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as calculated by matching the boundary conditions [19,20].
In both cases, � �

P
1
p��1 fg

2
p
!=c
�p

, as defined in Eq. (3),

is now purely imaginary for waveguide modes. When we
compare Eqs. (7) and (8) with the corresponding dispersion
relations of the TM modes of a dielectric slab [21] with
refractive index n and thickness L � L=n, the mapping
n � 1=�fg20� becomes asymptotically exact for large n. In
practice, kxa� 1, so g0 � sinc�kxa=2� � 1 and therefore
n � 1=f � d=a, which is the same condition as for trans-
mission. Figure 3 shows the dispersion curves of the first
three even waveguide modes in the first Brillouin zone of
the metal films and the corresponding effective dielectric
slabs. At low frequency, the wave propagates at the speed
of light in the external region, while at large propagating
constant kx, the eigenfrequencies approach �2p� 1� �
�c=L (for even modes) and 2p� �c=L (for odd modes),
respectively, where p is a positive integer. The even and
odd modes stack up alternatively and are equally spaced at
large kx. As expected, the agreement between the metallic
system and the effective dielectric slab improves as n
increases. For n � 16, the two dispersion curves almost
completely overlap within the first Brillouin zone. Both the
transmission and the waveguide properties of the metal
film give the same expression for the effective refractive
(a)

(b)

2π/kx

2π/kx

FIG. 4 (color). Snapshots of the Hy field distributions of the
fundamental waveguide modes of the metal film [shown in (a)]
and the corresponding effective dielectric slab [shown in (b)] for
n � d=a � 4, L=d � 25=4. The red color indicates positive
amplitude, while the blue color indicates negative amplitude.
The white lines in (a) and (b) outline the film and the slab,
respectively. The normalized excitation frequency is ! �
d=� � 0:0516. The arrows indicate the periodicity of the field.
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index n � d=a, thereby validating the generality of the
effective refractive index.

Figure 4 shows the modal patterns of the fundamental
waveguide modes of a metal film and the corresponding
effective dielectric slab with the refractive index n � 4.
These field distributions are computed using a two-
dimensional finite-difference time-domain method. The
normalized excitation frequency ! � d=� � 0:0516 is in
the overlap region of the two dispersion curves in Fig. 3(a).
The spatial periodicity of the waveguide modes clearly
demonstrates the equivalence of the two systems. The
fundamental mode in the metallic structure peaks at the
center just as the corresponding guided mode in the dielec-
tric slab does, and this distinctly differs from the surface
mode behaviors previously considered [9].

For TE polarization (the electric field is pointing in the y
direction), the slits support only evanescent modes. An
argument in the same fashion as in Ref. [9] gives�x=�x �
8=�2 � a=d and a dielectric function of the plasma form:

�y
�y

�
�2

8

d
a

�
1�

!2
p

!2

�
; (9)

where the geometrical plasma frequency !p �

�c=�a ������������y�x
p

�; �y and �x are the dielectric constant and
permeability, respectively, of any material that may be
filling the slits. The limiting wavelength �g for this polar-
ization is 2a. Since the structure considered in this Letter is
two-dimensional, its behavior is strongly polarization de-
pendent. The mechanism of creating effective high refrac-
tive index dielectric structures is not restricted to two
dimensions. In three dimensions, subwavelength propagat-
ing modes exist in many transmission-line geometries [22],
which may be used to create high refractive index materials
in three dimensions.

As a final remark, we compare our approach to other
attempts to alter the effective refractive index geometri-
cally. The Maxwell Garnett effective medium approxima-
tion [23] has been fairly successful in explaining the
transmission spectra of the composite metal-insulator and
semiconductor-insulator systems [24]; an analytic expres-
sion of the effective dielectric constant has also been given
for one-dimensional grating systems [25]. Nonetheless,
these approaches are not valid when the dielectric constant
of the metal becomes large and negative. The results
presented here can be directly applied in the wavelength
range from microwave to far infrared, where the loss and
the plasmonic effects of the metals can be largely ne-
glected. In the optical wavelength range, the presence of
the plasmonic response leads to additional subwavelength
propagating modes [26–28], which may also be exploited
in creating novel optical materials.
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